
Quarkslab SAS
10 boulevard Haussmann

75009 Paris
France

Reference 24-10-1825-LIV
Version 1.5

Date 2025-01-12

The Notary Project Security Audit

Technical report focused on new cryptographic features

1. Project Information

1.1. Document history

Version Date Details Authors

1.0 2024/09/27
Initial version Dahmun Goudarzi

Sebastien Rolland

1.1 2024/11/12
Updated version after applied fixes Dahmun Goudarzi

Sebastien Rolland

1.2 2024/11/22
Updated version after more applied
fixes

Dahmun Goudarzi
Sebastien Rolland

1.3 2024/12/11
Updated version after more applied
fixes

Dahmun Goudarzi
Sebastien Rolland

1.4 2024/12/20
Updated version after more applied
fixes

Dahmun Goudarzi
Sebastien Rolland

1.5 2025/01/12
Added CVEs Dahmun Goudarzi

Sebastien Rolland

1.2. Contacts

1.2.1. Quarkslab

Contact Role Email
Frédéric Raynal CEO fraynal@quarkslab.com
Ramtine Tofighi Shirazi Project Manager mrtofighishirazi@quarkslab.com
Dahmun Goudarzi R&D Engineer dgoudarzi@quarkslab.com
Sébastien Rolland R&D Engineer srolland@quarkslab.com

1.2.2. Client

Contact Role Email
Derek Zimmer Executive Director (OSTIF) derek@ostif.org
Amir Montazery Managing Director (OSTIF) amir@ostif.org
Helen Woeste Communications Manager (OSTIF) helen@ostif.org
Shiwei Zhang Notary Project maintainer shizh@microsoft.com
Yi Zha Notary Project maintainer yizha1@microsoft.com
Feynman Zhou Notary Project maintainer feynmanzhou@microsoft.com
Pritesh Bandi Notary Project maintainer pritesb@amazon.com
Vani Rao Notary Project maintainer vaninrao@amazon.com

Ref.: 24-10-1825-LIV 2 Quarkslab SAS

mailto:fraynal@quarkslab.com
mailto:mrtofighishirazi@quarkslab.com
mailto:dgoudarzi@quarkslab.com
mailto:srolland@quarkslab.com
mailto:derek@ostif.org
mailto:amir@ostif.org
mailto:helen@ostif.org
mailto:shizh@microsoft.com
mailto:yizha1@microsoft.com
mailto:feynmanzhou@microsoft.com
mailto:pritesb@amazon.com
mailto:vaninrao@amazon.com

Contents

1. Project Information ... 2
1.1. Document history .. 2
1.2. Contacts ... 2

2. Executive Summary .. 5
2.1. Context ... 5
2.2. Objectives ... 5
2.3. Methodology .. 6
2.4. Findings Summary .. 7
2.5. Recommendation and Action Plan .. 9
2.6. Conclusions .. 9

3. Reading Guide .. 10
3.1. Executive summary .. 10
3.2. Metric definition ... 10

4. Discovery ... 12
4.1. Projects Informations ... 12
4.2. Installation and Debug ... 14
4.3. Scope Exploration ... 17
4.4. Source Discovery ... 26

5. Time-Stamp Protocol Compliance ... 28
5.1. Description .. 28
5.2. Request Format .. 29
5.3. Response Format ... 30
5.4. Response Verification ... 33
5.5. TSP via HTTP ... 38

6. Time Stamp Analysis in Notation ... 39
6.1. Signing with a Countersignature ... 40
6.2. Verifying a Signature and its Time-stamp Countersignature 56

7. Certificate Revocation List Compliance ... 64
7.1. Description ... 64
7.2. CRL Validation ... 65

8. CRL Analysis in Notation .. 67
8.1. Set up the updated source code ... 67
8.2. Revocation verification ... 68

9. Conclusions .. 77
A. Code Duplicate ... 78
B. Patch to notation CLI for CRL support ... 82

Ref.: 24-10-1825-LIV 3 Quarkslab SAS

C. Figures ... 84
C.A. Time-stamp Control Flow Graph ... 84
C.B. Time-stamp Countersignature Verification ... 85
C.C. CRL Verification ... 86

Ref.: 24-10-1825-LIV 4 Quarkslab SAS

2. Executive Summary

2.1. Context

The Open Source Technology Improvement Fund, Inc. (OSTIF) engaged with Quarkslab to
perform a security audit of the Notary project, focused on three new features.

The Notary Project is a set of specifications and tools intended to provide a cross-industry
standard for securing software supply chains by using authentic container images and other OCI
artifacts. Notation Project specification and tooling provide signing and verification workflows
for OCI artifacts, signature portability across OCI compliant registries, and integration with
3rd party key management solutions through a plugin model.

The Notary Project is part of the Cloud Native Computing Foundation (CNCF) projects.

The OSTIF and Quarkslab have collaborated on several security assessments through the years,
in the context of securing widely used and crucial open-source projects, such as

• Audit of Operator Fabric, 2024

• Cloud Native Buildpacks security audit, 2024

• Kuksa security audit, 2024

• Falco security audit, 2023

This report presents the results of the security assessment, performed in 25 days.

Info

This report reflects the work and results obtained within the duration of the audit and on
the specified scope, as agreed between the OSTIF, The Notary Project, and Quarkslab.

Tests are not guaranteed to be exhaustive and the report does not ensure that the code is
bug or vulnerability free.

2.2. Objectives

The defined objectives for this collaboration were to perform a security review focused on new
enhancements applied on The Notary Project version v1.2.0 and v1.3.0, namely

• Timestamping support (involving notation, notation-go, notation-core-go, and tspclient-go)

• Revocation checking with CRL (involving notation-go and notation-core-go)

Ref.: 24-10-1825-LIV 5 Quarkslab SAS

https://github.com/notaryproject
https://github.com/notaryproject/.github
https://www.cncf.io/projects/notary/
https://www.cncf.io/projects/notary/
https://blog.quarkslab.com/audit-of-operator-fabric.html
https://ostif.org/buildpacks-audit-complete/
https://ostif.org/kuksa-audit-complete/
https://ostif.org/our-review-of-falco-is-complete/
https://github.com/notaryproject/notation
https://github.com/notaryproject/notation-go
https://github.com/notaryproject/notation-core-go
https://github.com/notaryproject/tspclient-go
https://github.com/notaryproject/notation-go
https://github.com/notaryproject/notation-core-go

2.3. Methodology

To assess the security of The Notary Project’s new features, Quarkslab’s team first needed
to familiarize themselves with the structure of the project and understand the key tasks
outlined in the audit’s scope. To achieve this, Quarkslab experts gathered and reviewed the
available documentation and project resources. With a clear understanding of the features to
be evaluated, Quarkslab performed tests to evaluate all requested features.

The evaluation employed a combination of dynamic and static analysis. The static analysis
focused on scrutinizing the source code to identify vulnerabilities related to the implementation
and logic of the specified assessment targets. Dynamic analysis was used to complement
the static review by speeding up the process through fuzzing and validating or refuting the
hypotheses generated during the static analysis.

Overall, the following steps were defined for the security audit:

1. Step 1: Discovery
• Focus on the Notary Project new enhancements and associated documentation;
• Gain an understanding of the security guarantees imparted to the newly implemented

enhancements.

2. Step 2: Threat model
• Given the precise scope, definition of tests to be applied based on Step 1 based on relevant

threats.

3. Step 3: Manual code review
• Manual code review to find potential bad practices, bug, and/or vulnerabilities in the

new enhancements implementation.

4. Step 4: Cryptographic review
• Review of cryptographic primitive usage.
• Assessment of compliancy to best practices and of potential security issues.

5. Step 5: Dynamic testing
• Application of dynamic tests to assess the resiliency of newly implemented enhancements

or to validate potential findings from Steps 3 and 4.

Ref.: 24-10-1825-LIV 6 Quarkslab SAS

2.4. Findings Summary

During the time frame of the security audit, Quarkslab has discovered several security issues
and vulnerabilities, among which:

• 1 security issues considered as medium severity;
• 1 security issues considered as low severity;
• 9 issues considered informative.

Security issues were reported directly using the project GitHub security advisories.

Info

Two notable findings were reported and fixed by The Notary Project maintainers:

• MEDIUM-5: GHSA-45v3-38pc-874v / CVE-ID: CVE-2024-56138
• LOW-11: GHSA-qjh3-4j3h-vmwp / CVE-ID: CVE-2024-51491

Informative findings are only provided in this report.

ID Name Perimeter
MEDIUM-5 Revocation in certificate chain unchecked while signing Time-stamping

verification
LOW-11 Non-portable way of creating temporary files for CRL’s

cache
CRL Cache
Creation

INFO-1 Unused risky flag NoNonce Time-stamping
request

INFO-2 Option for user to choose the Nonce Time-stamping
request

INFO-3 Lack of check after URL parsing CLI signing
with time-
stamping

INFO-4 Abort TSP HTTP Request Response Validation if invalid
signature

Time-stamping
verification

INFO-6 Non-compliant to the RFC for verification of signed
attributes

Time-stamping
verification

INFO-7 Abort Counter-signature verification if invalid signature Verification
with time-
stamping

INFO-8 Shallow Verification of TSA trust store certificates Certificate veri-
fication

INFO-9 No proper error handling when OCSP or CRL are not
available

Revocation sta-
tus verification

INFO-10 Non-compliant use of HTTP Status Code Fetch of CRL

Ref.: 24-10-1825-LIV 7 Quarkslab SAS

https://github.com/notaryproject/notation-go/security/advisories/GHSA-45v3-38pc-874v
https://github.com/notaryproject/notation-go/security/advisories/GHSA-qjh3-4j3h-vmwp

Info

This report was updated to indicate The Notary Project maitainers actions to handle and
fix all provided issues. To that purpose, a note has been added to each issues for which a
pull request has been made.

Ref.: 24-10-1825-LIV 8 Quarkslab SAS

2.5. Recommendation and Action Plan

For each of the security issues and informative findings, Quarkslab suggests different ways to
tackle them as action plans for quick wins.

ID Name
MEDIUM-5 Add a check to certification chain to verify their status while signing.

LOW-11 The file should be copied instead of being moved, or, directly created in the
user cache directory and then renamed. First solution can be implemented
thanks os.Open, os.Create, io.Copy and os.Remove from standard Go library.

INFO-1 Remove this field since it does not bring anything relevant to the protocol
INFO-2 Remove the possibility to use a user-provided Nonce (if statement of the code

snippet).
INFO-3 Add a test after parsing the URL, such as the following one:

if (u.Scheme == "" || u.Host == "") { // where u is the return
value of url.Parse

2 // return error
3 }

INFO-4 Verify now the signature before further processing.
INFO-6 Either comply to RFC 5652 at this stage and handle the case in the caller

method (e.g. timestamp.Timestamp), or handle the error at this stage.
INFO-7 Verify the signature of the time-stamp token before continuing to extract and

parse the rest of the information in the TST.
INFO-8 Have the same level of verification as in init phase or move the later verifi-

cation to this stage.
INFO-9 Another level of verification could be implemented, so that strict mode

raises an error, or at least prints warning logs if the revocation checks are
not available, especially when the certificate chain contains more than one
certificate.

INFO-10 Reject any response containing anything but HTTP 200 as status code.

2.6. Conclusions

Quarkslab identified several issues or bugs in Notary projects, however only one of them may
involve an immediate safety risk. Quarkslab recognizes the considerable security efforts made
by Notary developers to safeguard the tool, mainly thanks to conscientious implementation of
the different related RFCs. Additionally, Quarkslab provided recommendations and strategies
for addressing the issues, helping to strengthen the open-source tool and enhance its security
moving forward.

Ref.: 24-10-1825-LIV 9 Quarkslab SAS

3. Reading Guide

This reading guide describes the different sections present in this report and gives some insights
about the information contained in each of them and how to interpret it.

3.1. Executive summary

The executive summary Section 2. presents the results of the assessment in a non-technical
way, summarizing all the findings and explaining the associated risks. For each vulnerability, a
severity level is provided as well as a name or short description, and one or more mitigation,
as shown below.

ID Name Category
CRITICAL Vulnerability Name #1 Injection

HIGH Vulnerability Name #2 Remote code injection
MEDIUM Vulnerability Name #3 Denial of Service

LOW Vulnerability Name #4 Information leak

Each vulnerability is identified throughout this document by a unique identifier <LEVEL>-<ID> ,
where ID is a number and LEVEL the severity (INFO, LOW, MEDIUM, HIGH or CRITICAL). Every
vulnerability identifier present in the vulnerabilities summary table is a clickable link that leads
to the corresponding technical analysis that details how it was found (and exploited if it was
the case). Severity levels are explained in Section 3.2. .

The executive summary also provides an action plan with a focus on the identified quick wins,
some specific mitigation that would drastically improve the security of the assessed system.

3.2. Metric definition

This report uses specific metrics to rate the severity, impact and likelihood of each identified
vulnerability.

3.2.1. Impact

The impact is assessed regarding the information an attacker can access by exploiting a
vulnerability but also the operational impact such an attack can have. The following table
summarizes the different levels of impact we are using in this report and their meanings in
terms of information access and availability.

CRITICAL Allows a total compromise of the assessed system, allowing an attacker to
read or modify the data stored in the system as well as altering its behavior.

HIGH
Allows an attacker to impact significantly one or more components, giving
access to sensitive data or offering the attacker a possibility to pivot and
attack other connected assets.

Ref.: 24-10-1825-LIV 10 Quarkslab SAS

MEDIUM Allows an attacker to access some information, or to alter the behavior of the
assessed system with restricted permissions.

LOW Allows an attacker to access non-sensitive information, or to alter the behavior
of the assessed system and impact a limited number of users.

3.2.2. Likelihood

The vulnerability likelihood is evaluated by taking the following criteria in consideration:

• Access conditions: the vulnerability may require the attacker to have physical access to
the targeted asset or to be present in the same network for instance, or can be directly
exploited from the Internet.

• Required skills: an attacker may need specific skills to exploit the vulnerability.
• Known available exploit: when a vulnerability has been published and an exploit is

available, the probability a non-skilled attacker would find it and use it is pretty high.

The following table summarizes the different level of vulnerability likelihood:

CRITICAL The vulnerability is easy to exploit even from an unskilled attacker and has
no specific access conditions.

HIGH The vulnerability is easy to exploit but requires some specific conditions to
be met (specific skills or access).

MEDIUM The vulnerability is not trivial to discover and exploit, requires very specific
knowledge or specific access (internal network, physical access to an asset).

LOW The vulnerability is very difficult to discover and exploit, requires highly
specific knowledge or authorized access

3.2.3. Severity

The severity of a vulnerability is defined by its impact and its likelihood, following the following
table:

Impact

CRITICAL CRITICAL HIGH MEDIUM

CRITICAL HIGH HIGH MEDIUM

HIGH HIGH MEDIUM LOW
Likelihood

MEDIUM MEDIUM LOW LOW

Ref.: 24-10-1825-LIV 11 Quarkslab SAS

4. Discovery

4.1. Projects Informations

The Notary project is an initiative incubated by the Cloud Native Computing Foundation in
2017 that offers a collection of libraries for supporting signing and verification of OCI artifacts.
The main developers are from Microsoft and Amazon and the project is supported by main
actors such as Amazon Web Services, Microsoft, Zot registry, or Harbor, among others.

For this specific audit, the scope was reduced to two specific features:

• Time-stamping protocol (RFC 3161) and its implementation,

• Revocation check with CRL (RFC 5280) and its implementation.

4.1.1. Projects Breakdown

The Notation project source code is divided into four projects: notation, notation-go, notation-
core-go, and tspclient-go.

Project
Name

Description URL Git Commit Hash

notation

Source code of the convenient
CLI implementation of new
Notary Project specifications.

https://github.
com/notaryproject/
notation

1AF69FC9E184F2EB9E19
28F2D66DC0471793491

notation-go

Source code for Go library of
the new Notary Project sign-
ing and verification flow.

https://github.
com/notaryproject/
notation-go

694E3A0314B5ECB7F04D
100BAE6249C527ABFD47

notation-
core-go

Source code for Go library
of the Notary Project signa-
ture specification and wrap-
ping (COSE and JWS).

https://github.
com/notaryproject/
notation-core-go

55E35686875491A8D6AD
8A47DE9C566383FB1B42

tspclient-go
Source code for Go implemen-
tation of the TSP client.

https://github.
com/notaryproject/
tspclient-go

DF25Ef8D21722B66F866
CDC13F218473648126DC

Warning

The above commit hashes correspond to the most up-to-date ones when the audit has
started. However, as the certificate revocation check based on CRL feature was implemented
later, Quarkslab’s engineers had to update them in order to audit it. More details are
provided in the relevant CRL Analysis section 8.

