
Nome del documento
Autore e data [Digitare qui]

1

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

OpenEXR
Security Assessment

Prepared for:
OSTIF

Technical
Report

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/

Technical Report – OSTIF OpenEXR
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

2

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

1. Document Details
Classification Public - CC BY-SA 4.0

Last review July 10, 2025

Author Davide Silvetti, Pietro Tirenna, Nicolò Daprelà

1.1. Version
Identifier Date Author Note
v1.0 March 7, 2025 Davide Silvetti, Pietro

Tirenna, Nicolò Daprelà
First version

v1.1 March 12, 2025 Abdel Adim Oisfi Peer review
v1.2 July 10, 2025 Davide Silvetti, Pietro

Tirenna
Public release

1.2. Contacts Information
Company Name Position Contact
Shielder Abdel Adim Oisfi CEO / CTO abdeladim.oisfi@shielder.com
Shielder Davide Silvetti Consultant davide.silvetti@shielder.com

Shielder Pietro Tirenna Consultant pietro.tirenna@shielder.com

OSTIF Derek Zimmer Executive Director derek@ostif.org

OSTIF Amir Montazery Managing Director amir@ostif.org

OSTIF Helen Woeste Communications and
Community Manager

helen@ostif.org

OSTIF Tom Welter Project Manager tom@ostif.org
Academy Software
Foundation

Cary Phillips OpenEXR Core Developer cary@ilm.com

Academy Software
Foundation

Kimball Thurston OpenEXR Core Developer kdt3rd@gmail.com

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Technical Report – OSTIF OpenEXR
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

3

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

1.3. About OSTIF
The Open Source Technology Improvement Fund (OSTIF) is dedicated to resourcing and
managing security engagements for open source software projects through partnerships
with corporate, government, and non-profit donors. We bridge the gap between resources
and security outcomes, while supporting and championing the open source community
whose efforts underpin our digital landscape.

Over the past ten years, OSTIF has been responsible for the discovery of over 800
vulnerabilities, (121 of those being Critical/High), over 13,000 hours of security work, and
millions of dollars raised for open source security. Maximizing output and security outcomes
while minimizing labor and cost for projects and funders has resulted in partnerships with
multi-billion dollar companies, top open source foundations, government organizations, and
respected individuals in the space. Most importantly, we’ve helped over 120 projects and
counting improve their security posture.

Our directive is to support and enrich the open source community through providing public-
facing security audits, educational resources, meetups, tooling, and advice. OSTIF’s
experience positions us to be able to share knowledge of auditing with maintainers,
developers, foundations, and the community to further secure our infrastructure in a
sustainable manner.

We are a small team working out of Chicago, Illinois. Our website is ostif.org. You can follow
us on social media to keep up to date on audits, conferences, meetups, and opportunities
with OSTIF, or feel free to reach out directly at contactus@ostif.org or our Github.

Derek Zimmer, Executive Director
Amir Montazery, Managing Director
Helen Woeste, Communications and Community Manager
Tom Welter, Project Manager

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/
http://ostif.org/
mailto:contactus@ostif.org
https://github.com/ostif-org/OSTIF/tree/main

Technical Report – OSTIF OpenEXR
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

4

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

2. Summary
1. Document Details .. 2

1.1. Version .. 2

1.2. Contacts Information ... 2

2. Summary .. 4

3. Executive Summary ... 5

3.1. Overview ... 5

3.2. Context and Scope ... 5

3.3. Methodology .. 6

3.4. Threat Model ... 7

3.5. Audit Summary .. 7

3.6. Recommendations .. 7

3.7. Long Term Improvements ... 8

3.8. Results Summary ... 8

3.9. Findings Severity Classification .. 10

3.10. Remediation Status Classification .. 11

4. Fuzzing Strategy .. 12

5. Findings Details ... 13

5.1. Heap-Based Buffer Overflow in Deep Scanline Parsing via Forged Unpacked Size 13

5.2. Out-Of-Memory via Unbounded File Header Values ... 16

5.3. Out of Bounds Heap Read due to Bad Pointer Arithmetic in
LossyDctDecoder_execute .. 18

5.4. ScanLineProcess::run_fill NULL Pointer Write in “reduceMemory” Mode 20

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/

Technical Report – OSTIF OpenEXR
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

5

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

3. Executive Summary
The document aims to highlight the findings identified during the “Security Assessment” against
the "OpenEXR" product described in section “3.2 Context and Scope”.

