
Node.js fuzzing audit

In collaboration with Open Source Technology Improvement

Fund and Sovereign Tech Fund

Adam Korczynski, David Korczynski

2024-06-29

Node.js fuzzing audit 2024-06-29

About Ada Logics

Ada Logics is a software security company founded in Oxford, UK, 2018 and is now based in London.
We are a team of dedicated, pragmatic security engineers and security researchers that work hands-on
with code auditing, security automation and security tooling.

We are committed open source contributors and we routinely contribute to state of the art security
tooling in the fuzzing domain such as advanced fuzzing tools like Fuzz Introspector and continuous
fuzzing with OSS-Fuzz. For example, we have contributed to fuzzing of hundreds of open source
projects by way of OSS-Fuzz. We regularly perform security audits of open source software and make
our reports publicly available with findings and fixes, and we have audited many of the most widely
used cloud native applications.

Ada Logics contributes to solving the challenge of securing the software supply-chain. To this end, we
develop the tooling and infrastructure needed for ensuring a secure software development lifecycle,
and we deploy these tools to critical software packages. On the tooling and infrastructure side, we
contribute to projects such as the OpenSSF Scorecard project as well as the Sigstore projects like SLSA
and Cosign.

Ada Logics helps some of the most exposed organisations secure their software, analyse their code
and increase security automation and assurance, and if you would like to consider working with us
please reach out to us via our website.

We write about our work on our blog. You can also follow Ada Logics on Linkedin, Twitter and Youtube.

Ada Logics ltd
71-75 Shelton Street,
WC2H 9JQ London,
United Kingdom

Node.js fuzzing audit 1

https://github.com/ossf/fuzz-introspector
https://adalogics.com/blog/fuzzing-100-open-source-projects-with-oss-fuzz
https://adalogics.com/blog/fuzzing-100-open-source-projects-with-oss-fuzz
https://adalogics.com/contact
https://adalogics.com/blog
https://www.linkedin.com/company/ada-logics
https://twitter.com/ADALogics
https://www.youtube.com/channel/UC9AiX8FOiOpK6mNggXSamBg

Node.js fuzzing audit 2024-06-29

Contents

About Ada Logics 1

Project dashboard 3

Executive Summary 4

Node.js threat model 5
Threats . 6

Fuzzing Node.js 8
Existing Node.js fuzzing and repair . 8

Continuous fuzzing background . 8
Continuous fuzzing of Node.js dependencies . 9
Continuous fuzzing of Node.js . 10

High-level options for targeting Node . 11
Fuzzing the full end-to-end-workflow . 11
Fuzzing internal APIs directly . 11
Multiple calls . 12

Expanding the Node.js fuzzing suite . 13
Fuzzing remaining dependencies . 13
Adding new fuzzers targeting Node.js APIs . 15
Coverage analysis of new fuzzers . 18

Issues found 22
Read-based buffer overflows in WASI:: . 23
Write-based buffer overflow in uvwasi__normalize_path 27
Division by zero in hdrhistogram_c decoder . 31
Memory leaks in histogram_c decoders . 32

Node.js fuzzing audit 2

Node.js fuzzing audit 2024-06-29

Project dashboard

Contact Role Organisation Email

Adam Korczynski Auditor Ada Logics Ltd adam@adalogics.com

David Korczynski Auditor Ada Logics Ltd david@adalogics.com

Amir Montazery Facilitator OSTIF amir@ostif.org

Derek Zimmer Facilitator OSTIF derek@ostif.org

Helen Woeste Facilitator OSTIF helen@ostif.org

Node.js fuzzing audit 3

Node.js fuzzing audit 2024-06-29

Executive Summary

Ada Logics conducted a security assurance audit of Node.js at the end of November and December
2023. The audit’s goal was to improve the continuous fuzzing setup of the Node.js ecosystem. The
audit was facilitated by the Open Source Technology Improvement Fund (OSTIF) and funded by the
Sovereign Tech Fund.

Ada Logics has extensive experience in fuzzing. Throughout the engagement, we first analyzed the
existing Node.js fuzzing setup, fixed an OSS-Fuzz build that had been broken for several months, added
new ClusterFuzzLite integrations for Node.js dependencies, and added more than 45 new fuzzers to
the existing fuzzing suite, which only had a single fuzzer. These now run as part of the Node.js OSS-Fuzz
setupsetup.

In summary, during the engagement, we:

• Fixed a broken Node.js OSS-Fuzz build, including fuzzing and code coverage.
• Created three new ClusterFuzzLite integrations to core Node.js dependencies.
• Extended the OSS-Fuzz fuzzing setup of Node.js with 48 new fuzzers.
• Documented four security findings found by the fuzzers.

Node.js fuzzing audit 4

https://adalogics.com
https://ostif.org
https://sovereigntechfund.de

Node.js fuzzing audit 2024-06-29

Node.js threat model

Node.js is interesting from the perspective of fuzzing in that it consists of both a Javascript layer and
an underlying layer implemented in C++ and C. At the Javascript layer are Node.js’s Javascript APIs
for the internal modules such as buffer, fs, tls, etc. This layer is located and maintained in the lib
directory in the Node.js source tree. At the lower C++ and C layer are Node.js C++ bindings and Node.js
core dependencies such as V8, LibUV, C-Ares, Zlib, etc. Node.js C++ bindings are maintained in the src
directory, and its core dependencies are maintained in its deps directory. At a high level, Node.js’s
architecture can be visualized as shown in Figure 1.

Figure 1: Node.js high-level architecture.

In the above diagram, the “Source Code” layer at the top represents the code Node.js users write and
deploy as their Node.js applications. As Node.js executes the users source code, invocation travels

Node.js fuzzing audit 5

Node.js fuzzing audit 2024-06-29

downwards into the Node.js .js APIs to the Node.js C++ bindings to the core dependencies and finally
to the operating system; Node.js first invokes the APIs that the user has adopted, then its C++ bindings,
and then its dependencies which rely on the operating system depending on Node.js module. For
example, Node.js will invoke OpenSSL if the user consumes crypto-related Node.js modules.

When users expose Node.js to untrusted input, this input enters Node.js system via the source code
layer at the very top. From the perspective of Nodes threat model, this includes any way of accepting
input, such as forms, raw http requests, or something third.

Threats

In this section, we consider the threats that Node.js faces and abstract them into high-level observations
that we can use to audit Node.js against.

When we consider threats in Node.js’s threat model, we first of all want to think of threats that apply to
all or almost all use cases. Node.js can be used in many different ways, in many different environments
and can be exposed to users of different threat levels. Some negative behaviour may be a big issue
to some users but might not have any criticality at all to others. As a general rule of thumb, when
assessing Node.js’s security, we consider the use cases that accept untrusted input. The input can be
highly untrusted or less untrusted. An application that is exposed to anyone on the Internet accepts
fully untrusted input, whereas an application that a teacher uses to collect the homework from their
students accepts less untrusted input.

