
VeraCrypt 1.18 Security Assessment

Technical Report

Ref. 16-08-215-REP
Version 1.0

Date 17 October, 2016
Prepared for OSTIF

Performed by Quarkslab

Contents

1 Project information 3

2 Executive Summary 4
2.1 Fixes . 4
2.2 New Problems . 5

3 Context and Scope 6

4 Known Vulnerabilities in TrueCrypt 7.1a 7
4.1 Vulnerabilities Detailed in OCAP Phase 1 . 7
4.2 Vulnerabilities Detailed in OCAP Phase 2 . 14
4.3 Vulnerabilities Reported by James Forshaw . 17

5 VeraCrypt’s Modifications Assessment 19
5.1 The Length of the Password Can Be Computed When Encryption Is Activated . 19
5.2 Data Compression: Too Many Different Critical Issues 20
5.3 Integer Overflow When Computing the Number of Iterations for PBKDF2 When

PIM Is Used . 22
5.4 PIN Code on Command Line . 23

6 New Cryptographic Mechanisms Assessment 24
6.1 GOST 28147-89 Must Be Removed from VeraCrypt 24
6.2 Lack of Test Vectors for Newly Added Algorithms 26
6.3 Input and Output Parameters Are Swapped in GOST Magma 27
6.4 Notes on the PBKDF2 Implementation . 28
6.5 Random Byte Generators in DCS Should Be Improved 30

7 UEFI Support Assessment 32
7.1 Keystrokes Are Not Erased After Authentication 32
7.2 Sensitive Data Is Not Correctly Erased . 33
7.3 Memory Corruption Can Occur When the Recovery Disk Is Read 33
7.4 Mistakes in the DCS Code . 34

8 Recommendations 38
8.1 Unfixed or Partially Fixed Vulnerabilities from Former Audits 38
8.2 VeraCrypt’s Modifications Assessment . 39
8.3 New Cryptographic Mechanisms Assessment . 39
8.4 UEFI Support Assessment . 40

9 Conclusion 42

Bibliography 43

1. Project information

Document Change Log
Version Date Change Authors

0.1 18/08/2016 Creation Marion Videau
0.2 09/09/2016 First draft Jean-Baptiste Bédrune

sent to VeraCrypt Marion Videau
0.3 14/09/2016 Second draft Jean-Baptiste Bédrune

sent to VeraCrypt Marion Videau
0.8 16/09/2016 Draft internally reviewed Jean-Baptiste Bédrune

Marion Videau
0.9 20/09/2016 Reviewed Fred Raynal
0.9 30/09/2016 Reviewed Mounir Idrassi
1.0 05/10/2016 Delivered to OSTIF Jean-Baptiste Bédrune

Marion Videau
1.0 13/10/2016 Reviewed Derek Zimmer
1.0 17/10/2016 Published

Quarkslab
Quarkslab SAS, 13 rue Saint Ambroise, 75011 Paris, France

Contact Role Contact information
Frédéric Raynal CEO and Founder fraynal@quarkslab.com
Jean-Baptiste Bédrune R&D Engineer jbbedrune@quarkslab.com
Marion Videau R&D Engineer mvideau@quarkslab.com

Open Source Technology Improvement Fund
Contact Role Contact information

Derek Zimmer President and Founder derek@ostif.org

VeraCrypt Project
Contact Role Contact information

Mounir Idrassi Main Developer mounir.idrassi@idrix.fr

Ref.: 16-08-215-REP Quarkslab SAS 3

2. Executive Summary
This report describes the results of the security assessment of VeraCrypt 1.18 made by Quarkslab
between Aug. 16 and Sep. 14, 2016 and funded by OSTIF. Two Quarkslab engineers worked
on this audit, for a total of 32 man-days of study.

The audit followed two lines of work:

• The analysis of the fixes introduced in VeraCrypt after the results of the Open Crypto
Audit Project’s audit of TrueCrypt 7.1a have been published.

• The assessment of VeraCrypt’s features that were not present in TrueCrypt.

The new features of VeraCrypt include:

• Support for non western cryptographic algorithms,

• Compatibility with UEFI for system encryption,

• A better protection of the volume header keys.

VeraCrypt is a hard to maintain project. Deep knowledge of several operating systems, of the
Windows kernel, of the system boot chain and good concepts in cryptography are required. The
improvements made by IDRIX demonstrate the possession of these skills.

2.1 Fixes

• All the vulnerabilities that have been taken into account have been correctly fixed (except
a minor missing fix for one of them). In particular, the problem leading to a privilege
escalation discovered by James Forshaw in the TrueCrypt driver just after the OCAP
audit has been solved.

• Vulnerabilities which require substantial modifications of the code or the architecture of
the project have not been fixed. These include:

– TC_IOCTL_OPEN_TEST multiple issues (need to change the application behavior),

– EncryptDataUnits() lacks error handling (need to design a new logic to retrieve
errors),

– AES implementation susceptible to cache-timing attacks (need to fully rewrite the
AES implementations).

• Vulnerabilities leading to incompatibilities with TrueCrypt, as the ones related to cryp-
tographic mechanisms, have not been fixed. Most notable are:

– Keyfile mixing is not cryptographically sound,

– Unauthenticated ciphertext in volume headers.

Ref.: 16-08-215-REP Quarkslab SAS 4

2.2 New Problems

Among the problems found during the audit, some must be corrected quickly:

• The availability of GOST 28147-89, a symmetric block cipher with a 64-bit block size, is
an issue. This algorithm must not be used in this context.

• Compression libraries are outdated or poorly written. They must be updated or replaced.

• If the system is encrypted, the boot password (in UEFI mode) or its length (in legacy
mode) could be retrieved by an attacker.

Finally, the UEFI loader is not mature yet. However, its use has not been found to cause
security problems from a cryptographic point of view.

Ref.: 16-08-215-REP Quarkslab SAS 5

3. Context and Scope
This report describes the security assessment made by Quarkslab on VeraCrypt. VeraCrypt is
a disk encryption software developed by IDRIX. It is derived from the now defunct TrueCrypt
project. This audit has been carried out at the request of the Open Source Technology Improve-
ment Fund. Its goal was to evaluate the security of the features brought by VeraCrypt since
the publication of the audits on TrueCrypt 7.1a conducted by the Open Crypto Audit Project.

Two people from Quarkslab worked on this audit, for a total of 32 man-days of study:

• Jean-Baptiste Bédrune, Senior Security Researcher,

• Marion Videau, Senior Cryptographer and Chief Scientific Officer.

A first step consisted in verifying that the problems and vulnerabilities identified by [OCAP1]
and [OCAP2] in TrueCrypt 7.1a had been taken into account and fixed.

Then, the remaining study was to identify potential security problems in the code specific
to VeraCrypt. Contrary to other TrueCrypt forks, the goal of VeraCrypt is not only to fix
the public vulnerabilities of TrueCrypt, but also to bring new features to the software. The
innovations introduced by VeraCrypt include:

• The support of UEFI,

• The addition of non-occidental cryptographic algorithms (Camellia, Kuznyechik, GOST
28147-89, Streebog),

• A volume expander,

• A “Personal Iterations Multiplier” impacting the security of the derivation of the volume
header encryption keys,

• The support of UNICODE on Windows, and the use of StrSafe functions instead of
string.h,

• The gathering of entropy on mouse movements at each random number generation to
improve randomness and a better estimate of the randomness.

Some components of VeraCrypt have not been investigated, as they were already out of the
scope of the Open Crypto Audit Project. That includes the OS X and Linux versions of
VeraCrypt. Finally, it has been decided conjointly with VeraCrypt’s main developer that the
features available in the diagnostic tool of the UEFI loader were also out of the scope of this
audit.

This study focuses on the source code of VeraCrypt 1.18 and the source code of the VeraCrypt
DCS EFI Bootloader 1.18.

The SHA-256 fingerprints of these archives are:

• VeraCrypt_1.18_Source.zip :

12c1438a9d2467dcfa9fa1440c3e4f9bd5e886a038231d7931aa2117fef3a5c5

• VeraCrypt-DCS-EFI-LGPL_1.18_Source.zip :

2e8655b3b14ee427320891c08cc7f52239378ee650eb28bad9531371e7c64ae3

Ref.: 16-08-215-REP Quarkslab SAS 6

https://ostif.org/
https://ostif.org/
https://opencryptoaudit.org/
https://veracrypt.codeplex.com/downloads/get/1601973
https://veracrypt.codeplex.com/downloads/get/1601977
https://veracrypt.codeplex.com/downloads/get/1601977

4. Known Vulnerabilities in TrueCrypt 7.1a
This part inventories the vulnerabilities identified in TrueCrypt 7.1a, which is the code base of
VeraCrypt. Then, it details if they have been fixed or not in VeraCrypt.

The set of vulnerabilities includes the ones detailed in these three sources:

• The reports of the Open Crypto Audit Project [OCAP1], [OCAP2].

• The audit report of the Fraunhofer Institute for Secure Information Technology for the
BSI [FSIT], which is greatly based on the OCAP reports.

• Two problems in the TrueCrypt driver identified by James Forshaw [P0-537], [P0-538].

VeraCrypt’s code has been analyzed to check if the vulnerabilities reported in all these sources
have been correctly understood and fixed by VeraCrypt’s developers.

Note: When pieces of source code are cited, the layout might be changed from the original
source code for readability purposes, to make it fit in the page width.

4.1 Vulnerabilities Detailed in OCAP Phase 1

This part lists and comments the vulnerabilities discovered during the first phase of the audit
ordered by OCAP. The audit has been performed by iSec Partners [OCAP1].

4.1.1 Weak Volume Header Key Derivation Algorithm

TrueCrypt’s volume header keys are derived from the user supplied password with PBKDF2.
In its report, iSec advocated to greatly increase the number of iterations of the hash function
and, eventually, to migrate this derivation function towards a newer algorithm such as scrypt.

The number of iterations has been increased in VeraCrypt: it was comprised between 1000 and
2000 in TrueCrypt, depending on the hash algorithm and its use case. It is now comprised
between 200,000 and 655,331. Furthermore, it can be manually specified.

NIST recommends using a much higher number of iterations for critical keys [SP800-132]:

For especially critical keys, or for very powerful systems or systems where user-
perceived performance is not critical, an iteration count of 10,000,000 may be ap-
propriate.

This level of security can be reached since the introduction of a “Personal Iterations Multiplier”
in VeraCrypt 1.12. The number of iterations when a PIM value is specified is:

• For system drive encryption: Iterations = PIM * 2048.

• For non-system drive and containers encryption: 15000 + (PIM * 1000).

To comply with NIST’s recommendations, a PIM value of 4883 for system encryption and of
9985 for containers and non-system partitions can be used.

Ref.: 16-08-215-REP Quarkslab SAS 7

The default number of iterations in VeraCrypt is a trade-off between security and boot or mount
time. Each user can then influence these parameters using the PIM parameter.

This vulnerability is considered fixed. However, a safer derivation algorithm like scrypt (or
Argon2) would be a plus.

4.1.2 Sensitive Information Might Be Paged Out from Kernel Stacks

In a situation where the amount of available memory becomes very low, kernel stack pages can
be paged out under certain conditions.

The vulnerability and its remediation are correctly documented in iSec’s report. This situation
has consequences only if the system partition is not encrypted or if the pagination files do not
reside on this partition.