For each detected findings, the following information are provided:

§ Severity: findings score ("3.9 Findings Severity Classification").
§ Affected resources: vulnerable components.
§ Status: remediation status ("3.10 Remediation Status Classification").
§ Description: type and context of the detected finding.
§ Impact: loss of confidentiality, data integrity and/or availability in case of a successful

exploitation and conditions necessary for a successful attack.
§ Proof of Concept: evidence and/or reproduction steps.
§ Suggested remediation: configurations or actions needed to mitigate the finding.
§ References: useful external resources.

3.1. Overview
In January 2025, Shielder was hired by the Open Source Technology Improvement Fund
(OSTIF) to perform a Preliminary Security Review and Threat Model Assessment of OpenEXR
(openexr.com), an open specification and reference implementation of the EXR file format,
the professional-grade image storage format of the motion picture industry.

The OpenEXR file format is a custom binary file format that supports a wide variety of
features, including but not limited to multi-part images, lossy and lossless compression,
deep data images, etc.

The OpenEXR software is composed of the following components:

§ OpenEXR, a library exposing C++ APIs to read and write EXR files.
§ OpenEXRCore, a library implementing low-level functionalities and exposing C

APIs.

A team of 3 (three) Shielder engineers worked on this project for a total of 12 (twelve)
person-days of effort.

3.2. Context and Scope
The OpenEXR file-format is used by many enterprises and professional software in the
VFX, animation, and film industries, namely Pixar RenderMan, Unreal Engine, the Autodesk
suite, the Apple VisionPro, NVIDIA Omniverse, etc.

The aim of this Preliminary Security Review and Threat Model Assessment was to gain a
general understanding of the security posture of the project, to provide project maintainers
with valuable recommendations and starting points to incrementally improve it.

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/

Technical Report – OSTIF OpenEXR
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

6

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

Specifically, the main goals were to:

§ Perform a high-level Threat Modeling Assessment to understand the common and
typical use-cases, high-risk functionalities, and their associated threats.

§ Perform an overall high-level manual review of the source code, and the secure-
coding practices employed.

§ Perform an automated source code analysis with SAST tools like Semgrep and
CodeQL.

§ Perform a review of the dependencies in use to detect outdated and vulnerable
dependencies.

§ Perform a review the use of CI and GitHub Workflows.
§ Perform a review of the current state of fuzzing coverage, addressing issues with

the fuzzers, and improving the coverage of critical codepaths.

The scope of this audit is the OpenEXR commit
8bc3faebc66b92805f7309fa7a2f46a66e5cc5c9 released on January 1, 2025.

It is important to note that Security Assessments are time-boxed activities performed at a
specific point in time; thus, they are unable to guarantee that a software is or will be free
of bugs.

3.3. Methodology
The source code audit was carried out following a standard Shielder methodology
developed during years of experience. Different testing techniques and approaches were
employed.

Moreover, manual and tool-driven techniques were used to analyze the source code. The
audit was assisted by SAST tools like CodeQL and Semgrep with publicly available C/C++
queries and rules.

Parallel to the source code audit, a preliminary fuzzing setup and campaign was conducted.
The pre-existing fuzzer on OSS-Fuzz were fixed to correctly build and collect coverage,
then a grammar-based fuzzer was developed thanks to libprotobuf-mutator.

Finally, Shielder performed a review of the whole release process, including the managing
of dependencies, for misconfigurations leading to supply chain attacks, and a review of the
documentation for insecure recommendations and/or insecure defaults. This included, for
instance, reviewing the configured GitHub actions and workflows for typical attack
scenarios, and the approach that OpenEXR employs when using third-party packages in its
project.

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/google/libprotobuf-mutator

Technical Report – OSTIF OpenEXR
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

7

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

3.4. Threat Model
Threat Modeling a specification can be slightly more complex when compared to
"standalone" applications. When doing so, many things must be taken in consideration
since independent implementations could make different choices based on what the
specification allows and on its design.