Node.js maintains a public threat model that describes the scope of what is considered a security issue
in Node.js, which is available here.

Node.js threat model explicitly does not trust the following data inputs as shown in Figure 2.

Figure 2: Snippet of the Node.js threat model describing untrusted data.

Node.js is susceptible to the vulnerability class of memory corruption issues because of its large

Node.js fuzzing audit 6

https://github.com/nodejs/node/blob/d0e455044ef68b9b3bcf10776cab36e2e8edf06a/SECURITY.md

Node.js fuzzing audit 2024-06-29

dependency on memory-unsafe languages. The majority of Node.js code base is implemented in C++
or C if we include its core dependencies into our consideration. Much of the input from untrusted users
travels through Node.js memory-unsafe layers to its core dependencies. Node.js’s threat model does
not explicitly mention memory corruption or other vulnerability classes in memory-unsafe languages,
but it does include a section outlining issues that can often be triggered by memory corruption issues,
as shown in Figure 3.

Figure 3: Snippet of the Node.js threat model outlining specific inclusions of issues.

Memory corruptions and vulnerability classes specific to Node.js’s underlying C/C++ layers have the
potential to achieve all of these objectives. In cases in Node.js’s execution flow, where user-supplied
data travels from the .js layer to Node.js’s C/C++ layers, the C/C++ are also exposed to untrusted input.
The issue is exploitable if such input can trigger issues in the C/C++ layers. We consider any case where
an untrusted user can trigger memory corruptions, UAFs (use-after-free), and integer overflows in
Node.js’s C/C++ layers to be undesirable and should be audited for security criticality. Some examples
of this could be:

1. A Node.js application is exposed to the internet, and users can register and log in. The username
is an email address and the application checks that the email contains exactly one “@” symbol.
The application thereby processes incoming text strings. A user registering their account in the
application can create a string that triggers an issue in Node.js’s underlying C/C++ code that can
escalate privileges.

2. A Node.js application is exposed internally to handle document storage. The organization needs
to maintain strict access controls against the documents. A temporary worker is able to upload a
document with a name that corrupts memory.

In the next section, we discuss how to design the fuzzing workflow so that the fuzzers can test scenarios
where untrusted users send data to Node.js.

Node.js fuzzing audit 7

Node.js fuzzing audit 2024-06-29

Fuzzing Node.js

In this section, we describe the fuzzing efforts part of the engagement. We will go over how to approach
fuzzing Node.js, the fuzzing setup that is in place for Node.js, and the efforts we carried out to expand
the fuzzing of Node.js.

A significant part of the Node.js ecosystem is written in memory-unsafe languages, specifically C and
C++. Furthermore, a substantial portion of this codebase comprises dependencies used by Node.js
and not first-party code written by Node.js authors. We will consider the fuzzing setup of Node.js from
a whole-ecosystem perspective, including considerations around the third-party dependencies that
compose most of Node.js’s memory-unsafe code.

The overall steps of the fuzzing part of this engagement were as follows:

1. Analyze the existing fuzzing ecosystem of Node.js.
2. Repair the existing Node.js OSS-Fuzz setup.
3. Outline potential strategies for fuzzing Node.js continuously.
4. Extend the existing fuzzing suite.

In the following sections we will go through each of these.

Existing Node.js fuzzing and repair

Continuous fuzzing background

Continuity is an essential element of every robust fuzzing suite. The reason for this is that fuzzers need
to explore the execution paths of the application they test, and this takes time. A fuzzer with a sizeable
potential call tree may require weeks or months to generate test cases that reach the furthest parts of
its call tree. If such a fuzzer only runs for a couple of hours, it will not have enough time to explore the
code, let alone test the entire call tree. An essential part of open-source fuzzing infrastructure is the
OSS-Fuzz and ClusterFuzzLite projects, which solve the problem of continuous fuzzing for open source
software.

OSS-Fuzz is an open-source project by Google that offers large amounts of computing power and
implements the necessary infrastructure to automate continuous fuzzing at scale for critical open-
source projects. In practice, critical open-source projects integrate into OSS-Fuzz and set up their
fuzzers so they can run in the OSS-Fuzz environment. Once done, OSS-Fuzz will run the project’s fuzzes
periodically with thousands of CPUs. ClusterFuzzLite is a lighter version of OSS-Fuzz that enables
continuous fuzzing to run as part of the CI, such as by way of GitHub actions.

Node.js fuzzing audit 8

https://github.com/google/oss-fuzz
https://github.com/google/clusterfuzzlite
https://github.com/google/oss-fuzz

Node.js fuzzing audit 2024-06-29

Continuous fuzzing of Node.js dependencies

Node.js’s core dependencies are established independent projects. Most of these are maintained by
third parties, with a single dependency maintained by the Node.js project. Node.js’s security posture
inherits the security posture of its third-party dependencies. For Node, it is essential that its core
dependencies - with an emphasis on the dependencies implemented in memory-unsafe languages -
maintain their own fuzzing infrastructure. Below is a table that gives an overview of the fuzzing efforts
of Nodes memory-unsafe dependencies:

Name Continuous fuzzing OSS-Fuzz Code coverage

1 ada-url oss-fuzz/projects/ada-url 75.59% coverage report

2 base64 No, but OSS-Fuzz proposed -

3 brotli oss-fuzz/projects/brotli 80.98% coverage report

4 c-ares oss-fuzz/projects/c-ares 31.73% coverage report

5 histogram None -

6 icu-small oss-fuzz/projects/icu 43.43% coverage-report

7 llhttp oss-fuzz/projects/llhttp 65.44% coverage-report

8 nghttp2 oss-fuzz/projets/nghttp2 54.67% coverage-report

9 ngtcp2 ClusterFuzzLite: ngtcp2/.clusterfuzzlite x

10 nghttp3 ClusterFuzzLite: nghttp3/.clusterfuzzlite x

11 OpenSSL oss-fuzz/projects/openssl 38.45% coverage-report

12 SimdJson oss-fuzz/projects/simdjson 49.04% coverage-report

13 SimdUTF oss-fuzz/projects/simdutf 36.50% coverage-report

14 LibUV None x

15 uvwasi None x

16 v8 yes, as part of Chromium fuzzing x

17 zlib oss-fuzz/projects/zlib 69.73% coverage-report

The state of Node.js’s core memory-unsafe dependencies’ fuzzing efforts is highly positive. Most
dependencies are integrated into OSS-Fuzz or ClusterFuzzLite and have a high level of fuzz coverage.
Throughout this engagement, we integrated continuous fuzzing into the three remaining dependencies:
LibUV, uvwasi and histogram.

