
Fastify Security Audit 2023-2024

Security Audit Report

(Arthur) Sheung Chi Chan, Adam Korczynski, David Korczynski

2024-05-15

Fastify Security Audit 2023-2024 2024-05-15

Contents

About Ada Logics 4

Project dashboard 5

Executive summary 6

Threat model 8
Introduction . 8
Data flow of Fastify . 8
Major components of Fastify . 9

Content type parser . 9
Decorators . 9
Hooks . 9
Logging . 9
Plugins . 10
Routing . 10
Fastify server configuration . 10
Errors handling . 11

Scope of Fastify . 11
Audit scope of Fastify . 11

Threat actors . 11
Threat actors’ objectives . 12

Stealing information . 12
Gain access to servers . 12
Perform unauthorized or unexpected activities . 13
Denial of services . 13
Relay attacks to other users . 13

Attack surface . 13

Manual Audit 15
List of audited modules . 16
General List of items to look for . 18
Fastify plugin audit . 19

@fastify/auth . 19
@fastify/basic-auth . 19
@fastify/bearer-auth . 20
@fastify/busboy . 20

Fastify Security Audit 2023-2024 1

Fastify Security Audit 2023-2024 2024-05-15

@fastify/caching . 22
@fastify/circuit-breaker . 22
@fastify/compress . 23
@fastify/cookie . 24
@fastify/cors . 26
@fastify/csrf @fastify/csrf-protection . 28
@fastify/elasticsearch . 29
@fastify/fast-json-stringify @fastify/fast-json-stringify-compiler 30
@fastify/fast-uri . 31
@fastify-formbody . 31
@fastify/http-proxy . 32
@fastify/jwt . 33
@fastify/middie . 34
@fastify/multipart . 35
@fastify/oauth2 . 36
@fastify/reply-from . 38
@fastify/response-validation . 39
@fastify/secure-json-parse . 39
@fastify/secure-session . 40
@fastify/session . 42
@fastify/soap-client . 43
@fastify/static . 44
@fastify/under-pressure . 45
@fastify/websocket . 46

Fuzzing 48
Fuzzers . 48
List of fuzzers . 49

Findings 51

[Fastify-Cookie] Weak signing key in default signer 52
Description . 52

[Fastify-Cors] Possible regular expression DOS in Fastify-Cors 54
Description . 54

[Fastify-Middie] Possible regular expression DOS in fastify-middie dependency 55
Description . 55

Fastify Security Audit 2023-2024 2

Fastify Security Audit 2023-2024 2024-05-15

[Fastify-Secure-Session] Possible reuse of destroyed secure session cookie 56
Description . 56

[Fastify-Session] Possible use of weak SHA-1 algorithm for session persistent hash 58
Description . 58

Fastify Security Audit 2023-2024 3

Fastify Security Audit 2023-2024 2024-05-15

About Ada Logics

Ada Logics is a software security company founded in Oxford, UK, 2018 and is now based in London.
We are a team of dedicated, pragmatic security engineers and security researchers that work hands-on
with code auditing, security automation and security tooling.

We are committed open source contributors and we routinely contribute to state of the art security
tooling in the fuzzing domain such as advanced fuzzing tools like Fuzz Introspector and continuous
fuzzing with OSS-Fuzz. For example, we have contributed to fuzzing of hundreds of open source
projects by way of OSS-Fuzz. We regularly perform security audits of open source software and make
our reports publicly available with findings and fixes, and we have audited many of the most widely
used cloud native applications.

Ada Logics contributes to solving the challenge of securing the software supply-chain. To this end, we
develop the tooling and infrastructure needed for ensuring a secure software development lifecycle,
and we deploy these tools to critical software packages. On the tooling and infrastructure side, we
contribute to projects such as the OpenSSF Scorecard project as well as the Sigstore projects like SLSA
and Cosign.

Ada Logics helps some of the most exposed organisations secure their software, analyse their code
and increase security automation and assurance, and if you would like to consider working with us
please reach out to us via our website. We write about our work on our blog. You can also follow Ada
Logics on Linkedin, Twitter and Youtube.

Ada Logics ltd 71-75 Shelton Street, WC2H 9JQ London, United Kingdom

Fastify Security Audit 2023-2024 4

https://github.com/ossf/fuzz-introspector
https://adalogics.com/blog/fuzzing-100-open-source-projects-with-oss-fuzz
https://adalogics.com/blog/fuzzing-100-open-source-projects-with-oss-fuzz
https://adalogics.com/contact
https://adalogics.com/blog
https://www.linkedin.com/company/ada-logics
https://twitter.com/ADALogics
https://www.youtube.com/channel/UC9AiX8FOiOpK6mNggXSamBg

Fastify Security Audit 2023-2024 2024-05-15

Project dashboard

Contact Role Organisation Email

Adam
Korczynski

Auditor Ada Logics Ltd adam@adalogics.com

(Arthur)
Sheung Chi
Chan

Auditor Ada Logics Ltd arthur.chan@adalogics.com

David
Korczynski

Auditor Ada Logics Ltd david@adalogics.com

Matteo Collina Fastify Maintainer Fastify matteo.collina@gmail.com

Amir
Montazery

Facilitator OSTIF amir@ostif.org

Derek Zimmer Facilitator OSTIF derek@ostif.org

Helen Woeste Facilitator OSTIF helen@ostif.org

Fastify Security Audit 2023-2024 5

Fastify Security Audit 2023-2024 2024-05-15

Executive summary

Ada Logics conducted a security audit of Fastify at the end of September 2023 to January 2024. The
goal of the audit was to perform a holistic security assessment of the Fastify framework and its plugins
with a particular focus on manual audit and its continuous fuzzing by way of OSS-Fuzz. The audit was
facilitated by the Open Source Technology Improvement Fund (OSTIF) and funded by the Sovereign
Tech Fund.

The audit was focused on the following modules:

• fastify

• @fastify/auth

• @fastify/basic-auth

• @fastify/bearer-auth

• @fastify/busboy

• @fastify/caching

• @fastify/circuit-breaker

• @fastify/compress

• @fastify/cookie

• @fastify/cors

• @fastify/csrf
• @fastify/csrf-protection

• @fastify/elasticsearch

• @fastify/fast-json-stringify
• @fastify/fast-json-stringify-compiler
• @fastify/fast-uri

Fastify Security Audit 2023-2024 6

https://adalogics.com
https://github.com/google/oss-fuzz
https://ostif.org
https://sovereigntechfund.de
https://sovereigntechfund.de

Fastify Security Audit 2023-2024 2024-05-15

• @fastify/formbody
• @fastify/http-proxy

• @fastify/jwt

• @fastify/middie

• @fastify/multipart

• @fastify/oauth2

• @fastify/reply-from

• @fastify/response-validation

• @fastify/secure-json-parse

• @fastify/secure-session

• @fastify/session

• @fastify/soap-client

• @fastify/static

• @fastify/under-pressure

• @fastify/websocket

We performed the following tasks during the audit:

• Developed a threat model
• Performed a manual audit of the code
• Developed and extended the continuous fuzzing set-up

In summary, during the engagement we:

• Developed threat models for the Fastify framework
• Performed manual auditing of each of the codebases
• Wrote a fuzz test suite and integrated Fastify into the OSS-Fuzz project

Fastify Security Audit 2023-2024 7

Fastify Security Audit 2023-2024 2024-05-15

Threat model

Introduction

Fastify is a web application framework with a core product and a series of plugins to add-on to the
core depending based on the adopters needs.This audit targets the core fastify framework and a list of
core plugins which are maintained by the Fasitfy team.

Data flow of Fastify

In this section we present how data flows through the Fastify ecosystem. At a high level, we consider two
categories: The first category is the configuration and development of the server-side web application
based on the Fastify web framework. The second category is the lifecycle for handling untrusted HTTP
requests and responses by the Fastify-based web applications and developed functions, hooks and plu-
gins. The following diagram displays the request / response handling lifecycle and how the developer’s
configurations and developments could affect the data handling in different stages of the lifecycle.

Fastify Security Audit 2023-2024 8

Fastify Security Audit 2023-2024 2024-05-15

Major components of Fastify

Content type parser

Content type parser is one of the major components of Fastify that handles parsing of raw HTTP request
when the web application receives it. The core Fastify package only handles request payload types of
json or plaintext. Additional types needed to be handled by other plugins or third party packages by
registering them as new content-type parser in Fastify servers.