The three projects, notation-go, notation-core-go, and tscpclient-go, serve as backend for
the command line tool implemented by the notation project. The implementation is mainly

Ref.: 24-10-1825-LIV 12 Quarkslab SAS

https://github.com/notaryproject
https://www.ietf.org/rfc/rfc3161.txt
https://datatracker.ietf.org/doc/html/rfc5280
https://github.com/notaryproject/notation
https://github.com/notaryproject/notation-go
https://github.com/notaryproject/notation-core-go
https://github.com/notaryproject/notation-core-go
https://github.com/notaryproject/tspclient-go
https://github.com/notaryproject/notation
https://github.com/notaryproject/notation
https://github.com/notaryproject/notation
https://github.com/notaryproject/notation-go
https://github.com/notaryproject/notation-go
https://github.com/notaryproject/notation-go
https://github.com/notaryproject/notation-core-go
https://github.com/notaryproject/notation-core-go
https://github.com/notaryproject/notation-core-go
https://github.com/notaryproject/tspclient-go
https://github.com/notaryproject/tspclient-go
https://github.com/notaryproject/tspclient-go

written in Golang and the four projects represent around 12.000 lines of code (including the
numerous test functions).

Please note that the Notary project (excluding tspclient-go) has been already audited in 2018
by Cure53 and 2023 by ADA Logics.

4.1.2. Specification and Guides

A detailed specification is provided on GitHub. It includes a presentation of the project, the
requirements, security documents such as the previous audits, the specifications, a threat model,
and how to join their public channels and meetings. Notably, the specifications and the threat
model allow them to have a very clear understanding on how the command line tool notation
and its different features work to obtain and verify signatures for container registry.

https://notaryproject.dev/docs/user-guides/: The Notary project proposes a very thorough and
complete guide on how to use notation. It is composed of:

• Installation guide

• Tutorials

• How-to guides

• CLI reference

• Best practice for deploying Notation

• Experimental features guide

• Common problems troubleshooting

The different examples and best practices seem up-to-date with the version of Notation audited.

Another notable documentation is the Microsoft tutorial on signing container images with
notation that you can find here.

4.1.3. Previous Audits

Year Audit Scope Auditors Report
2018 TUF, Notary Cure53 PDF
2023 notation, notation-go, notation-core-go (security audit) ADA Logics PDF
2023 notation, notation-go, notation-core-go (fuzzing) ADA Logics PDF

Please note that TUF stands for “The Update Framework”, a client-server software for inter-
action with trusted collections. notary is the very first TUF-based implementation circa 2016.

Ref.: 24-10-1825-LIV 13 Quarkslab SAS

https://github.com/notaryproject/specifications
https://notaryproject.dev/docs/user-guides/
https://learn.microsoft.com/en-us/azure/container-registry/container-registry-tutorial-sign-build-push?wt.mc_id=azurelearn_inproduct_oss_notaryproject
https://github.com/notaryproject/notary/blob/master/docs/resources/cure53_tuf_notary_audit_2018_08_07.pdf
https://github.com/notaryproject/specifications/blob/v1.0.0/security/reports/audit/ADA-notation-security-audit-23.pdf
https://github.com/notaryproject/specifications/blob/v1.0.0/security/reports/fuzzing/ADA-fuzzing-audit-22-23.pdf

4.2. Installation and Debug

4.2.1. Build

To build the notation Command Line Interface (CLI), one has to clone the GitHub repository,
and run make build or directly start the build of the notation target using the go command.
The commands below allow to download, build and install the CLI binary:

git clone https://github.com/notaryproject/notation
2 cd notation
3 go build ./cmd/notation
4 mv ./notation /usr/local/bin/

4.2.2. Configuration

4.2.2.1. Start Local Registry

A local registry can be started using docker and the following command:

docker run -d -p 5001:5000 -e REGISTRY_STORAGE_DELETE_ENABLED=true --name registry
registry

This is useful for testing and debugging purposes.

4.2.2.2. Sign and Verify Artifacts

In order to sign and verify artifacts, notation CLI requires signing keys, certificates and a trust
policy.

notation can either use locally configured data, or use Azure Key Vault / AWS Signer to
securely store and use them.

As this part is not included in the audit scope and requires extra configuration steps, we chose
the easiest way to set up notation and therefore installed self-signed certificates.

4.2.2.3. Certificate and Key generation

This can simply be done by running the following command:

notation certificate generate-test test_cert

4.2.2.4. Trust Policy

To configure the trust policies, one needs to create a JSON file in .config (or directly create it
using VSCode):

touch ~/.config/notation/trustpolicy.json

and fill it with the following data:

{
2 "version": "1.0",

Ref.: 24-10-1825-LIV 14 Quarkslab SAS

https://docs.microsoft.com/azure/container-registry/container-registry-tutorial-sign-build-push?wt.mc_id=azurelearn_inproduct_oss_notaryproject
https://docs.aws.amazon.com/signer/latest/developerguide/container-workflow.html

3 "trustPolicies": [
4 {
5 "name": "quarkslab-test",
6 "registryScopes": ["*"],
7 "signatureVerification": {
8 "level" : "strict"
9 },
10 "trustStores": ["ca:test_cert"],
11 "trustedIdentities": [
12 "*"
13]
14 }
15]
16 }

This default and simple trust policy specifies how signature verification should be handled
by notation:

• registryScopes: specifies which trust policy is applicable for a given artifact.

• signatureVerification/level: specifies the verification level. strict enforces all checks
except Time-Stamp Authority (TSA) if no truststore has been configured. More data can
be found here.

• trustStores: specifies the trust stores applications for this trust policy.

• trustedIdentities: specifies which identities, defined by their Distinguished Name (DN),
can be used from the trusted stores signed certificates.

4.2.3. Verify TSA Signatures

notation allows to add time-stamping as defined by the Time-Stamp Protocol (see RFC 3161)
during the signing process, with a trusted third party called the TSA.

In order to verify time-stamp signatures, the root certificate of the chosen TSA must be installed
and the trust policy updated.

4.2.3.1. Add a TSA Root Certificate

For testing purposes, we choose to set up DigiCert TSA, as documented by Notary’s
documentation. The root certificate is available here. Once downloaded, the certificate can
simply be added with the CLI as follows:

notation cert add --type tsa --store tsa_test_cert DigiCertTrustedRootG4.crt

4.2.3.2. Update the Trusted Policies

In order to use this new trusted store, one needs to update the trustStore property of the
trusted policy in order to add it:

"trustStores": ["ca:test_cert", "tsa:tsa_test_cert"],

Ref.: 24-10-1825-LIV 15 Quarkslab SAS

https://github.com/notaryproject/specifications/blob/main/specs/trust-store-trust-policy.md#signatureverification-details
https://www.rfc-editor.org/rfc/rfc3161
https://notaryproject.dev/docs/user-guides/how-to/timestamping/
https://notaryproject.dev/docs/user-guides/how-to/timestamping/
https://cacerts.digicert.com/DigiCertTrustedRootG4.crt

4.2.4. Debugging with VSCode

In order to have proper debugging accesses and interfaces, VSCode can be configured. To do
so, the following setup needs to be done:

• Install VSCode Go extension.

• Build notation CLI.

• Create .vscode/launch.json in root notation repository.

• Paste the following code in the JSON file:

{
2 "version": "0.2.0",
3 "configurations": [
4 {
5 "name": "Launch Package",
6 "type": "go",
7 "request": "launch",
8 "mode": "auto",
9 "program": "${cwd}/cmd/notation",
10 "args": ["sign",
11 "--timestamp-url",
12 "http://timestamp.digicert.com",
13 "--timestamp-root-cert",
14 "${cwd}/DigiCertTrustedRootG4.crt",
15 "--signature-format",
16 "jws",
17 "localhost:5001/ubuntu:latest"
18]
19 }
20]
21 }

Info

Modify args according to the location of different files and configuration you would like
to test.

Ref.: 24-10-1825-LIV 16 Quarkslab SAS

4.3. Scope Exploration

Even though the scope is limited to the time-stamp feature of notation and the CRL verification,
the discovery was made on a larger scope.

To explore the different features brought by the notation command line and get a better
understanding of the target project scope, we used the different commands available on some
use cases and perform some basic dynamic tests. We noticed that in the initial target scope the
signing of arbitrary blob was asked to be audited, but the feature is not implemented as of the
time of the audit.

4.3.1. Signing Blobs

Scope:

• notation-core-go/signature

• notation sign *

The notation CLI allows signing either Open Container Initiative (OCI) (Open Container Ini-
tiative) or blob artifacts. Difference between the two payload signature processes are described
in the specification (see here).

While OCI signatures are embedded in the target image and associated to it in the registry,
blob signatures are separated as explained here. Signing OCI artifacts is not in the scope of
this audit.

In order to sign blobs, notation blob can be used as described in the specification (see here).
However, at the time of this audit, the feature is not implemented by the Notary project.

4.3.2. Time Stamping Support

Source: https://notaryproject.dev/docs/user-guides/how-to/timestamping/

Scope:

• notation-core-go/internal/timestamp/

• notation-core-go/x509/timestamp_cert_validations.go

• tspclient-go

• notation sign --timestamp-url <TSA_URL> --timestamp-root-cert <TSA_ROOT_CERT>
<ref_to_artifact>

• notation inspect

The goal is to obtain an authentic timestamp, considered as a timestamp countersigna-
ture that aims to guarantee that the signature was generated when the certificate was valid. In
the absence of a such countersignature, a signature is considered invalid if the signing certificate
or chain is either expired or revoked.

In order to verify such data in signatures, one has to create a certificate store of type tsa and
update the property trustStores (refer to Section 4.2.3.).

It relies on tspclient-go.

Ref.: 24-10-1825-LIV 17 Quarkslab SAS

https://github.com/notaryproject/specifications/blob/main/specs/signature-specification.md#payload
https://github.com/notaryproject/specifications/blob/main/specs/signature-specification.md#blob-signatures
https://github.com/notaryproject/notation/blob/main/specs/commandline/blob.md
https://notaryproject.dev/docs/user-guides/how-to/timestamping/

4.3.3. Playing with notation sign

To get familiar with the tool and its different behaviors, we toyed a bit with JWS signatures
and interaction with OCI registry using an Ubuntu docker image.

4.3.3.1. Sign process - registry

One that has write privileges on a container registry can produce a signature for an OCI artifact
and push it leveraging the notation.

Info

Beforehand, an Ubuntu docker image was pushed to the deployed local container registry
on localhost:5001.

An example of a notation usage could be the following: notation sign "localhost:5001/
ubuntu:latest"

When notation has to sign an image, it:

1. Pushes a new blob layer to the registry for the target image with its associated content hash,
containing the signature. The content-type is set to “application/octet-stream” and media-
type (for JWS) to “application/jose+json”.

2. Pushes an OCI manifest containing:
• Reference to an empty application/vnd.cncf.notary.signature (that seems to stay

empty forever, but since it is not in the direct scope of the audit we did not pursue more
details about it). It seems to be used to indicate that a signature already exists or not;

• Reference to a signature layer;
• Subject field referring to the Docker manifest of our target image;
• io.cncf.notary.x509chain.thumbprint#S256 annotation containing the SHA-256 finger-

print.

3. Gather previous manifest index and push the updated one.

4. Delete previous manifest.

4.3.3.2. Registry interaction flow & content

The following section contains raw HTTP communications between notation and a local
container registry. This was mainly done in order to get a proper understanding of the behavior
of the tool against a pseudo-real world usage. As this is not directly in the scope, the different
data flows are not explained nor detailed.

4.3.3.2.1. Check the existence of the manifest for the asked tag

Request:

HEAD /v2/ubuntu/manifests/latest HTTP/1.1
2 Host: localhost:5001
3 User-Agent: notation/1.2.0
4 Accept: application/vnd.docker.distribution.manifest.v2+json, application/

vnd.docker.distribution.manifest.list.v2+json, application/

Ref.: 24-10-1825-LIV 18 Quarkslab SAS

vnd.oci.image.manifest.v1+json, application/vnd.oci.image.index.v1+json,
application/vnd.oci.artifact.manifest.v1+json

Answer:

HTTP/1.1 200 OK
2 Content-Length: 529
3 Content-Type: application/vnd.docker.distribution.manifest.v2+json
4 Docker-Content-Digest:

sha256:04b5ada4cdb5034a879599d9af5711687357fc25efb63ffdf2b44cfab69affb9
5 Docker-Distribution-Api-Version: registry/2.0
6 Etag: "sha256:04b5ada4cdb5034a879599d9af5711687357fc25efb63ffdf2b44cfab69affb9"
7 X-Content-Type-Options: nosniff
8 Date: Tue, 17 Sep 2024 17:40:47 GMT

Images tags are not used, the corresponding SHA-256 hash is gathered and we repeat the
procedure:

Request:

HEAD /v2/ubuntu/manifests/
sha256:04b5ada4cdb5034a879599d9af5711687357fc25efb63ffdf2b44cfab69affb9

2 HTTP/1.1
3 Host: localhost:5001
4 User-Agent: notation/1.2.0
5 Accept: application/vnd.docker.distribution.manifest.v2+json, application/

vnd.docker.distribution.manifest.list.v2+json, application/
vnd.oci.image.manifest.v1+json, application/vnd.oci.image.index.v1+json,
application/vnd.oci.artifact.manifest.v1+json

Answer:

HTTP/1.1 200 OK
2 Content-Length: 529
3 Content-Type: application/vnd.docker.distribution.manifest.v2+json
4 Docker-Content-Digest:

sha256:04b5ada4cdb5034a879599d9af5711687357fc25efb63ffdf2b44cfab69affb9
5 Docker-Distribution-Api-Version: registry/2.0
6 Etag: "sha256:04b5ada4cdb5034a879599d9af5711687357fc25efb63ffdf2b44cfab69affb9"
7 X-Content-Type-Options: nosniff Date: Tue, 17 Sep 2024 17:40:47 GMT

4.3.3.2.2. New blob upload init

Request:

POST /v2/ubuntu/blobs/uploads/ HTTP/1.1
2 Host: localhost:5001
3 User-Agent: notation/1.2.0 Content-Length: 0 Accept-Encoding: gzip ", 135) = 135

Answer:

HTTP/1.1 202 Accepted

Ref.: 24-10-1825-LIV 19 Quarkslab SAS

2 Content-Length: 0
3 Docker-Distribution-Api-Version: registry/2.0
4 Docker-Upload-Uuid: 0dc1dfc0-c1c4-44f2-891c-1f146af1781d
5 Location: http://localhost:5001/v2/ubuntu/blobs/uploads/0dc1dfc0-c1c4-44f2-891c-1

f146af1781d?_state=QeiQutSjU-rXUWJLW51nIClJCsxHEHRkJBAmcnS7kwR7Ik5hbWUiOiJ1YnVudH
UiLCJVVUlEIjoiMGRjMWRmYzAtYzFjNC00NGYyLTg5MWMtMWYxNDZhZjE3ODFkIiwiT2Zmc2V0IjowLCJ
TdGFydGVkQXQiOiIyMDI0LTA5LTE3VDE3OjQwOjQ3LjI1MzU0NDExNFoifQ%3D%3D

6 Range: 0-0 X-
7 Content-Type-Options: nosniff Date: Tue, 17 Sep 2024 17:40:47 GMT

4.3.3.2.3. Push the signature blob (format JWS here)

Request:

PUT /v2/ubuntu/blobs/uploads/0dc1dfc0-c1c4-44f2-891c-1f146af1781d?
_state=QeiQutSjU-
rXUWJLW51nIClJCsxHEHRkJBAmcnS7kwR7Ik5hbWUiOiJ1YnVudHUiLCJVVUlEIjoiMGRjMWRmYzAtYzFjNC00NGYyLTg5MWMtMWYxNDZhZjE3ODFkIiwiT2Zmc2V0IjowLCJTdGFydGVkQXQiOiIyMDI0LTA5LTE3VDE3OjQwOjQ3LjI1MzU0NDExNFoifQ%3D%3D&digest=sha256%3A58069de41a1b482d8c375bd5d5e8b3d1fd0ff9a92c065691050c0baaff0f4b47
HTTP/1.1

2 Host: localhost:5001
3 User-Agent: notation/1.2.0
4 Content-Length: 2095
5 Content-Type: application/octet-stream
6 Accept-Encoding: gzip
7 {"payload":"eyJ0YXJnZXRBcnRpZmFjdCI6eyJkaWdlc3QiOiJzaGEyNTY6MDRiNWFkYTRjZGI1MDM0YTg3OTU5OWQ5YWY1NzExNjg3MzU3ZmMyNWVmYjYzZmZkZjJiNDRjZmFiNjlhZmZiOSIsIm1lZGlhVHlwZSI6ImFwcGxpY2F0aW9uL3ZuZC5kb2NrZXIuZGlzdHJpYnV0aW9uLm1hbmlmZXN0LnYyK2pzb24iLCJzaXplIjo1Mjl9fQ","protected":"eyJhbGciOiJQUzI1NiIsImNyaXQiOlsiaW8uY25jZi5ub3Rhcnkuc2lnbmluZ1NjaGVtZSJdLCJjdHkiOiJhcHBsaWNhdGlvbi92bmQuY25jZi5ub3RhcnkucGF5bG9hZC52MStqc29uIiwiaW8uY25jZi5ub3Rhcnkuc2lnbmluZ1NjaGVtZSI6Im5vdGFyeS54NTA5IiwiaW8uY25jZi5ub3Rhcnkuc2lnbmluZ1RpbWUiOiIyMDI0LTA5LTE3VDE5OjQwOjQ3KzAyOjAwIn0","header":

{"x5c":
["MIIDQTCCAimgAwIBAgICAJUwDQYJKoZIhvcNAQELBQAwTzELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAldBMRAwDgYDVQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZOb3RhcnkxEDAOBgNVBAMTB3NlYi5yb2wwHhcNMjQwOTE3MTc0MDE1WhcNMjQwOTE4MTc0MDE1WjBPMQswCQYDVQQGEwJVUzELMAkGA1UECBMCV0ExEDAOBgNVBAcTB1NlYXR0bGUxDzANBgNVBAoTBk5vdGFyeTEQMA4GA1UEAxMHc2ViLnJvbDCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAK/
DydFNBDm/
iK+Dpoggx4b+599fRvK2aJ2DG5HKNyqrYajbb2JBSWqopVrObYqZIIPVoKz1ebtcwSrZr4UtNoW7lWheTqOaXpZzCAMj0e1cvOWKBUVEBQTY0VF+mgotbe5aG2p80lA3gUEttrWsfaR+Sc30YBQsBRYUODkv5yRoyGO/
b4W8VZd/r/5z9sRLVlKs/
SPmzk73YacHKZHUzDqfOXsT1xx7PSzou3XjNEbBuD3BNlFlDAyqAawoHDBIe92JVuRo+z1J/qKRt/
gcVYYuTM5M8CFZn2AJKL4bGNxWeYkxnE9wj3r479o4s1QgU1dhGbgyI0SAw0d5eV/
XcCsCAwEAAaMnMCUwDgYDVR0PAQH/
BAQDAgeAMBMGA1UdJQQMMAoGCCsGAQUFBwMDMA0GCSqGSIb3DQEBCwUAA4IBAQAxMtgh57J8BC2k7Pkni3nyWqCcNIbBlyxpo5v3MXEXAPzDTWkDMThOIPabOqp3/
OsSLQh1As2fj0i0oInod5BHJWqyRG1NYJoqVRxkHW8ddJOEeo4QTr2s28FxFWeZ6ZGTOZjX4ClBc0Pp/
FFfc/N+T3qazt3tEm5JGAyleXPfoXJq/
s6HKptoYa47tjAGRBALzrlbN2wbzxF3q2URV5KaxKMO04gg81KEoUsrZn7eArD0oPGzBWSkOsPKwML4q+FYqXhGmo2OcOWgwJmnXXfFchz51I8JInXhpPB11/
DTbxIGRxdkEibgGtPDLjOLBX3nj+sck0nPP2uGxXhEKqF9"],"io.cncf.notary.signingAgent":"notation-
go/1.2.0"},"signature":"EucQbRfC-
hQgZVGnyODxes9bIsGGMdOtxvmXFPbVR3iU0dt2zfp1jTXCXXMkBOTkwq0gy9IOCVd3iyujKpXwQAxEalX6v-
PRNRV3JVeInNRTtHiuVNrg8cxArCk1Ke-Wy2Vr9aLH7RwIOp0AgtE_VRP_8TCtune8CigAlvUhN-
Zb2Y6xB-afDXKs-
rSkzNlFpdr6aa8M4V-174Nle2_ZUMXYSlNxR_MsoWiFXqalmhwe91g7PdGm8GUyFzCIq5fxmtxu3MCxk51Sxs60vTKSQfQgBzIVzHwluVYwM2qfTqex80izMredbyOuVdczj99rnL_YFF3AKZFZvDcGcPh5ew"}

Answer:

HTTP/1.1 201 Created
2 Content-Length: 0
3 Docker-Content-Digest:

sha256:58069de41a1b482d8c375bd5d5e8b3d1fd0ff9a92c065691050c0baaff0f4b47
4 Docker-Distribution-Api-Version: registry/2.0
5 Location: http://localhost:5001/v2/ubuntu/blobs/sha256:58069de41a1b482d8c375bd5d5

e8b3d1fd0ff9a92c065691050c0baaff0f4b47

Ref.: 24-10-1825-LIV 20 Quarkslab SAS

6 X-Content-Type-Options: nosniff
7 Date: Tue, 17 Sep 2024 17:40:47 GMT

Ref.: 24-10-1825-LIV 21 Quarkslab SAS

4.3.3.2.4. Check if existing signature exists

Info

A GET request on
blobs/sha256:44136fa355b3678a1146ad16f7e8649e94fb4fc21fe77e8310c060f61caaff8a
returns {} and sha256sum of {} indeed gives the following hash.

The layer seems to exist only to tell notary there is already a signature for the image but
not for this specific tag.

If this layer does not exist, it is created right after that.

Request:

HEAD /v2/ubuntu/blobs/
sha256:44136fa355b3678a1146ad16f7e8649e94fb4fc21fe77e8310c060f61caaff8a

2 HTTP/1.1
3 Host: localhost:5001
4 User-Agent: notation/1.2.0

Answer:

HTTP/1.1 200 OK
2 Accept-Ranges: bytes
3 Cache-Control: max-age=31536000
4 Content-Length: 2
5 Content-Type: application/octet-stream
6 Docker-Content-Digest:

sha256:44136fa355b3678a1146ad16f7e8649e94fb4fc21fe77e8310c060f61caaff8a
7 Docker-Distribution-Api-Version: registry/2.0
8 Etag: "sha256:44136fa355b3678a1146ad16f7e8649e94fb4fc21fe77e8310c060f61caaff8a"
9 X-Content-Type-Options: nosniff Date: Tue, 17 Sep 2024 17:40:47 GMT

4.3.3.2.5. Push image manifest for signature

Note: We usually push manifest for a dedicated new tag (/manifests/<new_tag>), whereas
here it is using the hash value of the manifests itself.

Request:

PUT /v2/ubuntu/manifests/
sha256:f401f5cdea4782008d231f29839f111609295d175a8b2e083feb41de752b19c1
HTTP/1.1

2 Host: localhost:5001
3 User-Agent: notation/1.2.0
4 Content-Length: 738
5 Content-Type: application/vnd.oci.image.manifest.v1+json
6 Accept-Encoding: gzip

{"schemaVersion":2,

Ref.: 24-10-1825-LIV 22 Quarkslab SAS

2 "mediaType":"application/vnd.oci.image.manifest.v1+json",
3 "config":
4 {"mediaType":"application/vnd.cncf.notary.signature",
5

"digest":"sha256:44136fa355b3678a1146ad16f7e8649e94fb4fc21fe77e8310c060f61caaff8a",
6 "size":2},
7 "layers":[
8 {"mediaType":"application/jose+json",
9

"digest":"sha256:58069de41a1b482d8c375bd5d5e8b3d1fd0ff9a92c065691050c0baaff0f4b47",
10 "size":2095
11 }
12],
13 "subject":
14 {"mediaType":"application/vnd.docker.distribution.manifest.v2+json",
15

"digest":"sha256:04b5ada4cdb5034a879599d9af5711687357fc25efb63ffdf2b44cfab69affb9",
16 "size":529},
17 "annotations":{
18

"io.cncf.notary.x509chain.thumbprint#S256":"[\"9afd9f36f450beff81331e5a78685a1ba83129ca2ed1f1884c7c7dd56eaf469d\"]",
19 "org.opencontainers.image.created":"2024-09-17T17:40:47Z"
20 }
21 }

Answer:

HTTP/1.1 201 Created
2 Docker-Content-Digest:

sha256:f401f5cdea4782008d231f29839f111609295d175a8b2e083feb41de752b19c1
3 Docker-Distribution-Api-Version: registry/2.0
4 Location: http://localhost:5001/v2/ubuntu/manifests/sha256:f401f5cdea4782008d231f

29839f111609295d175a8b2e083feb41de752b19c1
5 X-Content-Type-Options: nosniff
6 Date: Tue, 17 Sep 2024 17:40:47 GMT
7 Content-Length: 0

4.3.3.2.6. Get OCI manifests index for the concerned image

Note: If this layer doesn’t exist, it is created and last step (deletion step) is not executed.

Request:

GET /v2/ubuntu/manifests/
sha256-04b5ada4cdb5034a879599d9af5711687357fc25efb63ffdf2b44cfab69affb9
HTTP/1.1

2 Host: localhost:5001
3 User-Agent: notation/1.2.0
4 Accept: application/vnd.docker.distribution.manifest.v2+json, application/

vnd.docker.distribution.manifest.list.v2+json, application/

Ref.: 24-10-1825-LIV 23 Quarkslab SAS

vnd.oci.image.manifest.v1+json, application/vnd.oci.image.index.v1+json,
application/vnd.oci.artifact.manifest.v1+json

5 Accept-Encoding: gzip

Answer:

HTTP/1.1 200 OK
2 Content-Length: 883
3 Content-Type: application/vnd.oci.image.index.v1+json
4 Docker-Content-Digest:

sha256:96569f73e32cf3907973604bde69b7a5d926ec1dcab2533ff97e04e8c01ab64d
5 Docker-Distribution-Api-Version: registry/2.0
6 Etag: "sha256:96569f73e32cf3907973604bde69b7a5d926ec1dcab2533ff97e04e8c01ab64d"
7 X-Content-Type-Options: nosniff
8 Date: Tue, 17 Sep 2024 17:40:47 GMT
9 {"schemaVersion":2,"mediaType":"application/

vnd.oci.image.index.v1+json","manifests":[{"mediaType":"application/
vnd.oci.image.manifest.v1+json","digest":"sha256:f3c79a9b3f2ac3e8e773207f29c0935aefb6d1e3339411fb519abe21688e3cf7","size":738,"annotations":
{"io.cncf.notary.x509chain.thumbprint#S256":"["cfbc6a1df39a6dc3c820064abb826677851cc3d53ef86a75e5d23991cfec44c1"]","org.opencontainers.image.created":"2024-09-17T13:54:25Z"},"artifactType":"application/
vnd.cncf.notary.signature"},{"mediaType":"application/
vnd.oci.image.manifest.v1+json","digest":"sha256:587be6b687345d519aea0900f0e5bd5fdd77533051ba072efd37ae9d846aaa67","size":738,"annotations":
{"io.cncf.notary.x509chain.thumbprint#S256":"["cfbc6a1df39a6dc3c820064abb826677851cc3d53ef86a75e5d23991cfec44c1"]","org.opencontainers.image.created":"2024-09-17T13:58:45Z"},"artifactType":"application/
vnd.cncf.notary.signature"}]}

4.3.3.2.7. Push updated OCI manifest index with previous ones

It is appending:

{
2 "mediaType":"application/vnd.oci.image.manifest.v1+json",
3

"digest":"sha256:f401f5cdea4782008d231f29839f111609295d175a8b2e083feb41de752b19c1",
4 "size":738,
5 "annotations":{
6

"io.cncf.notary.x509chain.thumbprint#S256":" [\"9afd9f36f450beff81331e5a78685a1ba83129ca2ed1f1884c7c7dd56eaf469d\"]",
7 "org.opencontainers.image.created":"2024-09-17T17:40:47Z"
8 },
9 "artifactType":"application/vnd.cncf.notary.signature"
10 }

Request:

PUT /v2/ubuntu/manifests/
sha256-04b5ada4cdb5034a879599d9af5711687357fc25efb63ffdf2b44cfab69affb9 HTTP/1.1
Host: localhost:5001 User-Agent: notation/1.2.0 Content-Length: 1281 Content-
Type: application/vnd.oci.image.index.v1+json Accept-Encoding: gzip
{"schemaVersion":2,"mediaType":"application/
vnd.oci.image.index.v1+json","manifests":[{"mediaType":"application/
vnd.oci.image.manifest.v1+json","digest":"sha256:f3c79a9b3f2ac3e8e773207f29c0935aefb6d1e3339411fb519abe21688e3cf7","size":738,"annotations":
{"io.cncf.notary.x509chain.thumbprint#S256":"["cfbc6a1df39a6dc3c820064abb826677851cc3d53ef86a75e5d23991cfec44c1"]","org.opencontainers.image.created":"2024-09-17T13:54:25Z"},"artifactType":"application/
vnd.cncf.notary.signature"},{"mediaType":"application/

Ref.: 24-10-1825-LIV 24 Quarkslab SAS

vnd.oci.image.manifest.v1+json","digest":"sha256:587be6b687345d519aea0900f0e5bd5fdd77533051ba072efd37ae9d846aaa67","size":738,"annotations":
{"io.cncf.notary.x509chain.thumbprint#S256":"["cfbc6a1df39a6dc3c820064abb826677851cc3d53ef86a75e5d23991cfec44c1"]","org.opencontainers.image.created":"2024-09-17T13:58:45Z"},"artifactType":"application/
vnd.cncf.notary.signature"},{"mediaType":"application/
vnd.oci.image.manifest.v1+json","digest":"sha256:f401f5cdea4782008d231f29839f111609295d175a8b2e083feb41de752b19c1","size":738,"annotations":
{"io.cncf.notary.x509chain.thumbprint#S256":"["9afd9f36f450beff81331e5a78685a1ba83129ca2ed1f1884c7c7dd56eaf469d"]","org.opencontainers.image.created":"2024-09-17T17:40:47Z"},"artifactType":"application/
vnd.cncf.notary.signature"}]}

Answer:

HTTP/1.1 201 Created Docker-Content-Digest:
sha256:602d9b8f51fe06e8c170a934061a50437f5f359331b0fb6d065e9665412830fe Docker-
Distribution-Api-Version: registry/2.0 Location: http://localhost:5001/v2/ubuntu/
manifests/sha256:602d9b8f51fe06e8c170a934061a50437f5f359331b0fb6d065e9665412830fe
X-Content-Type-Options: nosniff Date: Tue, 17 Sep 2024 17:40:47 GMT Content-
Length: 0 ", 4096) = 381

4.3.3.2.8. Delete previous manifest for our target image

Request:

DELETE /v2/ubuntu/manifests/
sha256:96569f73e32cf3907973604bde69b7a5d926ec1dcab2533ff97e04e8c01ab64d HTTP/1.1
Host: localhost:5001 User-Agent: notation/1.2.0 Accept-Encoding: gzip ", 185) =
185

2 HTTP/1.1 202 Accepted Docker-Distribution-Api-Version: registry/2.0 X-Content-
Type-Options: nosniff Date: Tue, 17 Sep 2024 17:40:47 GMT Content-Length: 0 ",
4096) = 161

Ref.: 24-10-1825-LIV 25 Quarkslab SAS

4.4. Source Discovery

4.4.1. Code Structure

The source material is splitted into 4 main repositories. Each of those repositories implement
different features, based on the respective RFCs. We detailed the different folders and RFC
that are implemented by each one in Figure 1.