VeraCrypt’s documentation correctly explains the problem 1:

To prevent the issues described above, encrypt the system partition/drive (for infor-
mation on how to do so, see the chapter System Encryption) and make sure that
all paging files are located on one or more of the partitions within the key scope of
system encryption (for example, on the partition where Windows is installed).

Except for the explanation, nothing else was intended by VeraCrypt to fix the vulnerability.

iSec recommends gathering all sensitive pieces of information at the same place and to lock the
corresponding memory area. However, it is very difficult to definitely exclude the possibility of a
sensitive piece of information being paged out this way. We rather advise following VeraCrypt’s
documentation principles which definitely solve the problem.

4.1.3 Multiple Issues in the Bootloader Decompressor

If the system partition is encrypted, at boot time, TrueCrypt’s code in the boot sector loads in
memory a decompression routine and verifies its checksum. If it succeeds, the decompression
routine is called to decompress a bootloader.

The decompression routine suffers from several bugs. Its code is taken from puff, an imple-
mentation of inflate which was optimized for memory constrained applications and can be
found in the contrib directory of zlib. The code is a fork and the bug fixes have not been
taken into account in TrueCrypt, notably an out of bounds write.

All the problems mentioned in iSec’s report have been corrected in VeraCrypt.

It should be noticed that in order to trigger a vulnerability in the decompression routine of
the bootloader, an attacker has to first modify the compressed piece of code, which requires
an administrator or a physical access to the system. These two attack settings are explicitly
excluded from the protection range of TrueCrypt.

Modifying compressed data requires as many rights as modifying the decompression routine.
Fixing those bugs make the code more robust but in our opinion, the bugs were not really
threatening the application security.

1 VeraCrypt Documentation - Paging File. https://veracrypt.codeplex.com/wikipage?title=Paging%20File

Ref.: 16-08-215-REP Quarkslab SAS 8

https://veracrypt.codeplex.com/wikipage?title=Paging%20File

4.1.4 Windows Kernel Driver Uses memset() to Clear Sensitive Data

Some sensitive pieces of information are deleted by calling memset in TrueCrypt’s driver. Unfor-
tunately, one of the compiler’s optimizations consists in removing memset calls that it considers
useless. Therefore, the function RtlSecureZeroMemory needs to be called to securely erase
memory, which is what the function burn does as a wrapper of RtlSecureZeroMemory in the
kernel.

Two examples of sensitive data deletion with memset are presented in iSec’s report. The first
one is fixed in VeraCrypt:

Listing 4.1: src/Driver/DriveFilter.c:113

BootArgs = *bootArguments;
BootArgsValid = TRUE;
burn (bootArguments, sizeof (*bootArguments));

As is the case with the second one:

Listing 4.2: src/Driver/DriveFilter.c:453

// Erase boot loader scheduled keys
if (mappedCryptoInfo)
{

burn (mappedCryptoInfo, BootArgs.CryptoInfoLength);
MmUnmapIoSpace (mappedCryptoInfo, BootArgs.CryptoInfoLength);
BootArgs.CryptoInfoLength = 0;

}

However, code has been added in this function by VeraCrypt. There is now an execution
path where a check on a hidden volume can call TC_THROW_FATAL_EXCEPTION, a wrapper of
KeBugCheckEx :

Listing 4.3: src/Driver/DriveFilter.c:391

mappedCryptoInfo = MmMapIoSpace (cryptoInfoAddress, BootArgs.CryptoInfoLength,
MmCached);

if (mappedCryptoInfo)
{

...
}

}

pim = (int) (BootArgs.Flags >> 16);

if (ReadVolumeHeader (!hiddenVolume, header, password, pkcs5_prf, pim, FALSE,
&Extension->Queue.CryptoInfo, Extension->HeaderCryptoInfo) == 0)

{
// Header decrypted
status = STATUS_SUCCESS;
Dump ("Header decrypted\n");

// calculate Fingerprint
ComputeBootLoaderFingerprint (Extension->LowerDeviceObject, header);

if (Extension->Queue.CryptoInfo->hiddenVolume)

Ref.: 16-08-215-REP Quarkslab SAS 9

{
Dump ("Hidden volume start offset = %I64d\n",

Extension->Queue.CryptoInfo->EncryptedAreaStart.Value
+ hiddenPartitionOffset);

...

if (Extension->Queue.CryptoInfo->VolumeSize.Value >
hiddenPartitionOffset - BootArgs.DecoySystemPartitionStart)

TC_THROW_FATAL_EXCEPTION;
...
// Erase boot loader scheduled keys

if (mappedCryptoInfo)
{

burn (mappedCryptoInfo, BootArgs.CryptoInfoLength);

If an exception is raised, the call to burn will never be reached and mappedCryptoInfo will
not be deleted. The corresponding data could possibly be written in a crash dump. Therefore,
mappedCryptoInfo must be erased before raising the exception.

However, it must be mentioned that TrueCrypt’s documentation prescribes the deactivation
of crash dumps creation if the system partition is not encrypted. Therefore, if the system is
correctly configured, the unreachable burn call will not cause a security problem.

4.1.5 TC_IOCTL_GET_SYSTEM_DRIVE_DUMP_CONFIG Kernel Pointer Disclosure

The TC_IOCTL_GET_SYSTEM_DRIVE_DUMP_CONFIG ioctl returns the address of
BootDriveFilterExtension, which is a pointer to the boot drive’s extension object.
The function does not check if the call comes from the userspace. An attacker can recover the
pointer’s address from the userspace.

VeraCrypt has fixed this problem:

Listing 4.4: src/Driver/Ntdriver.c:1690

case TC_IOCTL_GET_SYSTEM_DRIVE_DUMP_CONFIG:
if ((ValidateIOBufferSize (Irp, sizeof(GetSystemDriveDumpConfigRequest),

ValidateOutput))
&& (Irp->RequestorMode == KernelMode)
)

{

If the call does not come from the kernel space, the ioctl returns STATUS_INVALID_PARAMETER
and does not satisfy the request.

4.1.6 IOCTL_DISK_VERIFY Integer Overflow

An addition of parameters controlled by the user and processed by the IOCTL_DISK_VERIFY
ioctl leads to an integer overflow. Verification can be avoided thanks to this vulnerability and
large amounts of memory can be allocated in the non-paged pool.

By calling IOCTL_DISK_VERIFY several times, an attacker asks for large amounts of memory in
order to fill the kernel memory space. The consequence is a denial of service and, most probably,
several malfunctions requiring a system reboot.

Ref.: 16-08-215-REP Quarkslab SAS 10

To detect the overflow, VeraCrypt has replaced the addition with a function from IntSafe,
ULongLongAdd:

Listing 4.5: src/Driver/Ntdriver.c:809

ullStartingOffset = (ULONGLONG) pVerifyInformation->StartingOffset.QuadPart;
hResult = ULongLongAdd(ullStartingOffset,

(ULONGLONG) Extension->cryptoInfo->hiddenVolume ?
Extension->cryptoInfo->hiddenVolumeOffset :
Extension->cryptoInfo->volDataAreaOffset,
&ullNewOffset);

if (hResult != S_OK)
Irp->IoStatus.Status = STATUS_INVALID_PARAMETER;

else if (S_OK != ULongLongAdd(ullStartingOffset,
(ULONGLONG) pVerifyInformation->Length,
&ullEndOffset))

Irp->IoStatus.Status = STATUS_INVALID_PARAMETER;

Note: Fraunhofer’s report analysis of the bug’s origin is not accurate:

The content of the variable comes from the method ‘‘ExInterlockedRemoveHeadList‘‘, which is
part of Microsoft ‘‘Ntoskrnl.lib‘‘ library. Thus, this vulnerability dependents on whether the
method ‘‘ExInterlockedRemoveHeadList()‘‘ intercepts an integer overflow.

The claim feels like a complete nonsense.

4.1.7 TC_IOCTL_OPEN_TEST Multiple Issues

The TC_IOCTL_OPEN_TEST ioctl opens a user-specified file with the function ZwCreateFile
without checking if the user has the correct access rights and then reads its content. TrueCrypt
made this choice in order to detect whether its bootloader is present on the disk without the
need for administrator’s privileges.

This behavior allows several kinds of information leakage, such as the possibility to check for
the presence of a file normally not accessible for the user.

VeraCrypt does not fix this issue. It even adds a new information leakage source: it is now
possible to check the SHA-256 hash of the first 512 bytes of a file.

A similar issue can be found in the TC_IOCTL_GET_SYSTEM_DRIVE_CONFIG ioctl. It has not been
fixed either.

VeraCrypt should consider these issues and fix them.

4.1.8 MainThreadProc() Integer Overflow

The MainThreadProc function handles userspace-controlled data. Its code contains an integer
overflow vulnerability which can be triggered when handling requests from IRP_MJ_READ and
IRP_MJ_WRITE.

By choosing carefully crafted values, data whose sizes are controlled by the user are copied in
a buffer sent back to the user. It is a typical information leakage.

VeraCrypt has fixed this vulnerability by means of an overflow detection function from IntSafe.

Ref.: 16-08-215-REP Quarkslab SAS 11

Listing 4.6: src/Driver/EncryptedIoQueue.c:571

ULONG alignedLength;
LARGE_INTEGER alignedOffset;
hResult = ULongAdd(item->OriginalLength, ENCRYPTION_DATA_UNIT_SIZE, &alignedLength);
if (hResult != S_OK)
{

CompleteOriginalIrp (item, STATUS_INVALID_PARAMETER, 0);
continue;

}

4.1.9 MountVolume() Device Check Bypass

The VolumeThreadProc function in Ntdriver.c checks the validity of a volume’s name, which
is a userspace-controlled value, by comparing it to the string \Device without prior case checks.

Thus, according to the iSec report, a filename beginning with \device\ is not considered as a de-
vice. This will result in an unexpected code path being followed in the function TCOpenVolume().

VeraCrypt has fixed the issue by adding a function IsDeviceName which provides a case-
insensitive comparison to the string \device:

Listing 4.7: src/Driver/Ntdriver.c:1921

BOOL IsDeviceName(wchar_t wszVolume[TC_MAX_PATH])
{

if ((wszVolume[0] == '\\')
&& (wszVolume[1] == 'D' || wszVolume[1] == 'd')
&& (wszVolume[2] == 'E' || wszVolume[2] == 'e')
&& (wszVolume[3] == 'V' || wszVolume[3] == 'v')
&& (wszVolume[4] == 'I' || wszVolume[4] == 'i')
&& (wszVolume[5] == 'C' || wszVolume[5] == 'c')
&& (wszVolume[6] == 'E' || wszVolume[6] == 'e')
)

{
return TRUE;

}
else

return FALSE;
}

4.1.10 GetWipePassCount() / WipeBuffer() Can Cause BSOD

The GetWipePassCount function returns the number of wipe passes to execute on a given volume
from a wipe algorithm identifier. If the identifier is unknown, TC_THROW_FATAL_EXCEPTION is
called. In the driver’s code, this function is a wrapper of KeBugCheckEx.

The function can be reached from two ioctls using a controlled identifier value. If the identifier
value is not in the expected case list, a BSOD is triggered. Handling the case differently, for
example by issuing an error message, seems more reasonable.

VeraCrypt has fixed this vulnerability by returning an invalid value (-1). A calling function
checks against this value instead of causing a BSOD.

Ref.: 16-08-215-REP Quarkslab SAS 12

4.1.11 EncryptDataUnits() Lacks Error Handling

The EncryptDataUnits is a key function of the TrueCrypt security. Indeed, it orchestrates all
the encryption and decryption operations of the volumes in the BIOS and the driver.