Decorators

Decorators are functions or parameters that could be added to a Fastify web instance for additional
functionalities. Fastify provides decorators API for that purpose. After registering new functions or
parameters through the decorators API, they can be used by either the Fastify general life cycle, or the
in Hooks function or request handlers. Decorators are controlled by scope which is defined directly in
a Fastify instance. Fastify opens the decorated objects to all components of the current Fastify instance
of web application.

Hooks

When a web request is passed from the web server, the web server relays it to the fastify entry point
and goes through 15 different life cycle steps. Some steps (red in the graph) are hooks that allow the
developer to add specific handling logic at a given stage. For example, developers could add in custom
parsing logic or plugins towards the preParsing hook in order to change the behaviour of how the raw
http request parsing is done. This hook setting allows detailed customisation of each of the life cycle
stages of the web application on top of the default process done by Fastify. Besides the general life
cycle hooks, there are also additional hooks like onError that would trigger if case of errors or http
response are aimed to be sent and that could also be customised by adding additional hooks with
custom lambda function or logics. Besides, Fastify also provides a list of application hooks which are
triggered when the status of the web application has been changed, like restarting or terminating of
the whole web application.

Logging

Fastify core makes use of Pino Json logging for the default instances when handling request and
response, or any state changes of the web application services. Logging can be configured by the
server factory during web application starts up or provide additional functionalities via custom logic or

Fastify Security Audit 2023-2024 9

Fastify Security Audit 2023-2024 2024-05-15

plugins. Custom logging can be added by the developer through hooks or request handlers. Logging
level and other settings could be configured during web application impelemntation.

Plugins

Plugins are collections of predefined and predeveloped components, including route handling, deco-
rators, functions or any JS objects that provide predefined web application functionality. The main
idea of the plugin is to provide additional actions, features or functionality to Fastify instances and
encapsulate all of the underlying actions. Fastify maintains a set of core plugins which provide com-
mon web application functionality. There is only one unified scope for a Fastify web instance. Fastify
provides scope registration in order to create new scopes and encapsulate decorators and routing into
different scopes. This could be used to separate the scope of components in the same Fastify web
instances. Plugins can be registered in a web instance and executed in their own scope, providing
extra functionality to the Fastify instance life cycle on handling web requests and responses. They can
also change the default engine used in different request/response life cycles to a custom or plugin’s
plugin-defined engine.

Routing

Routing of HTTP requests is a core feature for every web framework. Fastify’s routing follows the devel-
oper’s configuration to determine which route or HTTP method is supported in this web application
and which custom logic or handler functions are responsible for handling requests and generating
responses. When the web server receives an HTTP web request and relays it to the Fastify web instance,
the request is routed to the corresponding registered handler functions or error handlers. Developers
could register custom handling logic or hook functions in order to control how the request and response
are going through the web applications.

Fastify server configuration

Fastify core package exports the main server factory class in order for developers to customise some
basic web application settings, including the port and host listened to by the server or additional logic
to execute when the web service is started or terminated. These settings affect how the Fastify web
instance executes on the servers.

Fastify Security Audit 2023-2024 10

Fastify Security Audit 2023-2024 2024-05-15

Errors handling

Fastify core does not handle any of the errors, it just relays all the underlying errors towards the surface.
Developers are meant to implement their own error handling functions and register them as callback
functions in the Fastify web instance. When no callback functions is registered, a Promise object
are returned when an error occurs. Both error handling callback functions or Promise object can be
captured or handled by try catch blocks.

Scope of Fastify

Fastify takes up the responsibility when it receives a HTTP raw web request from the underlying web
servers and ends when the final hook has been invoked after a web response (either a success or
fail with error status code) is created and passed to the web server. The general procedure of the
Fastify framework abstracts the need to handle each step of the web request and response processing.
Developers only need to define the logic for the lifecycle steps by way of hooks, functions and decorators.
Plugins are a combination of any of the above that has bundled together for easy implementation.
They are treated like bundled services for some common applications of Fastify configurations.

Audit scope of Fastify

The audit scope of Fastify includes the core lifecycle to handle the http request / response, and a list of
plugins managed by the Fastify team which provides general functionality for a web application.

Threat actors

A threat actor is an individual or group that intentionally attempts to exploit vulnerabilities or the
infrastructure of the Fastify web application framework, its users, its source code platform, build
processes, release cycles and its releases. Threat actors can target users of the web applications
developed on top of Fastify framework.

Actor Description

Have already
escalated
privileges

Web application
users

Users of the web application developed by way of the Fastify
framework

No

Fastify Security Audit 2023-2024 11

Fastify Security Audit 2023-2024 2024-05-15

Actor Description

Have already
escalated
privileges

Web application
developers

The developers configured and developed the web
applications by Fastify framework and plugins.

Yes

Other users of the
servers

Other privileged users of the server hosting the web
applications developed by Fastify framework.

Partly

Contributors to
Fastify plugins

Contributors to Fastify plugins used by the web application
developers.

No

Contributors to
3rd-party
dependencies

Contributors to dependencies used by Fastify core
framework and plugins.

No

Third-party
maintainers

A third-party maintainer that turns malicious is a an actor
that can attempt to compromise Fastify and its user base.
This is a possible attack vector because Fastify trusts the
maintainers of their third party libraries.

No

Threat actors’ objectives

As Fastify web framework is meant to be the backbone of server-side web applications, the threat
actors’ objectives remain the same for general web applications.

Stealing information

Web applications developed by the Fastify framework open up ports to receive HTTP requests and
process them. If the general handling logic of Fastify or the custom logic from developers contains
vulnerabilities, threat actors could exploit these to steal information from the web applications or
other services running on the web server, which may include databases, credentials or other local
resources.

Gain access to servers

Threat actors may make use of vulnerable web applications to gain access to the underlying web
servers.

Fastify Security Audit 2023-2024 12

Fastify Security Audit 2023-2024 2024-05-15

Perform unauthorized or unexpected activities

Some services in the web applications and the underlying servers may require different levels of
privileges. Threat actors may target the vulnerability in the Fastify web instance to perform privilege
escalation or generate malicious requests, pretending to be initiated from legitimate users (Cross-Site
Request Forgery).

Denial of services

Web applications are generally vulnerable to Denial of Services attack because it is expected to receive
and process HTTP request from any source. Threat actors target vulnerable web applications without
proper handling of invalid or large raw requests to consume a high amount of server resources, making
the web applications and servers fail to handle requests from legitimate users.

Relay attacks to other users

Web applications generally store some information for further processing. It is no different for Fastify-
based web applications. Threat actors may try to add or inject malicious code into the existing au-
thorized web applications to relay the attacks or malicious activities to other users using the web
applications. These Cross-site scripting attacks make the vulnerable web applications the media for
relaying attacks.

Attack surface

An attack surface is a components that could be manipulated by a threat actor to perform unexpected
or malicious activities on legit services. The attack surface of Fastify is similar to a general server-side
web application. Including the following. 1. Fastify request / response life cycle
Fastify request / response life cycle handles web requests like general sever-side web applications
from any users. It opens an entry point for untrusted users to perform several attacks on the web
applications or underlying web servers. 2. Decorators / Plugins
Decorators or plugins provide additional functionality to the web request handling. If developers use a
vulnerable plugin, it could open up new attack surfaces for attacking the web applications. In addition,
wrong implementation of plugins or decorators could bypass some of the validation mechanisms of
Fastify and open up more holes in the web applications. 3. Request URL routing The Fastify routing
engine relays the raw web request to the designated handlers. If the routing is being polluted, it could
redirect to a wrong handler and perform unexpected actions. 4. Resource storage Vulnerable handling
of resource storage could make Fastify based web applications become a storage of redirect attacks

Fastify Security Audit 2023-2024 13

Fastify Security Audit 2023-2024 2024-05-15

like Cross site scripting. 5. Dependency libraries Fastify implements some fast dependencies, like
Pino Json logging, find-my-way Http routing, AJV json schema validator or fast json stringify serializer.
These algorithm libraries provide the fast processing of the Fastify framework and could also be part of
the attack surface target as they are integrated as a core part of the Fastify life cycle.