Figure 1: Notary project cartography

Ref.: 24-10-1825-LIV 26 Quarkslab SAS

4.4.2. Code Quality

The code quality is overall good. We did not find any dependencies that were not up-to-date or
subject to security issues, the code is well written and commented, and regularly maintained.

On top of that, every major new set of features is associated with a security audit and a fuzzing
campaign, which shows a high level of maturity in the practice of security.

The only issue is that numerous instances of redundant code were found and are highlighted
during the analysis sections. Additionally, Quarkslab’s engineers used an open source tool to
display the different duplicated code that could be found. The output is provided in Appendix A.

Ref.: 24-10-1825-LIV 27 Quarkslab SAS

5. Time-Stamp Protocol Compliance

Warning

Please note that the compliance checks were made on an earlier version of the code as
specified in Section 4.1.1. . This means that the code lines given in this section for the
compliance checks are valid for those commit hashes only. In fact, the new code release (for
instance of the CRL checks) induced a shift in those line numbers.

5.1. Description

The Time-Stamp Protocol, as described in RFC3161, is a protocol to receive a cryptographic
time-stamp from a trusted third party, called the TSA. The time-stamp acts as proof that a
certificate, even after its expiration date, existed and was valid at a particular time, usually its
validity period.

The protocol is based on a request-response communication, where the request is formed
following a specific format defined in RFC3161. The important field are the message imprint,
the nonce used to thwart replay attacks, and the policy. Upon reception, the TSA creates a
Time-Stamp Token (TST) containing the message imprint, a unique serial number, the time-
stamp and a digital signature using the TSA private key. One can then verify the validity of
the TST using the TSA’s root certificate to verity the signature and the TST different fields.

Notary implementation of the protocol is done over HTTP only (the RFC also includes a way
to operate it over TCP sockets or emails).

Note that one of the main features of the time-stamp relies on the validity of a trusted local time
on the machine on which a user operates. In order to avoid replay attacks, the RFC includes the
description of the use of a nonce to thwart such attacks. This nonce should be only used and
checked in a setting where the user cannot trust its local time, according to the RFC. Notary
chooses to always use such nonce instead of verifying if a trusted local time is accessible.

We detailed hereafter the conformity of the source material to the RFC for the different building
blocks of the protocols and the numerous types involved.

Ref.: 24-10-1825-LIV 28 Quarkslab SAS

5.2. Request Format

TimeStampReq ::= SEQUENCE {
2 version INTEGER { v1(1) },
3 messageImprint MessageImprint, --a hash algorithm OID and the hash value

of the data to be time-stamped
4 reqPolicy TSAPolicyId OPTIONAL,
5 nonce INTEGER OPTIONAL,
6 certReq BOOLEAN DEFAULT FALSE,
7 extensions [0] IMPLICIT Extensions OPTIONAL
8 }

request.go:59-75

Defined in a structure called Request containing all the appropriate fields.

Message format:

MessageImprint ::= SEQUENCE {
2 hashAlgorithm AlgorithmIdentifier,
3 hashedMessage OCTET STRING
4 }

request.go:31-39

Defined in a structure called MessageImprint containing all the appropriate fields.

Note that the request should not identify the requester. If the TSA requires the identity of the
requester, identification/authentication means have to be used such as CMS encapsulation or
TLS authentication.

Ref.: 24-10-1825-LIV 29 Quarkslab SAS

5.3. Response Format

TimeStampResp ::= SEQUENCE {
2 status PKIStatusInfo,
3 timeStampToken TimeStampToken OPTIONAL
4 }

response.go:103-111

Defined in a structure called Response containing all the appropriate fields.

5.3.1. Status Format

PKIStatusInfo format, following RFC2510:

PKIStatusInfo ::= SEQUENCE {
2 status PKIStatus,
3 statusString PKIFreeText OPTIONAL,
4 failInfo PKIFailureInfo OPTIONAL
5 }

pki.go:113-129

Defined in a structure called StatusInfo containing all the appropriate fields.

The different status values are the following:

• granted: 0
• granted with mods: 1
• rejection: 2
• waiting: 3
• revocation warning: 4
• revocation notification: 5

Client must generate an error if status values are not in that list.

pki.go:31-61

Type properly defined with all the different possible status and the string conversion
function handle the error for unknown status.

The different reasons for failing (also known as failInfo values) are the following:

• bad algorithm: 0
• bad request: 2
• bad data format: 5
• time not available (for TSA): 14
• unaccepted policy: 15

Ref.: 24-10-1825-LIV 30 Quarkslab SAS

• unaccepted extension: 16
• additional information not available: 17
• system failure: 25

Client must generate an error if status values are not in that list.

pki.go:77-111

Type properly defined with all the different possible status and the error conversion function
handle the error for unknown failure info.

5.3.2. Time-stamp Token Format

TimeStampToken ::= ContentInfo
2 -- contentType is id-signedData ([CMS])
3 -- content is SignedData ([CMS])

The content is composed of the following fields:

• eContentType: OID for a time-stamp token (1.2.840.113549.1.9.16.1.4)
• eContent: DER-encoded value of TSTInfo
• SigningCertificate:

‣ ESSCertID as signerInfos: certificate identifier of the TSA certificate
• Signature: signature of the TSA

The token should not contain any signatures other than the TSA signature.

cms.go

Generic type such as ContentInfo, SignedData, etc, are properly defined there according to
their corresponding RFC (RFC 5652).

TSTInfo format:

TSTInfo ::= SEQUENCE {
2 version INTEGER { v1(1) },
3 policy TSAPolicyId,
4 messageImprint MessageImprint,
5 -- MUST have the same value as the similar field in
6 -- TimeStampReq
7 serialNumber INTEGER,
8 -- Time-Stamping users MUST be ready to accommodate integers
9 -- up to 160 bits.
10 genTime GeneralizedTime,
11 accuracy Accuracy OPTIONAL,
12 ordering BOOLEAN DEFAULT FALSE,
13 nonce INTEGER OPTIONAL,
14 -- MUST be present if the similar field was present
15 -- in TimeStampReq. In that case it MUST have the same value.

Ref.: 24-10-1825-LIV 31 Quarkslab SAS

16 tsa [0] GeneralName OPTIONAL,
17 extensions [1] IMPLICIT Extensions OPTIONAL
18 }

Among the optional fields, only the nonce field must be supported.

token.go:193-215

Defined in a structure called TSTInfo containing all the appropriate fields.

Ref.: 24-10-1825-LIV 32 Quarkslab SAS

5.4. Response Verification

5.4.1. TST Reception Checks

Upon the reception of the token, the client will perform a certain number of checks to validate
the content of the TST, the TSA signature, and other different checks to assess the validity and
soundness of the produced time-stamp. The different verification steps are the following:

1. Verify status error.

2. Verify various fields contained in the Time-Stamp Protocol (TSP).

3. Verify validity of the signature of the TSP.

4. Verify that what was timestamped is what was asked to be timestamped.

5. Verify that the token contains the correct: certificate identifier, data imprint, hash algorithm
OID.

6. a. Verify the time included in the response against local trusted time.

b. (if no local trusted time) Verify the nonce against the value included in the request.

7. Check the status of the TSA’s certificate (not expired).

8. Check the policy field for compliance with the application’s need.

TST Reception Checks

1. 154-156 by calling the validateStatus function, which calls the Err() properly defined
as stated in the format section.

2. • Version : tspclient-go/response.go:165 + tspclient-go/token.go:250
• Content-Type : tspclient-go/token.go:47
• Certificates for presence and well-formed: tspclient-go/internal/cms/signed.go:76

3. • tspclient-go/internal/cms/signed.go:201 (signature by itself)
• tspclient-go/internal/cms/signed.go:203 (check that hash sum of signed content

in SignedAttributes equals to hash sum of the TSTInfo)
• tspclient-go/internal/timestamp/timestamp.go:54 (check issuance of the certifica-

tion chain + validation of leaf certificate and root certificate according to their spec)

4. tspclient-go/response.go:173

5. • correct certificate identifier of the TSA : tspclient-go/internal/cms/signed.go:195
• correct data imprint : tspclient-go/token.go:262
• correct hash algorithm OID : tspclient-go/token.go:254

6. • Check that timezone is UTC: tspclient-go/response.go:178
• Nonce : tspclient-go/response.go:183

7. tspclient-go/internal/cms/signed.go:l295 when calling isSigningTimeValid

8. tspclient-go/response.go:169

Ref.: 24-10-1825-LIV 33 Quarkslab SAS

Please note that the client never verifies that the local time is coming from trusted sources.
The tspclient’s protocol always uses the option with a unique nonce to avoid such test and
guarantee replay attack protection.

However, we noticed that in the source material (and only there, this part of the code is not
reachable by the CLI as far as we know), the Notary project implemented two features that
could be problematic in the current state of the code.

The first one is a flag called NoNonce, which disables the use of a Nonce in the request. Since
the local time trust is never checked, this could be problematic in case the flag is set to True.
Fortunately, this flag is never checked nor used in practice.

INFO QB-1 Unused risky flag NoNonce

Perimeter Time-stamping request

Description

Definition of flag that could lead to potential security issues and which is never used in
practice.

Recommendation

Remove this field since it does not bring anything relevant to the protocol

The second one is the value of the Nonce, which can be set by the user in the request. If empty,
the client uses a proper random generator to pick a unique nonce value. On top of that, the
comment describing the Nonce can be misinterpreted as it states that the Nonce is a number
that the client generates once, whereas it should be generated once per request. Fortunately
again, there is currently no possible ways to provide a Nonce to the CLI in practice.

if !opts.NoNonce {
2 if opts.Nonce != nil { // user provided Nonce, use it
3 nonce = opts.Nonce
4 } else { // user ignored Nonce, use built-in Nonce
5 var err error
6 nonce, err = generateNonce()
7 if err != nil {
8 return nil, &MalformedRequestError{Msg: err.Error()}
9 }
10 }
11 }

Ref.: 24-10-1825-LIV 34 Quarkslab SAS

We believe these two features were mostly introduced by the developers for testing and
debugging purposes and should be removed from the code to avoid any misbehavior or misuse
of them, leading to potential security issues, such being vulnerable to replay attacks when the
request is made on an environment where the local time cannot be trusted.

INFO QB-2 Option for user to choose the Nonce

Perimeter Time-stamping request

Description

There is an option in the code that states that the user could choose the Nonce to be used
in the request. If not properly chosen, this could lead to potential issue as the nonce needs
to be unique for each request.

Recommendation

Remove the possibility to use a user-provided Nonce (if statement of the code snippet).

Info

The associated pull request for these two issues is: https://github.com/notaryproject/
tspclient-go/pull/34

5.4.2. TST Fields Checks

Requesters must be able to recognize all optional fields present but are not mandated to
understand the semantics of any extension, if present.

• Version: TSA must be able to provide version 1 time-stamp tokens.

• Policy: TSA’s policy under which the response was produced. If present in the request, it
must match. The policy contains two information:

‣ Time-stamp usage condition.

‣ Availability of a time-stamp token log for later verification of authenticity.

• Message Imprint: verify that the length corresponds to the hash function used and that it is
the same value as in the request.

• Serial Number: Unique number (w.r.t. to TSA) for the TSP.

• genTime: Time at which the token has been created in UTC time (RFC 2459 should be
followed).

• accuracy: Time deviation around the UTC time. Allows to create an upper- and lower-
bound at which the token has been created. If set to false or missing, only take genTime
into account.

• nonce: must be present if it was in the request and equal to it.

• TSA: name of the TSA.

Ref.: 24-10-1825-LIV 35 Quarkslab SAS

https://github.com/notaryproject/tspclient-go/pull/34
https://github.com/notaryproject/tspclient-go/pull/34

Valid TST Fields Checks

• Version: tspclient-go/response.go:165 and tspclient-go/token.go:250
• Policy:

‣ tspclient-go/response.go:169: Verifies that policy in request matches with the one
in the response;

‣ tspclient-go/token.go:230: Compares policy to oid.BaselineTimestampPolicy in
order to know how to set accuracy;

‣ Policy information are not handled;
• Message Imprint:

‣ tspclient-go/response.go:173: Verifies that the Message Imprint of the request is the
same as in the response;

• Serial Number: Present in TSTInfo structure but never mentioned;
• genTime: tspclient-go/response:179
• accuracy:

‣ tspclient-go/timestamp.go:36 & tspclient-go/timestamp.go:39: Lower and upper
bound created out of genTime and accuracy;

‣ tspclient-go/token.go:238: Time-stamp structure is created from genTime and
accuracy.

• nonce: tspclient-go/response.go:183
• TSA: Field TSA is present in TSTInfo structure but never mentioned.

Erroneous TST Fields Checks

• Message Imprint:
‣ tspclient-go/request:198: Verifies that the Message Imprint length corresponds to

the hash function used. However it is done during request validation. Not for the
response.

5.4.3. Signature Verification

To verify the TSA’s signature of the time-stamp, the following routine is used:

1. Time-stamping information needs to be obtained soon after the signature has been produced
(e.g. within a few minutes or hours).

1. The signature is presented to the Time Stamping Authority (TSA). The TSA then returns
a TimeStampToken (TST) upon that signature.

2. The invoker of the service MUST then verify that the TimeStampToken is correct.

2. The validity of the digital signature may then be verified in the following way:

1. The time-stamp token itself MUST be verified and it MUST be verified that it applies to
the signature of the signer.

2. The date/time indicated by the TSA in the TimeStampToken MUST be retrieved.
3. The certificate used by the signer MUST be identified and retrieved.
4. The date/time indicated by the TSA MUST be within the validity period of the signer’s

certificate.

Ref.: 24-10-1825-LIV 36 Quarkslab SAS

5. The revocation information about that certificate, at the date/time of the Time-Stamping
operation, MUST be retrieved.

6. Should the certificate be revoked, then the date/time of revocation shall be later than
the date/time indicated by the TSA.

If all these conditions are successful, then the digital signature is valid.

Signature verification

• Time-stamping is part of the signing process and is performed right after the signature
to be timestamped has been generated
‣ notation-core-go/signature/jws/enveloppe.go:97 or notation-core-go/signature/
cose/enveloppe.go:252;

• tspclient-go/request:128: Signature digest is embedded in Request structure;
• tspclient-go/http.go:86: Signature is present to the TSA
• tspclient-go/http.go:117: Verifies that the received data is a TimeStampToken and is

correct. (Integrity and Authenticity not verified)

Validity of the digital signature

• The time-stamp token itself MUST be verified and it MUST be verified that it applies
to the signature of the signer.
‣ tspclient-go/token.go:246: It applies to the signature of the signer;
‣ tspclient-go/internal/cms/signed.go:214: Time-stamp token signature is verified.

• tspclient-go/token.go:177: The date/time indicated by the TSA in the TimeStamp-
Token MUST be retrieved.

• tspclient-go/token.go:76: The certificate used by the signer MUST be identified and
retrieved.

• notation-go@1.3.0-rc.1/verifier/verifier.go:938: The date/time indicated by the
TSA MUST be within the validity period of the signer’s certificate.

• notation-go@v1.3.0-rc.1/verifier/verifier.go:697: The revocation information
about that certificate, at the date/time of the Time-Stamping operation, MUST be
retrieved.

Validity of the digital signature

• notation-go@v1.3.0-rc.1: Should the certificate be revoked, then the date/time of
revocation shall be later than the date/time indicated by the TSA
‣ The date/time indicated by the TSA is not passed to the revocation check method.

Ref.: 24-10-1825-LIV 37 Quarkslab SAS

5.5. TSP via HTTP

Requests are made with ASN.1-encoded messages. Two MIME objects are specified as follows.