Node.js fuzzing audit 9

https://github.com/google/oss-fuzz/tree/master/projects/ada-url
https://storage.googleapis.com/oss-fuzz-coverage/ada-url/reports/20240112/linux/report.html
https://github.com/aklomp/base64/issues/120
https://github.com/google/oss-fuzz/tree/master/projects/brotli
https://storage.googleapis.com/oss-fuzz-coverage/brotli/reports/20240112/linux/report.html
https://github.com/google/oss-fuzz/tree/master/projects/c-ares
https://storage.googleapis.com/oss-fuzz-coverage/c-ares/reports/20240112/linux/report.html
https://github.com/google/oss-fuzz/tree/master/projects/icu
https://storage.googleapis.com/oss-fuzz-coverage/icu/reports/20240112/linux/report.html
https://github.com/google/oss-fuzz/tree/master/projects/llhttp
https://storage.googleapis.com/oss-fuzz-coverage/llhttp/reports/20240112/linux/report.html
https://github.com/google/oss-fuzz/tree/master/projects/nghttp2
https://storage.googleapis.com/oss-fuzz-coverage/nghttp2/reports/20240112/linux/report.html
https://github.com/ngtcp2/ngtcp2/tree/main/.clusterfuzzlite
https://github.com/ngtcp2/nghttp3/tree/main/.clusterfuzzlite
https://github.com/google/oss-fuzz/tree/master/projects/openssl
https://storage.googleapis.com/oss-fuzz-coverage/openssl/reports/20240112/linux/report.html
https://github.com/google/oss-fuzz/tree/master/projects/simdjson
https://storage.googleapis.com/oss-fuzz-coverage/simdjson/reports/20240112/linux/report.html
https://github.com/google/oss-fuzz/tree/master/projects/simdutf
https://storage.googleapis.com/oss-fuzz-coverage/simdutf/reports/20240112/linux/report.html
https://bugs.chromium.org/p/chromium/issues/list?q=label%3Afuzzilli&can=1
https://github.com/google/oss-fuzz/tree/master/projects/zlib
https://storage.googleapis.com/oss-fuzz-coverage/zlib/reports/20240112/linux/report.html

Node.js fuzzing audit 2024-06-29

Continuous fuzzing of Node.js

Node.js itself was integrated into OSS-Fuzz in May 2020, and this integration was done by David
Korczynski, who was also an auditor in this fuzzing engagement. The setup initially included a fuzzer
for URL parsing logic and a more general fuzzer that executes fuzzer-seeded data as javascript programs
by way of Node.js. The URL fuzzer no longer exists due to changes to URL logic in Node.js (now ada-
url is used). However, the more general fuzzer has run continuously since then and has found issues
in the Simd dependency:

Figure 4: Bugs in the Node.js OSS-Fuzz bug tracker listed here

At the beginning of this engagement, the Node.js OSS-Fuzz build had been broken for a few months
and the coverage build had been broken for more than a year, since October 2022, This means that
OSS-Fuzz could not build the fuzzers and there were no coverage reports. The first task was, therefore,
to repair the OSS-Fuzz, including both the fuzzing build and the code coverage build.

We fixed the fuzzing build by adding a missing initialization step in the fuzzer, and we fixed this in this
pr. However, the process of merging took at few weeks so we decided to make OSS-Fuzz use a forked
version of Node.js with the fixes (as well as further extensions we discuss later) to enable the fuzzing to
run (OSS-Fuzz PR).

The code coverage build was more tricky to handle as even after fixing the actual build, OSS-Fuzz would
run into trouble because it would not be able to link all the executables due to resource limitations.
The problem is that code coverage builds require a lot of memory available and in combination with
Node.js having a significant amount of code (more than a million lines of C/C++ cod) within the linked
executables OSS-Fuzz would stop the build process due to memory constraints.

To overcome the issue with limited resources, we took two steps: (1) limit the number of CPUs during
link time to a maximum of 1 and (2) limit the amount of code being instrumented with code coverage
visualization logic. In particular, (2) was more tricky because we have to adjust the build process of
Node.js with respect to the compilation flags provided by OSS-Fuzz, and the caveat is we will not have
code coverage visualization of the dependencies within the Node.js code coverage reports. However,
the alternative is no code coverage reports, so we considered the best option to ensure we have code
coverage visualization of the code in the src folder. The change can be seen in this pr for limiting
instrumentation and this pr for limiting CPUs.

Node.js fuzzing audit 10

https://github.com/google/oss-fuzz/pull/3860
https://bugs.chromium.org/p/oss-fuzz/issues/list?q=nodejs&can=1
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=61429
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=52855
https://github.com/nodejs/node/pull/51080
https://github.com/nodejs/node/pull/51080
https://github.com/google/oss-fuzz/pull/11350
https://github.com/google/oss-fuzz/pull/11488
https://github.com/google/oss-fuzz/pull/11488
https://github.com/google/oss-fuzz/pull/11458

Node.js fuzzing audit 2024-06-29

High-level options for targeting Node

The main goal of our fuzzing efforts was twofold: (1) increase the amount of native code being fuzzed
within the Node.js ecosystem and (2) do it in a manner that uses continuous fuzzing by way of OSS-Fuzz
or ClusterFuzzLite. To this end, we considered three high-level approaches for targeting the native
code, and we will iterate through each of them in the following sections.

Fuzzing the full end-to-end-workflow

The first option is to imitate the entire workflow of how Node.js accepts untrusted input to an appli-
cation, how the untrusted input is passed onto the internal javascript modules, how the input then
travels to the Node.js C++ bindings onto the C/C++ dependencies and finally, potentially to operating
system calls. The pros of following this approach are that the fuzzer imitates real or near-real behaviour,
meaning that if the fuzzer finds an issue, it is likely that the issue is a true positive. The con of this ap-
proach is that it is expensive at runtime and potentially for the developer to include a full environment
in a single test.

In the case of Node, this workflow entails setting up all the layers in the Node.js architecture: The
source code layer, the internal JS modules, the C++ bindings and the dependencies. The input from
the fuzzers would enter the system via the source code layer, ie. the fuzzer would set up an application,
and the test case from the fuzzer would be passed to the application.

Figure 5: Node.js fuzzing option one, end-to-end fuzzing strategy.

Fuzzing internal APIs directly

With this approach, we can set up fuzzing that calls Nodes internal APIs directly. In a real-world scenario,
these internal APIs can be the third or fourth link in the execution chain of Node, and instead of testing
the first two links, we can call the internal APIs directly. The pro of this is that some internal APIs are
excellent for fuzzing directly. This can be a result of the project having modularized APIs that do heavy

Node.js fuzzing audit 11

Node.js fuzzing audit 2024-06-29

processing over input. By fuzzing internal APIs, we can focus the fuzzer on complex code rather than
spending runtime cycles in irrelevant parts of the code. The con is that such fuzzer might not include
all sanitization rules or checks that the code base invokes prior to the process reaching the internal
APIs, and as a result, the fuzzer may find and report false positives.