Fastify Security Audit 2023-2024 14

https://github.com/pinojs/pino
https://github.com/delvedor/find-my-way
https://github.com/ajv-validator/ajv
https://github.com/fastify/fast-json-stringify-compiler

Fastify Security Audit 2023-2024 2024-05-15

Manual Audit

The manual audit targets the core Fastify framework and a list of core plugins that are maintained by the
Fastify team. Fastify plugins developed and maintained by third parties and that are not hosted by the
Fastify organization (https://github.com/fastify) have not been in scope during the audit. The manual
audit targets the core lifecycle in the core Fastify package for general HTTP request/response handling
and also a list of Fastify plugins managed by the Fastify team. In general, the manual audit aims to
look for common coding and security sinks and vulnerabilities to see if they are handled correctly
and securely. As plugin registration is done by the developer and user of the Fastify framework,
vulnerabilities from the incorrect configuration of plugins are not in scope. This is only limited to
problems or issues that are triggered by the use of the plugins solely. Vulnerabilities that could be
triggered by HTTP request/response handling because of the wrong configuration of the plugins are
however in the scope of the audit. For example, if the developer registers a Fastify plugin with the
wrong type of data and crashes the applications, that is not in scope. However, if a plugin introduces
a new default request content type parser during plugin registration and it could crash the program
if a malformed HTTP request is sent in, then it will be reported as an issue. The Fastify plugins is
audited separately as a standalone library module, the scope does not include vulnerabilities that are
introduced when the plugin is configured incorrectly or maliciously when registering or adopting in
the core Fastify web instance or other applications.

Besides separate auditing of the Fastify plugin, there are some audits on the core Fastify web instance.
Although most of the plugins do not have strict protection and checking of input types and values,
some of them are still immune to attacks and vulnerabilities from processing untrusted data. The main
reason for that is that most of them are used as a registered plugin for the core Fastify framework. The
core Fastify framework and some security designated plugin does provide a strict set of validation
against designated schema and deny unknown input name, type and values. That make most of
those Fastify plugin does not requires additional strict protection of input as the input reaching the
code of the plugin is already been checked and sanitized by the core Fastify web instance and are
considered as trusted data. In the scope of the manual audit, although we only consider the plugins as
a standalone applications, we do checck how it suppose to receive data and if the data is passed in from
the core Fastify web instance or directly from the untrusted users. Thus if it is believed that the data is
passed from the core Fastify web instance, we are considered that as trusted data. There may have
certain false negative cases if the developer does not register correct plguins or configurations, but
that is out of scope of the audit since it is up to the developer to ensure the correct configurations and
plugins applications. In general, the core Fastify web instance already provides enough data protection,
including protection against DOM-based injection or prototype pollution attacks.

In addition to the Fastify plugins that are meant to register to a core Fastify framework and to be
used together with the web instance to handle HTTP requests, there are also some Fastify plugin, like

Fastify Security Audit 2023-2024 15

Fastify Security Audit 2023-2024 2024-05-15

fast-json-stringify, that are only meant to provide additional or replacement utility functions
for certain common actions. For example, the fast-json-stringify plugin provides a faster
replacement of theJSON.stringify() function and thesecure-json-parse plugins provides
a secure replacement of the JSON.parse() function. Our manual audit also includes such plugins
that are meant to handle untrusted data securely and safely.

We found that some of the Fastify plugins are working with the same set of source data from the
HTTP request/response. They are called “sibling plugins”. Registering multiple of these colliding
sibling plugins to the same Fastify web instance could create an unexpected effect since the data
may be consumed by one of the plugins and make the other plugin fail to retrieve the data and cause
unexpected errors. Such action could also cause a race condition if the collision is not warned and
some sensitive operations could be affected. For example, the Fastify-reply-from and Fastify-multipart
plugins are a pair of sibling plugins. Fastify-reply-from wraps an HTTP request and forwards it to
another web instance for handling while Fastify-multipart consumes and parses the data from the
multipart form in the HTTP request. Both plugins will handle the multipart form while the Fastify-
multipart plugin will consume the data in the HTTP request. Thus the Fastify-reply-from plugin has
no guarantee that the forwarded HTTP request still has any part of the unconsumed multipart form
data left in it. This could create a race condition and result in unexpected performance. As the core
Fastify framework does allow multiple web instances to run at once without disturbing each other, the
above problem only happens if those sibling Fastify plugins are registered together in the same web
instance.

List of audited modules

Here we list the Fastify modules that we audited. The first one is the core Fastify framework module
and following that are the Fastify plugins. Each of the modules in the following list uses its npm module
name as an identifier.

Modules Description

fastify The core Fastify framework module

@fastify/auth Plugin for managing different authentication modules

@fastify/basic-auth Plugin that provides basic username:password authentication
functions

@fastify/bearer-auth Plugin that provides bearer authentication functions

@fastify/busboy Plugin for parsing incoming HTML form data

Fastify Security Audit 2023-2024 16

Fastify Security Audit 2023-2024 2024-05-15

Modules Description

@fastify/caching Plugin that provides server-side cache and Cache-header cookie
control

@fastify/circuit-breaker Plugin that breaks circuits in HTTP request routing

@fastify/compress Plugin that provides compression utility functions

@fastify/cookie Plugin that handles cookies

@fastify/cors Plugin that enables CORS functionality

@fastify/csrf
@fastify/csrf-protection

Plugin that enables automatic CSRF protection

@fastify/elasticsearch Plugin that acts as a wrapper for Elastic Stack searching

@fastify/fast-json-stringify
@fastify/fast-json-stringify-
compiler

Plugin that provides a faster version of the native
JSON.stringify() function

@fastify/fast-uri Plugin that provides URI handling utility functions

@fastify/formbody Plugin for adding a content type parser for x-www-form-urlencoded
data

@fastify/http-proxy Plugin for adding a proxy for request forwarding

@fastify/jwt Plugin that provides JWT utility functions

@fastify/middie Plugin for managing the middleware of Fastify

@fastify/multipart Plugin for supporting the multipart type of data

@fastify/oauth2 Plugin that enables Oauth2 authentication

@fastify/reply-from Plugin for request forwarding

@fastify/response-
validation

Plugin that enables HTTP response validation

@fastify/secure-json-parse Plugin that provides replacement of JSON.parse()with prototype
poisoning protection

@fastify/secure-session Plugin that enables secure stateless cookie session

@fastify/session Plugin that enables general session

@fastify/soap-client Plugin that provides functionalities to manage SOAP clients

@fastify/static Plugin that manages static resource requests

Fastify Security Audit 2023-2024 17

Fastify Security Audit 2023-2024 2024-05-15

Modules Description

@fastify/under-pressure Plugin that manages pressure load and “Server unavailable” status

@fastify/websocket Plugin that enables basic web socket support

General List of items to look for

The below list represents a high level of the vulnerability classes that we audited for during this security
audit.

1. Uncaught exceptions cause Denial-of-Service
2. Cross-site request forgery
3. Session/cookie fixation
4. URL redirection attack
5. Cross-site scripting
6. Command injection
7. Path/directory traversal
8. Regular expression Denial-of-Service
9. Zip-bomb/large file handling and resource exhaustion

10. Input escaping/sanitization
11. Timing/resource side-channel attack
12. Insecure serialization/deserialization
13. Remote code execution
14. Broken authentication/authorization/access control
15. Memory exhaustion
16. XML external entity attack
17. Dependencies vulnerabilities
18. Sensitive data exposure
19. Illegal static object reference
20. Weak cryptography
21. Prototype Poisoning
22. JSON Injection
23. WebSocket URL Poisoning
24. XPath injection
25. DOM Injection
26. DOM clobbering

Fastify Security Audit 2023-2024 18

Fastify Security Audit 2023-2024 2024-05-15

Fastify plugin audit

The above vulnerability classes are both general-type vulnerabilities as well as classes relevant for only
certain

@fastify/auth

Mmanages and applies registered authentication functions for the core Fastify web instance.

Common vulnerable components

This plugin only manages and applies registered authentication functions from other Fastify plugins or
custom validation functions. The real authentication and validation functionalities are provided by
those registered functions and plugins. Thus the only possible attack surface is from the registered
authentication functions and plugins. As it does not process any DOM and JSON object from untrusted
source, it is not vulnerable to client-side DOM based attacks or prototype poisoning.

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓ ✓ ✓ ✓ ✓

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓ ✓ ✓ ✓ ✓ ✓

@fastify/basic-auth

The Fastify-basic-auth plugin is one of the authenticators for the Fastify-auth plugin. It mainly provides
validation and authentication functions for authenticating users with username and password provided
from an HTTP request authentication header.

Common vulnerable components

The main verification and authentication logic is provided as parameters during plugin registration.
The possible attack surface comes from the parsing of the authentication headers and how the data is
being passed to the registered processing functions. As it does not process any DOM and JSON object
from untrusted source, this plugin is not vulnerable to client-side DOM based attacks or prototype
poisoning.