Content-Type: application/timestamp-query

<<the ASN.1 DER-encoded Time-Stamp Request message>>

Content-Type: application/timestamp-reply

<<the ASN.1 DER-encoded Time-Stamp Response message>>

Ref.: 24-10-1825-LIV 38 Quarkslab SAS

6. Time Stamp Analysis in Notation

As detailed in previous sections, Notation v1.2.0 implements the Time-Stamp Protocol,
following RFC3161 standard, which allows to add a time-stamp composed of contents proving
the validity of a certificate at a given date and the signature authenticating those data, called
a countersignature. Issued by a TSA, the time-stamp allows to extend the trust of signatures
created within certificates’ validity even after they are expired. In fact, if one certificate of the
trusted certificate chain has expired, the time-stamp can be used to verify that the signature
was issued when the certificate chain was still valid.

In this section, we describe the test performed playing with the time-stamping feature and the
corresponding findings discovered while testing.

The tests of this section were performed using :
• Fedora Linux 38 aarch64 as operating system;
• Docker v24 as container engine;
• docker.io/library/

registry@sha256:ac0192b549007e22998eb74e8d8488dcfe70f1489520c3b144a6047ac5efbe90
image as a Docker Registry, listening on 5001 TCP port on localhost;

• DigiCert as TSA.

Note: Since the OCI signatures of notation are out of the scope of the audit and to make reading
easier, related configurations and corresponding control-flows are ignored when not relevant
with respect to the time-stamping functionality.

In the following, we use diagrams to illustrate how the code processes with respect to the test
we do. The block represents Golang methods, formatted using the following nomenclature: <Go
STD package>/package.method name. If the method comes from Golang standard library, it is
written preceded by a slash. Content of such methods are not part of this audit, however, how
they are used in practice in notation is.

The overall interaction when requesting a time-stamp is described in Figure 2.

1

JWS

Figure 2: Complete view of time-stamp control flow graph¹

¹Full page scaled picture can be found in Appendix C.A.

Ref.: 24-10-1825-LIV 39 Quarkslab SAS

https://www.rfc-editor.org/rfc/rfc3161

6.1. Signing with a Countersignature

In order to add a countersignature to the signature envelope of an artifact, one can use the
sign functionality of the notation CLI and, in addition to the target, specify:
• The time-stamp server URL of the TSA (--timestamp-url);
• The path to the root certificate of the specified TSA (--timestamp-root-certificate).

notation sign --timestamp-url "http://timestamp.digicert.com" --timestamp-root-
cert "DigiCertTrustedRootG4.crt" "localhost:5001/ubuntu:latest"

6.1.1. Initialization phase

1
2

3

Figure 3: Time-stamp initialisation phase control flow graph

The function main.runSign from cmd/notation/sign.go is in charge of the signing functionality
of the notation project.

The raw arguments from the user inputs are sent to main.prepareSigningOpts in order to get
the signing options. If the field tsaServerURL, corresponding to the CLI option --timestamp-
url is not empty, then all the required configurations to request a TST are checked and added
to the signing options.

Following Figure 3 illustration, the main.runSign runs the following functions and checks:

1. Parsing of TSA’ URL using Go’s net/url.Parse as follows:

if _, err := url.Parse(endpoint); err != nil {
2 return nil, err
3 }

Ref.: 24-10-1825-LIV 40 Quarkslab SAS

We noticed at this step a confusing check around the URL parsing. In fact, there are checks
that the URL is properly parsed, but not of its contents. This means that empty URL or
schema would lead to a proper parsing result (when it should not).

Note that from a security point of view, this is not an issue as the validity of the schema
or URL is checked later on in the process, when a request is sent. However this could save
some time and a HTTP request.

INFO QB-3 Lack of check after URL parsing

Perimeter CLI signing with time-stamping

Description

No check after parsing the TSA’s URL of content of the host or the scheme. This means
that an empty host or schema is accepted and processed by the CLI. While this does
not directly lead to an issue, since those fields are checked later on by third-party code,
this, however, requires that this outside check stays.

Recommendation

Add a test after parsing the URL, such as the following one:

if (u.Scheme == "" || u.Host == "") { // where u is the return value
of url.Parse

2 // return error
3 }

2. Reading and parsing of the submitted root certificate encoded either DER or PEM using
crypto/x509.parseCertificates function.

3. Verification that only one certificate is returned and that the returned certificate is a
root certificate by calling x509.IsRootCertificate. This function checks the certificate’s
signature using crypto/x509.CheckSignatureFrom and verifies that the RawSubject is equal
to the RawIssuer.

While it does not seem possible to specify a malformed certificate or anything different from
a valid root certificate to the CLI, the size of the keys is not verified. This can be concerning
for cases using RSA as the signature scheme as keys smaller than 2048 are considered insecure.
The validity of the certificate is not checked either.

Note: From a security point of view, this is not an issue as the validity of the whole certificate
chain is verified at the very end of the process (but not by notation code). However this could
save some time and a HTTP request.

Info

The associated pull request for this issue is: https://github.com/notaryproject/tspclient-
go/pull/37

Ref.: 24-10-1825-LIV 41 Quarkslab SAS

https://github.com/notaryproject/tspclient-go/pull/37
https://github.com/notaryproject/tspclient-go/pull/37

6.1.2. TST Request and Validation

Depending on the requested signature format, the created envelope (a structure used to create
and verify signature) is either handled by the JWS or COSE package, by calling the method (e
*envelope) Sign(req *signature.SignRequest) from either notation-core-go/signature/jws
or from notation-core-go/signature/cose.
Using different techniques, both packages build a tspclient.RequestOptions containing the raw
signature content as well as the hash method used. The overall process is illustrated in Figure 4
(using JWS).

JWS

Figure 4: Time-stamping request validation control flow graph

Ref.: 24-10-1825-LIV 42 Quarkslab SAS

The method func Timestamp(req *signature.SignRequest, opts tspclient.RequestOptions)
from notation-core-go/internal/timestamp is then called, containing the SignRequest struc-
ture as well as the RequestOptions. The whole time-stamping functionality logic is handled by
this method.

The first argument, a tspclient-go.Timestamper structure contains a net/http.Client client
and the URL of the TSA, and a crypto/x509.CertPool structure built out of the previously
submitted root certificate.

The method is defined as follows:

func Timestamp(req *signature.SignRequest, opts tspclient.RequestOptions)
([]byte, error) {

2 // Build the TSP request
3 tsaRequest, err := tspclient.NewRequest(opts)
4 if err != nil {
5 return nil, err
6 }
7 ctx := req.Context()
8 // Send the TSP request, read and validate TSP Response
9 resp, err := req.Timestamper.Timestamp(ctx, tsaRequest)
10 if err != nil {
11 return nil, err
12 }
13 // Parse the SignedToken (CMS SignedData) part of the TimeStampToken
14 token, err := resp.SignedToken()
15 if err != nil {
16 return nil, err
17 }
18 // Extract the TSTInfo (CMS SignedData.EncapsulatedContentInfo)
19 info, err := token.Info()
20 if err != nil {
21 return nil, err
22 }
23 // Validation of the TSTInfo content
24 timestamp, err := info.Validate(opts.Content)
25 if err != nil {
26 return nil, err
27 }
28 // Build certification chain and verify signatures
29 tsaCertChain, err := token.Verify(ctx, x509.VerifyOptions{
30 CurrentTime: timestamp.Value,
31 Roots: req.TSARootCAs,
32 })
33 if err != nil {
34 return nil, err
35 }

Ref.: 24-10-1825-LIV 43 Quarkslab SAS

36 // Verify validity and compliances of certificates from the certificate chain
37 if err := nx509.ValidateTimestampingCertChain(tsaCertChain); err != nil {
38 return nil, err
39 }
40 return resp.TimestampToken.FullBytes, nil
41 }

6.1.3. Building TSP request

tspclient.NewRequest is called in order to compute a new TSP request Request defined as
follows:

type Request struct {
2 Version int // fixed to 1 as defined in RFC 3161 2.4.1 Request Format
3 MessageImprint MessageImprint
4 ReqPolicy asn1.ObjectIdentifier `asn1:"optional"`
5 Nonce *big.Int `asn1:"optional"`
6 CertReq bool `asn1:"optional,default:false"`
7 Extensions []pkix.Extension `asn1:"optional,tag:0"`
8 }
9 type MessageImprint struct {
10 HashAlgorithm pkix.AlgorithmIdentifier
11 HashedMessage []byte
12 }
13 // pkix.AlgorithmIdentifier
14 type AlgorithmIdentifier struct {
15 Algorithm asn1.ObjectIdentifier
16 Parameters asn1.RawValue `asn1:"optional"`
17 }

While the code below may suggest that the Nonce can be empty or user submitted, it has
been found that no such option in the notation CLI allows to set them, or anywhere else. It
is therefore always included, and generated thanks to Go’s cryptographically secure pseudo-
random number generator (see Section 5.4.1.).

 var nonce *big.Int
2 if !opts.NoNonce {
3 if opts.Nonce != nil { // user provided Nonce, use it
4 nonce = opts.Nonce
5 } else { // user ignored Nonce, use built-in Nonce
6 var err error
7 nonce, err = generateNonce()
8 if err != nil {
9 return nil, &MalformedRequestError{Msg: err.Error()}
10 }
11 }
12 }

Ref.: 24-10-1825-LIV 44 Quarkslab SAS

The CertReq field is always set to True, while the remaining fields are always empty. The returned
structure is the following:

 return &Request{
2 Version: 1,
3 MessageImprint: MessageImprint{
4 HashAlgorithm: pkix.AlgorithmIdentifier{
5 Algorithm: hashAlg, // OID of hash algorithm
6 Parameters: hashAlgParameter, // Empty
7 },
8 HashedMessage: digest,
9 },
10 ReqPolicy: opts.ReqPolicy, // Empty
11 Nonce: nonce, // 20 random bytes
12 CertReq: !opts.NoCert, // True
13 Extensions: opts.Extensions, // Empty
14 }, nil
15

6.1.4. TSP HTTP Request

The method (ts *httpTimestamper) Timestamp(ctx context.Context, req *Request) from
tspclient.Timestamp validates the content of the Request req, sends a POST request to the
TSA, reads its response and validates it.

The validation of the request consists in verifying that the Request.Version is set to 1 and if
there is no mistakes related to the hash algorithm OID and the length of the hashed message.

The HTTP POST request is performed and the response content is read, up to 1 MB, if the
HTTP Status is 200 and if the Content-Type header is set to application/timestamp-reply.

Success

No issue was found during this part.

6.1.5. TSP HTTP request response validation

The method func (r *Response) Validate(req *Request) from tspclient.Response verifies
that the response is valid regarding the corresponding request and RFC3161.

The Response structure is defined as follows:

type Response struct {
2 Status pki.StatusInfo
3 TimestampToken asn1.RawValue `asn1:"optional"`
4 }
5 // pki.StatusInfo
6 type StatusInfo struct {
7 Status Status
8 StatusString []string `asn1:"optional,utf8"`

Ref.: 24-10-1825-LIV 45 Quarkslab SAS

9 FailInfo asn1.BitString `asn1:"optional"`
10 }

It is verified that:

• The response is not empty;
• The status Status is either StatusGranted (0) or StatusGrantedWithMods (1).

The SignedData (SignedToken) part of the CMS envelope is extracted by calling func
(r *Response) SignedToken from tspclient.Response. The TimestampToken value is sent to
tspclient.ParseSignedToken which sends it to cms.ParseSignedData.

The content is converted from ASN.1 BER encoding to DER thanks to the tspclient-go/
internal/encoding/ber package. It is verified that the content is a CMS formatted package
containing a SignedData version 3 envelope.

Success

No issue was found during the parsing and extraction.

The returned structure cms.ParsedSignedData, also called SignedToken, contains the content,
content type, the certificate chained used to sign the token, the CRLs, and the signature. The
structure content is specified as follows:

type ParsedSignedData struct {
2 // Content is the content of the EncapsulatedContentInfo.
3 Content []byte
4 // ContentType is the content type of the EncapsulatedContentInfo.
5 ContentType asn1.ObjectIdentifier
6 // Certificates is the list of certificates in the SignedData.
7 Certificates []*x509.Certificate
8 // CRLs is the list of certificate revocation lists in the SignedData.
9 CRLs []x509.RevocationList
10 // SignerInfos is the list of signer information in the SignedData.
11 SignerInfos []SignerInfo
12 }
13 type SignerInfo struct {
14 // Version field specifies the syntax version number of the SignerInfo.
15 Version int
16 // SignerIdentifier field specifies the signer's certificate. Only

IssuerAndSerialNumber
17 // is supported currently.
18 SignerIdentifier IssuerAndSerialNumber
19 // DigestAlgorithm field specifies the digest algorithm used by the signer.
20 DigestAlgorithm pkix.AlgorithmIdentifier
21 // SignedAttributes field contains a collection of attributes that are
22 // signed.
23 SignedAttributes Attributes `asn1:"optional,tag:0"`
24 // SignatureAlgorithm field specifies the signature algorithm used by the

Ref.: 24-10-1825-LIV 46 Quarkslab SAS

25 // signer.
26 SignatureAlgorithm pkix.AlgorithmIdentifier
27 // Signature field contains the actual signature.
28 Signature []byte
29 // UnsignedAttributes field contains a collection of attributes that are
30 // not signed.
31 UnsignedAttributes Attributes `asn1:"optional,tag:1"`
32 }

INFO QB-4 Abort TSP HTTP Request Response Validation if invalid
signature

Perimeter Time-stamping verification

Description

At this stage of the process, the signature should be verified before processing anything
further to follow the principle of defense-in-depth and execute as few as possible instructions
with potential malicious data.. The signature is actually verified only at a later stage (see
Section 6.1.8.).

Recommendation

Verify now the signature before further processing.

Instead, the Validate method continues to verify the following fields, extracted from the TST:

• The version number;

• The policy;

• The MessageImprint structure value to be the same as the one in the request;

• The timezone to be UTC;

• The Nonce to be the same as in the request;

• The signing certificate specified by the signerInfo is present in the SignedToken Certificates
slice thanks func (t *SignedToken) SigningCertificate from tspclient where :

‣ The signing certificate references issuerSerial are extracted from
signerInfo.SignedAttributes.Certificates[0];

‣ If present, the issuerSerial.SerialNumber and issuerSerial.IssuerName are extracted
in order to be compared to those contained in the submitted certificate chain and the
corresponding certificate is returned.

‣ If not present, the DER encoded Issuer and certificate serial number are used from the
signerInfo.SignerIdentifier to search and find the corresponding certificates.

‣ The hash sum of the selected certificates is then computed and compared to the one
extracted from the SignedAttributes of the specified signing certificate.

The overall request validation process in illustrated in Figure 5.

Ref.: 24-10-1825-LIV 47 Quarkslab SAS

Figure 5: Time-stamp response validation control flow graph

6.1.6. TST Validation

The method SignedToken is again called and the whole BER to DER conversion process is
repeated, as well as response parsing in order to get the SignedToken structure.

The TSTInfo is then validated against the original sent message through tspclient.
(*TSTInfo).Validate. Then, tspclient.(*TSTInfo).validate (mind the minus v) verifies again
that the TSTInfo.Version is equals to 1 (see Figure 6).

Ref.: 24-10-1825-LIV 48 Quarkslab SAS

Figure 6: Time-stamp token validation control flow graph

It also reads the hash algorithm used out of the token, computes the hash sum of the original
message (signature to be time-stamped) and compares it to the messageImprint.HashedMessage
of the received token.

This operation seems redundant as the messageImprint structure was verified to be the same
as the one sent in the request earlier by func (r *Response) Validate(req *Request) from
tspclient when verifying the response of the TSA.

The accuracy is then computed according to the TSA policy and a Timestamp structure is
returned:

Timestamp{
2 Value: tst.GenTime, // Time of generation
3 Accuracy: accuracy, // Accuracy in seconds, milliseconds and microseconds
4 }

This field is never used in the countersignature creation part. It is, however, used when verifying
the countersignature.

6.1.7. Token certificate chain identification and signature verification (signing side)

Method (t *SignedToken) Verify(ctx context.Context, opts x509.VerifyOptions) from
tspclient.Token is called in order to verify the signature of the received token. The full
verification process is illustrated in Figure 7.

Ref.: 24-10-1825-LIV 49 Quarkslab SAS

Figure 7: Time-stamp signature verification control flow graph

For each SignerInfo, the actual signing certificate is identified and returned thanks to (t
*SignedToken) SigningCertificate from tspclient.Token. This method behavior was described
above in Section 6.1.5. .