In Node, with this approach, we can fuzz any layer in Nodes architecture that processes untrusted data.
By doing so, we can test the reliability and security of specific parts of Node.js in a focused manner.

Figure 6: Node.js fuzzing option two, fuzzing native API directly.

Multiple calls

We have the option to fuzz a single Node.js API as well as fuzzing multiple different APIs in the same
fuzz harness. In some cases, it might not be the API that we pass random data to that has a bug, but to
find the bug in API b, we need first to call API a. For example, the Node.js Buffer module has APIs to
create a buffer (Buffer.New()), but it also has APIs to process over buffers. Consider this program:

1 var buf = Buffer.from('Creating new buffer');
2
3 console.log(buf.indexOf('new'));

If we are to fuzz test buf.indexOf(), we first need a buffer to search against. To test this behaviour
by way of fuzzing, we also need two different inputs, one when creating a new buffer and one when
calling buf.indexOf().

These three approaches do not need to be mutually exclusive, in fact, it is favorable to employ all three
in a fuzzing setup and we did this as described in the next section.

Node.js fuzzing audit 12

Node.js fuzzing audit 2024-06-29

Figure 7: Node.js fuzzing option 3, using more complex .js files seeded with fuzz data.

Expanding the Node.js fuzzing suite

In this section, we outline how we expanded the fuzzing suite, including how we expanded the depen-
dencies being fuzzed and fuzzing of the main Node.js source code.

Fuzzing remaining dependencies

Significantly, we have introduced fuzzing to the three dependencies not in OSS-Fuzz, namely:

HdrHistogram_c: This dependency is maintained in the node/deps/histogram folder and is a mirror of
HdrHistogram_c. Currently, the latest version of HdrHistogram_c is 0.11.8, and Node.js is using 0.11.7,
although there seems to be no semantic difference between 0.11.7 and 0.11.8.

The code of HdrHistogram_c is around 3000 lines of code (counted with cloc), so it is likely too
small for continuous integration into OSS-Fuzz. To this end, we integrated the project into ClusterFuz-
zLite.

We added a fuzzer in Add fuzzing by way of ClusterFuzzLite that creates a histogram seeded with fuzz
data and then calls various functions used by Node.js on the histogram. The fuzzer found memory
leaks in three places of similar nature and also found a division by zero issues (ADA-2023-NODE-3 and
ADA-2023-NODE-4). We added fixes for these here and here, respectively. The core of the fuzzer is as
follows, where filename points to a file with data generated by the fuzzer:

1 // open FP to the log file
2 fp = fopen(filename, "r");
3 if (hdr_log_reader_init(&reader)) {
4 return 0;
5 }
6
7 rc = hdr_log_read_header(&reader, fp);
8 if (rc) {
9 fclose(fp);

Node.js fuzzing audit 13

https://github.com/nodejs/node/tree/main/deps/histogram
https://github.com/HdrHistogram/HdrHistogram_c
https://github.com/google/oss-fuzz
https://github.com/google/clusterfuzzlite
https://github.com/google/clusterfuzzlite
https://github.com/google/clusterfuzzlite
https://github.com/HdrHistogram/HdrHistogram_c/pull/121
https://github.com/HdrHistogram/HdrHistogram_c/pull/121

Node.js fuzzing audit 2024-06-29

10 unlink(filename);
11 return 0;
12 }
13
14 // Output to /dev/null
15 FILE *fp_dev_null = fopen("/dev/null", "w");
16
17 rc = hdr_log_read(&reader, fp, &h, ×tamp, &interval);
18
19 if (0 == rc) {
20 // Call functions used by Node.js
21 hdr_min(h);
22 hdr_max(h);
23 hdr_mean(h);
24 hdr_stddev(h);
25 hdr_value_at_percentile(h, 50.0);
26 hdr_get_memory_size(h);
27
28 hdr_percentiles_print(h, fp_dev_null, 5, 1.0, CLASSIC);
29 hdr_close(h);
30 }

Base64: the base64 dependency is pulled from github.com/aklomp/base64. The central feature used
is that this library utilizes SIMD operations where possible. This library has an existing pull request
focused on integrating the project into OSS-Fuzz, which also contains two fuzzing harnesses here. The
fuzzers in this PR look good and cover the important entrypoints. As there is already a PR in place for
integrating fuzzing we decided not to add another one but rather let the maintainers of base64 act
based on the existing PR.

LibUV: the libuv dependency is pulled from github.com/libuv/libuv. This library provides various
asynchronous I/O related features, e.g. file system operations, and was a library primarily used for
Node.js.

LibUV is a central component in the Node.js source. However, it is not a library that is generally a good
fuzzing target since there is limited data processing in the library. However, libuv has previously had a
vulnerability that affected Node.js in the form of CVE-2020-8252. As such, we decided to implement a
ClusterFuzzLite integration into LibUV and the PR for this is available here. The fuzzer targets various
functions with some data handling routines, e.g. uv_ip4_addr, uv_ip6_addr, the vulnerable
function from CVE-2020-8252 (uv_fs_realpath) and some initial file system operations fuzzing.
There are more options available, such as creating more sophisticated state-machines that can be
used to fuzz arbitrary sequences of operations provided by LibUV.

uvwasi: the uvwasi dependency is pulled from github.com/nodejs/uvwasi. This library is used for
implementing the Web Assembly System Interface (WASI) and uses LibUV throughout to ensure optimal
portability. Similar to LibUV, this library does not have a lot of data handling or parsing, although there

Node.js fuzzing audit 14

https://github.com/nodejs/node/tree/main/deps/base64
https://github.com/aklomp/base64
https://github.com/aklomp/base64/pull/119
https://github.com/nodejs/node/tree/main/deps/uv
https://github.com/libuv/libuv
https://www.cvedetails.com/cve/CVE-2020-8252/
https://github.com/libuv/libuv/pull/4286
https://github.com/nodejs/node/tree/main/deps/uvwasi
https://github.com/nodejs/uvwasi

Node.js fuzzing audit 2024-06-29

are a few places where paths are analyzed (e.g., normalized) and contain data handling logic. To this
end, we opted for a ClusterFuzzLite integration as opposed to a full OSS-Fuzz integration.

We added a fuzzer targeting the path resolution logic in uvwasi/src/path_resolver.c and
specifically uvwasi__normalize_path. This fuzzer ran quickly into a write-based buffer overflow
due to an off-by-one issue in the parsing logic, namely ADA-2023-NODE-1 and ADA-2023-NODE
-2.