Fastify Security Audit 2023-2024 19

Fastify Security Audit 2023-2024 2024-05-15

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓ ✓ ✓ ✓ ✓ ✓

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓ ✓ ✓ ✓ ✓ ✓

@fastify/bearer-auth

The Fastify-bearer-auth plugin is one of the authenticators for the Fastify-auth plugin. It mainly provides
a hook for custom bearer authentication functions.

Common vulnerable components

The main verification and authentication logic are provided as parameters during plugin registration.
The attack surface exists in the parsing authentication request data. After code checking, it is believed
that the handling does not have any viable vulnerabilities.

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓ ✓ ✓ ✓ ✓ ✓

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓ ✓ ✓ ✓ ✓ ✓

@fastify/busboy

Fastify-busboy parses incoming HTML form data from HTTP requests. It provides a handler and parser
for accessing those data from the HTTP request for the core Fastify web instance.

Common vulnerable components

Multipart files path traversal

Fastify Security Audit 2023-2024 20

Fastify Security Audit 2023-2024 2024-05-15

A common use case for HTML forms is to upload files which the server will handle through multipart
file processing which requires reading of the source files with paths and URLs, this could make the
process vulnerable to path traversal attacks that read files illegally or cover wrong files in the web
server. The plugin code retrieves fields from the HTTP request directly and passes them to the request
object for further processing. Although it does not have include any checking of the retrieved file
path information, it just retrieves and passes the information to the developer without additional
process. Thus if the developer does not check or use the file name incorrectly, it could create a possible
path traversal vulnerability. It is the developer’s responsibility to check or sanitise that information.
Therefore, when we audit this plugin, we assume that this is not the vulnerabilities in the plugin.

DoS on form data

The data processed through HTML form generally comes from application users which we consider
untrusted. As a result, it is possible to receive HTTP requests with large file sizes or malformed field
parameters. Invalid or malicious data can crash the web instance or exhaust the memory of the web
server and create a Denial-of-Service attack. Enforcing limitation for the maximum size of multipart
fields and the maximum file size allowed is necessary. Otherwise, an attacker can send very long and
large multipart requests with a high number of parts or multiple large files to attack the server. From
the manual audit, we found that the default configuration does have a maximum limitation set and
could be configurable by the developers.

Memory leaks

Sometimes during the HTTP request processing, the process could be exited, returned or halted before
the end of the process because of different server errors, data validation or maximum limitation
enforcement. For multipart data handling, the uploaded data file is stored in memory until all the
parts have been received. Halting because of different reasons could result in memory leaking if those
uploaded data are not cleaned when request halting happens. Memory leaking could be critical if an
attacker launches a distributed Denial-of-Service which sends loads of requests with large multipart
files that could trigger the early halting of the web request. We found that the plugin cleans the data
when an HTTP request is ended, no matter if it is ended normally or by another halting approach.

Client-side injection

The Busboy plugin reads and parses form data and is exposed to different kinds of injection attacks, like
DOM, JSON or command injection, and prototype pollutions if the data is redirect to the HTTP response
without further sanitization. From the manual audit, we believe that this plugin only reads and parses
the data and stores it without further processing. The core Fastify web instance is responsible for
handling and validating the retrieved data with configured schemas before further processing. If
considering the request handling only for this plugin, it is not vulnerable to client-side injection attacks.
Also, as the core Fastify web instance only takes in prototyping during plugin registration of this plugin,
the input data is trusted.

Fastify Security Audit 2023-2024 21

Fastify Security Audit 2023-2024 2024-05-15

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓ ✓ ✓ ✓ ✓ ✓

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓ ✓ ✓ ✓ ✓ ✓

@fastify/caching

The Fastify-caching plugin creates and manages the cache headers in HTTP responses. These cache
headers are then returned by the core Fastify web instance in the HTTP response to control the client-
side cache of specific pages or resources.

Common vulnerable components

This plugin only handles the creation and setting of the cache headers following the default or devel-
oper’s configurations. The cache header is never parsed on the server side and is only affected on the
client side when it is configured in the HTTP response. Thus there is no viable attack surface since the
developer configuration is considered trusted and no other untrusted data is going through this plugin
towards the core Fastify web instance.

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓ ✓ ✓ ✓

@fastify/circuit-breaker

The Fastify-circuit-breaker provides circuit-breaking features for the core Fastify web instance. It wraps
around each of the designated routes and monitors its route and failures, if a certain configurable
threshold is reached, the plugin will halt the route and return server error response.

Fastify Security Audit 2023-2024 22

Fastify Security Audit 2023-2024 2024-05-15

Common vulnerable components

Denial of service

The circuit breaker aims to halt problematic HTTP requests that could trigger infinite route redirection
or a long time waiting for a response. If an attacker can find a vulnerable process in the web instance
that is suffering from that, it can manipulate the circuit breaker to halt certain services in the web
instance and create a Denial-of-Service situation. From the manual code audit, we found that the basic
operations and threshold are configurable by developers and the real processing logic of each HTTP
route and also controlled by the developer. Thus, the developer should correctly configure the plugin
to ensure the only viable attack target is configured correctly to avoid unexpected breaking of request
handling. Other than that, we do not consider any other attack surface.

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓ ✓ ✓ ✓

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓ ✓

@fastify/compress

Fastify-compress implements compression utilities and hooks for the core Fastify web instance for
handling reply objects compression and the decompression of request payload. These utility functions
allow the core Fastify web instance to handle object compression on request and reply objects during
the HTTP request process.

Common vulnerable components

BREACH attack

BREACH (Browser Reconnaissance and Exfiltration via Adaptive Compression of Hypertext) is a kind of
CRIME (Compression Ratio Info-leak Made Easy) type security vulnerability that uses some of the timing
side-channel observation to guess secret info that is used during the compression process or stored
in the compressed objects. In general cases, the attackers target those compressed payloads with
secrets or tokens, attempting to use different trials to retrieve those secrets or tokens for other attacks.
This plugin is only limited to performing automatic compression of reply payloads and provides a set

Fastify Security Audit 2023-2024 23

Fastify Security Audit 2023-2024 2024-05-15

of hook functions to allow decompression of data during different stages of the web processing life
cycles. The real data in the HTTP reply objects to compress and what to decompress during the request
handling is completely up to the developers. It is up to the developer to configure which information
to include in the compression and in most cases, these compressions are not recommended for use on
secrets or confidential objects.

Zip bomb or large payload

Since the plugin provides decompress functionality for HTTP request payload, it may be vulnerable
to zip bomb attacks. In the manual audit, the plugin detects the types and payload size before doing
payload decompression which mitigates the possible zip bomb from the request payload that causes
resource exhaustion.

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓ ✓ ✓ ✓ ✓

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓ ✓

@fastify/cookie

Fastify-cookie provides cookie management functionality for Fastify web instances. It supports two
modes of cookie handling, one with plain cookies and the other with signed cookies to protect the
integrity of cookies.

The plugin provides three configurable parameters, namely secret, hook and parsing options. If the
secret is defined, cookie signing is used instead of plain cookies. The hook is used to define the trigger
point for cookie parsing before the handler handles its value. The developer could pass in custom
parsing functions or options for default parsing functions for the parsing of cookies.

Common vulnerable components

Node-cookie library dependency

The Node-cookie library is used for cookie parsing and serialisation. The plugin has been required by
plugin.js. Only the parse and serialize functions are used by the plugin.

Fastify Security Audit 2023-2024 24

Fastify Security Audit 2023-2024 2024-05-15

The parameters passed tocookie.serialize come from the developer’s logic when they call either
serializeCookie or setCookiedecorated functions. Thus it is not controllable by the untrusted
input from user request. ThecookieHeader parameter passed tocookie.parse functions comes
from raw user requests, thus it could contain untrusted input. The code from this plugin does not
specifically validate or interpret the cookieHeader, but no known vulnerability report has been
found for the underlying Node-cookie library, thus it is assumed to be safe for handling untrusted
cookie parsing.

Cookie Creation

The only code that creates cookies in the reply is located in plugin.js.

1 reply.header('Set-Cookie', cookie.serialize(c.name, c.value, c.opts))

All cookies stored in kReplySetCookies are processed and create a Set-Cookie header in
the HTTP response. Since the cookie.serialize results with parameters from developers are
assumed to be trusted, this simple cookie creation logic should not be affected by cookie poisoning.

Cookie signing and unsigning

If a string secret has been provided during plugin registration, a default Signer object is created for
handling the signing and unsigning of cookies. The code for deciding whether a Signer object is needed
is defined in plugin.js as the following.