Here is its prototype:

void EncryptDataUnits (unsigned __int8 *buf, const UINT64_STRUCT *structUnitNo,
uint32 nbrUnits, PCRYPTO_INFO ci);

The function encrypts data in-place and does not return any value which would allow to detect
an error occurring during encryption.

If the encryption operation fails, plaintext data are written to disk. The same situation occurs
for the DecryptDataUnits function: if it fails, corrupted data are read.

iSec recommends redesigning this functionality to make it more robust. It is a very relevant
recommendation which would imply heavy modifications in the current source code.

VeraCrypt has not taken this recommendation into account.

4.1.12 Conclusion on Vulnerabilities Detailed in OCAP Phase 1

Most vulnerabilities presented in iSec’s report have been fixed in VeraCrypt. The first medium
severity problem that has not been fixed is related to the kernel stack page mechanism; it
was already a known problem and it was documented by TrueCrypt to allow users to get a
secure configuration. The problem related to the erasure of sensitive data should be fixed, even
if it does not lower the security of the product when used according to the documentation’s
recommendations.

Vulnerability Class Severity Status
Weak Volume Header key derivation algorithm Cryptogra-

phy
Medium Fixed

Sensitive information might be paged out from
kernel stacks

Data
Exposure

Medium Not fixed

Multiple issues in the bootloader decompressor Data
Validation

Medium Fixed

Windows kernel driver uses memset() to clear
sensitive data

Data
Exposure

Medium Partially
fixed

TC_IOCTL_GET_SYSTEM_DRIVE_DUMP_CONFIG kernel
pointer disclosure

Data
Exposure

Low Fixed

IOCTL_DISK_VERIFY integer overflow Data
Validation

Low Fixed

TC_IOCTL_OPEN_TEST multiple issues Data
Exposure

Low Not fixed

MainThreadProc() integer overflow Denial of
Service

Informa-
tional

Fixed

MountVolume() device check bypass Data
Validation

Informa-
tional

Fixed

GetWipePassCount() / WipeBuffer() can cause
BSOD

Denial of
Service

Informa-
tional

Fixed

EncryptDataUnits() lacks error handling Error
Reporting

Informa-
tional

Not fixed

Ref.: 16-08-215-REP Quarkslab SAS 13

4.2 Vulnerabilities Detailed in OCAP Phase 2

This section lists and comments on the vulnerabilities discovered during the second phase of
the audit ordered by OCAP. The audit has been performed by Cryptography Services of NCC
Group [OCAP2].

4.2.1 CryptAcquireContext May Silently Fail in Unusual Scenarios

The CryptAcquireContext function belongs to Windows’ CryptoAPI. It is used in conjunction
with CryptoGenRandom to generate random numbers.

The CryptAcquireContext function is used to get a context to a user’s key container. The
function is called with incorrect parameters. In some situations, initializing a key container
can fail and the function call will fail. TrueCrypt does not use a key container and uses the
CryptAcquireContext function exclusively to get a handle to a Cryptographic Service Provider
to generate random numbers.

NCC Group’s report gives a set of correct call parameters. They have been taken into account
by VeraCrypt. The vulnerability has been fixed for all sensitive operations. There remains a
single case where the code is unchanged: the random generation of colors in the donation page,
near the end of the installation program, on Windows. We consider the vulnerability fixed.

4.2.2 AES Implementation Susceptible to Cache-Timing Attacks

NCC Group’s report claims that some implementations of AES located in the files AesSmall.c,
AesSmall_x86.asm, Aes_x86.asm and Aes_x64.asm are susceptible to cache-timing attacks.

VeraCrypt did not implement any of the proposed countermeasures.

The implementations located in AesSmall.c and AesSmall_x86.asm are only used during boot
time, as detailed in Fraunhofer’s report. The only attack scenario where it would be possible to
take advantage of a cache-timing is the case of physical machine hosting two virtual machines,
one with a system entirely encrypted and the other controlled by an attacker.

If the AES-NI instruction set is available, an AES-NI implementation will be used. This
implementation is not susceptible to cache-timing attacks. Otherwise, the functions from
Aes_x86.asm and Aes_x64.asm are used. We consider that both these implementations would
need being fixed first.

NCC Group’s report only focuses on AES. We did not check if other implementations are
susceptible to such attacks.

The severity of this vulnerability was judged “High” in NCC Group’s report. We would like to
stress the fact that VeraCrypt’s security model 2 makes it clear that :

VeraCrypt does not: Secure any data on a computer if the computer contains any
malware (e.g. a virus, Trojan horse, spyware) or any other piece of software (in-
cluding VeraCrypt or an operating system component) that has been altered, created,
or can be controlled, by an attacker.

The documentation does not specify whether the term “computer” is limited to a physical
machine or if it can be a virtual machine sharing a physical machine with other VM.

2 VeraCrypt Documentation - Security Model. https://veracrypt.codeplex.com/wikipage?title=Security%20Model

Ref.: 16-08-215-REP Quarkslab SAS 14

https://veracrypt.codeplex.com/wikipage?title=Security%20Model

4.2.3 Keyfile Mixing Is Not Cryptographically Sound

Keyfiles can be used along the user passphrase to generate the key used to mount a volume.
The key derivation algorithm used to process the keyfiles and generate the volume key is not
cryptographically sound.

As a preliminary remark, notice that for each keyfile, only the first megabyte is used.

Keyfile data is used to fill a 64-byte circular buffer named the keyfile pool. When starting the
key derivation process, a cursor is set at the beginning of the keyfile pool and will be moved
after each update.

The derivation process from the keyfiles relies on a CRC-32 function. For each keyfile, each byte
is read and submitted to the CRC-32 function to update its current value. The 4-byte value is
extracted and each byte is added to the corresponding byte located at the cursor’s position in
the keyfile pool. The cursor position is updated accordingly.

Once this process is finished, the resulting 512 bits are XORed with the passphrase padded with
zeroes on 512 bits.

CRC-32 is not a cryptographic hash function. Using it in this key derivation mechanism creates
undesirable properties:

• From a set of valid keyfiles, it is possible to create another distinct one (i.e. allowing to
mount a volume),

• It is possible to create keyfiles that do not modify the keyfile pool,

• From a set of keyfiles, it is possible to create a new keyfile which removes the security
brought by the former set of keyfiles (i.e. which zeroes the keyfile pool),

• From a known passphrase, it is possible to create a keyfile which removes the security
brought by this passphrase.

This problem has been previously reported to TrueCrypt’s authors by Sogeti [SOGETI] in
2008 and by the Ubuntu Privacy Remix Team [UPR] in 2011. The [UPR] and the [FSIT]
reports describe interesting attack scenarios. TrueCrypt’s developers denied the problem since
the attacks require the prior knowledge of a secret or the prior manipulation of a machine. Here
is an excerpt of their answer to the Ubuntu Privacy Remix Team :

It is a basic security requirement that cryptographic keys (whether passwords, keyfiles,
or master keys) must be secret and unknown to attackers. Your attack violates this
requirement and is therefore invalid/bogus.

NCC Group’s report recommends the use of HMAC with a cryptographic hash function. We
concur. This recommendation should really be implemented. For the moment the problem has
not been corrected, probably because it would break backward compatibility.

4.2.4 Unauthenticated Ciphertext in Volume Headers

To provide integrity for a volume header in plaintext, two CRC-32 on decrypted header data
and a 4-byte ASCII string (“TRUE” in TrueCrypt and “VERA” in VeraCrypt) are used. As
mentioned earlier, CRC-32 is not a cryptographic integrity mechanism but rather an error
detection mechanism, which is meant to prevent accidents but not attacks. The same goes
for the comparison of the 4-byte decrypted ASCII string to a fixed string. This problem was
already mentioned by Sogeti in 2008 [SOGETI].

Ref.: 16-08-215-REP Quarkslab SAS 15

NCC Group’s report mentions that an existential forgery is possible with approximately 232

queries. For the sake of clarity we provide an idea of such an attack.

An existential forgery does not imply that the header produced and accepted by the integrity
verification will have all fields coherent, simply that a header will be declared legitimate while
produced by the attacker. A VeraCrypt header contains 2 CRCs and a few fields that are
subjected to strict checks. Most of them are located in the header’s first encrypted block. The
first CRC, located in the first encrypted block, is dependent on the encryption keys and if
they are left untouched, this CRC is also untouched. The fourth encrypted block contains the
SectorSize field which is subjected to a check. If we leave this block untouched, the field will
be valid. Then there remains 10 encrypted blocks that can be manipulated as the XTS mode
leaves all the blocks independent from each other. As the goal for the attacker is to get a 32-bit
value CRC right from manipulating ten 128-bit blocks, it can succeed after 232 queries.

NCC Group’s report recommends replacing these mechanisms with a Message Authentication
Code (MAC). The user passphrase could be used to derive a MAC key in addition to the
encryption keys. The MAC of the header would be checked before mounting the volume.
Implementing such a mechanism should be done in VeraCrypt. Mechanisms using CRC-32 are
still present in TrueCrypt after many years of warnings for obvious compatibility reasons. They
should nonetheless be replaced by real up-to-date authentication mechanisms.

A major difficulty to achieve this improvement is due to the lack of space after the header to
store a MAC value in the case of system encryption with MBR. A possible idea would be to
use the 960 zero bits located in the header to store such a MAC but whether to use a MAC-
then-encrypt or an encrypt-then-MAC construction taking into account all the constraints of
the project must be studied in detail.

4.2.5 Conclusion on Vulnerabilities Detailed in OCAP Phase 2

A single vulnerability from the list reported by OCAP Phase 2 analysis has been corrected.
The fix was the simplest one to implement.

Re-designing and re-writing AES functions immune against cache-timing attacks would require
a more significant effort. Using VeraCrypt on a machine with a CPU providing AES-NI instruc-
tions is an available workaround.

Note: We did not check the implementations of other cryptographic algorithms in VeraCrypt
against cache-timing attacks.

The last two vulnerabilities have been known for a long time. Fixing them would break backward
compatibility with existing volumes but would bring a better security to the product. We
recommend to fix them.

Vulnerability Class Severity Status
CryptAcquireContext may silently fail in unusual
scenarios

Cryptogra-
phy

High Fixed

AES implementation susceptible to cache-timing
attacks

Cryptogra-
phy

High Not
fixed

Keyfile mixing is not cryptographically sound Cryptogra-
phy

Low Not
fixed

Unauthenticated ciphertext in volume headers Cryptogra-
phy

Undeter-
mined

Not
fixed

Ref.: 16-08-215-REP Quarkslab SAS 16

4.3 Vulnerabilities Reported by James Forshaw

Two vulnerabilities have been discovered by James Forshaw of Google Project Zero. Both are
located in TrueCrypt’s driver. The impact of the first one (CVE-2015-7359) is rather anecdotal.
The second one (CVE-2015-7358) leads to an interesting privilege escalation.

4.3.1 Incorrect Impersonation Token Handling EoP (CVE-2015-7359)

The vulnerability and its impact are documented in detail in Project Zero’s issue tracker [P0-
537]. It is located in the user token verification routine in TrueCrypt’s driver.

In two different locations, TrueCrypt’s driver acquires the security context of the current
user with a call to SeCaptureSubjectContext and extracts the active token with a call to
SeQuerySubjectContextToken. The driver does not apply any impersonation level verifica-
tion, which causes the problem.