Adding new fuzzers targeting Node.js APIs

We expanded the existing fuzzing suite of Node.js, which had only a single fuzzer, to a total of 49 fuzzers.
All of the fuzzers are present in the test/fuzzers folder of the forked repository of node, under the
all-new-fuzzers branch.

The following table gives an overview of the fuzzers and their respective Node.js API targets.

Fuzzer name Primary Node.js API target

1 fuzz_ClientHelloParser node::crypto::ClientHelloParser::Parse

2 fuzz_LoadBIO node::crypto::LoadBIO

3 fuzz_ParseCaaReply node::cares_wrap::ParseTxtReply

4 fuzz_ParseCaaReply node::cares_wrap::ParseGeneralReply

5 fuzz_ParseMxReply node::cares_wrap::ParseMXReply

6 fuzz_ParseNaptrReply node::cares_wrap::ParseNaptrReply

7 fuzz_ParsePublicKey node::crypto::ManagedEVPPKey::
ParsePublicKeyPEM

8 fuzz_ParseSoaReply node::cares_wrap::ParseSoaReply

9 fuzz_ParseSrvReply node::cares_wrap::ParseSrvReply

10 fuzz_ParseTxtReply node::cares_wrap::ParseTxtReply

11 fuzz_blob Blob.text

12 fuzz_buffer_compare Buffer.compare

13 fuzz_buffer_equals Buffer.equals

14 fuzz_buffer_includes Buffer.includes

Node.js fuzzing audit 15

https://github.com/AdamKorcz/node/tree/all-new-fuzzers/test/fuzzers

Node.js fuzzing audit 2024-06-29

Fuzzer name Primary Node.js API target

15 fuzz_cipheriv crypto.createCipheriv, cipher.update,
cipher.final, crypto.createDecipheriv,
decipher.update, decipher.final

16 fuzz_creativePriveKeyDER crypto.createPrivateKey (DER format)

17 fuzz_createPrivateKeyJWK crypto.createPrivateKey (JWK format)

18 fuzz_createPrivateKeyPEM crypto.createPrivateKey (PEM format)

19 fuzz_diffieHellmanDER crypto.diffieHellman (DER format)

20 fuzz_diffieHellmannJWK crypto.diffieHellman (JWK format)

21 fuzz_diffieHellmanPEM crypto.diffieHellman (PEM format)

22 fuzz_fs_write_open_read fs.writeFileSync, fs.open, fs.read

23 fuzz_fs_write_read_append fs.writeFileSync, fs.readFile,
fs.readFileSync, fs.appendFile

24 fuzz_httpparser1 _http_common.HTTPParser.execute

25 fuzz_path_basename path.basename

26 fuzz_path_dirname path.dirname

27 fuzz_path_extname path.extname

28 fuzz_path_format path.format

29 fuzz_path_isAbsolute path.isAbsolute

30 fuzz_path_join path.join

31 fuzz_path_normalize path.normalize

32 fuzz_path_parse path.parse

33 fuzz_path_relative path.relative

34 fuzz_path_resolve path.resolve

35 fuzz_path_toNamespacedPath path.toNamespacedPath

36 fuzz_querystring_parse path.querystring.parse

37 fuzz_quic_token node::quic::TokenSecret::Validate,
node::quic::RegularToken::Validate

38 fuzz_sign_verify sign.sign, verify.update, verify.verify

Node.js fuzzing audit 16

Node.js fuzzing audit 2024-06-29

Fuzzer name Primary Node.js API target

39 fuzz_stream1 readable.push, chunk.toString

40 fuzz_string_decoder StringDecoder.write, StringDecoder.end

41 fuzz_strings node_api_symbol_for,
napi_set_named_property,
napi_get_named_property,
napi_has_named_property,
napi_get_property_names, napi_has_property,
napi_get_property, napi_delete_property,
napi_has_own_property,
napi_create_type_error,
napi_create_range_error,
node_api_create_syntax_error,
napi_run_script

42 fuzz_tls_socket_request TLS socket requests

43 fuzz_v8_brotli_deserialize v8.deserialize

44 fuzz_x509 node:crypto:X509Certificate, x509.subject,
x509.checkEmail, x509.checkHost,
x509.checkIP, x509.fingerprint,
x509.fingerprint512, x509.infoAccess,
x509.issuer, x509.issuerCertificate,
x509.extKeyUsage, x509.raw,
x509.serialNumber, x509.subject,
x509.subjectAltName, x509.toJSON(),
x509.toLegacyObject(), x509.toString(),
x509.validFrom, x509.validTo,
x509.verify(x509.publicKey);

45 fuzz_zlib_brotliCompress zlib.brotliCompress

46 fuzz_zlib_brotliDecompress zlib.brotliDecompress

47 fuzz_zlib_createBrotliDecompresszlib.createBrotliDecompress

48 fuzz_zlib_gzip_createUnzip zlib.createUnzip

Node.js fuzzing audit 17

Node.js fuzzing audit 2024-06-29

Coverage analysis of new fuzzers

The most recent coverage report prior to this engagement was from 26th October 2022, as the coverage
build had been broken since then. Figure 8 shows the state of coverage overall before this engagement
and Figure 9 shows the files in srcwith code coverage at the same point in time.

Figure 8: Code coverage of Node.js on OSS-Fuzz before this engagement report here

Node.js fuzzing audit 18

https://storage.googleapis.com/oss-fuzz-coverage/nodejs/reports/20221026/linux/src/node/report.html

Node.js fuzzing audit 2024-06-29

Figure 9: Code coverage of node/src folder before this engagement report here

At the time of writing, not all new fuzzers have yet been included in the OSS-Fuzz code coverage report.
Approximately 25% of them are missing. However, to give some insights of the progress we can rely on
the coverage report as it is the 14th January 2024.

The code coverage in the same locations following addition of new fuzzers is shown in Figure 10 and
Figure 11.

In total, we can see progress such as:

1. 1400 more functions are analyzed within the src folder.
2. Code coverage went from 3.6% to 21.7% within the src folder.
3. 130 files in the src folder now have fuzzing coverage, whereas previously, it was 21.

It is noteworthy that the added coverage is spread well out over many files as shown by Figure 11 and
also the amount of new functions analyzed. As such, a large breadth of new code was analyzed with
the additions of the new fuzzers.

Node.js fuzzing audit 19

https://storage.googleapis.com/oss-fuzz-coverage/nodejs/reports/20221026/linux/src/node/src/report.html

Node.js fuzzing audit 2024-06-29

We anticipate once data from the remaining fuzzers are included the coverage will increase to around
35% in the src folder and steadily increase over time.