1 const isSigner = !secret || (typeof secret.sign === 'function' &&
typeof secret.unsign === 'function')

2 const signer = isSigner ? secret : new Signer(secret, options.algorithm
|| 'sha256')

Here, the plugin checks if both the sign and unsign functions are provided in the secret, or if it is
a false object to ensure sign and unsign functions are correctly defined. But there is an error
in the checking logic that could cause sign and unsign functions undefined and cause errors. The
sign and unsignmethod provided by the default Signer class uses the node-crypto package
to do the signing with the default algorithm of SHA256 which does not have any known vulnerability
report for the version adopted by the fastify-cookie plugin. Although the developer could choose the
algorithm to use, it would be the developer’s responsibility if they use a weak or broken algorithm.
The default SHA256 is safe. The logic of the sign function from the default Signer class is provided
by the _sign function. It takes only the cookie value, secret and algorithm as parameters, all of which
come from the plugin registration configuration or developer’s logic. Thus it handles trusted data.

The logic of the unsign function from the default Signer class is provided by the _unsign function.
It takes in the signed cookie, secret and algorithm as parameters, which the secret and algorithm are
coming from plugin registration. Although the signedValue comes from an untrusted HTTP user
request header, the validation of the signature is done to ensure the integrity of the cookie. Thus the

Fastify Security Audit 2023-2024 25

Fastify Security Audit 2023-2024 2024-05-15

logic is still able to detect possible problems and can deny malicious changes to cookies.

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓ ✓ ✓ ✓

Issues found

ID Title Severity Fixed

1 ADA-FASTIFY-2023-1 Weak signing key in default
signer

Informational Yes

@fastify/cors

Fastify-cors provides CORS header management for the fastify web instance. The plugins allow turning
on and off of the cors features and specific configuration for the methods and origins that are allowed to
use CORS in the web instance domain. Some default CORS headers to be returned in some conditions
could also be configured.

Common vulnerable components

Origin parsing

Origin parsing is needed to determine if an origin header in the raw HTTP request from the user is
a CORS-allowed origin that is valid for Access-Control-Allow-Origin headers to be added
in the HTTP reply. As the origin header is located in a raw HTTP request which is untrusted, it could
cause problems if the origin parsing is not done correctly. The matching of origin is done in the
isRequestOriginAllowed function.

The allowedOrigin is determined by the origin parameter provided by the developer during plugin
registration. Only if the provided origin parameter is a regular expression pattern or custom function
will the logic handle the untrusted input of reqOrigin. If the regular expression pattern is bad or if the

Fastify Security Audit 2023-2024 26

Fastify Security Audit 2023-2024 2024-05-15

provided function handles the reqOrigin incorrectly would cause security problems like REDOS.
Since the origin parameter is provided by developers, the logic of this plugin is assumed to be safe.

CORS headers creation and pre-authorization CORS attack

Subsequence request handlers on the server side and the web browser on the client side consult the
CORS headers to determine if a cross-origin request could be initiated. Thus the CORS-related header
must be set as expected by the developers. The CORS headers are set by two functions which are
triggered by the hook. The function addCorsHeaders adds CORS-related headers that are directly
affecting the permissions of the cross-origin service.

In general, the untrusted data that is controllable by a malicious user is the origin header in the raw
HTTP request and all other information comes from the developer’s configuration.

Websocket Poisoning

WebSocket connections are generally long-lived connections. HTTP requests/responses can be sent
at any time during the live time of the web socket connections. As it is a long-lived connection, if an
attacker could steal (or legitimately retrieve a web socket cookie of the super-domain/sub-domain of
the targets), they could control the whole web socket connection. Checking for origins and cross-origin
requests is necessary to deny this kind of attack. From the manual audit, we understand that this
plugin does allow the developers to enforce strict cross-origins request control and thus it is believed
that this plugin could help defend against WebSocket attacks with cross-domain cookies or requesting
a web socket with poisoned URL pointing to sensitive sub-domains/super-domains.

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓ ✓ ✓ ✓

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓ ✓ ✓ ✓

Issues found

Fastify Security Audit 2023-2024 27

Fastify Security Audit 2023-2024 2024-05-15

ID Title Severity Fixed

3 ADA-FASTIFY-2023-3 Possible regular expression
DOS in Fastify-Cors

Informational Yes

@fastify/csrf @fastify/csrf-protection

Fastify csrf and csrf-protection provide a cryptographic way to create CSRF tokens to protect users and
the fastify instance from Cross-Site Request Forgery attacks.

Common vulnerable components

Cookie Tossing

This is an old issue discovered by previous auditing and is fixed by adding custom user information in
the token. Currently, additional user info is configurable by developers to ensure cookie tossing does
not exist.

CSRF token freshness

A CSRF token is a key part of CSRF protection. When a web application receives a request from a usere,
the existence of a legit CSRF token can prove that the request is indeed initialized by the legitimate
users. This helps prevent the possible CSRF attack in which an attacker sends a request on behalf of a
legit user which is not noticed by the user or pretends it to be a legit request from that user. Since this
token is an important factor in the CSRF protection plugin, its freshness is also a concern. If an attacker
could steal a CSRF token and replay it with the previous legitimate request, the CSRF protection is
broken. Thus the CSRF token freshness is important to have good CSRF protection. After auditing the
code for token handling, it is believed that if this plugin is integrated with a fastify session or fastify
secure session, it will be a session-based token. It does not provide any time validity options nor
allows per-request tokens. Thus if the Fastify web instance is hosted on HTTP but not HTTPS, the CSRF
token could be leaked and the user could be vulnerable to a token replay attack since the token is not
renewed per request.

Predictable CSRF token

The CSRF token should be able to identify if the request is indeed initialized by the user. If an attacker
could craft a CSRF token offline, then the CSRF protection is broken. A possible problem found in
integrating the csrf-protection plugin with the fastify-cookie plugin could mean both the secret and
token sent to the user which makes the CSRF token from secret predictable and craftable. This is
possible because validation of secrets and tokens solely depends on client-provided information when
integrating with fastify-cookie and don’t seem to have configurable settings.

Fastify Security Audit 2023-2024 28

Fastify Security Audit 2023-2024 2024-05-15

CSRF token identity linkage

A CSRF token should link securely to a users identity to maintain CSRF protection. We believe that
the CSRF token integrated with the Fastify-session plugin does connect to identity and does not use
a general CSRF token pool for validation. On the other hand, the CSRF token integrated with the
Fastify-cookie plugin is not linked to user identity and could be vulnerable if an attacker could control
the secret cookie value for altered CSRF token generation.

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓ ✓ ✓ ✓ ✓ ✓

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓ ✓ ✓ ✓ ✓ ✓

@fastify/elasticsearch

The Fastify-elasticsearch plugin provides functionality for every part of the core Fastify web instance
to access and manage the same Elastic Search client with the support of the upstream Elastic Search
module.

Common vulnerable components

The plugin is found only to initialise the Elastic Search client through the upstream Elastic Search mod-
ule by passing on default or developer-configured options. It does not have many custom operations
and all untrusted data are passed directly to the upstream module. Thus the only viable attack surface
is targeting its dependency through the upstream Elastic Search module. The Elastic Search module
dependency version used by this plugin has one known vulnerability that could leak data through
sensitive logging if the configuration is not correctly set. This could affect this plugin.

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓ ✓ ✓ ✓ ✓ ✓

Fastify Security Audit 2023-2024 29

Fastify Security Audit 2023-2024 2024-05-15

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓ ✓ ✓ ✓ ✓ ✓

@fastify/fast-json-stringify @fastify/fast-json-stringify-compiler

The Fastify-fast-json-stringify plugin provides a faster version of nativeJSON.stringify() function
for coverting JSON object to string.

Common vulnerable components

Regular expression Denial-of-Service

This plugin does not need registration to the core Fastify web instance. It only provides an exported
module for transforming JSON objects to string following a preset schema. It also provides additional
functionality to validate if the provided JSON object match the configured schema. Since it is not
necessary to be used in a core Fastify web instance, the major focus of the audit is the vulnerability
in the JSON object conversion and schema validation process. To parse or process string patterns, a
certain type of regular expression matching is generally used. Tthe default regular expression used in
the process is not vulnerable to Regular Expression Denial-of-Service. The input is mostly validated
against the developer-provided schema, and the matching is strict and does not rely too much on
regular expression.

String/command injection

In general, if the JSON object is untrusted, an attacker can attempt to provide a malformed JSON
object to perform an injection attack. From the manual audit, we have observed that this plugin does
not accept random JSON object. The JSON object is validated against the configured schema and
confirm the fields and types are matched with the schema before parsing it to String. This strict control
is believed to deny malformed input if the developer provides a strict and correct schema. Since this
plugin is only meant to provide the functionality when the developer register the plugin with correct
schema, it is considerede safe from injection attack on its own.