By using the impersonation level SecurityIdentification, a user can impersonate another
one. This should only be possible from the level SecurityImpersonation.

The problem is present in two functions of the driver: IsVolumeAccessibleByCurrentUser and
MountDevice. In IsVolumeAccessibleByCurrentUser, the bug allows an attacker to unmount
another user’s volumes and to get information on the mounted volumes. In MountDevice, the
bug does not lead to any attack.

As stated by James Forshaw, the problem is anecdotal compared to the problems already coming
from letting volumes mounted on a shared machine. It has been fixed by VeraCrypt, following
Forshaw’s recommendations: the impersonation level is verified.

An example of the fix is shown below. The other one is identical.

Listing 4.8: src/Driver/Ntdriver.c:2756

SeCaptureSubjectContext (&subContext);
SeLockSubjectContext(&subContext);
if (subContext.ClientToken && subContext.ImpersonationLevel

>= SecurityImpersonation)
accessToken = subContext.ClientToken;

else
accessToken = subContext.PrimaryToken;

4.3.2 Drive Letter Symbolic Link Creation EoP (CVE-2015-7358)

The second vulnerability reported by James Forshaw allows a user to get system privileges from
an application running with user privileges or within a low-integrity sandbox [P0-538].

The bug origin is very simple. On the contrary, its consequences in terms of security and
its exploitation are not. James Forshaw wrote a detailed blog article on how to exploit this
vulnerability and how DosDevices are managed since NT 3.1 [P0-BLOG].

The vulnerability is located in the IsDriveLetterAvailable function of the Ntdriver.c file.

Ref.: 16-08-215-REP Quarkslab SAS 17

Listing 4.9: Driver/Ntdriver.c:2881 in TrueCrypt7.1a

BOOL IsDriveLetterAvailable (int nDosDriveNo)
{

OBJECT_ATTRIBUTES objectAttributes;
UNICODE_STRING objectName;
WCHAR link[128];
HANDLE handle;

TCGetDosNameFromNumber (link, nDosDriveNo);
RtlInitUnicodeString (&objectName, link);
InitializeObjectAttributes (&objectAttributes, &objectName,

OBJ_KERNEL_HANDLE | OBJ_CASE_INSENSITIVE,
NULL, NULL);

if (NT_SUCCESS (ZwOpenSymbolicLinkObject (&handle, GENERIC_READ, &objectAttributes)))
{

ZwClose (handle);
return FALSE;

}

return TRUE;
}

The variable nDosDriveNo is an integer ranging from 0 to 25 and represents a drive let-
ter from A to Z. The function TCGetDosNameFromNumber builds a path to the symbolic link
\DosDevices\X:, where X stands for the drive letter associated to nDosDriveNo.

If ZwOpenSymbolicLinkObject fails for any reasons, then the drive letter passed as a parameter
is considered available, even if it already exists.

VeraCrypt has fixed this issue, following James Forshaw’s recommendations: the function re-
turns TRUE only if the object \DosDevices\X: does not exist.

Moreover, in order to avoid any further problems with \DosDevices, the Global MS-DOS device
names are used.

-#define DOS_MOUNT_PREFIX DRIVER_STR("\\DosDevices\\")
+#define DOS_MOUNT_PREFIX DRIVER_STR("\\GLOBAL??\\")

// Explicitely use Global MS-DOS device names to avoid security issues

This modification has triggered side effects with Windows’s mount manager. Thus new modifi-
cations have been implemented. In our opinion, they do not bring vulnerabilities. We consider
this problem fixed.

4.3.3 Conclusion on Vulnerabilities Reported by James Forshaw

Both vulnerabilities are corrected in VeraCrypt.

Vulnerability Severity Status
Incorrect Impersonation Token Handling EoP Low Fixed
Drive Letter Symbolic Link Creation EoP High Fixed

Ref.: 16-08-215-REP Quarkslab SAS 18

5. VeraCrypt’s Modifications Assessment

5.1 The Length of the Password Can Be Computed When Encryption
Is Activated

Class Severity Difficulty
Data Exposure Low Medium

VeraCrypt can encrypt the hard drive partition where the Operating System is installed. We
deal here with the start up from the BIOS only, not the UEFI.

The original bootloader is replaced with a specific one asking for the password of the partition
to start on. It then decrypts the system partition and the usual boot goes on.

Keystrokes are saved in a 32-byte circular buffer in the BIOS Data Area, located at address
0040:001Eh. Each keystroke being stored on 2 bytes, the first one being the ASCII code and
the second one the BIOS scan code, 16 inputs can be saved.

Once the system is started, if this buffer has not been cleared, it is possible to retrieve
the user password. VeraCrypt prevents this potential leak by zeroing the buffer with the
ClearBiosKeystrokeBuffer function.

Listing 5.1: src/Boot/Windows/BootConsoleIo.cpp:291

void ClearBiosKeystrokeBuffer ()
{

__asm
{

push es
xor ax, ax
mov es, ax
mov di, 0x41e
mov cx, 32
cld
rep stosb
pop es

}
}

However, 2 pointers related to the keystroke buffer are located just before it and are not erased.
The first one points to the last character of the buffer, the other one to the address where
the next character is going to be written. Using the value of these 2 pointers, one can gain
information on the length of the password.

If the user properly entered his password with no mistake at boot time, followed by “Enter”,
the first pointer value is then 001Eh + (2 * (len(password) + 1) mod 32). Since each character
is stored on 2 bytes, one can compute the length of the password modulo 16.

This information leak might not look critical as the system needs to be booted and a privileged
access is required to read BIOS memory. Nonetheless, this should be fixed for 2 reasons:

• The risk has been considered since the password is zeroed.

• If the running system is compromised, recovering the keys encrypting the system is a
known damage, but it should not leak information about the user password since it can

Ref.: 16-08-215-REP Quarkslab SAS 19

be used to quicken the password bruteforce. And the same password could be used on
other systems too.

5.2 Data Compression: Too Many Different Critical Issues

Some compression functions are used at several places in the project’s source code:

• To decompress the bootloader when the hard drive is encrypted.

• To create and check the recovery disks if the system is encrypted and uses UEFI.

• During the installation to extract programs.

It appears that all compression functions have issues.

5.2.1 Out-of-Date inflate and deflate

Class Severity Difficulty
Patching High High

TrueCrypt forked in 2007 a version of the inflate library to decompress data with the format
specified in RFC 1951 in order to create self-extracting installation packages. Compression
being made with gzip, inflate only is required for decompression. The installation package
uses inflate to extract files at install time.

The version of inflate used by TrueCrypt was already obsolete and vulnerable but that was
not a security issue as the user had to execute the installer to be compromised.

VeraCrypt next added another copy of inflate coming from XUnzip. XZip and XUnzip are
2 modules allowing to create and extract Zip archives. They embed inflate and deflate, in
more than obsolete versions as we can read from XUnzip copyright:

extern const char inflate_copyright[] =
" ";//inflate 1.1.3 Copyright 1995-1998 Mark Adler ";

// If you use the zlib library in a product, an acknowledgment is welcome
// in the documentation of your product. If for some reason you cannot
// include such an acknowledgment, I would appreciate that you keep this
// copyright string in the executable of your product.

The used version is for instance vulnerable to CVE-2002-0059.

The functions inflate and deflate should be merged and replaced by up-to-date versions, like
the ones included in the up-to-date zlib library. TrueCrypt did fork the code, but chose not
to fix security issues affecting it. VeraCrypt includes a zlib version already vulnerable.

It seems better to add a dependency to zlib, which would at least ensure a proper up-to-date
code base.

The same type of issue affects the decompressor for the bootloader. Its code comes from puff,
an optimized implementation of inflate for applications with little memory capacity. It is
available in the contrib directory of zlib. A minor bug has been fixed in the latest version of
puff, distributed with zlib 1.2.5.1, but not in VeraCrypt’s. Also, calls to longjmp and setjmp
have been removed from the original code, leading to an out-of-bounds read during bootloader
decompression. This is because these functions are not supported by Visual C++ 1.52, and

Ref.: 16-08-215-REP Quarkslab SAS 20

no workaround has been implemented by IDRIX. The size constraint on the bootloader, which
forces the decompressor to fit on 4 disk sectors of 512 bytes each, makes the problem difficult
to fix. Note that it does not lead to a vulnerability.

5.2.2 XZip and XUnzip Need to Be Completely Re-Written

Class Severity Difficulty
Data Validation High High

Since version 1.18 and UEFI support, VeraCrypt can create rescue disks. They are different from
the ones supported by BIOS. They contain UEFI loaders allowing to reinstall the bootloader
for instance.

The format for the image is Zip. The library used to create them is XZip, as mentioned earlier.
It seems to come from a 2007 article published on CodeProject 1.

Obvious bugs are present in the code, as demonstrated in the following example:

Listing 5.2: src/Common/XZip.cpp:3130

BOOL AddFolderContent(HZIP hZip, TCHAR* AbsolutePath, TCHAR* DirToAdd)
{

HANDLE hFind; // file handle
WIN32_FIND_DATA FindFileData;
TCHAR PathToSearchInto [MAX_PATH] = {0};

if (NULL != DirToAdd)
{

ZipAdd(hZip, DirToAdd, 0, 0, ZIP_FOLDER);
}

// Construct the path to search into "C:\\Windows\\System32*"
_tcscpy(PathToSearchInto, AbsolutePath);
_tcscat(PathToSearchInto, _T("\\"));
_tcscat(PathToSearchInto, DirToAdd);
_tcscat(PathToSearchInto, _T("*"));

• AddFolderContent is exported by the library. The length of AbsolutePath is not checked
before the call to _tcscpy.

• It checks that DirToAdd is not null but will call _tcscat with DirToAdd as argument all
the time.

As explained earlier, known vulnerabilities are present in the copied inflate and deflate .

We strongly recommend to either rewrite this library and use an up-to-date version of zlib, or
preferably, use another component to handle Zip files.

Security consequences are explained in Memory Corruption Can Occur When the Recovery Disk
Is Read.

1 XFile - Extending the Win32 File API for Server Applications.
http://www.codeproject.com/Articles/4093/XFile-Extending-the-Win-File-API-for-Server-Appl.

Ref.: 16-08-215-REP Quarkslab SAS 21

http://www.codeproject.com/Articles/4093/XFile-Extending-the-Win-File-API-for-Server-Appl

5.3 Integer Overflow When Computing the Number of Iterations for
PBKDF2 When PIM Is Used

Class Severity Difficulty
Data Validation High High

VeraCrypt has added a new security parameter called PIM (Personal Iterations Multiplier) in
order to change the number of rounds in PBKDF2 during key derivation used to encrypt the
header of a volume.

The function computing the iteration count for PBKDF2 is get_pkcs5_iteration_count. In
the function code, the case of each supported hash function is treated separately. However,
when the PIM is used, the number of rounds for PBKDF2 uses the same formula for all of
them, namely: 15000 + PIM * 1000 (computation is different for the system partition).

The computation made in function get_pkcs5_iteration_count can overflow for a large num-
ber of PIM, which can lead to a wrong feeling about the security strength.

The overflow is quite straightforward:

Listing 5.3: src/Common/Pkcs5.c:1158

int get_pkcs5_iteration_count (int pkcs5_prf_id, int pim, BOOL truecryptMode,
BOOL bBoot)

{
if ((pim < 0)

|| (truecryptMode && pim > 0) /* No PIM for TrueCrypt mode */
)

{
return 0;

}

switch (pkcs5_prf_id)
{

...
case SHA512:

return truecryptMode? 1000 : ((pim == 0)? 500000 : 15000 + pim * 1000);

With a PIM value of 8589920, the return value will be 408, which is obviously weaker than the
expected value of 8589935000.