Figure 10: Code coverage of Node.js on OSS-Fuzz at end of this engagement report here

Node.js fuzzing audit 20

https://storage.googleapis.com/oss-fuzz-coverage/nodejs/reports/20240114/linux/src/node/report.html

Node.js fuzzing audit 2024-06-29

Figure 11: Code coverage of node/src folder at end of this engagement report here

Node.js fuzzing audit 21

https://storage.googleapis.com/oss-fuzz-coverage/nodejs/reports/20240114/linux/src/node/src/report.html

Node.js fuzzing audit 2024-06-29

Issues found

In this section we iterate through the issues found throughout the audit.

ID Title Severity Fixed

1 ADA-2023-
NODE-1

Read-based buffer overflows in WASI:: Informational Yes

2 ADA-2023-
NODE-2

Write-based buffer overflow in
uvwasi__normalize_path

Informational Yes

3 ADA-2023-
NODE-3

Division by zero in hdrhistogram_c decoder Informational Yes

4 ADA-2023-
NODE-4

Memory leaks in histogram_c decoders Informational Yes

Node.js fuzzing audit 22

Node.js fuzzing audit 2024-06-29

Read-based buffer overflows in WASI::

Severity Informational

id ADA-2023-NODE-1

component uvwasi

The modules in WASI:: calls into various uvwasi_path* functions. Many of these functions will
further call into uvwasi__resolve_pathwhere path is a buffer which holds a size of path_len
such as in this call. The problem in this case is that uvwasi_resolve_path does not enforce

limitations in terms of reading only within the buffer, but will also read beyond the buffer in case the
buffer is not NULL-terminated.

To show this we set up a fuzzer for uvwasi__resolve_pathwhich found the following issue:

1 #0 0x4d0a1c in printf_common(void*, char const*, __va_list_tag*) /
src/llvm-project/compiler-rt/lib/asan/../sanitizer_common/
sanitizer_common_interceptors_format.inc:553:9

2 #1 0x4d2270 in __interceptor_snprintf /src/llvm-project/compiler-rt
/lib/asan/../sanitizer_common/sanitizer_common_interceptors.inc
:1736:1

3 #2 0x56cf56 in uvwasi__combine_paths /src/uvwasi/src/path_resolver.
c:56:7

4 #3 0x56c3c4 in uvwasi__normalize_relative_path /src/uvwasi/src/
path_resolver.c:284:9

5 #4 0x56c3c4 in uvwasi__resolve_path /src/uvwasi/src/path_resolver.c
:442:11

6 #5 0x56b54d in LLVMFuzzerTestOneInput /src/uvwasi/.clusterfuzzlite/
path_resolve_fuzzer.c:51:5

7 #6 0x43f323 in fuzzer::Fuzzer::ExecuteCallback(unsigned char const
*, unsigned long) /src/llvm-project/compiler-rt/lib/fuzzer/
FuzzerLoop.cpp:611:15

8 #7 0x4406d4 in fuzzer::Fuzzer::ReadAndExecuteSeedCorpora(std::
__Fuzzer::vector<fuzzer::SizedFile, std::__Fuzzer::allocator<
fuzzer::SizedFile> >&) /src/llvm-project/compiler-rt/lib/fuzzer/
FuzzerLoop.cpp:804:3

9 #8 0x440ba9 in fuzzer::Fuzzer::Loop(std::__Fuzzer::vector<fuzzer::
SizedFile, std::__Fuzzer::allocator<fuzzer::SizedFile> >&) /src/
llvm-project/compiler-rt/lib/fuzzer/FuzzerLoop.cpp:857:3

10 #9 0x43020f in fuzzer::FuzzerDriver(int*, char***, int (*)(unsigned
char const*, unsigned long)) /src/llvm-project/compiler-rt/lib/

fuzzer/FuzzerDriver.cpp:912:6
11 #10 0x459862 in main /src/llvm-project/compiler-rt/lib/fuzzer/

FuzzerMain.cpp:20:10

Node.js fuzzing audit 23

https://github.com/nodejs/node/blob/e6707c3c3354a745c28db18a1713e778e48ae8df/deps/uvwasi/src/uvwasi.c#L1744-L1749

Node.js fuzzing audit 2024-06-29

12 #11 0x7f9edf598082 in __libc_start_main (/lib/x86_64-linux-gnu/libc
.so.6+0x24082) (BuildId:
eebe5d5f4b608b8a53ec446b63981bba373ca0ca)

13 #12 0x420c4d in _start (/out/path_resolve_fuzzer+0x420c4d)

with a minor change in the fuzzer to also make the calluvwasi__normalize_path(data, size
, fd.normalized_path, BUFFER_SIZE); the following issue occurs

1 ===
2 ==97003==ERROR: AddressSanitizer: heap-buffer-overflow on address 0

x602000005dfa at pc 0x00000056c02f bp 0x7ffd077ee680 sp 0
x7ffd077ee678

3 READ of size 1 at 0x602000005dfa thread T0
4 SCARINESS: 12 (1-byte-read-heap-buffer-overflow)
5 #0 0x56c02e in uvwasi__strchr_slash /src/uvwasi/src/path_resolver.c

:27:9
6 #1 0x56c02e in uvwasi__normalize_path /src/uvwasi/src/path_resolver

.c:89:12
7 #2 0x56b53f in LLVMFuzzerTestOneInput /src/uvwasi/.clusterfuzzlite/

path_resolve_fuzzer.c:48:9
8 #3 0x43f323 in fuzzer::Fuzzer::ExecuteCallback(unsigned char const

*, unsigned long) /src/llvm-project/compiler-rt/lib/fuzzer/
FuzzerLoop.cpp:611:15

9 #4 0x43eb0a in fuzzer::Fuzzer::RunOne(unsigned char const*,
unsigned long, bool, fuzzer::InputInfo*, bool, bool*) /src/llvm-
project/compiler-rt/lib/fuzzer/FuzzerLoop.cpp:514:3

10 #5 0x4401d9 in fuzzer::Fuzzer::MutateAndTestOne() /src/llvm-project
/compiler-rt/lib/fuzzer/FuzzerLoop.cpp:757:19

11 #6 0x440ea5 in fuzzer::Fuzzer::Loop(std::__Fuzzer::vector<fuzzer::
SizedFile, std::__Fuzzer::allocator<fuzzer::SizedFile> >&) /src/
llvm-project/compiler-rt/lib/fuzzer/FuzzerLoop.cpp:895:5

12 #7 0x43020f in fuzzer::FuzzerDriver(int*, char***, int (*)(unsigned
char const*, unsigned long)) /src/llvm-project/compiler-rt/lib/

fuzzer/FuzzerDriver.cpp:912:6
13 #8 0x459862 in main /src/llvm-project/compiler-rt/lib/fuzzer/

FuzzerMain.cpp:20:10
14 #9 0x7feb7964f082 in __libc_start_main (/lib/x86_64-linux-gnu/libc.

so.6+0x24082) (BuildId: eebe5d5f4b608b8a53ec446b63981bba373ca0ca
)

15 #10 0x420c4d in _start (/out/path_resolve_fuzzer+0x420c4d)

The problem is that uvwasi__resolve_path and uvwasi__normalize_path assumes that path is
NULL-terminated, but this is not always guaranteed to be the case. In particular, when a size of the
buffer is provided as well to the API, it is counter-intuitive that the logic will read beyond the provided
size. We recommend ensuring that these APIs do not read beyond the provided buffer length. We
indicate this as informational as we did not find this affect NodeJS, but recommend either clearly
indicating in the documentation that the string should be NULL-terminated.