The OpenEXR file format is fairly complex, it supports many parsing mechanism (Scanlines,
Tiled, Deep Data), multi-part images, arbitrary number of channels, a number of
compression algorithms, etc. The complexity and feature richness of the specification
increase the attack surface.

For the reference implementation instead, the main threat is posed by the parsing of
untrusted EXR files.

Additionally, the team has reviewed and audited the documented APIs to find "situational"
code - e.g. non-core - that may introduce vulnerabilities in the software using the library.

3.5. Audit Summary
The OpenEXR project is implemented following robust C++ secure coding principles.
However, due to the flexibility of the project, it is affected by some security issues in the
design of its parsing logic.

The main problems arise from excessive reliance on the values extracted from the many
different kinds of headers (file, part, chunk) while parsing the file.

The Shielder team was able to identify 1 (one) critical, 1 (one) medium and 2 (two) low
findings.

3.6. Recommendations
The following list outlines further recommendations for the project's maintainers to harden the
security posture of the project.

Perform Null-pointer Checks

The OpenEXR library comes in two different flavors, the C++ APIs and the C core library.
Many of the C++ APIs rely on the core library under-the-hood. In both C and C++,
dereferencing a null-pointer results in an undefined behavior that could vary between
compilers, operating systems, or even execution environments. Most of the cases it will
cause a segmentation fault or a memory corruption.

It is recommended to perform null-pointer checks after dereferencing pointers and before
accessing them, aborting execution if the target pointer is NULL/nullptr.

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/

Technical Report – OSTIF OpenEXR
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

8

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

The following list outlines recommendations for third-party developers using the OpenEXR
library or specification.

Set a Limit on the Maximum Image Size

The OpenEXR file format defines many information about the final image inside of the file
header, such as the size of data/display window. Those fields contain user-supplied values
that the library trusts to allocate the memory needed to render the final image.

It is recommended to use the setMaxImageSize function from OpenEXR to limit the size of
the images that will be loaded based on the target use of the library. This will avoid
arbitrarily large memory allocations and crash the application when opening small EXR
images that however define huge data-window dimensions.

3.7. Long Term Improvements
Due to fast-evolving nature of the Security field and the time-constrained nature of Security
Audits, there still is room for long-term improvements to the overall security of the project's
ecosystem.

Perform an In-Depth Code Audit

When complexity and flexibility meet in an unsafe memory language like C or C++, it's not
uncommon to introduce bugs with a serious security impact.

Considering the major presence of the library in the motion industry, it is recommended to
perform a more in-depth audit of the codebase, focusing on finding other bugs that might
be exploited by attackers in the wild.

3.8. Results Summary
The following chart shows the number of findings found per severity:

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/

Technical Report – OSTIF OpenEXR
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

9

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

ID Finding Severity Status
1 Heap-Based Buffer Overflow in Deep Scanline Parsing

via Forged Unpacked Size CRITICAL Closed

2 Out-Of-Memory via Unbounded File Header Values LOW Closed

3 Out of Bounds Heap Read due to Bad Pointer
Arithmetic in LossyDctDecoder_execute MEDIUM Closed

4 ScanLineProcess::run_fill NULL Pointer Write in
“reduceMemory” Mode LOW Closed

Critical

High

Medium

Low

Informational

0 1 2 3

Severity

Critical High Medium Low Informational

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/

Technical Report – OSTIF OpenEXR
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

10

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

3.9. Findings Severity Classification
Severity Description

CRITICAL

Vulnerability that allows to compromise the whole application, host and/or
infrastructure. In some cases, it allows access, in read and/or write, to highly
sensitive data, totally impacting the resources in terms of confidentiality,
integrity and availability.

Usually, such vulnerabilities can be exploited without the need of valid
credentials, without considerable difficulty and with the possibility of
automated, highly reliable, and remotely triggerable attacks.

Vulnerabilities marked with this severity must be resolved quickly, especially
in production environment.