On Windows, a check is performed on the GUI when the volume is created: a message box
appears if the PIM number is greater than 2147468, the limit value for the overflow.

This is not true for Linux and Mac OS X. One can then specify a PIM in order to trigger the
overflow. Fortunately, these versions do not allow to mount these volumes as an error message is
displayed when trying. However, they can be mounted on Windows, since there is no verification
at mount time in the Windows version.

A specific use could weaken the security of an encrypted container, but is unlikely to occur. A
user must create a volume under Linux or OS X, specify a PIM triggering the overflow, and
then use this volume under Windows. The resulting number of iterations can then be very
small, while the user keeps feeling secure.

We advise unifying the application behavior. Checks on the PIM must not be performed in the
code related to the UI, but in the core functions of the program.

Ref.: 16-08-215-REP Quarkslab SAS 22

5.4 PIN Code on Command Line

Class Severity Difficulty
Data Exposure Informational Low

A smart card or a security token can be used to unlock and mount a volume. The user has to
provide a PIN code. VeraCrypt added a feature which was not available in TrueCrypt: passing
the PIN code on the command line, using parameter --token-pin (or /tokenpin for Windows).

VeraCrypt already allowed to provide the password on the command line using the --password
parameter. This feature was documented as potentially insecure:

Warning: This method of entering a volume password may be insecure, for example,
when an unencrypted command prompt history log is being saved to unencrypted
disk.

The current documentation does not mention the risks for argument --token-pin.

More generally, we believe such parameters should not be available and are a bad practice. If
this feature should be kept anyway, the same security warning should be provided.

Ref.: 16-08-215-REP Quarkslab SAS 23

6. New Cryptographic Mechanisms Assessment
New cryptographic primitives for hashing and encryption have been added in VeraCrypt 1.18.
The purpose of these additions is to include non-western algorithms in the project. The newly
added algorithms are:

• Camellia, a symmetric block cipher with a block size of 128 bits. Camellia has been
developed by two Japanese companies, Mitsubishi Electric and NTT. It is derived from
the AES candidate E2. VeraCrypt uses Camellia with 256-bit keys only.

• GOST89 28147-89, also known as Magma. It is a Russian symmetric block cipher algo-
rithm designed in the 70s. It uses a 256-bit key and has a block size of 64 bits. It used to
be the Soviet alternative to DES.

• Kuznyechik, a symmetric block cipher algorithm with a block size of 128 bits and a key
size of 256 bits. Kuznyechik is a Russian algorithm specified in GOST R 34.12-2015. It is
the successor of GOST 28147-89.

• Streebog-512, a hash function defined in GOST R 34.12 2012. It is the Russian alternative
to SHA-3.

The implementation of these new algorithms has been analyzed. Camellia, Kuznyechik and
Streebog-512 are correctly implemented. Nevertheless, several problems have been identified.

6.1 GOST 28147-89 Must Be Removed from VeraCrypt

Class Severity Difficulty
Cryptography High High

The XTS mode is specified in [IEEE07] 1. It is only specified for 128-bit blocks (and more
specifically intended to be used with AES) and is implemented for 128-bit blocks in VeraCrypt.
It is derived from the XEX mode [Ro04].

GOST 28147-89 is a 64-bit block cipher specified in [GOST89]. To fit inside the XTS mode,
GOST is “expanded” into a 128-bit block cipher by putting it into a CBC mode for two blocks
with a null IV (see Fig. 6.1).

Listing 6.1: VeraCrypt/src/Crypto/GostCipher.c:234

void gost_encrypt(const byte *in, byte *out, gost_kds *ks, int count){
if defined(_M_AMD64)

gost_encrypt_128_CBC_asm(in, out, ks, (uint64)count);
else

while (count > 0) {
// encrypt two blocks in CBC mode
gost_encrypt_block(*((uint64*)in), (uint64*)out, ks);
((gst_udword)(out + 8)) = *((gst_udword*)(in + 8)) ^ *((gst_udword*)(out));
((gst_udword)(out + 12)) = *((gst_udword*)(in + 12)) ^ *((gst_udword*)(out + 4));
gost_encrypt_block(*((uint64*)(out + 8)), (uint64*)(out + 8), ks);
count--;
in += 16;

1 It is also specified in [SP800-38E] where an additional compulsory requirement is the limit on the number
of blocks in a data unit encrypted under the same key, set to 220.

Ref.: 16-08-215-REP Quarkslab SAS 24

out += 16;
}

endif
}

Listing 6.2: VeraCrypt/src/Crypto/GostCipher.c:251

void gost_decrypt(const byte *in, byte *out, gost_kds *ks, int count)
[...]

// decrypt two blocks in CBC mode

These functions are used in XTS through the call to EncipherBlock() or DecipherBlock()
respectively.

���
���
���

���
���
���

���
���
���

���
���
���

+

✕EK EK
22

0n ai

1
EK

1
EK

M
1

C
1

C
0

+

+

+

+

+

M
0

Fig. 6.1: XTS with GOST-CBC-IV-NULL on the 𝑖th 128-bit block of a data unit.

There are security proofs which state that the advantage an attacker has in distinguishing an
XTS mode instantiated with a block cipher from a perfect tweakable permutation is upper-
bounded by a value proportional to 𝑞2/2𝑁 , where 𝑞 is the number of queries an attacker makes
and 𝑁 is the block size, plus the advantage in distinguishing in a CCA (Chosen Ciphertext
Attack) setting the block cipher from a random permutation (see for example [LM08]).

Unfortunately, when using GOST-CBC-IV-NULL as a replacement for a 128-bit block cipher,
one loses the applicability of security proofs on 128 bits. Indeed the use of a 64-bit block
cipher in CBC-IV-NULL mode makes it straightforward to distinguish it from a 128-bit random
permutation. If we denote by 𝑀 = (𝑀1‖𝑀2) a 128-bit plaintext as the concatenation of two
64-bit halves, then the resulting ciphertext is 𝐶 = (𝐸64-bits

𝐾 (𝑀1)‖𝐸64-bits
𝐾 (𝑀2)). If we consider

a second plaintext 𝑀 ′ = (𝑀1‖𝑀 ′
2) with the same first half and different second one, then

𝐶 ′ = (𝐸64-bits
𝐾 (𝑀1)‖𝐸64-bits

𝐾 (𝑀 ′
2)) also shares the exact same first half as 𝐶. This is not the

proper behavior of a 128-bit random permutation, where the whole ciphertext should change.

This property could have had a strong impact on the use of GOST-CBC-IV-NULL in XTS if the
index 𝑛 of the data unit were not encoded in little endian before being encrypted. Indeed, the

Ref.: 16-08-215-REP Quarkslab SAS 25

index of a data unit being smaller than 264, the most significant bits would have constantly been
zero throughout the entire use of the mode for every first block of each data unit whose index
denoted 𝑖 is zero. For these blocks, the behavior of the mode would have almost exactly been
the one of ECB, including the bad properties of distinguishability in case of repeating plaintext
blocks, as it is the case with the filling of free space with encryption of zero blocks in VeraCrypt.
The composition is immune from this danger thanks to the encoding of the standard but the
encoding is not per se a security measure and the example shows that the security problem is
avoided rather by chance.

A second general problem arises from the use of the CBC mode: it is possible for an attacker
to apply selective bit flips on the second half of any 128-bit plaintext block by bit flipping the
corresponding bits in the first half of a 128-bit ciphertext block. This attack is not possible
with the usual XTS mode with a 128-bit block cipher.

Then a third problem is brought by the use of a 64-bit block cipher. It is difficult to avoid any
appearance of a birthday paradox bound when using a block cipher mode. For a 128-bit block
cipher, the birthday bound is around 264, which means that to remain secure, one has to call
the underlying block cipher significantly less than 264 times. Examples of limitations on the
number of queries to the underlying block cipher with the same key are given in the standard,
with the corresponding success probability for an attack. For 236 calls, i.e. 236 128-bit blocks
encrypted or 1 terabyte of data, the success probability is 2−53.

When using a 64-bit block cipher in the CBC-IV-NULL setting, after 236 calls, the birthday
bound for 64-bit blocks is reached and the success probability for an attack is 1! This can be
seen when considering the first halves of 128-bit ciphertexts which follow a kind of XTS mode
on 64 bits. To reach the same level of security as its 128-bit counterpart, the amount of data
to be processed should be around 512 bytes which is too small to be considered for a data at
rest encryption system. Examples of attacks are provided in [IEEE07].

More generally, 64-bit block ciphers are less and less adapted for the amount of data processed
on a usual basis nowadays. TrueCrypt switched to 128-bit block ciphers only several years ago,
keeping the support for 64-bit ciphers (Blowfish, Triple DES, CAST5) for compatibility with
older volumes. Recent works have shown that what was once thought of as theoretical attacks
could in fact be carried out practically, see e.g. the attack called Sweet32 [BL16] against TLS
connections using 64-bit block ciphers. Therefore we recommend removing GOST 28147-89
from the available ciphers to be used with XTS in VeraCrypt.

As we recommend to remove GOST from the set of available ciphers, we did not proceed with the
cryptographic evaluation of the intrinsic strength of the variant implemented with the so-called
dynamic S-boxes.

6.2 Lack of Test Vectors for Newly Added Algorithms

Class Severity Difficulty
Cryptography Informational Undetermined

No test vectors are provided for Kuznyechik and GOST 28147-89. If test vectors are not
sufficient to verify the correctness of an implementation, they can be used to detect some
problems, such as bugs that occur only on some architectures or operating systems (errors on
big-endian architectures, on 64-bit architectures, etc.)

The use of test vectors seems necessary here, especially not to induce the user in error. Indeed,
an “Auto-Test All” button displays “Self-tests on all algorithms passed” in case of success.

Ref.: 16-08-215-REP Quarkslab SAS 26

User believes all the algorithms have been tested. This is wrong. Moreover, each implemented
algorithm can have several implementations. In the AES case, a classic C version, a x86 and
a x64 version, a AES-NI and two versions with a small memory footprint (one in C, one in
assembly) exist in the project.

As shown below, a problem that could be easily detected with test vectors has been identi-
fied in VeraCrypt. This result alone justifies the necessity to include test vectors for all the
cryptographic algorithms available in the software.

6.3 Input and Output Parameters Are Swapped in GOST Magma

Class Severity Difficulty
Cryptography Informational Undetermined

GOST Magma is an encryption algorithm whose block size is 64 bits, contrarily to all the
other algorithms in VeraCrypt which process blocks of 128 bits. In order to benefit from
the XTS implementation used by the other algorithms, VeraCrypt emulates a 128-bit block
cipher by encrypting not one but two 64-bit blocks simultaneously using CBC mode and a null
initialization vector. As seen previously, this is not a good idea.

Two implementations are possible:

• For 32-bit code, the gost_encrypt and gost_decrypt process two 64-bit blocks in CBC
mode and call the C functions gost_encrypt_block and gost_decrypt_block. This
code is also used for 64 bit code under Linux and OS X.

• Under Windows x64, the two assembly functions gost_encrypt_128_CBC_asm and
gost_decrypt_128_CBC_asm are used.