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓ ✓ ✓ ✓ ✓ ✓ ✓

Fastify Security Audit 2023-2024 30

Fastify Security Audit 2023-2024 2024-05-15

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓ ✓ ✓

@fastify/fast-uri

The Fastify-fast-uri plugin provides a set of utility functions for processing URI.

Common vulnerable components

Regular expression Denial-of-Service

This plugin does not need registration to the core Fastify web instance. It only provides some exported
module functions for processing the URI of a set of supported schema. For example, it implements
functions to parse or serialise URI into JSON objects. Since it is not necessary to be used in a core
Fastify web instance, the major focus of the audit is the vulnerability in those URI handling functions. To
parse or process URI, a certain type of regular expression matching is generally used. From the manual
audit, we found that some of the patterns are vulnerable to Regular Expression Denial-of-Service if
an evil string or input is passed to the functions and matches it with those vulnerable patterns. Since
this plugin can be used by any node.js module, the possibility of Regular Expression Denial-of-Service
could affect the project adopted by this library and call the function that uses the vulnerable Regular
Expression pattern for input matching.

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓ ✓ ✓

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓ ✓

@fastify-formbody

The Fastify-formbody plugin adds a third-party content type parser for x-www-form-urlencoded data
to enable parsing of x-www-form-urlencoded data in the Fastify instance.

Common vulnerable components

Fastify Security Audit 2023-2024 31

Fastify Security Audit 2023-2024 2024-05-15

This plugin registers a third-party content parser for form body query string without doing any validation
or parsing itself. It does not have any viable possible attack surface. The only possible attack surface is
from the parser used. For an attack vector to be possible, either the developer has customised the plugin
with a vulnerable parser, or the default parser used is vulnerable. From our auditing, we found that the
default parser used (fast-querystring@1.0.0) does not have any known vulnerabilities.

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓ ✓

@fastify/http-proxy

The Fastify-http-proxy plugin automatically forwards all HTTP requests received by the core Fastify
web instance with a configured prefix to an upstream instance while preserving the lifecycle hooks.

Common vulnerable components

Parsing of untrusted request parameters

This plugin relies on the developer’s configurable prefixes and upstream destination to determine
which HTTP requests need to be forwarded and where they need to be forwarded to. This plugin only
relies on trusted data for automatic HTTP request forwarding, and the only processing of untrusted data
is when matching the given prefix with the request URI in the HTTP request. Thus the only viable attack
target for an attacker is to provide a malformed URI, attempting to create a Regular Expression Denial-
of-Service. From the our audit, we found that the prefix matching for the HTTP requests redirection is
not vulnerable to Regular Expression Denial-of-service.

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓

Fastify Security Audit 2023-2024 32

Fastify Security Audit 2023-2024 2024-05-15

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓ ✓

@fastify/jwt

The Fastify-jwt plugin provides JWT (JSON Web Token) decode, sign and verify features with support
from the default fast-jwt library. These functionalities provide an additional layer of security in
terms of confidentiality and integrity to the core Fastify web instance.

Common vulnerable components

Fast-JWT library dependency

The main cryptographic operations of the Fastify-jwt plugin rely on the upstream fast-jwt library. If
the upstream library contains vulnerability or weak cryptographic algorithms, it could be used by an
attacker as an entry point to attack the security features provided by this plugin.

Force no verification mode

In some settings, the JWT engine does allow specifying the type of keys within the JWT headers. This
opens a sink for an attacker to use a none type (which does not match the provided random key) to
force the JWT to work in no verification mode. This allows the attacker to bypass the JWT header
verification. After checking the code for parsing the JWT header (handled by fast-jwt), we found
that this plugin (and its upstream) auto-detected algorithm from the provided key and failed the
verification if the provided algorithm is not matching with the auto-detected algorithm, thus it is not
possible to force “none” algorithm and bypass the verification.

JWT header injection

In some settings, the JWT engine does allow specifying custom parameters with the headers. This
opens a sink for an attacker to attach its key and point the verification key to that uploaded key. In this
situation, the attacker can bypass the verification with header injection and a self-key signing attack.
After auditing the plugin, we have found that the plugin ignores all parameters except for those which
are necessary. This avoids header injection attacks.

JWT algorithm confusing attack

In some settings, the JWT engine does allow specifying a specific key location for the verification. This
opens a sink for an attacker can claim that the request is signed with a symmetric key (but for real it
is signed with an asymmetric key). In this situation, the attacker can sign anything because the false
assumption that the JWT header is signed with a symmetric key makes the web application use the
same public key for encryption and decryption. Thus the attacker can bypass the verification. After

Fastify Security Audit 2023-2024 33

Fastify Security Audit 2023-2024 2024-05-15

auditing the plugin, we have found that the plugin detects the algorithm from keys and throws an error
if the key algorithm does not match the provided algorithm from the JWT header. This setting avoids
algorithm confusion attacks.

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓ ✓ ✓ ✓ ✓ ✓

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓

@fastify/middie

Fasitfy-middie register additional middleware to different lifecycle hooks on the core Fastify instance
and provide a decorated function in the core Fastify instance to access and use the registered middle-
ware.

Possible Regular Expression Denial-of-Service from dependencies

After plugin registration, the plugin relies on a decorated function to access and use the registered
middleware. From the manual audit, we have found that the Fastify-middie plugin relies on the
pathToRegexp function from the path-to-regexp dependency module to access a target mid-
dleware. After some searching, we believe that the pathToRegexpwill return a regular expression
pattern that is vulnerable to a Regular Expression Denial-of-Service attack if the path used for the match-
ing is malformed. Since the path is possible to come from untrusted input, this plugin is vulnerable to
Regular Expression Denial-of-Service attacks.

Path traversal

To access, use or manage a target registered middleware from the core Fastify web instance, a path
prefix pointing to the target middleware is needed. The path prefix is provided to the decorated
function registered by the Fastify-middie plugin. Since the path is possible to come from untrusted
input, it could contain special characters that traverse into illegal directories. From the manual audit,
we believe that the path matching is only done by the regular expression from the pathToRegexp
which correctly rules out paths with unexpected path traversal characters like ~ or ...

Items audited

Fastify Security Audit 2023-2024 34

Fastify Security Audit 2023-2024 2024-05-15

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓ ✓ ✓ ✓

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓ ✓

Issues found

ID Title Severity Fixed

7 ADA-FASTIFY-2023-7 Possible regular expression
DOS in fastify-middie
dependency

Informational Yes

@fastify/multipart

Fastify-multipart handles multiple request bodies from HTTP requests. It provides a handler and parser
for accessing the data from the HTTP request for the core Fastify web instance.

Common vulnerable components

Multipart files path traversal

Multipart file processing may require reading of the source files with paths and URLs, this could make
the process vulnerable to path traversal attacks that read files illegally or cover wrong files in the
web server. The plugin retrieves those fields from the HTTP request directly and passes them to the
request object for further processing. Although it does not have any checking of the retrieved file path
information, it just retrieves and passes the information to the developer without additional process.
Thus if the developer does not check or if they use the file name incorrectly, that could result in a
possible path traversal vulnerability. It is the developers responsibility to check or sanitise the input.

Possible DOS on fields and file size

Multipart form body handling is meant to handle file data from untrusted sources, thus it is possible to
receive HTTP requests with large file sizes or incorrect field parameters. Attackers could attempt to
crash the web instance or exhaust the memory of the web server by sending invalid or malicious input.
Enforcing limitation for the maximum size of multipart fields and the maximum file size allowed is

Fastify Security Audit 2023-2024 35

Fastify Security Audit 2023-2024 2024-05-15

necessary. If these values are not limited, an attacker can send very long and large multipart requests
with a high number of parts or multiple large files. From the manual audit, we found that the default
configuration does have a maximum limitation set and could be configurable by the developers.

Possible memory leak

Sometimes during HTTP request processing, the process could be exited, returned or halted before
the end of the process because of different server errors, data validation or maximum limitation
enforcement. For multipart data handling, the uploaded data file is stored in memory until all the parts
have been received. Halting because of different reasons could result in memory leaks if the uploaded
data is not cleaned when request halting happens. Memory leaking could be an issue if an attacker
launches a Distributed Denial-of-Service (DDoS) which sends loads of requests with large multipart
files that could trigger the early halting of the web request. We found that the data is cleaned when an
HTTP request has ended, no matter whether it is ended normally or by another halting approach.