The fuzzer used to find this:

Node.js fuzzing audit 24

https://github.com/nodejs/uvwasi/blob/2d0c0d019009e0bf85ee0e519c64f1109025f459/src/path_resolver.c#L71-L74

Node.js fuzzing audit 2024-06-29

1 #include <stdint.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 #include "../src/fd_table.h"
6 #include "../src/path_resolver.h"
7 #include "../src/wasi_rights.h"
8 #include "uvwasi.h"
9

10 #define BUFFER_SIZE 128
11
12 char normalized_buffer[BUFFER_SIZE];
13 static uvwasi_t uvwasi;
14
15 int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {
16 uvwasi_errno_t err;
17 struct uvwasi_fd_wrap_t fd;
18
19 char *new_str = (char *)malloc(size + 1);
20 if (new_str == NULL) {
21 return 0;
22 }
23 memcpy(new_str, data, size);
24 new_str[size] = '\0';
25
26 memset(normalized_buffer, 0, BUFFER_SIZE);
27
28 static uvwasi_options_t init_options;
29 uvwasi_options_init(&init_options);
30 uvwasi_init(&uvwasi, &init_options);
31
32 fd.id = 3;
33 fd.fd = 3;
34 fd.path = new_str;
35 fd.real_path = new_str;
36 fd.normalized_path = normalized_buffer;
37 fd.type = UVWASI_FILETYPE_DIRECTORY;
38 fd.rights_base = UVWASI__RIGHTS_ALL;
39 fd.rights_inheriting = UVWASI__RIGHTS_ALL;
40 fd.preopen = 0;
41
42 char *resolved = NULL;
43 uvwasi__resolve_path(&uvwasi, &fd, data, size, &resolved, 0);
44 if (resolved != NULL) {
45 free(resolved);
46 }
47
48 uvwasi_destroy(&uvwasi);
49
50 free(new_str);

Node.js fuzzing audit 25

Node.js fuzzing audit 2024-06-29

51 return 0;
52 }

Node.js fuzzing audit 26

Node.js fuzzing audit 2024-06-29

Write-based buffer overflow in uvwasi__normalize_path

Severity Informational

id ADA-2023-NODE-2

component uvwasi

A heap write-based buffer overflow was found in uvwasi/src/path_resolved.c:
uvwasi__normalize_path. The issue was found by the following fuzzer:

1 #include <stdint.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 #include "../src/path_resolver.h"
6
7 #define BUFFER_SIZE 128
8
9 char normalized_buffer[BUFFER_SIZE];

10
11 int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {
12 char *new_str = (char *)malloc(size + 1);
13 if (new_str == NULL) {
14 return 0;
15 }
16 memcpy(new_str, data, size);
17 new_str[size] = '\0';
18
19 memset(normalized_buffer, 0, BUFFER_SIZE);
20
21 uvwasi__normalize_path(new_str, size, normalized_buffer, BUFFER_SIZE)

;
22
23 free(new_str);
24 return 0;
25 }

The fuzzer finds an issue with the following ASAN report:

1 ===
2 ==97003==ERROR: AddressSanitizer: global-buffer-overflow on address 0

x00000101f8a0 at pc 0x00000056c043 bp 0x7ffc71cbc100 sp 0
x7ffc71cbc0f8

3 WRITE of size 1 at 0x00000101f8a0 thread T0
4 #0 0x56c042 in uvwasi__normalize_path /src/uvwasi/src/path_resolver

.c

Node.js fuzzing audit 27

Node.js fuzzing audit 2024-06-29

5 #1 0x56b533 in LLVMFuzzerTestOneInput /src/uvwasi/.clusterfuzzlite/
path_resolve_fuzzer.c:48:9

6 #2 0x43f323 in fuzzer::Fuzzer::ExecuteCallback(unsigned char const
*, unsigned long) /src/llvm-project/compiler-rt/lib/fuzzer/
FuzzerLoop.cpp:611:15

7 #3 0x42aa82 in fuzzer::RunOneTest(fuzzer::Fuzzer*, char const*,
unsigned long) /src/llvm-project/compiler-rt/lib/fuzzer/
FuzzerDriver.cpp:324:6

8 #4 0x43032c in fuzzer::FuzzerDriver(int*, char***, int (*)(unsigned
char const*, unsigned long)) /src/llvm-project/compiler-rt/lib/

fuzzer/FuzzerDriver.cpp:860:9
9 #5 0x459862 in main /src/llvm-project/compiler-rt/lib/fuzzer/

FuzzerMain.cpp:20:10
10 #6 0x7f7d5a029d8f in __libc_start_call_main csu/../sysdeps/nptl/

libc_start_call_main.h:58:16
11 #7 0x7f7d5a029e3f in __libc_start_main csu/../csu/libc-start.c

:392:3
12 #8 0x420c4d in _start (/tmp/oss-fuzz/build/out/uvwasi/

path_resolve_fuzzer+0x420c4d)

The issue occurs on line 141 in path_resolver.c:

139 memcpy(ptr, cur, cur_len);
140 ptr += cur_len;
141 *ptr = '\0';
142 }

The problem is that ptr += cur_len may set ptr to point at normalized_path +
normalized_lenwhich causes an off-by-one issue when the normalized_len corresponds to
the size of the normalized_path buffer.

The proposed fix is to check thatptr has not increased beyond the bounds ofnormalized_path:

139 memcpy(ptr, cur, cur_len);
140 ptr += cur_len;
141 if (ptr >= (normalized_path + normalized_len))
142 return UVWASI_ENOTCAPABLE;
143 *ptr = '\0';
144 }

It’s important to highlight in this case that the function used within uvwasi always allocates an extra byte
such as here and here. However, we consider it counter-intuitive that uvwasi__normalize_path
reads beyond the specified length, this is made more counter-intuitive considering the tests of this
function provides the size of the buffer and not 1 less than the size of the normalized buffer here.

Considering that the API is used correctly in the places it’s called, we consider the best option to either
change the tests to indicate the size shuold be +1 and also add documentation for the API highlight the
buffer must must be of the size+1 of the size provided.