HIGH
Vulnerability that significantly affects the confidentiality, integrity, and
availability of confidential and sensitive data. However, the prerequisites for
the attack affect its likelihood of success, such as the presence of controls or
mitigations and the need of a certain set of privileges.

MEDIUM

Vulnerability that allows to obtain only a limited or less sensitive set of data,
partially compromising confidentiality.

In some cases, it may affect the integrity and availability of the information,
but with a lower level of severity.

In addition, the chances of success of such vulnerability may depend on
external factors and/or conditions outside the attacker's control.

LOW

Vulnerability resulting in a limited loss of confidentiality, integrity, and
availability of data.

In some cases, it depends on conditions not aligned to a real scenario or
requires that the attacker has access to credentials with a high level of
privileges.

In addition, a low severity vulnerability may provide useful information to
successfully exploit a higher impact vulnerability.

INFORMATIONAL

Problems that do not directly impact confidentiality, integrity, and availability.

Usually, these problems indicate the absence of security mechanisms or the
improper configuration of them.

Mitigation of this type of problem increases the general level of security of
the system and allows in some cases to prevent potential new vulnerabilities
and/or limit the impact of existing ones.

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/

Technical Report – OSTIF OpenEXR
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

11

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

3.10. Remediation Status Classification
Status Description

Open Vulnerability not mitigated or insufficient mitigation.

Not
reproducible

Vulnerability not reproducible due to environment changes or to mitigation of
other vulnerabilities required in the reproduction steps.

Closed
Vulnerability mitigated.

The security patch applied is reasonably robust.

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/

Technical Report – OSTIF OpenEXR
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

12

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

4. Fuzzing Strategy
During the assessment, a preliminary fuzzing campaign was conducted to improve the
current fuzzing coverage.

The OpenEXR project was initially on-boarded into OSS-Fuzz in 2020 after a Google's
Project Zero campaign. Since then, new fuzzers were developed, and the project matured
from a fuzzing and security point-of-view in later versions.

After a brief analysis of the current fuzzers the team discovered that the coverage build
was failing due to issues with the compilation process.

Due to the nature of the OSS-Fuzz infrastructure, fuzzers are forced to use a limited
amount of memory, and test-cases are limited in size. This is implemented in OpenEXR
with two flags (reduceMemory and reduceTime) that whenever set to True will avoid to parse
files that are too big.

Moreover, OSS-Fuzz corpus is not public but thanks to the wide distribution of the
OpenEXR format the team was able to gather a large sample of initial corpus made of real-
world images that were particularly big in size.

Finally, OpenEXR has a total of four implementations of the Huffman decoding algorithm:
a fast version and a slow version written in both C and C++. The fast implementations are
used most of the time, however in some systems the slow ones will be used (GNU/Linux
on ARM). Currently only the fast versions are fuzzed.

For these reasons the fuzzing campaign was focused on test cases that OSS-Fuzz could
have missed or ignored. This was done by unsetting the reduce* flags, gathering a big and
new corpus, and fuzzing the different implementations.

This was partially successful since it uncovered some weaknesses, though they were
limited and confined instances, reflecting the project's fuzzing maturity.

In view of this, a new grammar-based fuzzer employing libprotobuf-mutator was developed,
modeling the EXR format as a Protobuf object. Due to the limited time-frame for this, only
the "Simple Scanline" image type was implemented.

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/google/oss-fuzz/pull/4060
https://googleprojectzero.blogspot.com/2020/04/fuzzing-imageio.html
https://googleprojectzero.blogspot.com/2020/04/fuzzing-imageio.html
https://github.com/google/oss-fuzz/pull/4173

Technical Report – OSTIF OpenEXR
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

13

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

5. Findings Details
Analysis results are discussed in this section.

5.1. Heap-Based Buffer Overflow in Deep Scanline Parsing via
Forged Unpacked Size

Severity CRITICAL

Affected Resources src/lib/OpenEXRCore/chunk.c
src/lib/OpenEXRCore/internal_zip.c

Status Closed

Update

This was fixed in https://github.com/AcademySoftwareFoundation/openexr/pull/1974,
which was merged and released in version v3.3.3.