The inputs and outputs of the gost_encrypt_128_CBC_asm and the
gost_decrypt_128_CBC_asm are interchanged: the order of the parameters is not the
same in the declaration and in the definition of the function. The C prototype in the function
definition is:

Listing 6.3: src/Crypto/GostCipher.c:230

void gost_encrypt_128_CBC_asm(const byte *in, byte *out, gost_kds *ks, uint64 count);
void gost_decrypt_128_CBC_asm(const byte *in, byte *out, gost_kds *ks, uint64 count);

Here is the beginning of the assembler implementation:

Listing 6.4: src/Crypto/gost89_x64.asm:294

global gost_encrypt_128_CBC_asm
; gost_encrypt_128_CBC_asm(uint64* out, uint64* in, gost_kds* kds, uint64 count);
; rcx - &out
; rdx - &in
; r8 - &gost_kds
; r9 - count
gost_encrypt_128_CBC_asm:

The in and out parameters have been swapped. The same inversion is made in
gost_encrypt_128_CBC_asm :

Ref.: 16-08-215-REP Quarkslab SAS 27

Listing 6.5: src/Crypto/gost89_x64.asm:396

global gost_decrypt_128_CBC_asm
; gost_decrypt_128_CBC_asm(uint64* out, uint64* in, const gost_kds* kds, uint64 count);
; rcx - &out
; rdx - &in
; r8 - &gost_kds
; r9 - count
gost_decrypt_128_CBC_asm:
SaveRegs ; Saving

sub rsp, 32
mov [rsp], rdx ; Save out addr
mov [rsp+8], rcx ; Save in addr
mov [rsp+16], r8 ; key addr

However, in this function, in and out parameters are swapped a second time: contrary to what
is written in the comments, rcx points to in and rdx points to out. This double inversion
actually makes the gost_decrypt_128_CBC_asm correct.

The code of gost_encrypt_128_CBC_asm remains invalid: the input and the output are indeed
swapped. However, as all the encryption operations are performed in-place, as shown below
(code has been simplified to make it more readable), the resulting code is functionally correct.

Listing 6.6: src/Common/Crypto.c:177

void EncipherBlock(int cipher, void *data, void *ks)
{

switch (cipher)
{

case AES: aes_encrypt (data, data, ks); break;
case TWOFISH: twofish_encrypt (ks, data, data); break;
case SERPENT: serpent_encrypt (data, data, ks); break;
case CAMELLIA: camellia_encrypt (data, data, ks); break;
case GOST89: gost_encrypt(data, data, ks, 1); break;
case KUZNYECHIK: kuznyechik_encrypt_block(data, data, ks); break;
default: TC_THROW_FATAL_EXCEPTION; // Unknown/wrong ID

}
}

Even if the resulting code works, we think this problem should be immediately fixed. The
insertion of a new encryption operation that is not performed in-place might have serious con-
sequences.

Such a problem would have been quickly detected if test vectors for all the encryption primitives
were present. In fact, we spotted it by checking if our test vectors were verified.

6.4 Notes on the PBKDF2 Implementation

Class Severity Difficulty
Cryptography Informational Undetermined

The VeraCrypt volume header keys are derived from the user password with PBKDF2. The
iteration count of the pseudo-random function has been greatly increased according to the

Ref.: 16-08-215-REP Quarkslab SAS 28

recommendations in the iSec report. A problem occurred: the key derivation was slow, and
mounting the volume took too much time.

The PBKDF2 implementation has been rewritten and optimized 2, making the key derivation
twice faster. A few minor problems have been identified in this implementation. One of them
was already in TrueCrypt, the other ones are specific to VeraCrypt. These are actually bad
practices rather than real problems.

6.4.1 The PBKDF2 Implementation Does Not Fully Comply With the Standard

During the key generation, a 32-bit “block index” is stored in big-endian [RFC2898]. In the
VeraCrypt implementation, only the least significant byte of this index is used, all the other
ones being set to zero:

Listing 6.7: src/Common/Pkcs5.c:175

/* big-endian block number */
memset (&k[salt_len], 0, 3);
k[salt_len + 3] = (char) b;

Cycles can be spotted in the data generated by this implementation whenever the output is
longer than 256 times the underlying hash function used by PKBDF2:

• 5120 bytes for RIPEMD-160 ;

• 8192 bytes for SHA-256 ;

• 16394 bytes for SHA-512, Whirlpool and Streebog.

This has absolutely no impact on the security of the product: all the data coming from the
PBKDF2 implementation is at most 192 bytes long (6 keys of 256 bits). This behavior could
be fixed in order to avoid a bad usage of these functions in the future, if longer key material
might be generated for some reason.

6.4.2 Bad Coding Practice in the HMAC-SHA512 Computation

During HMAC computations, a “context”, which is a structure containing information about
the current state of the computation, is used. This context is passed to the functions performing
the hashing operations:

Listing 6.8: src/Common/Pkcs5.c:278

typedef struct hmac_sha512_ctx_struct
{

sha512_ctx ctx;
sha512_ctx inner_digest_ctx; /*pre-computed inner digest context */
sha512_ctx outer_digest_ctx; /*pre-computed outer digest context */
char k[PKCS5_SALT_SIZE + 4];
/* enough to hold (salt_len + 4) and also the SHA512 hash */

2 Commit on the VeraCrypt repository: Cryptography: Divide mount and boot times by 2 using a pre-
computation of values used in PRF HMac calculation (thanks to Xavier de Carné de Carnavalet for finding this
optimization). https://github.com/veracrypt/VeraCrypt/commit/59afc2c4d9704476bdaf8c4c8b45684a80781a06

Ref.: 16-08-215-REP Quarkslab SAS 29

https://github.com/veracrypt/VeraCrypt/commit/59afc2c4d9704476bdaf8c4c8b45684a80781a06

char u[SHA512_DIGESTSIZE];
} hmac_sha512_ctx;

When the derivation functions have been rewritten, a stack buffer containing temporary data
has been suppressed. The new, faster implementation uses the k field of the HMAC context to
store intermediate values. This field is followed by the u field, which contains the final HMAC
value.

The hmac_sha512 writes SHA512_BLOCKSIZE = 128 bytes in k, whose size is only 68 bytes.
Hence, 60 bytes are written in u:

Listing 6.9: src/Common/Pkcs5.c:325

char* buf = hmac.k; /* there is enough space to hold SHA512_BLOCKSIZE (128) bytes
* because k is followed by u in hmac_sha512_ctx

*/
...
/* Pad the key for inner digest */
for (b = 0; b < lk; ++b)

buf[b] = (char) (k[b] ^ 0x36);
memset (&buf[lk], 0x36, SHA512_BLOCKSIZE - lk);

The u buffer is not used at that time, and is only written later, at the end of the function.
Nevertheless, such a code is not acceptable in such a critical function of the software.

6.4.3 Unused Parameters in Derivation Sub-Functions

A last fix should be applied. The derivation function which uses SHA-256 as a
PRF, derive_key_sha256, calls another function, derive_u_sha256, which in turn calls
hmac_sha256_internal.

The last two functions take k, the HMAC secret key, and lk, its length, as first parameters. It
is actually the password supplied by the user. However, these two parameters are never used:
only the derive_key_sha256 processes them. This makes reading quite disturbing, and should
be fixed.

This scheme is identical for all the hash functions.

6.5 Random Byte Generators in DCS Should Be Improved

Class Severity Difficulty
Cryptography Informational Undetermined

DCS, the UEFI bootloader, contains three random byte generators. They are used to create
random data on startup. Currently, these generators cannot be used without a custom config-
uration step performed by DcsCfg, a diagnostic tool for the bootloader. The consequences of
their use is beyond the scope of this audit. However, we would like to give an opinion about
them.

Currently, the random data that can be generated at startup is not very sensitive: the random
generators are used only to create new salts when a user decides to change his password and
has used DcsCfg to enable the use of the generators. A new 64-byte salt is generated during
the creation of the new volume header.

Ref.: 16-08-215-REP Quarkslab SAS 30

Three random byte generators are present in DCS :

• RndDtrmHmacSha512, a simplified implementation of HMAC_DRBG specified in [SP800-
90A], Section 10.1.2, with SHA-512.

• RndRDRand, which returns the output of RDRAND.

• RndFile, which returns the content of a given file.

The last generator has probably been included for test purposes, in order to return known data.
It should be included only in debug versions of the project.

We have reservations about the direct use of the RndRDRand output. It seems desirable to use
the output of RDRAND (or the output of RDSEED on newer processors) as an additional
source of entropy for a software-based random generator, but its use without post-processing is
undesirable because its implementation, purely hardware, cannot be verified.

The first generator, HMAC_DRBG, is only fed by the content of a file, specified in the con-
figuration, and by the system time. Using RDSEED as an additional source seems relevant,
particularly when sensitive data is generated.

The generation of random data at startup is an arduous task. The implementation should be
carefully studied. It is difficult to gather “good” sources of entropy when the computer starts.
We strongly recommend using such mechanisms just in case of absolute necessity.

Lastly, a comment on the code of RndDtrmHmacSha512, a simplified implementation of HMAC
DRBG with SHA-512. We could argue on the simplified qualifier. Indeed, the Reseed function
of the NIST’s standard is not implemented, which is supposedly the reason for the simplified.
However, for a code which takes care to put in the comments the parallel with the standard, it is
unfortunate that the logical bounds of the different functions, especially Update and Instantiate
is not followed, and that the reseed parameter used in the code has nothing to do with the mean-
ing of Reseed in the standard. This makes the code more difficult to read/check against the stan-
dard it implements. There is probably an off-by-one in the value of reseed_counter/ReseedCtr
between the code and the standard. The pieces of notation used in DcsCfgLib.h for the DRBG
state follows the one for Hash_DRBG (V/C) and not the one of HMAC_DRBG (V/K).

Ref.: 16-08-215-REP Quarkslab SAS 31

7. UEFI Support Assessment
As explained previously, one of the important features brought by VeraCrypt 1.18 is the UEFI
support. It is actually one of the most important features added by VeraCrypt since the
beginning of the project.

All the code specific to UEFI is in a separate repository, named VeraCrypt-DCS. DCS means
“Disk Cryptography Services”. This new module is considered much less mature than the rest
of the project by M. Idrassi, VeraCrypt’s lead developer. No documentation concerning the
compilation of the project, its architecture and its features is available.

Some parts are incomplete, or not implemented at all. This is the case of the “Picture Pass-
words” or the TPM support. We focused on the parts that can be run without having to modify
the volume information accessible only after authentication.

DCS is composed of the following elements:

• DcsBoot : DCS bootloader application

• DcsInt : DCS block R/W interceptor

• DcsBml : DCS boot menu lock application

• DcsRe : DCS recovery loader application

• DcsCfg : DCS configuration tool

DcsInt is the main application. It handles user authentication and installs the driver that
manages the transparent encryption and decryption of the disk sectors. It is loaded by DcsBoot,
whose role is, then, to load the Windows bootloader once the user has been authenticated and
the driver has been installed.

DcsRe is the recovery application. It is installed on the rescue disk, and allows to handle various
problems. In particular, it restores the VeraCrypt bootloader if it has been erased.

DcsCfg is a maintenance and diagnostic tool. It is not intended for end users. Its study is
out of the scope of the audit. Nevertheless, some features of DcsInt and DcsRe need to be
configured first with DcsCfg. The problems in DcsCfg have been transmitted to IDRIX but are
not detailed in this report.