Client side injection

The multipart plugin handles multipart form data. It is susceptible to different kinds of client-side
injection attacks, like DOM, JSON or command injection, and prototype pollutions if the data is not
sanitized and used directly or used for response generation. From the manual audit, we understand
that this plugin only reads and parses the data and stores it without further processing. The core
Fastify web instance is responsible for handling and validating the retrieved data with configured
schemas before further processing. Thus if considering the request handling only for this plugin, it
is not vulnerable to client-side injection attacks. Also, as the core Fastify web instance only takes in
prototyping during plugin registration of this plugin, those data are assumed to be trusted.

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓ ✓ ✓ ✓ ✓ ✓

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓ ✓ ✓ ✓ ✓ ✓

@fastify/oauth2

Fastify-oauth2 is an OAuth2 wrapper on the NodeJS simple OAuth2 library for the fastify framework.

Common vulnerable components

Fastify Security Audit 2023-2024 36

Fastify Security Audit 2023-2024 2024-05-15

Token retrieval and authorization

The major authentication process for the OAuth2 protocol is done by the third-party OAuth2 service.
To gain user information and authorize a user for certain services, an OAuth2 token is used for commu-
nicating with the third-party OAuth2 service and accessing certain security properties and parameters.
From the manual audit, it is understood that the plugin passes on the configuration, including callback
URL, secret or Oauth2 service URL from developers to the underlying NodeJS simple OAuth2 library
without further interpretations. This plugin works like a wrapper for the node.js OAuth2 library and
relies its security property on the plugin itself. Since the route for the callback URL and how to store
the retrieved token is provided by the developer and the plugin does not have logic to handle the
callback from the Oauth2 services, it is believed that the plugin does not take on interpretation and
responsibility for handling the storage and security of the OAuth2 authentication process and the
tokens.

Token revocation

Token revocation is another important key security feature of the OAuth2 service. When a user chooses
to logout from the service, or believes that their credentials or tokens are leaked, then the token needs
to be revoked from the third-party OAuth2 service to avoid further access to services with the identity
linked with the token and the authorized status should also be revoked. From the manual audit, we
understand that the plugin just relays requests, and does not store or record any of the OAuth2 process
and tokens. The security and correctness of the token revocation process rely on the developers
configuration and the third-party OAuth2 service providers.

Credential leakage

Credentials are used for authentication on the OAuth2 service. Since this plugin only relays the users
to the developer-configured authentication URL from the third-party OAuth2 service providers, it does
not read, process or store any of those credentials. Thus those data are not handled from this plugin.
The plugin does provide a callback URL route for the third-party OAuth2 service provider to handle
the redirection of the user from the OAuth2 service back to the web instance. Since those settings are
provided by the developers and can be configurable. thus it is believed that those sensitive settings do
not come from untrusted user input nor allow re-registration. Thus there are no viable targets through
this plugin for illegal access of services or credentials.

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fastify Security Audit 2023-2024 37

Fastify Security Audit 2023-2024 2024-05-15

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓ ✓ ✓ ✓

@fastify/reply-from

The Fastify-reply-from plugin automatically forwards all HTTP requests received by the core Fastify
web instance on a specific route to another core Fastify web instance. The request is then processed by
another Fastify web instance and the web instance that registers the plugin will wait for the reply and
relay it to the user. It relays the request and response for the configured route between the user and
another Fastify web instance.

Common vulnerable components

Parsing of request and response parameters

When an HTTP request is received in the Fastify web instance that has registered the Fastify-reply-from
plugin, the request parameters and other request details are parsed and are then used to create another
virtual HTTP request for sending to the other Fastify web instance. The same logic has been used to
repackage the HTTP response received from the other Fastify web instances before sending them back
to the user.

Client side injection

The Fastify-reply-from plugin does parse and repackages received HTTP requests. It also parses and
repackages the HTTP response received from the other Fastify web instance before sending it back to
the users. If the input is untrusted and is returned directly to the user without validation or sanitization,
it could open up for client-side injections. From the manual audit, it is understood that the parsing
process does not have any known vulnerabilities as mentioned above. The data is not processed by the
web instance that has registered this plugin; instead, it is the other Fastify web instance that handles
requests to ensure no untrusted data is included directly in the HTTP response without sanitization.
With this assumption, it is assumed that the HTTP response from the other Fastify web instance is
trusted. Therefore, this plugin is not directly vulnerable to those attacks.

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓ ✓ ✓

Fastify Security Audit 2023-2024 38

Fastify Security Audit 2023-2024 2024-05-15

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓ ✓ ✓ ✓ ✓ ✓

@fastify/response-validation

The Fastify-response-validation plugin enables automatic response validation by a configurable
schema. This plugin ensures the response fulfills the necessary schema structure.

Common vulnerable components

This plugin only accepts the schema from the configuration and adds hooks to validate the HTTP
response before it is serialized to ensure it follows the configured schema. The validation is done by
upstream ajv-related modules. The plugin itself does not interpret either the configured schema or the
HTTP response. Also, the data passing through this plugin is all from the processing of the core Fastify
web instance thus it is considered trusted.

Items audited

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓ ✓

@fastify/secure-json-parse

The Fastify-secure-json-parse plugin provides a replacement for native JSON.parse() function for
covering string to JSON object with prototype pollution protection. It is presented as an opposite
operation with the Fastify-fast-json-stringify plugin.

Common vulnerable components

Regular expression Denial-of-Service

This plugin does not need registration to the core Fastify web instance. It only provides an exported
module for transforming string to JSON object following a preset schema. Since it is not necessary

Fastify Security Audit 2023-2024 39

Fastify Security Audit 2023-2024 2024-05-15

to be used in a core Fastify web instance, the major focus of the audit is the vulnerability in the JSON
object conversion. To parse or process string patterns, a certain type of regular expression matching is
generally used. From the manual audit, it is believed that the default regular expressions used in the
process are not vulnerable to Regular Expression Denial-of-Service.

Prototype pollution

This plugin helps to transform a string into a JSON object. In general, if the string is malformed, it
could contain a special character that makes the parsed JSON object vulnerable to prototype pollution.
The plugin contains mechanisms to ensure only the expected JSON field is parsed and ignores other
unknown fields, which makes the parsing process not vulnerable to prototype pollution on the resulting
JSON object. The plugin also provides a safe parsing option to wrap around possible exceptions and to
ensure no unexpected exceptions are thrown to the user. This setting could avoid crashing the web
instance with unexpected exceptions.

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓ ✓ ✓ ✓ ✓ ✓ ✓

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓ ✓

@fastify/secure-session

The Fastify-secure-session plugin adds session-handling functionalities to the core Fastify web instance.
These functionalities include session generation, session data storage, session data reading and the
destruction of sessions. When registered, this plugin provides a set of hooks and decorated functions for
the developer to manage the session in the core Fastify web instance. It is similar to the Fastify-session
plugin except that the session is stateless and stored in an encrypted cookie on the client side.

Common vulnerable components

Key generation and cryptographic algorithm

This plugin is different from the Fastify-session plugin: Instead of storing all session data on the server
side and setting a session ID cookie in the HTTP response to make a stateful communication, this plugin
provides a stateless secure session implementation which stores the whole session in an encrypted

Fastify Security Audit 2023-2024 40

Fastify Security Audit 2023-2024 2024-05-15

cookie and sends it to the client side. Since the whole session is encrypted and sent to the client side,
all the session data will reach an untrusted zone out of the control of the core Fastify web instance. To
protect the confidentiality of the data, the encryption key (and decryption key) or the cryptographic
algorithm used is required to be strong. From the manual audit, we understood that the key generation
is provided by utility functions of the sodium-native library. The default cryptographic algorithm is
strong and the key is generated and provided by the developer during plugin registration. It also
supports key rotation with multiple keys. The key generation and cryptographic algorithm used are
strong.

Data storage

When a Fastify instance with this plugin added receives an HTTP request with the encrypted session
cookie, the Fastify instace decrypts and validates that cookie. Fastify then creates a new server-side
session for the core Fastify web instance to process using the decrypted data. At the end of the HTTP
request processing, the data is encrypted and stored in a session cookie before sending the HTTP
response. The temporary server-side session storing the data is then destroyed. All the session data is
encrypted and stored in the secure cookie after the request is completed and a new session is created
with the decrypted data from the secure cookie passing in within a request. In addition, a nonce exists
as part of the session data which Fastify uses for session liveness validation.