Node.js fuzzing audit 28

https://github.com/nodejs/uvwasi/blob/2d0c0d019009e0bf85ee0e519c64f1109025f459/src/path_resolver.c#L291-L298
https://github.com/nodejs/uvwasi/blob/2d0c0d019009e0bf85ee0e519c64f1109025f459/src/path_resolver.c#L291-L301
https://github.com/nodejs/uvwasi/blob/2d0c0d019009e0bf85ee0e519c64f1109025f459/test/test-path-resolution.c#L24

Node.js fuzzing audit 2024-06-29

The fuzzer we used for this is:

1 #include <stdint.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 #include "uvwasi.h"
6 #include "../src/fd_table.h"
7 #include "../src/path_resolver.h"
8 #include "../src/wasi_rights.h"
9

10 #define BUFFER_SIZE 128
11
12 char normalized_buffer[BUFFER_SIZE];
13 static uvwasi_t uvwasi;
14
15 int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {
16 uvwasi_errno_t err;
17 struct uvwasi_fd_wrap_t fd;
18
19 if (size < 10) {
20 return 0;
21 }
22
23 char *new_str = (char *)malloc(size + 1);
24 if (new_str == NULL) {
25 return 0;
26 }
27 memcpy(new_str, data, size);
28 new_str[size] = '\0';
29
30 memset(normalized_buffer, 0, BUFFER_SIZE);
31
32 static uvwasi_options_t init_options;
33 uvwasi_options_init(&init_options);
34 uvwasi_init(&uvwasi, &init_options);
35
36
37 fd.id = 3;
38 fd.fd = 3;
39 fd.path = new_str;
40 fd.real_path = new_str;
41 fd.normalized_path = normalized_buffer;
42 fd.type = UVWASI_FILETYPE_DIRECTORY;
43 fd.rights_base = UVWASI__RIGHTS_ALL;
44 fd.rights_inheriting = UVWASI__RIGHTS_ALL;
45 fd.preopen = 0;
46
47
48 err = uvwasi__normalize_path(new_str, size, fd.normalized_path,

BUFFER_SIZE);

Node.js fuzzing audit 29

Node.js fuzzing audit 2024-06-29

49 if (err == UVWASI_ESUCCESS) {
50 char* resolved = NULL;
51 uvwasi__resolve_path(&uvwasi, &fd, new_str, size, &resolved, 0);
52 if (resolved != NULL) {
53 free(resolved);
54 }
55 }
56
57 uvwasi_destroy(&uvwasi);
58
59 free(new_str);
60 return 0;
61 }

Node.js fuzzing audit 30

Node.js fuzzing audit 2024-06-29

Division by zero in hdrhistogram_c decoder

Severity Informational

id ADA-2023-NODE-3

component hdrhistogram_c

The hdrhistogram_c dependency was found to have a division by zero issue when decoding his-
tograms. This issue was found by the ClusterFuzzLite integration available here.

The problem is in the following lines where word_size is read from the log file, but is not being
checked for value before being used in a division operation.

501 word_size = word_size_from_cookie(be32toh(encoding_flyweight.cookie
));

502 counts_limit = be32toh(encoding_flyweight.payload_len) / word_size;
503 lowest_discernible_value = be64toh(encoding_flyweight.

lowest_discernible_value);
504 highest_trackable_value = be64toh(encoding_flyweight.

highest_trackable_value);
505 significant_figures = be32toh(encoding_flyweight.

significant_figures);

In the event word_size is 0 a division-by-zero operation will happen on line 502.

The proposed, and accepted, fix is available here and adds a check on the word_size:

501 word_size = word_size_from_cookie(be32toh(encoding_flyweight.cookie
));

502 if (word_size == 0)
503 {
504 FAIL_AND_CLEANUP(cleanup, result, HDR_INVALID_WORD_SIZE);
505 }
506 counts_limit = be32toh(encoding_flyweight.payload_len) / word_size;
507 lowest_discernible_value = be64toh(encoding_flyweight.

lowest_discernible_value);
508 highest_trackable_value = be64toh(encoding_flyweight.

highest_trackable_value);
509 significant_figures = be32toh(encoding_flyweight.

significant_figures);

We have set this as informational severity because this specific part of the histogram dependeny is
determined not to be reachable of by Node.js.

Node.js fuzzing audit 31

https://github.com/HdrHistogram/HdrHistogram_c/pull/120
https://github.com/HdrHistogram/HdrHistogram_c/pull/121

Node.js fuzzing audit 2024-06-29

Memory leaks in histogram_c decoders

Severity Informational

id ADA-2023-NODE-4

component hdrhistogram_c

The hdrhistogram_c dependency was found to have three memory leaks when decoding his-
tograms. This issue was found by the ClusterFuzzLite integration available here.

The problem is that hdr_decode_compressed_v0, hdr_decode_compressed_v1 and
hdr_decode_compressed_v2 relies on hdr_init to dynamically allocate a hdr_histogram
struct. However, in the event the decoding fails then this is cleared up using hdr_free diretly on the
dynamically allocated memory. The problem is that the allocated struct itself contains a pointer to
some dynamically allocated memory, which will be left dangling. This is specifically the counts array
allocated here and assigned to a member of the struct here.

The proposed fix is to use the dedicated hdr_close function instead of hdr_free:

1 void hdr_close(struct hdr_histogram* h)
2 {
3 if (h) {
4 hdr_free(h->counts);
5 hdr_free(h);
6 }
7 }

The proposed, and accepted, fix is in this PR.

Node.js fuzzing audit 32

https://github.com/HdrHistogram/HdrHistogram_c/pull/120
https://github.com/HdrHistogram/HdrHistogram_c/blob/8dcce8f68512fca460b171bccc3a5afce0048779/src/hdr_histogram.c#L424
https://github.com/HdrHistogram/HdrHistogram_c/blob/8dcce8f68512fca460b171bccc3a5afce0048779/src/hdr_histogram.c#L437
https://github.com/HdrHistogram/HdrHistogram_c/pull/122

	About Ada Logics
	Project dashboard
	Executive Summary
	Node.js threat model
	Threats

	Fuzzing Node.js
	Existing Node.js fuzzing and repair
	Continuous fuzzing background
	Continuous fuzzing of Node.js dependencies
	Continuous fuzzing of Node.js

	High-level options for targeting Node
	Fuzzing the full end-to-end-workflow
	Fuzzing internal APIs directly
	Multiple calls

	Expanding the Node.js fuzzing suite
	Fuzzing remaining dependencies
	Adding new fuzzers targeting Node.js APIs
	Coverage analysis of new fuzzers

	Issues found
	Read-based buffer overflows in WASI::
	Write-based buffer overflow in uvwasi__normalize_path
	Division by zero in hdrhistogram_c decoder
	Memory leaks in histogram_c decoders