A major part of DCS relies on the VeraCrypt code. In this part, only the problems specifically
related to DCS are listed.

7.1 Keystrokes Are Not Erased After Authentication

Class Severity Difficulty
Data Exposure High High

As explained in The Length of the Password Can Be Computed When Encryption Is Activated,
on startup, keystrokes are stored in a specific buffer of the BIOS Data Area. A parallel can be
drawn to UEFI: each driver has its own buffer containing the keystrokes. The address of this
buffer is not known, and fully depends on the implementation.

The password supplied by the user is read character per character with the GetKey function of
the VeraCrypt bootloader:

Ref.: 16-08-215-REP Quarkslab SAS 32

Listing 7.1: Library/CommonLib/EfiConsole.c:87

EFI_INPUT_KEY
GetKey(void)
{

EFI_INPUT_KEY key;
UINTN EventIndex;

gBS->WaitForEvent(1, &gST->ConIn->WaitForKey, &EventIndex);
gST->ConIn->ReadKeyStroke(gST->ConIn, &key);
return key;

}

It is difficult to make sure the driver implementation will erase
the buffer containing the keystrokes. For example, the file
IntelFrameworkModulePkg/Csm/BiosThunk/KeyboardDxe/BiosKeyboard.c in EDK II
shows that strokes are retrieved from the BIOS keyboard buffer through INT 16h. The module
never directly accesses the BIOS Data Area. Hence, it will never be erased.

Our recommendation is, whatever the driver used, to always call the Reset() method of
gST->ConIn to reset the buffers manipulated by the keyboard module. One has to remem-
ber that there is no guarantee that they will be correctly erased.

7.2 Sensitive Data Is Not Correctly Erased

Class Severity Difficulty
Data Exposure High High

The data handled by the boot loader are rarely erased. The user password is properly cleared
at startup. However, when a user changes his password, the Password structures contain-
ing the new password will not be erased (see the SecRegionChangePwd function in DcsInt /
DcsInt.c).

TrueCrypt’s developers and VeraCrypt’s have carefully checked if sensitive data was correctly
cleared in memory. This level of care has not been taken into DCS yet.

7.3 Memory Corruption Can Occur When the Recovery Disk Is Read

Class Severity Difficulty
Data Validation High High

VeraCrypt proposes to create a rescue disk able to recover a volume in case of crash. This disk
restores the EFI loader settings, restores the loader itself, or boots the system with its own copy
of the loader.

This “Recovery Disk” is actually a Zip archive containing the recovery application, related
modules, and a backup of the VeraCrypt system volume header.

All the data added to this archive can be considered as trusted:

• The EFI application and modules are extracted from the VeraCrypt.exe resources.

• Reading the system volume header requires administrator privileges.

• Reading the configuration requires administrator privileges.

Ref.: 16-08-215-REP Quarkslab SAS 33

• Configuration is created by the application.

The vulnerabilities identified in XZip and XUnzip could therefore not be triggered. However, it
is possible to verify the created image, through the “System” → “Verify Rescue Disk Image”
menu. In that case, VeraCrypt will open and parse the Zip. It will then be possible to trigger
the vulnerabilities identified in inflate and XUnzip.

Just before reading this Zip, VeraCrypt must perform a privileged action. To perform it, it
launches an elevated instance of VeraCrypt.exe with administrator privileges, which acts as a
COM server. This server exposes functions able to copy or delete files on the entire disk with
administrator rights, or to rewrite the EFI loader. The severity was ranked “High” in part
because of it.

The operating conditions are quite unrealistic: an attacker alters the victim’s rescue disk, who
has to verify it to be compromised. Note that the rescue disk is not a secret data (it does not
have the encryption keys).

7.4 Mistakes in the DCS Code

7.4.1 A Null Pointer Can Be Dereferenced When Encrypted Blocks Are Written

Class Severity Difficulty
Data Validation Low Undetermined

The function responsible for the on-the-fly encryption of data during disk write operations does
not return correctly in case of errors. This can lead to a null pointer dereference.

IntBlockIO_Write is the write function registered by the driver installed by DcsInt. It takes
the size of the data to encrypt as a parameter. A buffer of the corresponding size is allocated. If
the allocation fails, EFI_BAD_BUFFER_SIZE is assigned to the return value Status. The function
might then return. However, the return Status; line seems to have been deleted inadvertently
from the source code.

Listing 7.2: DcsInt/DcsInt.c:262

writeCrypted = MEM_ALLOC(BufferSize);
if (writeCrypted == NULL) {

Status = EFI_BAD_BUFFER_SIZE;

}
CopyMem(writeCrypted, Buffer, BufferSize);
// Print(L"*");
UpdateDataBuffer(writeCrypted, (UINT32)BufferSize, startSector);
EncryptDataUnits(writeCrypted, (UINT64_STRUCT*)&startSector,

(UINT32)(BufferSize >> 9),
DcsIntBlockIo->CryptInfo);

Status = DcsIntBlockIo->LowWrite(This, MediaId, startSector, BufferSize,
writeCrypted);

If the allocation fails, the content of Buffer will be copied at address 0.

Ref.: 16-08-215-REP Quarkslab SAS 34

7.4.2 Dead Code in DcsInt

Class Severity Difficulty
Undetermined Informational Undetermined

The function IntBlockIo_Hook in DcsInt/DcsInt.c contains dead code. This code seems to
come from a rewriting of the function.

Listing 7.3: DcsInt/DcsInt.c:345

if (!EFI_ERROR(Status)) {
// Check is this protocol already hooked
DcsIntBlockIo = (DCSINT_BLOCK_IO *)MEM_ALLOC(sizeof(DCSINT_BLOCK_IO));
if (DcsIntBlockIo == NULL) {

return EFI_OUT_OF_RESOURCES;
}

// construct new DcsIntBlockIo
DcsIntBlockIo->Sign = DCSINT_BLOCK_IO_SIGN;
DcsIntBlockIo->Controller = DeviceHandle;
DcsIntBlockIo->BlockIo = BlockIo;
DcsIntBlockIo->IsReinstalled = 0;

if (EFI_ERROR(Status)) {
gBS->CloseProtocol(

DeviceHandle,
&gEfiBlockIoProtocolGuid,
This->DriverBindingHandle,
DeviceHandle
);

MEM_FREE(DcsIntBlockIo);
return EFI_UNSUPPORTED;

}

The first condition checks whether Status is not an error code, while it checks just below if it is
an error code. The CloseProtocol method will never be called. Incidentally, the first comment
is misleading because no check is done on the hook here.

7.4.3 The Function Reading the Configuration May Read Inconsistent Data

Class Severity Difficulty
Data Validation Informational Undetermined

The configuration file of the loader, DcsProp, is read in the ConfigRead function. This function
calls FileLoad to load it, but does not check the value returned by FileLoad:

Listing 7.4: Library/VeraCryptLib/DcsVeraCrypt.c:36

BOOL ConfigRead(char *configKey, char *configValue, int maxValueSize)
{

char *xml;

if (ConfigBuffer == NULL)
FileLoad(NULL, L"\\EFI\\VeraCrypt\\DcsProp", &ConfigBuffer, &ConfigBufferSize);

Ref.: 16-08-215-REP Quarkslab SAS 35

xml = ConfigBuffer;
if (xml != NULL)
{

xml = XmlFindElementByAttributeValue(xml, "config", "key", configKey);
...

}

The configuration will be parsed if ConfigBuffer is not null. However, FileLoad may well
return an error while returning a non-null ConfigBuffer filled with zeros:

Listing 7.5: Library/CommonLib/EfiFile.c:200

EFI_STATUS
FileLoad(

IN EFI_FILE* root,
IN CHAR16* name,
OUT VOID** data,
OUT UINTN* size
)

...
*data = MEM_ALLOC(sz);
if (*data == NULL) {
...
}
res = FileRead(file, *data, &sz, NULL);
if (EFI_ERROR(res)) {

FileClose(file);
MEM_FREE(*data);
return res;

}

This does not lead to a security issue, but might be fixed.

Incidentally, the memory allocated to read the configuration file is never freed.

7.4.4 Bad Pointer Check in EfiGetHandles

Class Severity Difficulty
Data Validation Informational Undetermined

EfiGetHandles calls the LocateHandle service to retrieve all the handles that implement a
given protocol. If several handles are present, the allocated space to retrieve this list will be too
small. Hence EfiGetHandles allocates more memory. The pointer returned by the allocator is
not correctly checked. The consequence is that the function can dereference a null pointer. The
cause of this bug is a typo error, as one can see below.

Listing 7.6: Library/CommonLib/EfiBio.c:76

Buffer = (EFI_HANDLE) MEM_ALLOC(sizeof(EFI_HANDLE));
if (*Buffer) {

BufferSize = sizeof(EFI_HANDLE);
res = gBS->LocateHandle(SearchType, Protocol, SearchKey, &BufferSize, *Buffer);
if (res == RETURN_BUFFER_TOO_SMALL) {

MEM_FREE(*Buffer);
Buffer = (EFI_HANDLE)MEM_ALLOC(BufferSize);

Ref.: 16-08-215-REP Quarkslab SAS 36

if (!Buffer) { // Typo error: Buffer is checked instead of *Buffer
return EFI_OUT_OF_RESOURCES;

}

7.4.5 Potential Dereference of a Null Pointer in the Graphic Library

Class Severity Difficulty
Data Validation Informational Undetermined

Two functions of the graphic library, BltLine and BltCircle, which respectively print a line
and a circle, take a graphical context draw as a parameter. The type of draw is PDRAW_CONTEXT.
This variable is checked at the beginning of both functions in order to assign a variable to the
mask value:

Listing 7.7: Library/GraphLib/EfiGraph.c:300

mask = draw ? draw->DashLine : gDrawContext.DashLine;
dmask = mask;
cmask = 32;
for (;;) {

/* loop */
// Dash
if ((dmask & 1) == 1) {

// always true if draw is NULL, as gDrawContext.DashLine is 0xffffffff
BltPoint(blt, draw, x0, y0);

}

Hence the draw value is potentially null. In that case, the global context gDrawContext is
used instead of draw->DashLine. The circle or the line are printed point after point with the
BltPoint function. This function also takes a parameter of type PDRAW_CONTEXT. However, in
both cases, the draw variable is passed as a parameter to BltPoint instead of the global context
gDrawContext.

BltPoint dereferences this pointer without checking it:

Listing 7.8: Library/GraphLib/EfiGraph.c:231

EFI_STATUS
BltPoint(

IN BLT_HEADER* blt,
IN PDRAW_CONTEXT draw,
IN UINTN x,
IN UINTN y
) {
if (draw->Brush == NULL) return BltPointSingle(blt, draw, x, y);
else

An analysis of the calling functions of BltLine and BltCircle shows that the draw parameter
can actually never be null. The bug must be fixed, however.