The full signing certificate chain is then recovered using (d *ParsedSignedData)
verify(signerInfo *SignerInfo, cert *x509.Certificate, opts *x509.VerifyOptions) from
cms.Signed which calls crypto/x509.(*Certificate).Verify. Using the configured root certifi-
cate and the intermediate certificates provided by the TSA, the certificate chained is returned,
if valid.

Please note however, that during this full verification process, no check on the validity of the
certificates is done. In fact, revoked certificates can be used in the certification chain, leading
to a countersignature signed by a revoke entity being accepted by notation.

Ref.: 24-10-1825-LIV 50 Quarkslab SAS

MEDIUM QB-5 Revocation in certificate chain unchecked while signing

Likelihood Impact

Perimeter Time-stamping verification

Description

There is currently no check in the certification chain to see if revoked certificates are used
when verifying the time-stamp countersignature received from TSA.

Recommendation

Add a check to certification chain to verify their status while signing.

Info

The associated pull requests for this issue are:
• https://github.com/notaryproject/notation-core-go/pull/246
• https://github.com/notaryproject/notation-go/pull/482
• https://github.com/notaryproject/notation/pull/1094

This security issue has been assigned a CVE-ID, see GHSA-45v3-38pc-874v / CVE-ID:
CVE-2024-56138.

The signature is then checked by (d *ParsedSignedData) verifySignature from cms.Signed.
If present, SignedAttributes of the signerInfo are the contents that are actually signed.
Their contents are therefore used to be verified with the signature. Otherwise, the signature is
generated from the content coming from TSTInfo.
The signature verification is performed by crypto/x509.(*Certificate).CheckSignature.

Then, method (d *ParsedSignedData) verifySignedAttributes ([]*x509.Certificate, error)
from tspclient-go/internal/cms.cms verifies the SignedAttributes.

If the signerInfo.SignedAttributes slice is empty and the content type specifies id-data, this
function returns nil, nil:

func (d *ParsedSignedData) verifySignedAttributes(signerInfo *SignerInfo, chains
[][]*x509.Certificate) ([]*x509.Certificate, error) {

2 if len(chains) == 0 {
3 return nil, VerificationError{Message: "Failed to verify signed attributes

because the certificate chain is empty."}
4 }
5
6 if len(signerInfo.SignedAttributes) == 0 {
7 if d.ContentType.Equal(oid.Data) {
8 return nil, nil
9 }
10

Ref.: 24-10-1825-LIV 51 Quarkslab SAS

https://github.com/notaryproject/notation-core-go/pull/246
https://github.com/notaryproject/notation-go/pull/482
https://github.com/notaryproject/notation/pull/1094
https://github.com/notaryproject/notation-go/security/advisories/GHSA-45v3-38pc-874v

11 ...

Ref.: 24-10-1825-LIV 52 Quarkslab SAS

INFO QB-6 Non-compliant to the RFC for verification of signed attrib-
utes

Perimeter Time-stamping verification

Description

In cms.(*ParsedSignedData)
.verifySignedAttributes method, if the signerInfo. SignedAttributes slice is empty and
the content type specifies id-data, returned values are nil, nil. While following RFC 5652
no error is returned, this case should never happen for a TST because, according to RFC
3161, the content type has to be id-ct-TSTInfo. Returning nil here triggers a generic error
later during certificate chain verification because the slice is empty.

Recommendation

Either comply to RFC 5652 at this stage and handle the case in the caller method (e.g.
timestamp.Timestamp), or handle the error at this stage.

If the content type is different than id-data and the field is present, the following fields are
checked:

• The content type specified in the ContentType and the one of the TST

• The signerInfo.SignedAttributes.MessageDigest and the hash sum computed out of the
TSTInfo: added to the signature verification, this ensures that the TSA has signed this specific
time-stamp token;

• The certificates of the chain to be valid compared to the
signerInfo.SignedAttributes.signingTime field.

Finally, the time-stamping key usage from the extension key usage field of the signing certificate
is checked and ensuring that it is marked as critical.

Info

The associated pull request for this issue is: https://github.com/notaryproject/tspclient-
go/pull/35

6.1.8. Verification of the certificate chain (signing side)

Finally, the certificate chain used until then is verified to be a valid one according to the
specification (see here). The overall verification of the certificate chain process is illustrated in
Figure 8.

Ref.: 24-10-1825-LIV 53 Quarkslab SAS

https://github.com/notaryproject/tspclient-go/pull/35
https://github.com/notaryproject/tspclient-go/pull/35
https://github.com/notaryproject/specifications/blob/main/specs/signature-specification.md#certificate-requirements

Figure 8: Time-stamp certificate chain verification control flow graph

If the chain contains only one certificate, validateTimestampingLeafCertificate(cert
*x509.Certificate) from x509 verifies that the certificate is a self-signed certificate, and a valid
leaf certificate as per the specification:
• The cA extended attribute must be set to false if BasicConstraints field is present;
• The KeyUsage extension is set and Digital Signature is set;
• The ExtendedKeyUsage extension is set, marked as critical and Time Stamping Usage is set.

If the chain contains more than one certificate, each of them is verified to not be a self-signed
certificate and to have been issued by its parent in the certificate chain. The first certificate
is verified to be a valid leaf certificate as per the specification, and the last certificate is
verified to be a valid CA root certificate through validateTimestampingCACertificate(cert
*x509.Certificate, expectedPathLen int) from x509:
• The cA extended attribute must be set and BasicConstraints field must be present;
• The KeyUsage extension is set and Digital Signature is set.

We noticed that in the verification process, several of the verification are redundant like:
• Verifying the issuance chain, as this is already checked by crypto/x509.

(*Certificate).Verify (see Section 6.1.7.);
• Calling validateTimestampingCACertificate against the last certificate of the chain,

as crypto/x509.(*Certificate).Verify makes sure the last certificate of the chain is
the end user submitted root certificate. This certificate was verified to be a root
certificate thanks to the method x509.IsRootCertificate which is even stricter than
validateTimestampingCACertificate.

Success

No security issue was found during this part.

Danger

Even though no security issue was found here, the process of creating the countersignature
does not follow security defense-in-depth principles. When retrieving the TSA response,
first action is to manage to extract enough data to verify the signature and the integrity
the data, before processing to further steps. As the data has to be considered insecure or
malicious, any work on this data should be done after authenticity and integrity checks.

This means that after converting the BER data to DER and extracting the
CMS SignedData, the certificate chain should be built and verified, the signa-
ture verified and the TSTInfo hash sum compared to the one specified in the

Ref.: 24-10-1825-LIV 54 Quarkslab SAS

SignedData.SignerInfo.SignedAttributes.MessageImprint field . After this, the remaining
verification work can be securely done.

Ref.: 24-10-1825-LIV 55 Quarkslab SAS

6.2. Verifying a Signature and its Time-stamp Coun-
tersignature

In order to verify a signature of an OCI artifact, potentially also containing a time-stamp
countersignature, one can leverage the notation CLI this way:

notation verify <artifact>

In our case, and as using tag is not recommended, we are using the manifest hash sum of the
target container image:

notation verify localhost:5001/
ubuntu@sha256:04b5ada4cdb5034a879599d9af5711687357fc25efb63ffdf2b44cfab69affb9

The signatures for the target artifact are then retrieved and each of them is verified until one
is valid.

If the signature has not expired and is valid, the process of verifying the time-stamp coun-
tersignature starts by calling verifyAuthenticTimestamp(ctx context.Context, policyName
string, trustStores []string, signatureVerification trustpolicy.SignatureVerification,
x509TrustStore truststore.X509TrustStore, r revocation.Validator, outcome
*notation.VerificationOutcome) *notation.ValidationResult from the package verifier.

If the signingScheme specified in the SignedAttributes of the signerInfo corresponds
to notary.x509, then the method verifyTimestamp(ctx context.Context, policyName
string, trustStores []string, signatureVerification trustpolicy.SignatureVerification,
x509TrustStore truststore.X509TrustStore, r revocation.Validator, outcome
*notation.VerificationOutcome) is called, which is ultimately in charge for the Time-stamp
countersignature validation.

The overall process is illustrated in the following figure:

1

1 2

2

1 2 3 4 5 6
7

8
9

10 11 12 13

Figure 9: Overall view of verifying a time-stamp countersignature²

6.2.1. Verifying the TSA policy

It is firstly verified that a trust store configured for a TSA exists in the policy using
isTSATrustStoreInPolicy(policyName string, trustStores []string). The method iterates

²Full page scaled picture can be found in Appendix C.B.

Ref.: 24-10-1825-LIV 56 Quarkslab SAS

over the trustStores searching for entries that begin with tsa:. If there is no entry or no such
trust store configured, the verification of the countersignature is disabled and it is just verified
that the current local time is in the range of the certificate chain validity period.

If a TSA trust store is configured, it is then verified if the trust policy enforces the countersig-
nature verification every time (corresponds to an empty VerififyTimestamp option field in the
trustpolicy.SignatureVerification structure), or only if the certificate chain of the regular
signature has expired, as per the specification (see here).

The behavior of the control-flow corresponds to the specification and what the policy specifies.

6.2.2. Time-stamp countersignature extraction and validation

At this point, if the UnsignedAttributes of the signerInfo structure does not contain a time-
stamp countersignature, the process returns an error.

The signedToken is extracted by ParseSignedToken(berData []byte) from tspclient as detailed
in Section 6.1.5. .

INFO QB-7 Abort Counter-signature verification if invalid signature

Perimeter Verification with time-stamping

Description

When enough data are extracted to verify the signature in the TST itself, the verification
process continues to extract and parse the remaining content before checking the validity
of the signature.

Recommendation

Verify the signature of the time-stamp token before continuing to extract and parse the
rest of the information in the TST.

Warning

At this point, enough data have been extracted in order to verify the signature of the time-
stamp token, however, it continues to extract and parse the remaining content.

Info

The associated pull requests for this issue are https://github.com/notaryproject/notation-
core-go/pull/243 and https://github.com/notaryproject/notation-go/pull/478

The TSTInfo structure is extracted and validated by (tst *TSTInfo) Validate(message []byte)
from tspclient, which ensures that the countersignature is issued for the signature that is
currently verified. This process is also detailed in Section 6.1.6. and illustrated in Figure 10.

Ref.: 24-10-1825-LIV 57 Quarkslab SAS

https://github.com/notaryproject/specifications/blob/main/specs/signing-and-verification-workflow.md
https://github.com/notaryproject/notation-core-go/pull/243
https://github.com/notaryproject/notation-core-go/pull/243
https://github.com/notaryproject/notation-go/pull/478

Figure 10: Timestamp countersignature extraction and validation control flow graph

6.2.3. Loading the trusted certificates

The trusted certificates contained in the trust store are loaded by loadX509TSATrustStores(ctx
context.Context, scheme signature.SigningScheme, policyName string, trustStores
[]string, x509TrustStore truststore.X509TrustStore) from verifier.

If the signing scheme is notary.x509, which at this point of the control-flow can-
not be something else, the method loadX509TrustStoresWithType(ctx context.Context,
trustStoreType truststore.Type, policyName string, trustStores []string, x509TrustStore
truststore.X509TrustStore) is called in order to retrieve a TSA trust store, specified in the
trustStoreType argument.

For each trust store that is of type TSA, the method (trustStore *x509TrustStore)
GetCertificates(ctx context.Context, storeType Type, namedStore string) from verifier
is called in order to retrieve the corresponding certificates, as depicted in Figure 11.

Ref.: 24-10-1825-LIV 58 Quarkslab SAS

Figure 11: Load of the trusted certificates control flow graph

It is then verified that:

• the store type is valid (either TSA or CA) ;

• The name of the store is also valid (correspond to the regular expression [a-zA-Z0-9_.-]+.);

• The path to the trust store is a regular directory, and not a symbolic link.

The certificate is then read and parsed by ReadCertificateFile(path string)
([]*x509.Certificate, error), as described in Section 6.1.1. .

The certificates from the trust store are then verified to be CA certificates or self-signed
certificate by ValidateCertificates(certs []*x509.Certificate) from verifier.

Ref.: 24-10-1825-LIV 59 Quarkslab SAS

INFO QB-8 Shallow Verification of TSA trust store certificates

Perimeter Certificate verification

Description

Verifications performed on the certificates from the TSA trust store are shallow and not
sufficient to ensure the certificates are either Root CA certificate or self-signed. This is
incoherent behavior since during Initialization phase 6.1.1. , the user-specified root certifi-
cate is verified to be a valid root CA certificate against crypto/x509.IsRootCertificate.
Here, it is only verified that the CA attribute is set, and if not, the self-signature is. An
intermediate CA certificate could be specified by the trust store, and an error will be
triggered later during the certificate chain verification. This weakness is, however, not a
vulnerability because stricter verification will occur later.

Recommendation

Have the same level of verification as in init phase or move the later verification to this stage.

Shallow Verification Code

func ValidateCertificates(certs []*x509.Certificate) error {
2 if len(certs) < 1 {
3 return errors.New("input certs cannot be empty")
4 }
5 for _, cert := range certs {
6 if !cert.IsCA { // If set, it is considered as CA certificate
7 if err := cert.CheckSignature(cert.SignatureAlgorithm,

cert.RawTBSCertificate, cert.Signature); err != nil {
8 return fmt.Errorf(
9 "certificate with subject %q is not a CA certificate or self-signed

signing certificate",
10 cert.Subject,
11)
12 }
13 }
14 }
15 return nil
16 }

Info

The associated pull request for this issue is: https://github.com/notaryproject/tspclient-
go/pull/471

Ref.: 24-10-1825-LIV 60 Quarkslab SAS

https://github.com/notaryproject/tspclient-go/pull/471
https://github.com/notaryproject/tspclient-go/pull/471

6.2.4. Token certificate chain identification and signature verification (verif side)

The certificate chain retrieval and the signature verification are then handled by the method
(t *SignedToken) Verify(ctx context.Context, opts x509.VerifyOptions) from tspclient as
detailed in Section 6.1.7. and illustrated in Figure 12.

The difference is that in this case, the opts.Roots might contain a CA certificate which is not
a root certificate. The returned certificate chain therefore might end with an intermediate CA
certificate.

Figure 12: Certificate chain identification and signature verification control flow graph

6.2.5. Verification of the certificate chain (verification side)

The retrieved certificate chain is verified by ValidateTimestampingCertChain(certChain
[]*x509.Certificate) from x509 as detailed in Section 6.1.8. and depicted in Figure 13.

Here, if the last certificate of the identified certificate chain is an intermediate CA certificate,
an error will be triggered because it is verified that it is a valid, self-signed certificate.

Ref.: 24-10-1825-LIV 61 Quarkslab SAS

Figure 13: Certificate chain verification

6.2.6. Verifying the time-stamp against the signing certificate chain

For each certificate contained in the certificate chain, it is verified that the time-stamp was
not issued before or after the certificate validity period with the methods (t *Timestamp)
BoundedBefore(u time.Time) and (t *Timestamp) BoundedAfter(u time.Time). The Accuracy
of the time-stamp is also taken into account, computed following the TSA policy.

6.2.7. Verifying the revocation status

The revocation status of the certificate chain is then verified by calling (r *revocation)
ValidateContext(ctx context.Context, validateContextOpts ValidateContextOptions)

Warning

The version tested until now does not implement the CRL support. Additionally, CRL
support audit is in the scope of Quarkslab audit and is therefore dedicated in Section 7. and
Section 8. , as it does not only concern time-stamping countersignature, but also regular
signatures.

The current version, however, implements OCSP. It is handled by CheckStatus(opts Options)
from the ocsp package.

The certificate chain is again verified thanks to ValidateTimestampingCertChain(certChain
[]*x509.Certificate) from x509. Then for each certificate of the certificate chain except
the last one, which is the root certificate, the method certCheckStatus(cert, issuer
*x509.Certificate, opts Options) from ocsp is called.

Due to the time constraint of the audit and since the rest of the process is not only related to
the time-stamping functionality (out of scope), the OCSP revocation process checking was not
audited.

Finally, revocationFinalResult(certResults []*revocationresult.CertRevocationResult,
certChain []*x509.Certificate, logger log.Logger) from verifier iterates over the
certResults slice, and returns an error if one or more certificate is either revoked or an error
occurred during the revocation check.