Description

The OpenEXRCore code is vulnerable to a heap-based buffer overflow during a write
operation when decompressing ZIPS-packed deep scan-line EXR files with a maliciously
forged chunk header.

When parsing STORAGE_DEEP_SCANLINE chunks from an EXR file, the following code (from
src/lib/OpenEXRCore/chunk.c) is used to extract the chunk information:

if (part->storage_mode == EXR_STORAGE_DEEP_SCANLINE)
// ...SNIP...
 cinfo->sample_count_data_offset = dataoff;
 cinfo->sample_count_table_size = (uint64_t) ddata[0];
 cinfo->data_offset = dataoff + (uint64_t) ddata[0];
 cinfo->packed_size = (uint64_t) ddata[1];
 cinfo->unpacked_size = (uint64_t) ddata[2];
// ...SNIP...

By storing this information, the code that will later decompress and reconstruct the chunk
bytes knows how much space the uncompressed data will occupy.

This size is carried along in the chain of decoding/decompression until the undo_zip_impl
function in src/lib/OpenEXRCore/internal_zip.c:

static exr_result_t
undo_zip_impl (
 exr_decode_pipeline_t* decode,
 const void* compressed_data,
 uint64_t comp_buf_size,
 void* uncompressed_data,
 uint64_t uncompressed_size,
 void* scratch_data,

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/AcademySoftwareFoundation/openexr/pull/1974

Technical Report – OSTIF OpenEXR
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

14

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

 uint64_t scratch_size)
{
 size_t actual_out_bytes;
 exr_result_t res;

 if (scratch_size < uncompressed_size) return EXR_ERR_INVALID_ARGUMENT;

 res = exr_uncompress_buffer (
 decode->context,
 compressed_data,
 comp_buf_size,
 scratch_data,
 scratch_size,
 &actual_out_bytes);

 if (res == EXR_ERR_SUCCESS)
 {
 decode->bytes_decompressed = actual_out_bytes;
 if (comp_buf_size > actual_out_bytes)
 res = EXR_ERR_CORRUPT_CHUNK;
 else
 internal_zip_reconstruct_bytes (
 uncompressed_data, scratch_data, actual_out_bytes);
 }

 return res;
}

The uncompressed_size comes from the unpacked_size extracted earlier, and the
uncompressed_data is a buffer allocated by making space for the size "advertised" in the
chunk information.

However, scratch_data and actual_out_bytes will contain, after decompression, the
uncompressed data and its size, respectively.

The vulnerability lies in the fact that the undo_zip_impl function lacks code to check
whether actual_out_bytes is greater than uncompressed_size.

The effect is that, by setting the unpacked_size in the chunk header smaller than the actual
chunk decompressed data, it is possible - in the internal_zip_reconstruct_bytes function
- to overflow past the boundaries of a heap chunk.

Impact

An attacker might exploit this vulnerability by feeding a maliciously crafted file to a program
that uses the OpenEXR libraries, thus gaining the capability to write an arbitrary amount of
bytes in the heap. This could potentially result in code execution in the process.

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/

Technical Report – OSTIF OpenEXR
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

15

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

Proof of Concept

1. Compile the exrcheck binary in a macOS or GNU/Linux machine with ASAN.
2. Download the heap_overflow.exr file from the

https://github.com/ShielderSec/poc repository.
3. Open the file with the following command:

exrcheck heap_overflow.exr

4. Notice that exrcheck crashes with an ASAN stack-trace.

Suggested Remediations

Values coming from the file header should not be trusted. Implement code to verify
whether the amount of data that was decompressed would fit in the advertised
unpacked_size.

References

§ https://cwe.mitre.org/data/definitions/122.html

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/ShielderSec/poc
https://cwe.mitre.org/data/definitions/122.html

Technical Report – OSTIF OpenEXR
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

16

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

5.2. Out-Of-Memory via Unbounded File Header Values
Severity LOW
Affected Resources src/lib/OpenEXRUtil/ImfCheckFile.cpp:145-258
Status Closed

Update

This was partially fixed (handling too large data allocations) in
https://github.com/AcademySoftwareFoundation/openexr/pull/1979, which was merged
and released in version v3.3.3.