Ref.: 16-08-215-REP Quarkslab SAS 37

8. Recommendations
In this section, we sum up all vulnerabilities and related recommendations.

8.1 Unfixed or Partially Fixed Vulnerabilities from Former Audits

8.1.1 OCAP Phase 1 Audit (iSec Partners, NCC Group)

Sensitive information might be paged out from kernel stacks
Make sure the user follow VeraCrypt’s documentation by encrypting the system parti-
tion/drive and making sure that all paging files are located on partitions within the key
scope of the system encryption.
Class Data Exposure Severity Medium Status Not Fixed

Windows kernel driver uses memset() to clear sensitive data
The structure mappedCryptoInfo must be erased with burn() before raising the exception
TC_THROW_FATAL_EXCEPTION in src/Driver/DriveFilter.c.
Class Data Exposure Severity Medium Status Partially fixed

TC_IOCTL_OPEN_TEST multiple issues
To be found in iSec’s report. Warning: a similar issue can be found in the
TC_IOCTL_GET_SYSTEM_DRIVE_CONFIG ioctl.
Class Data Exposure Severity Low Status Not fixed

EncryptDataUnits() lacks error handling
To be found in iSec’s report.
Class Error Reporting Severity Informational Status Not fixed

8.1.2 OCAP Phase 2 Audit (Cryptography Services, NCC Group)

AES implementation susceptible to cache-timing attacks
Fix Aes_x86.asm and Aes_x64.asm first.
Class Cryptography Severity High Status Not fixed

Keyfile mixing is not cryptographically sound
To be found in NCC Group’s report. We emphasize the need to implement the recommen-
dation.
Class Cryptography Severity Low Status Not fixed

Unauthenticated ciphertext in volume headers
Implement a cryptographic authentication mechanism.
Class Cryptography Severity Undetermined Status Not fixed

Ref.: 16-08-215-REP Quarkslab SAS 38

8.2 VeraCrypt’s Modifications Assessment

The length of the password can be computed when encryption is activated
Erase pointers to last and next password character position in the keystroke buffer.
Class Data Exposure Severity Low Difficulty Medium

Out-of-date inflate and deflate

Add a dependency on zlib to benefit from an up-to-date code base.
Class Patching Severity High Difficulty High

XZip and XUnzip need to be completely re-written
Use another component to handle Zip files.
Class Data Validation Severity High Difficulty High

Integer overflow when computing the number of iterations for PBKDF2 when
PIM is used
Unify the application behavior so that the checks on the PIM will be performed in the core
functions of the program.
Class Data Validation Severity High Difficulty High

PIN code on command line
Remove the feature or at least attach a clear security warning to it.
Class Data Exposure Severity Informational Difficulty Low

8.3 New Cryptographic Mechanisms Assessment

GOST 28147-89 Must Be Removed from VeraCrypt
Remove GOST 28147-89 and more generally any 64-bit block cipher from the list of available
block ciphers.
Class Cryptography Severity High Difficulty High

Lack of test vectors for newly added algorithms
Add relevant test vectors.
Class Cryptography Severity Informational Difficulty Undetermined

Input and output parameters are swapped in GOST Magma
Fix the implementation.
Class Cryptography Severity Informational Difficulty Undetermined

The PBKDF2 implementation does not fully comply with the standard
Make the implementation compliant with the standard.
Class Cryptography Severity Informational Difficulty Undetermined

Ref.: 16-08-215-REP Quarkslab SAS 39

Bad coding practice in the HMAC-SHA512 Computation
Fix the implementation.
Class Cryptography Severity Informational Difficulty Undetermined

Unused parameters in key derivation sub-functions
Fix the implementation.
Class Cryptography Severity Informational Difficulty Undetermined

Random Byte Generators in DCS Should Be Improved
The generation of random data at startup is an arduous task. The implementation should
be carefully studied. It is difficult to gather "good" sources of entropy when the computer
starts. We strongly recommend using such mechanisms just in case of absolute necessity.
Class Cryptography Severity Informational Difficulty Undetermined

8.4 UEFI Support Assessment

Keystrokes are not erased after authentication
Always call the Reset() method of gST->ConIn to reset the buffers manipulated by the
keyboard module.
Class Data Exposure Severity High Difficulty High

Sensitive data is not correctly erased
Securely clear sensitive data from memory.
Class Data Exposure Severity High Difficulty High

Memory corruption can occur when the recovery disk is read
Use another component to handle Zip files.
Class Data Validation Severity High Difficulty High

A null pointer can be dereferenced when encrypted blocks are written
Fix the implementation.
Class Data Validation Severity Low Difficulty Undetermined

Dead code in DcsInt

Fix the implementation.
Class Undetermined Severity Informational Difficulty Undetermined

The function reading the configuration may read inconsistent data
Fix the implementation.
Class Data Validation Severity Informational Difficulty Undetermined

Ref.: 16-08-215-REP Quarkslab SAS 40

Bad pointer check in EfiGetHandles

Fix the implementation.
Class Data Validation Severity Informational Difficulty Undetermined

Potential dereference of a null pointer in the graphic library
Fix the implementation.
Class Data Validation Severity Informational Difficulty Undetermined

Ref.: 16-08-215-REP Quarkslab SAS 41

9. Conclusion
This audit, funded by OSTIF, required 32 man-days of study. It shows that this follow-up of
TrueCrypt is very much alive and evolves with new functionalities like the support of UEFI.

The results shows that evaluations at regular intervals of such difficult security projects are not
an option. When well received by the project’s developers, they provide useful feedbacks to help
the project mature. The openess of the evaluation results help build confidence in the product
for the final users.

Ref.: 16-08-215-REP Quarkslab SAS 42

9. Bibliography
[OCAP1] iSec Partners, part of NCC Group. Open Crypto Au-

dit Project - TrueCrypt, Security Assessment. 2014. Available at
https://opencryptoaudit.org/reports/iSec_Final_Open_Crypto_Audit_Project_TrueCrypt_Security_Assessment.pdf

[OCAP2] Cryptography Services of NCC Group. Open Crypto Au-
dit Project - TrueCrypt, Cryptographic Review. 2015 Available at
https://opencryptoaudit.org/reports/TrueCrypt_Phase_II_NCC_OCAP_final.pdf

[FSIT] Fraunhofer Institute for Secure Information Technol-
ogy. Security Analysis of TrueCrypt. 2015. Available at
https://www.bsi.bund.de/DE/Publikationen/Studien/TrueCrypt/truecrypt.html

[SP800-132] NIST Special Publication 800-132. Recommendation for
Password-Based Key Derivation. December 2010. Available at
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf

[SOGETI] Sogeti ESEC Lab. Security assessment of TrueCrypt. 2008. Available at http://esec-
lab.sogeti.com/posts/2008/12/08/security-assessment-of-truecrypt-english.html

[UPR] Ubuntu Privacy Remix Team. Security Analysis of TrueCrypt 7.0a with an Attack on
the Keyfile Algorithm. 2011. Available at https://www.privacy-cd.org/en/tutorials/analysis-
of-truecrypt

[P0-537] Google Project Zero. Truecrypt 7 Derived Code/Windows: Incorrect Imper-
sonation Token Handling EoP. Available at https://bugs.chromium.org/p/project-
zero/issues/detail?id=537

[P0-538] Google Project Zero. Truecrypt 7 Derived Code/Windows: Drive Letter Symbolic Link
Creation EoP. Available at https://bugs.chromium.org/p/project-zero/issues/detail?id=538

[P0-BLOG] Google Project Zero. Windows Drivers are True’ly Tricky. Available on Google
Project Zero’s Blog at https://googleprojectzero.blogspot.fr/2015/10/windows-drivers-are-
truely-tricky.html

[GOST89] Government Committee of the USSR for Standards. Cryptographic Protection for
Data Processing System, GOST 28147-89, Gosudarstvennyi Standard of USSR, 1989. (In
Russian)

[IEEE07] IEEE P1619/D16. Standard for Cryptographic Protection of Data on Block-Oriented
Storage Devices. 2007.

[SP800-38E] NIST Special Publication 800-38E. Recommendation for Block Cipher Modes of
Operation: The XTS-AES Mode for Confidentiality on Storage Devices. January 2010.

[Ro04] Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC. Asiacrypt 2004. LNCS vol. 3329. Springer, 2004. Available at
http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf

[LM08] Moses Liskov and Kazuhiko Minematsu. Comments on XTS-AES , in re-
sponse to NIST Public Request for Comments on XTS. 2008. Available at

Ref.: 16-08-215-REP Quarkslab SAS 43

https://opencryptoaudit.org/reports/iSec_Final_Open_Crypto_Audit_Project_TrueCrypt_Security_Assessment.pdf
https://opencryptoaudit.org/reports/TrueCrypt_Phase_II_NCC_OCAP_final.pdf
https://www.bsi.bund.de/DE/Publikationen/Studien/TrueCrypt/truecrypt.html
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
http://esec-lab.sogeti.com/posts/2008/12/08/security-assessment-of-truecrypt-english.html
http://esec-lab.sogeti.com/posts/2008/12/08/security-assessment-of-truecrypt-english.html
https://www.privacy-cd.org/en/tutorials/analysis-of-truecrypt
https://www.privacy-cd.org/en/tutorials/analysis-of-truecrypt
https://bugs.chromium.org/p/project-zero/issues/detail?id=537
https://bugs.chromium.org/p/project-zero/issues/detail?id=537
https://bugs.chromium.org/p/project-zero/issues/detail?id=538
https://googleprojectzero.blogspot.fr/2015/10/windows-drivers-are-truely-tricky.html
https://googleprojectzero.blogspot.fr/2015/10/windows-drivers-are-truely-tricky.html
http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/XTS/XTS_comments-
Liskov_Minematsu.pdf

[BL16] Karthikeyan Bhargavan and Gaëtan Leurent. On the Practical (In-)Security of 64-bit
Block Ciphers — Collision Attacks on HTTP over TLS and OpenVPN. To be published at
ACM CCS 2016.

[RFC2898] PKCS #5: Password-Based Cryptography Specification Version 2.0. Available at
https://tools.ietf.org/html/rfc2898#section-5.2

[SP800-90A] NIST Special Publication 800-90A Revision 1. Recommendation for Random
Number Generation Using Deterministic Random Bit Generators. June 2015. Available at
http://dx.doi.org/10.6028/NIST.SP.800-131Ar1

Ref.: 16-08-215-REP Quarkslab SAS 44

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/XTS/XTS_comments-Liskov_Minematsu.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/XTS/XTS_comments-Liskov_Minematsu.pdf
https://tools.ietf.org/html/rfc2898#section-5.2
http://dx.doi.org/10.6028/NIST.SP.800-131Ar1

	Project information
	Executive Summary
	Fixes
	New Problems

	Context and Scope
	Known Vulnerabilities in TrueCrypt 7.1a
	Vulnerabilities Detailed in OCAP Phase 1
	Vulnerabilities Detailed in OCAP Phase 2
	Vulnerabilities Reported by James Forshaw

	VeraCrypt's Modifications Assessment
	The Length of the Password Can Be Computed When Encryption Is Activated
	Data Compression: Too Many Different Critical Issues
	Integer Overflow When Computing the Number of Iterations for PBKDF2 When PIM Is Used
	PIN Code on Command Line

	New Cryptographic Mechanisms Assessment
	GOST 28147-89 Must Be Removed from VeraCrypt
	Lack of Test Vectors for Newly Added Algorithms
	Input and Output Parameters Are Swapped in GOST Magma
	Notes on the PBKDF2 Implementation
	Random Byte Generators in DCS Should Be Improved

	UEFI Support Assessment
	Keystrokes Are Not Erased After Authentication
	Sensitive Data Is Not Correctly Erased
	Memory Corruption Can Occur When the Recovery Disk Is Read
	Mistakes in the DCS Code

	Recommendations
	Unfixed or Partially Fixed Vulnerabilities from Former Audits
	VeraCrypt's Modifications Assessment
	New Cryptographic Mechanisms Assessment
	UEFI Support Assessment

	Conclusion
	Bibliography