The full revocation status process is illustrated in Figure 14.

Ref.: 24-10-1825-LIV 62 Quarkslab SAS

Figure 14: Verification of the revocation status control flow graph

Info

If more than one certificate is revoked, the certificate subject of the last one only is returned
(i.e., the last one of the slices which is sorted from leaf to root).

Ref.: 24-10-1825-LIV 63 Quarkslab SAS

7. Certificate Revocation List Compli-
ance

7.1. Description

In public key infrastructure based on X.509 certificates (PKIX), the certificate authority (CA),
namely the authority that is used to issue and sign certificates is also responsible for handling
the revocation status of each of the certificates that they issued.

The two main ways to handle the revocation status are:

• Online Certificate Status Protocol (OCSP) (see RFC2560);
• Certificate Revocation List (CRL) (see RFC5280).

The CRL corresponds to a publicly available time-stamped list of revoked certificates, signed
by a CA or CRL issuer. To identify the certificates in the list, their serial number is used. Using
CRLs, hence means that the verification process of the certificate is enhanced by also including
the retrieval of the corresponding CRL and checking if the serial number of the certificate is in
the list.

Due to CRLs being signed by trusted authorities, they can be freely distributed over public
(unsecured) channels.

However, this means that the CRL must be regularly updated with a time granularity that
should be relevant to the use cases.

We detail hereafter the conformity of the source material to the RFC. Since most of the RFC
is describing formatting and structure for CAs and CRL issuers, we focus here mainly on the
compliance to the validation process detailed in the RFC.

Info

Please note that RFC5280 also describes the delta CRL features, which as of the time of
the audit, was not implemented by Notation but most likely planned for later releases.

Ref.: 24-10-1825-LIV 64 Quarkslab SAS

https://datatracker.ietf.org/doc/html/rfc2560
https://datatracker.ietf.org/doc/html/rfc5280

7.2. CRL Validation

7.2.1. CRL Cache

RFC2580 Section 6 states that for a proper validation process to work, the CRLs need to
be available in a local cache and if the update time is reached, a mechanism needs to be
implemented to fetch the most recent CRL and place it in the local CRL cache.

CRL Cache presence and update

The local cache for CRLs is available, where each CRLs expiry date is properly checked in
notation-go/verifier/crl/crl.go. CRLs are properly fetched when expired in notation-
core-go/revocation/crl/fetcher.go.

7.2.2. Revocation State

To support CRL processing, the algorithm requires the following state variables:

1. reasons_mask: This variable contains the set of revocation reasons supported by the CRLs
and delta CRLs processed so far. The legal members of the set are the possible revocation
reason values minus unspecified: keyCompromise, cACompromise, affiliationChanged, super-
seded, cessationOfOperation, certificateHold, privilegeWithdrawn, and aACompromise. The
special value all-reasons is used to denote the set of all legal members. This variable is
initialized to the empty set.

2. cert_status: This variable contains the status of the certificate. This variable may
be assigned one of the following values: unspecified, keyCompromise, cACompromise,
affiliationChanged, superseded, cessationOfOperation, certificateHold, removeFromCRL,
privilegeWithdrawn, aACompromise, the special value UNREVOKED, or the special value
UNDETERMINED. This variable is initialized to the special value UNREVOKED.

3. interim_reasons_mask: This contains the set of revocation reasons supported by the
CRL or delta CRL currently being processed.

Presence of revocation state variable

They are defined in here, which is imported by Notation but the variables are never used.

7.2.3. CRL Processing

In order to check the revocation status of a certificate, one must perform the following for each
corresponding CRL in the local CRL cache:

1. Update the local CRL cache by obtaining a complete CRL as required.

2. Verify the issuer and scope of the complete CRL as follows.

3. Obtain and validate the certification path for the issuer of the complete CRL. The trust
anchor for the certification path MUST be the same as the trust anchor used to validate the
target certificate. If a key usage extension is present in the CRL issuer’s certificate, verify
that the cRLSign bit is set.

Ref.: 24-10-1825-LIV 65 Quarkslab SAS

https://datatracker.ietf.org/doc/html/rfc5280#section-6
https://pkg.go.dev/crypto/x509#RevocationListEntry

4. Validate the signature on the complete CRL using the public key validated in step (3).

5. Search for the certificate on the complete CRL. If an entry is found that matches the
certificate issuer and serial number then indicate the revocation reason.

CRL Processing

1. Update CRL: notation-core-go/revocation/crl/fetcher.go
2. Verify issuer and scope: notation-core-go/revocation/internal/crl/crl.go
3. Obtain and validate certification path: handled by crypto/x509 with (rl

*RevocationList) checkSignatureFrom
4. Validate the signature on the complete CRL: handled by crypto/x509 with (rl

*RevocationList) checkSignatureFrom
5. Search for the certificate: notation-core-go/revocation/internal/crl/crl.go

Warning

The RFC also includes other steps about the state variable interim_reason_mask that we
did not find in Notation code. Upon quick investigation, it seems, however, that these checks
are only relevant when a CRL does not support all the revocation reasons possible.

Info

As state by the RFC, a validation process with CRL does not require to fully follow the
CRL processing specification but the implementation should follow the described logic.
This is the case with Notation.

Ref.: 24-10-1825-LIV 66 Quarkslab SAS

8. CRL Analysis in Notation

As explained in the previous section, part of the protocol to verify a certificate includes the
check of the revocation status. These revocation checks can occur when:

• Verifying regular signatures;

• Verifying time-stamp counter signatures.

The usual way to perform such technique is via OCSP.

When revocation method with OCSP is not available or fails for checking the revocation status
of a certificate, notation implements a CRL verification fallback.

The overall CRL verification overview is depicted in Figure 15.

1 2

1

12 3
4

1 2

2
3

2

1 2

3
4

5

3

2

1
2 3

4

2

1
2 3

1

2
3

Figure 15: Global overview of the CRL verification³

8.1. Set up the updated source code

The CRL revocation functionality was released during Quarkslab audit. Quarkslab’s engineers
therefore needed to update the source code of the projects in order to test and audit the up-
to-date ones.

notation: 0d9ceacde56c4b61dbbd7d83a7875986195781f8 (Tag v1.3.0-rc.1)
2 notation-go: a86f8da6ea2dcd5764ce026640cc4dfbeaa1c613 (Tag v1.3.0-rc.1)
3 notation-core-go: e90546bd90a8074357dba2cbf19f2e755bd4be2a (Tag v1.2.0-rc.1)

Info

As the updated CLI, notation is not using notation-go version v1.3.0-rc.1 at the time of
the audit, but version v1.2.0-beta.1.0.20240926015724-84c2ec076201 instead, a patch has

³Full page scaled picture can be found in Appendix C.C.

Ref.: 24-10-1825-LIV 67 Quarkslab SAS

been applied in order to have a working environment that included the up-to-date CRL
revocation check feature. You can find the way we applied the patch in the Appendix B.

8.2. Revocation verification

The method (r *revocation) ValidateContext(ctx context.Context, validateContextOpts
ValidateContextOptions) from revocation handles the verification of the revocation status of
the certificate chains, contained in its validateContextOpts argument.

This method is either directly called when verifying the revocation status of the
certificate chain that has signed a time-stamp countersignature, by verifyTimestamp(ctx
context.Context, policyName string, trustStores []string, signatureVerification
trustpolicy.SignatureVerification, x509TrustStore truststore.X509TrustStore, r
revocation.Validator, outcome *notation.VerificationOutcome) , or by (v *verifier)
verifyRevocation(ctx context.Context, outcome *notation.VerificationOutcome) from
verifier when the regular signature verification is processed.

Ref.: 24-10-1825-LIV 68 Quarkslab SAS

1 2

Figure 16: Paths leading to revocation verification

8.2.1. Certificate chain verification

First, it is verified that the certificate chain is not empty and is valid by calling
ValidateChain(certChain []*x509.Certificate, certChainPurpose purpose.Purpose) from
x509util. Depending on the certChainPurpose value which can be either CodeSigning
or Timestamping , either ValidateCodeSigningCertChain(certChain []*x509.Certificate,
signingTime *time.Time) or ValidateTimestampingCertChain(certChain []*x509.Certificate)
from x509 is called, again, as already described in Section 6. .

Ref.: 24-10-1825-LIV 69 Quarkslab SAS

Figure 17: Certificate chain verification

8.2.2. Revocation checking methods

Info

As OCSP is out of scope and is used each time it is available, we commented out the code
corresponding to OCSP in order to only rely on CRL.

If the certificate chain only contains one certificate, it is assumed that it is a root certificate
which is not revokable. The following result structure is set for the certificate that is currently:

certResults[len(certChain)-1] = &result.CertRevocationResult{
2 Result: result.ResultNonRevokable,
3 ServerResults: []*result.ServerResult{{
4 Result: result.ResultNonRevokable,
5 RevocationMethod: result.RevocationMethodUnknown,
6 }},
7 RevocationMethod: result.RevocationMethodUnknown,
8 }

Otherwise, for each certificate except the root one, from leaf to root order:

• It is normally checked that OCSP method is available, and, if it is, tries to verify the revocation
status using this method. If verification process fails for unknown reason, then it fallbacks
to CRL;

• It is checked that CRL is available, and if it is, verifies the revocation status using this method;
• By default, the same structure as for a root certificate is set.

Ref.: 24-10-1825-LIV 70 Quarkslab SAS

INFO QB-9 No proper error handling when OCSP or CRL are not
available

Perimeter Revocation status verification

Description

If none of the revocation check methods are available, the returned structure only tells that
the status of the certificate is not revokable. This will not trigger any error, even if the
revocation verification policy is set to strict.

Recommendation

Another level of verification could be implemented, so that strict mode raises an error, or
at least prints warning logs if the revocation checks are not available, especially when the
certificate chain contains more than one certificate.

Info

The associated pull request for this issue is: https://github.com/notaryproject/notation-
go/pull/479

The method CertCheckStatus(ctx context.Context, cert, issuer *x509.Certificate, opts
CertCheckStatusOptions) from crl handles the revocation status check using CRL.

8.2.3. Fetching CRL

Fetching CRL is handled by (f *HTTPFetcher) Fetch(ctx context.Context, url string) from
crl. If a cache exists, it will try to extract the CRL from it.

8.2.3.1. Extracting CRL from the cache

Info

The root path to the cache is located in the user default location for cache, according to
the operating system, followed by /notation/crl.

The method (c *FileCache) Get(ctx context.Context, url string) is called, it gets the sha256
sum of the url argument, and tries to read the content of the file with the corresponding name in
the cache repository. If it succeeds, the content is deserialized into a fileCacheContent structure
which is then parsed by crypto/x509.ParseRevocationList.

Expiry time is then checked by checkExpiry(ctx context.Context, nextUpdate time.Time)
from crl.

Back to crl.(*HTTPFetcher).Fetch, expiry time is again checked, exactly the same way
crl.checkExpiry does.

At this point, if no error is encountered, the bundle is returned. Otherwise, if a non-critical
error was encountered like absent or expired cache, it is fetched.

Ref.: 24-10-1825-LIV 71 Quarkslab SAS

https://github.com/notaryproject/notation-go/pull/479
https://github.com/notaryproject/notation-go/pull/479

1

1
2 3

4

1 2

Figure 18: Fetching CRL from cache

Success

No security issue was discovered during this section.

8.2.3.2. Fetching and extracting CRL from URL

The method (f *HTTPFetcher) fetch(ctx context.Context, url string) from crl is called,
which calls fetchCRL(ctx context.Context, crlURL string, client *http.Client). crlURL is
parsed by net/url.Parse and the url scheme is verified to be http.

The CRL is then downloaded, during up to 2 seconds. The response content is read up to 32MB
if the HTTP response status code is between 200 and 299.

INFO QB-10 Non-compliant use of HTTP Status Code

Perimeter Fetch of CRL

Description

When fetching CRL from specified url, using HTTP Get method, any HTTP status code
between 200 and 299 are accepted. Even if an HTTP Status code starting with 2 is usually
related to a successful operation, anything but 200 should be rejected here and considered
as an error, as it would not make sense to receive something else considering the sent HTTP
GET request.

Ref.: 24-10-1825-LIV 72 Quarkslab SAS

Recommendation

Reject any response containing anything but HTTP 200 as status code.

The downloaded content is then parsed by crypto/x509.ParseRevocationlist and returned.

Info

This security issue has been taken into account and is fixed by the Notary Project
maintainers. The PR is currently private.

8.2.3.3. Setting the CRL cache

Finally, the method (c *FileCache) Set(ctx context.Context, url string, bundle
*corecrl.Bundle) from crl is called to try to fill the cache with the downloaded content, if the
cache exists.

The raw content is JSON serialized and passed to WriteFile(path string, content []byte) from
file. The path argument is built out of the path to the cache content, and the sha256 sum of
the filename.

A temporary file is created using os/CreateTemp, in the operating system dedicated area for
temporary files. The file is written with the content, closed, and then moved and renamed
thanks to os/Rename.

LOW QB-11 Non-portable way of creating temporary files for CRL’s
cache

Likelihood Impact

Perimeter CRL Cache Creation

Description

Method os/Rename is used to rename and move a temporary file to the user cache folder. As
detailed in the Rename method description, OS specific restrictions may apply. On Linux,
it is relying on libc, rename function. As per rename documentation, renaming cannot
be applied when the source and destination are located on two different mountpoints. On
modern Linux operating systems (tested with Fedora 38), dedicated temporary data area is
often a dedicated partition of type tmpfs, located in /tmp. An EXDEV error, detailed as “Cross
device link not permitted” is therefore raised during the execution of file.WriteFile on
such operating systems.

Recommendation

The file should be copied instead of being moved, or, directly created in the user cache
directory and then renamed. First solution can be implemented thanks os.Open, os.Create,
io.Copy and os.Remove from standard Go library.

Ref.: 24-10-1825-LIV 73 Quarkslab SAS

https://man7.org/linux/man-pages/man2/rename.2.html

Info

This security issue has been fixed by the Notary Project maintainers and has been assigned
a CVE-ID, see GHSA-qjh3-4j3h-vmwp / CVE-ID: CVE-2024-51491.

1 2

3
4

5

Figure 19: Fetching CRL from URL

8.2.4. Validation of the CRL bundle

The method validate(crl *x509.RevocationList, issuer *x509.Certificate) is
then called in order to verify the signature of the bundle. crypto/x509.
(*RevocationList).CheckSignatureFrom is leveraged in order to check it. The expiry time is
checked and the extensions of the revocation list are verified to not contain a critical one, or a
delta CRL.

1

2
3

Figure 20: Validation of the CRL bundle

Ref.: 24-10-1825-LIV 74 Quarkslab SAS

https://github.com/notaryproject/notation-go/security/advisories/GHSA-qjh3-4j3h-vmwp

Success

No security issue was discovered during this section.

8.2.5. Check the revocation status

The revocation list is iterated by checkRevocation(cert *x509.Certificate, baseCRL
*x509.RevocationList, signingTime time.Time, crlURL string) from crl, comparing the serial
number of each entry against the currently tested certificate.

If the certificate is in the revocation list:

• Its extensions are extracted by parseEntryExtensions(entry x509.RevocationListEntry)
from crl, where it is verified that the InvalidityDate extension is present and valid, and
that there is no critical extension;

• It is verified that the invalidity date is after the signing time, if both of them are specified. If it
is the case, the certificate was revoked after the time of signing and is not considered revoked.
Otherwise, it is considered as revoked and the method immediately returns a ServerResult
containing a ResultRevoked Result.

If the end of the loop is reached, the method returns a ServerResult with a ResultOK Result.

Jumping back to crl.CertCheckStatus, if the returned structure Result fields are equal to the
result.ResultRevoked, a CertRevocationResult is returned containing the same Result value.
If the end of the loop over the CRL URL is reached, and an error was encountered, the set
value for Result is ResultUnknown. Otherwise, it is a success and the set value is ResultOK.

1
2

3

Figure 21: Revocation checking

Success

No security issue was discovered during this section.

Ref.: 24-10-1825-LIV 75 Quarkslab SAS

8.2.6. Interpreting the results

The final result of the revocation status is handled by revocationFinalResult(certResults
[]*revocationresult.CertRevocationResult, certChain []*x509.Certificate, logger
log.Logger) from verifier.