A residual risk has been accepted, due to the impossibility of imposing default upper/lower
bounds to the dimensions advertised in the OpenEXR header.

Description

The OpenEXR file format defines many information about the final image inside of the file
header, such as the size of data/display window.

The application trusts the value of dataWindow size provided in the header of the input file
and performs computations based on this value.

This may result in unintended behaviors, such as excessively large number of iterations
and/or huge memory allocations.

A concrete example of this issue is present in the function readScanline() in
ImfCheckFile.cpp at line 235, that performs a for-loop using the dataWindow min.y and
max.y coordinates that can be arbitrarily large.

in.setFrameBuffer (i);

int step = 1;

//
// try reading scanlines. Continue reading scanlines
// even if an exception is encountered
//
for (int y = dw.min.y; y <= dw.max.y; y += step) // <-- THIS LOOP IS EXCESSIVE
BECAUSE OF DW.MAX
{
 try
 {
 in.readPixels (y);
 }
 catch (...)
 {
 threw = true;

 //

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/AcademySoftwareFoundation/openexr/pull/1979

Technical Report – OSTIF OpenEXR
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

17

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

 // in reduceTime mode, fail immediately - the file is corrupt
 //
 if (reduceTime) { return threw; }
 }
}

Another example occurs in the EnvmapImage::resize function that in turn calls
Array2D<T>::resizeEraseUnsafe passing the dataWindow X and Y coordinates and perform
a huge allocation.

On some system, the allocator will simply return std::bad_alloc and crash. On other
systems such as macOS, the allocator will happily continue with a "small" pre-allocation
and allocate further memory whenever it is accessed. This is the case with the
EnvmapImage::clear function that is called right after and fills the image RGB values with
zeros, allocating tens of Gigabytes.

Impact

An attacker might exploit this vulnerability by feeding a maliciously crafted file to a program
that uses the OpenEXR libraries, thus causing a denial of service by stalling the application
or exhaust the memory by stalling the application in a loop which contains a memory
leakage.

Proof of Concept

1. Compile the exrcheck binary in a macOS or GNU/Linux machine with ASAN.
2. Download the oom_crash.exr file from the https://github.com/ShielderSec/poc

repository.
3. Open the file with the following command:

exrcheck oom_crash.exr

4. Notice that exrenvmap/exrcheck crashes with an ASAN stack-trace.

Suggested Remediations

Add a reasonable and safe upper/lower bound limit to the data window size. Third-party
developers would be able to disable such limit during compilation or runtime time if the
handling of huge images is intended.

It should be noted that exrcheck has already some kind of checks to reduce the memory
and time usage but they are not effective in this scenario and only cover the ImfCheckFile
entrypoint.

References

§ https://cwe.mitre.org/data/definitions/502.html

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/ShielderSec/poc
https://cwe.mitre.org/data/definitions/502.html

Technical Report – OSTIF OpenEXR
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

18

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

5.3. Out of Bounds Heap Read due to Bad Pointer Arithmetic
in LossyDctDecoder_execute

Severity MEDIUM
Affected Resources src/lib/OpenEXRCore/internal_dwa_decoder.h:650
Status Closed

Update

This was fixed in https://github.com/AcademySoftwareFoundation/openexr/pull/1977,
which was merged and released in version v3.3.3.

Description

The OpenEXRCore code is vulnerable to a heap-based buffer overflow during a read
operation due to bad pointer math when decompressing DWAA-packed scan-line EXR files
with a maliciously forged chunk.

In the LossyDctDecoder_execute function (from
src/lib/OpenEXRCore/internal_dwa_decoder.h, when SSE2 is enabled), the following
code is used to copy data from the chunks:

// no-op conversion to linear
for (int y = 8 * blocky; y < 8 * blocky + maxY; ++y)
{
 __m128i* restrict dst = (__m128i *) chanData[comp]->_rows[y];
 __m128i const * restrict src = (__m128i const *)&rowBlock[comp][(y & 0x7)
* 8];

 for (int blockx = 0; blockx < numFullBlocksX; ++blockx)
 {
 _mm_storeu_si128 (dst, _mm_loadu_si128 (src)); //

 src += 8 * 8; // <--- si128 pointer incremented as a uint16_t
 dst += 8;
 }
}

The issue arises because the src pointer, which is a si128 pointer, is incremented by 8*8,
as if it were a uint16_t pointer (64 * uint16_t == 128 bytes). In non-block aligned chunks
(width/height not a multiple of 8), this can cause src to point past the boundaries of the
chunk.