It iterates over certResults, logs any errors that occur during the revocation checking process
and then either returns:
• result.ResultOK, '' if no fatal error were encountered and no certificate were revoked;
• result.ResultRevoked, "<Subject of the last revoked certificate of the chain>"

otherwise

Success

No security issue was discovered during this section.

Ref.: 24-10-1825-LIV 76 Quarkslab SAS

9. Conclusions

Quarkslab identified several issues or bugs in Notary projects. However, only one of them may
involve an immediate safety risk.

Quarkslab recognizes the considerable security efforts made by Notary developers to safeguard
the tool, mainly thanks to the conscientious implementation of the different related RFCs.

Additionally, Quarkslab provided recommendations and strategies for addressing the issues,
helping to strengthen the open-source tool and enhance its security moving forward.

Ref.: 24-10-1825-LIV 77 Quarkslab SAS

A. Code Duplicate

term ~/2/sources (main)> dupl -t 30 $(find . | grep -v "test" | grep "\\.go\$")
2 found 2 clones:
3 ./notation-core-go/revocation/internal/ocsp/errors.go:45,51
4 ./notation-core-go/revocation/result/errors.go:27,33
5 found 2 clones:
6 ./tspclient-go/internal/oid/algorithm.go:25,33
7 ./tspclient-go/internal/oid/algorithm.go:34,42
8 found 3 clones:
9 ./notation-go/plugin/plugin.go:108,129
10 ./notation-go/plugin/plugin.go:121,142
11 ./notation-go/plugin/plugin.go:134,155
12 found 2 clones:
13 ./notation-go/dir/fs.go:36,40
14 ./notation-go/internal/mock/mockfs/fs.go:29,33
15 found 2 clones:
16 ./notation-go/verifier/verifier.go:768,768
17 ./notation-go/verifier/verifier.go:970,970
18 found 2 clones:
19 ./notation-go/plugin/proto/sign.go:14,54
20 ./notation-go/plugin/proto/verify.go:14,56
21 found 2 clones:
22 ./notation-go/verifier/truststore/errors.go:22,30
23 ./notation-go/verifier/truststore/errors.go:42,50
24 found 6 clones:
25 ./tspclient-go/errors.go:27,36
26 ./tspclient-go/errors.go:50,59
27 ./tspclient-go/errors.go:73,82
28 ./tspclient-go/errors.go:96,105
29 ./tspclient-go/internal/cms/errors.go:38,47
30 ./tspclient-go/internal/cms/errors.go:61,70
31 found 2 clones:
32 ./notation/cmd/notation/cert/generateTest.go:34,42
33 ./notation/cmd/notation/key.go:31,39
34 found 2 clones:
35 ./notation-go/verifier/verifier.go:185,188
36 ./notation-go/verifier/verifier.go:208,211
37 found 2 clones:
38 ./notation-core-go/x509/codesigning_cert_validations.go:98,133
39 ./notation-core-go/x509/timestamp_cert_validations.go:91,126
40 found 3 clones:
41 ./notation-go/plugin/proto/algorithm.go:36,43
42 ./notation-go/plugin/proto/algorithm.go:153,160

Ref.: 24-10-1825-LIV 78 Quarkslab SAS

43 ./notation-go/plugin/proto/errors.go:28,65
44 found 2 clones:
45 ./notation-go/plugin/errors.go:61,66
46 ./notation-go/plugin/errors.go:86,91
47 found 2 clones:
48 ./notation-go/verifier/verifier.go:92,102
49 ./notation-go/verifier/verifier.go:105,115
50 found 2 clones:
51 ./notation-core-go/revocation/revocation.go:241,248
52 ./notation-core-go/revocation/revocation.go:253,260
53 found 2 clones:
54 ./notation/cmd/notation/cert/list.go:128,131
55 ./notation/cmd/notation/cert/list.go:144,147
56 found 4 clones:
57 ./notation-go/plugin/plugin.go:108,116
58 ./notation-go/plugin/plugin.go:121,129
59 ./notation-go/plugin/plugin.go:134,142
60 ./notation-go/plugin/plugin.go:147,155
61 found 2 clones:
62 ./notation-core-go/signature/algorithm.go:73,83
63 ./notation-core-go/signature/algorithm.go:85,95
64 found 3 clones:
65 ./notation-go/internal/mock/mocks.go:166,166
66 ./notation-go/registry/interface.go:39,39
67 ./notation-go/registry/repository.go:144,144
68 found 4 clones:
69 ./tspclient-go/errors.go:27,36
70 ./tspclient-go/errors.go:50,59
71 ./tspclient-go/errors.go:73,82
72 ./tspclient-go/errors.go:96,105
73 found 2 clones:
74 ./notation-core-go/signature/cose/envelope.go:411,421
75 ./notation-core-go/signature/cose/envelope.go:422,432
76 found 3 clones:
77 ./notation-go/internal/mock/mocks.go:191,193
78 ./notation-go/internal/mock/mocks.go:195,197
79 ./notation-go/internal/mock/mocks.go:199,201
80 found 3 clones:
81 ./notation-go/verifier/helpers.go:50,50
82 ./notation-go/verifier/helpers.go:134,134
83 ./notation-go/verifier/helpers.go:145,145
84 found 2 clones:
85 ./notation/cmd/notation/verify.go:176,182
86 ./notation/cmd/notation/verify.go:185,191
87 found 9 clones:
88 ./notation/cmd/notation/cert/generateTest.go:57,63

Ref.: 24-10-1825-LIV 79 Quarkslab SAS

89 ./notation/cmd/notation/inspect.go:98,104
90 ./notation/cmd/notation/key.go:92,98
91 ./notation/cmd/notation/key.go:123,129
92 ./notation/cmd/notation/list.go:67,73
93 ./notation/cmd/notation/login.go:56,62
94 ./notation/cmd/notation/logout.go:39,45
95 ./notation/cmd/notation/sign.go:107,113
96 ./notation/cmd/notation/verify.go:84,90
97 found 2 clones:
98 ./notation/cmd/notation/key.go:89,102
99 ./notation/cmd/notation/logout.go:36,49
100 found 2 clones:
101 ./notation-go/internal/envelope/envelope.go:37,44
102 ./notation/internal/envelope/envelope.go:53,60
103 found 4 clones:
104 ./notation/cmd/notation/common.go:35,37
105 ./notation/cmd/notation/common.go:44,46
106 ./notation/internal/cmd/flags.go:38,40
107 ./notation/internal/cmd/flags.go:87,89
108 found 2 clones:
109 ./notation-core-go/signature/internal/base/envelope.go:76,94
110 ./notation-core-go/signature/internal/base/envelope.go:97,112
111 found 2 clones:
112 ./notation-core-go/signature/cose/envelope.go:440,445
113 ./notation-core-go/signature/jws/jwt.go:124,131
114 found 2 clones:
115 ./notation-go/plugin/proto/algorithm.go:46,68
116 ./notation-go/plugin/proto/algorithm.go:117,139
117 found 2 clones:
118 ./tspclient-go/request.go:168,173
119 ./tspclient-go/response.go:117,122
120 found 2 clones:
121 ./notation-go/plugin/plugin.go:108,142
122 ./notation-go/plugin/plugin.go:121,155
123 found 2 clones:
124 ./notation-go/registry/repository.go:183,189
125 ./notation-go/registry/repository.go:189,195
126 found 2 clones:
127 ./tspclient-go/internal/cms/errors.go:38,47
128 ./tspclient-go/internal/cms/errors.go:61,70
129 found 2 clones:
130 ./notation/cmd/notation/inspect.go:108,116
131 ./notation/cmd/notation/verify.go:97,105
132 found 2 clones:
133 ./notation-core-go/revocation/internal/crl/crl.go:63,74
134 ./notation-core-go/revocation/internal/crl/crl.go:76,86

Ref.: 24-10-1825-LIV 80 Quarkslab SAS

135 found 2 clones:
136 ./notation/cmd/notation/cert/add.go:37,43
137 ./notation/cmd/notation/key.go:160,166
138 found 2 clones:
139 ./notation/cmd/notation/cert/show.go:43,52
140 ./notation/cmd/notation/plugin/uninstall.go:48,57
141 found 2 clones:
142 ./notation-core-go/x509/codesigning_cert_validations.go:40,42
143 ./notation-core-go/x509/timestamp_cert_validations.go:36,38
144 found 2 clones:
145 ./notation/cmd/notation/list.go:67,79
146 ./notation/cmd/notation/sign.go:107,119
147
148 Found total 41 clone groups.

Ref.: 24-10-1825-LIV 81 Quarkslab SAS

B. Patch to notation CLI for CRL support

Patch to include notation-go@v1.3.0-rc.1 in notation CLI.

diff --git a/cmd/notation/verify.go b/cmd/notation/verify.go
2 index 8943c08..96b1ee1 100644
3 --- a/cmd/notation/verify.go
4 +++ b/cmd/notation/verify.go
5 @@ -264,13 +264,13 @@ func getVerifier(ctx context.Context) (notation.Verifier,

error) {
6 }
7
8 // trust policy and trust store
9 - policyDocument, err := trustpolicy.LoadOCIDocument()
10 + policyDocument, err := trustpolicy.LoadDocument()
11 if err != nil {
12 return nil, err
13 }
14 x509TrustStore := truststore.NewX509TrustStore(dir.ConfigFS())
15
16 - return verifier.NewVerifierWithOptions(policyDocument, nil, x509TrustStore,

plugin.NewCLIManager(dir.PluginFS()), verifier.VerifierOptions{
17 + return verifier.NewWithOptions(policyDocument, x509TrustStore,

plugin.NewCLIManager(dir.PluginFS()), verifier.VerifierOptions{
18 RevocationCodeSigningValidator: revocationCodeSigningValidator,
19 RevocationTimestampingValidator: revocationTimestampingValidator,
20 })
21 diff --git a/go.mod b/go.mod
22 index 1bd05a0..7da3817 100644
23 --- a/go.mod
24 +++ b/go.mod
25 @@ -4,7 +4,7 @@ go 1.23
26
27 require (
28 github.com/notaryproject/notation-core-go v1.2.0-rc.1
29 - github.com/notaryproject/notation-go

v1.2.0-beta.1.0.20240926015724-84c2ec076201
30 + github.com/notaryproject/notation-go v1.3.0-rc.1
31 github.com/notaryproject/tspclient-go v0.2.0
32 github.com/opencontainers/go-digest v1.0.0
33 github.com/opencontainers/image-spec v1.1.0
34 diff --git a/go.sum b/go.sum
35 index 9eade9e..96fa332 100644
36 --- a/go.sum
37 +++ b/go.sum

Ref.: 24-10-1825-LIV 82 Quarkslab SAS

38 @@ -39,6 +39,8 @@ github.com/notaryproject/notation-core-go v1.2.0-rc.1
h1:VMFlG+9a1JoNAQ3M96g8iqC

39 github.com/notaryproject/notation-core-go v1.2.0-rc.1/
go.mod h1:b/70rA4OgOHlg0A7pb8zTWKJadFO6781zS3a37KHEJQ=

40 github.com/notaryproject/notation-go v1.2.0-beta.1.0.20240926015724-84c2ec076201
h1:2QBYa9Df+vMwMiaHaFqPoUiwfx5vcPEgM7KbusivTpw=

41 github.com/
notaryproject/notation-go v1.2.0-beta.1.0.20240926015724-84c2ec076201/go.mod
h1:F6zMQl3PhVdCsI1xlIjK66kCorUQhWkoMtlZdvJWxFI=

42 +github.com/notaryproject/notation-go v1.3.0-rc.1
h1:pm9tdUy2tWYqlwyRDZyKXgLwAscDATPUYv0ul2RK/Iw=

43 +github.com/notaryproject/notation-go v1.3.0-rc.1/go.mod
h1:W4o45yolX4Q+3PKlcpGleLLXEKWHa3BshEqw/JX5c6I=

44 github.com/notaryproject/notation-plugin-framework-go
v1.0.0 h1:6Qzr7DGXoCgXEQN+1gTZWuJAZvxh3p8Lryjn5FaLzi4=

45 github.com/notaryproject/notation-plugin-framework-go v1.0.0/go.mod
h1:RqWSrTOtEASCrGOEffq0n8pSg2KOgKYiWqFWczRSics=

46 github.com/notaryproject/tspclient-go v0.2.0 h1:g/KpQGmyk/
h7j60irIRG1mfWnibNOzJ8WhLqAzuiQAQ=

Ref.: 24-10-1825-LIV 83 Quarkslab SAS

C. Figures

C.A. Time-stamp Control Flow Graph

1

JWS

Ref.: 24-10-1825-LIV 84 Quarkslab SAS

C.B. Time-stamp Countersignature Verification

1

1 2

2

1 2 3 4 5 6
7

8
9

10 11 12 13

Ref.: 24-10-1825-LIV 85 Quarkslab SAS

C.C. CRL Verification

1 2

1

12 3
4

1 2

2
3

2

1 2

3
4

5

3

2

1
2 3

4

2

1
2 3

1

2
3

Ref.: 24-10-1825-LIV 86 Quarkslab SAS

Acronyms Index

CLI: Command Line Interface

CNCF: Cloud Native Computing Foundation

CRL: Certificate Revocation List

OCI: Open Container Initiative

OCSP: Online Certificate Status Protocol

OSTIF: Open Source Technology Improvement Fund, Inc.

TSA: Time-Stamp Authority

TSP: Time-Stamp Protocol

TST: Time-Stamp Token

Ref.: 24-10-1825-LIV 87 Quarkslab SAS

	Project Information
	Document history
	Contacts
	Quarkslab
	Client

	Executive Summary
	Context
	Objectives
	Methodology
	Findings Summary
	Recommendation and Action Plan
	Conclusions

	Reading Guide
	Executive summary
	Metric definition
	Impact
	Likelihood
	Severity

	Discovery
	Projects Informations
	Projects Breakdown
	Specification and Guides
	Previous Audits

	Installation and Debug
	Build
	Configuration
	Start Local Registry
	Sign and Verify Artifacts
	Certificate and Key generation
	Trust Policy

	Verify Signatures
	Add a Root Certificate
	Update the Trusted Policies

	Debugging with VSCode

	Scope Exploration
	Signing Blobs
	Time Stamping Support
	Playing with notation sign
	Sign process - registry
	Registry interaction flow & content
	Check the existence of the manifest for the asked tag
	New blob upload init
	Push the signature blob (format JWS here)
	Check if existing signature exists
	Push image manifest for signature
	Get OCI manifests index for the concerned image
	Push updated OCI manifest index with previous ones
	Delete previous manifest for our target image

	Source Discovery
	Code Structure
	Code Quality

	Time-Stamp Protocol Compliance
	Description
	Request Format
	Response Format
	Status Format
	Time-stamp Token Format

	Response Verification
	TST Reception Checks
	TST Fields Checks
	Signature Verification

	TSP via HTTP

	Time Stamp Analysis in Notation
	Signing with a Countersignature
	Initialization phase
	Request and Validation
	Building request
	HTTP Request
	HTTP request response validation
	Validation
	Token certificate chain identification and signature verification (signing side)
	Verification of the certificate chain (signing side)

	Verifying a Signature and its Time-stamp Countersignature
	Verifying the TSA policy
	Time-stamp countersignature extraction and validation
	Loading the trusted certificates
	Token certificate chain identification and signature verification (verif side)
	Verification of the certificate chain (verification side)
	Verifying the time-stamp against the signing certificate chain
	Verifying the revocation status

	Certificate Revocation List Compliance
	Description
	CRL Validation
	CRL Cache
	Revocation State
	CRL Processing

	CRL Analysis in Notation
	Set up the updated source code
	Revocation verification
	Certificate chain verification
	Revocation checking methods
	Fetching CRL
	Extracting CRL from the cache
	Fetching and extracting CRL from URL
	Setting the CRL cache

	Validation of the CRL bundle
	Check the revocation status
	Interpreting the results

	Conclusions
	Code Duplicate
	Patch to notation CLI for CRL support
	Figures
	Time-stamp Control Flow Graph
	Time-stamp Countersignature Verification
	CRL Verification