Impact

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/AcademySoftwareFoundation/openexr/pull/1977

Technical Report – OSTIF OpenEXR
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

19

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

An attacker might exploit this vulnerability by feeding a maliciously crafted file to a program
that uses the OpenEXR libraries, thus crashing the application and in some scenarios also
leaking data, for example addresses that could allow them to break the ASLR mitigation.

Proof of Concept

1. Compile the exrcheck binary in a macOS or GNU/Linux machine with ASAN
which supports SSE2.

2. Download the dwadecoder_crash.exr file from the
https://github.com/ShielderSec/poc repository.

3. Open the file with the following command:

exrcheck dwadecoder_crash.exr

4. Notice that exrcheck crashes with an ASAN stack-trace.

Suggested Remediations

Implement stricter checks to validate the information about the compressed and
uncompressed data sizes defined in the chunk.

References

§ https://cwe.mitre.org/data/definitions/125.html

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/ShielderSec/poc
https://cwe.mitre.org/data/definitions/125.html

Technical Report – OSTIF OpenEXR
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

20

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

5.4. ScanLineProcess::run_fill NULL Pointer Write in
“reduceMemory” Mode

Severity LOW
Affected Resources src/lib/OpenEXR/ImfDeepScanLineInputFile.cpp:963
Status Closed

Update

This was fixed in https://github.com/AcademySoftwareFoundation/openexr/pull/1980,
which was merged and released in version v3.3.3.

Description

When reading a deep scanline image with a large sample count in reduceMemory mode, it is
possible to crash a target application with a NULL pointer dereference in a write operation.
In the ScanLineProcess::run_fill function, implemented in
src/lib/OpenEXR/ImfDeepScanLineInputFile.cpp, the following code is used to write the
fillValue in the sample buffer:

switch (fills.type)
 {
 case OPENEXR_IMF_INTERNAL_NAMESPACE::UINT:
 {
 unsigned int fillVal = (unsigned int) (fills.fillValue);
 unsigned int* fillptr = static_cast<unsigned int*> (dest);

 for (int32_t s = 0; s < samps; ++s)
 fillptr[s] = fillVal; // <--- POTENTIAL CRASH HERE
 break;
 }

However, when reduceMemory mode is enabled in the readDeepScanLine function in
src/lib/OpenEXRUtil/ImfCheckFile.cpp, with large sample counts, the sample data will
not be read, as shown below:

// limit total number of samples read in reduceMemory mode
//
if (!reduceMemory || fileBufferSize + bufferSize < gMaxBytesPerDeepScanline)
// <--- CHECK ON LARGE SAMPLE COUNTS AND reduceMemory
{
// SNIP...
 try
 {
 in.readPixels (y);
 }

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/AcademySoftwareFoundation/openexr/pull/1980

Technical Report – OSTIF OpenEXR
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

21

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

Therefore, in those cases, the sample buffer would not be allocated, resulting in a potential
write operation on a NULL pointer.

Impact

 An attacker might exploit this vulnerability by feeding a maliciously crafted file to a
program that uses the OpenEXR libraries, thus crashing the application.

Proof of Concept

1. Compile the exrcheck binary in a macOS or GNU/Linux machine with ASAN.
2. Download the runfill_crash.exr file from the

https://github.com/ShielderSec/poc repository.
3. Open the runfill_crash.exr file with the following command:

exrcheck -m runfill_crash.exr

4. Notice that exrcheck crashes with an ASAN stack-trace.

Suggested Remediations

Check that every image's fill is valid and has a valid base address before writing data to
it.

References

§ https://cwe.mitre.org/data/definitions/476.html

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/ShielderSec/poc
https://cwe.mitre.org/data/definitions/476.html