Session validity

Since this plugin manages a stateless session, it is important to have limited validity for the session
cookie and to distinguish if the session is being destroyed or not. From the manual audit, the session
destroy logic only applies to the temporary server-side session that is used during the HTTP request
processing period. An attacker could potentially reuse a session cookie which may be destroyed (within
the nonce period) because the server does not track the state of the session.

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓ ✓ ✓ ✓ ✓

#16 #17 #18 #19 #20 #21 #22 #23 +#24 #25 #26

✓ ✓ ✓ ✓

Issues found

Fastify Security Audit 2023-2024 41

Fastify Security Audit 2023-2024 2024-05-15

ID Title Severity Fixed

9 ADA-FASTIFY-2023-9 Possible reuse of destroyed
secure session cookie

High Yes

@fastify/session

The Fastify-session plugin implements additional session-handling functionalities to the core Fastify
web instance. These functionalities include session generation, session data storage, session data
reading and the destruction of sessions. When this plugin is registered, it provides a set of hooks and
decorated functions for the developer to manage the session in the core Fastify web instance.

Common vulnerable components

Session fixation

In general HTTP sessions, the data is stored server-side and is separated by users with a separate
session ID. The session ID is used to identify different users using the web instance. In general, the
session ID is set via a cookie in the HTTP response after session creation. If an attacker could guess or
reuse the session ID cookie, it creates a Session fixation situation in which the attacker could access or
control data on the server side which is linked to the original user of the session. Fastify-session uses the
node.js default random byte generation with base64url encode, thus it is assumed to be secure.
As the plugin only provides hooks and decorated functions for developers to handle the lifecycle of the
session and the data storage and retrieval in the session, the developers are responsible for controlling
the life cycle of the session and the data stored within. This plugin is only responsible for the real
actions handling the session when the decorated functions are called. An example of session fixation
happens on Fastify-passport which does not regenerate the session ID before and after authentication.
This allows an attacker to reuse the session ID cookie. However, since the session lifecycle is controlled
by the developer, it is believed that this plugin is not vulnerable to session fixation.

Session cookie

One of the important factors for maintaining identity linked to the session is the cookie that stores the
session ID. When a session is created, a session ID cookie is automatically set in the HTTP response
object with the Fastify-cookie plugin. From the manual audit, the session ID cookie is maintained by the
Fastify-cookie plugin, it does provide secure cookie settings like cookie signing, validating, serialising
and deserialising. Although a session ID needs to be generated every time, it is still safe because it
is the developer using this plugin determines the lifecycle of the session and when to regenerate or
destroy a session.

Session persistence hash

Fastify Security Audit 2023-2024 42

Fastify Security Audit 2023-2024 2024-05-15

Sometimes, if the data in the session has a long expiry period, it may be more vulnerable to session
fixation because the attacker has a much longer time to guess for a valid session ID and change those
data on the server side. There is an additional protection for session data integrity by adding a session
persistence storage hash. The hash is calculated on the whole session and could detect unexpected
changes to the session and ensure the session is different when regeneration of session ID is needed.
From the manual audit, we found that the session persistence hash is generated with a weak algorithm.
Although it is not easy to access the session without the correct session ID, it still poses a threat by not
using a more secure cryptographic message digest algorithm.

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓ ✓ ✓ ✓ ✓

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓ ✓ ✓ ✓

Issues found

ID Title Severity Fixed

10 ADA-FASTIFY-2023-10 Possible use of weak SHA-1
algorithm for session
persistent hash

Informational Yes

@fastify/soap-client

The Fastify-soap-client plugin provides decorated functions to access a soap client instance through
the core Fastify web instance with the support of the upstream soap client module.

Common vulnerable components

The plugin only decorates functions to allow the core Fastify web instance to access functions and
modules from the upstream soap client library module. Most of the provided decorated functions are
only wrappers which relay the request to the upstream functions. As all untrusted data is passed directly
to the upstream soap client module, the only viable attack surface is targeting the upstream soap

Fastify Security Audit 2023-2024 43

Fastify Security Audit 2023-2024 2024-05-15

client module. We found that one of the exported functions from the soap client module is vulnerable to
regular expression Denial-of-Service when handling malformed input relayed to it. This could exhaust
the memory and resources which then crashes the web instance and causes Denial-of-Service.

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓ ✓ ✓

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓

@fastify/static

Fastify-static provides access to and sending of local static files in the web server. For example to return
a web page template or resources when handling web requests.

Common vulnerable components

Path traversal of static files

In general, HTTP request for accessing static files in the web server, like graphics or documents, requires
specific paths. If the path is not validated or sanitised correctly, it could point to the illegal location by
path traversal constant and leaking files from inaccessible locations. From the manual audit, we found
that the decorated functions of the static plugin retrieve a path prefix, root directory and constraint
(like file whitelist wildcard string or allowed prefix) from configuration and use them to manage what
static files directory could be accessed. Besides, the target files’ path/name is passed in from the
developer logic to the decorated function of the plugin. It is the developers responsibility to check the
validity of the path. In addition, the plugin throws an error if the file name ends up traversed outside of
the root directory from the configuration or violates the constraints option set. Thus path traversal
outside of the designated directory is not possible. It is possible to retrieve static files with a path or file
name directly from HTTP requests. That could cause path traversal problems but it is the developer’s
configuration to either whitelist which files or directories could be accessed or sanitise user input
before using them as static files retrieving path.

Illegal directory listing

Similar to path traversal, sometimes it is sensitive to allow the user to list the remote directory from a
web request by providing a static request to a directory instead of a file. This could aid an attacker in

Fastify Security Audit 2023-2024 44

Fastify Security Audit 2023-2024 2024-05-15

discovering possible static files that can be accessed and could leak out information about the directory
structure of the web server. From manual audit, it is found that the directory listing is also limited by
the same set of configurations for the plugin. This means that if the developer specifically whitelists a
set of directories, the attacker cannot access the other location for directory listing. The file path for
directory listing is provided by the developers logic, and the developer should make sure it is safe.

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓ ✓ ✓ ✓ ✓

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓ ✓ ✓ ✓

@fastify/under-pressure

Fastify-under-pressure provides support for memory usage periodic checking and handling when the
configured threshold is met.

Common vulnerable components

Node.js Perf Hook dependencies

This plugin requests the memory usage information by the node.js pref hook library. This plugin only
retrieves memory usage information from the pref hook library without doing further processing on
the information. The only custom process done is to use a larger than comparator to consider if the
memory usage passed the threshold, or returns the memory usage figure from the retrieved histogram
directly. For this reason, there is no viable attack surface because this plugin does not process any
untrusted data and there are no known vulnerability reports for the pref hook library.

Denial-of-Service from frequent memory usage retrieval

As the plugin relies on web server requests through the pref hook library for retrieving information
related to memory usage, if the application makes an excessive ammount of such request, the server
could be overwhelmed and a Denial-of-Service situation could arise. From the manual audit, the logic
for determination of the time interval for the memory usage retrieval is checked. It is confirmed that
the time interval is either coming from the developer configuration or using the default value, it does
not come from any untrusted user input or HTTP request. Thus the possible Denial-of-Service could
only happen as a misconfiguration from the developers.

Fastify Security Audit 2023-2024 45

Fastify Security Audit 2023-2024 2024-05-15

Possible race condition for the memory checking

If the periodic time interval for the memory usage retrieval is too long, or if the attacker would be able
to create a large amount of traffic during the configured interval, the plugin fails to detect the passing
of the memory threshold and handle it. From the manual audit, we verified all the configurable values
or error handling that affect the processes are only coming from misconfigurations of the developers.
Thus, these input values are trusted.

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓ ✓

@fastify/websocket

Fastify-websocket handles incoming requests and add hooks to the routing process in order to dis-
tribute requests to the correct handlers or deny requests if the specific route is not configured.

Common vulnerable components

Denial-of-Service on the websocket service

An older version of the websocket plugin is vulnerable to DoS because of a missing error handler and
the error throws to the web instance and crashes the web instance. During the the manual audit, we
reviewed the fix for that vulnerability.

No-authentication or authorization

Authentication and authorization is a one of the key for the security of the web socket applications. This
plugin does not have default authentication features provided. It does have documentation mentioning
that a preValidation hook event to handle authentication may be necessary. The general and
default code does not provide authentication options. Thus it is the developers responsibility to add in
custom authentication or authorization to provide that layer of security for the web socket applications
and are not in scope of this plugin.

Possible different return header for HTTP Head and Get method

Fastify Security Audit 2023-2024 46

Fastify Security Audit 2023-2024 2024-05-15

By specification, HTTP HEAD and GET methods should return the same headers, however, the Fastify-
websocket plugin may return different headers. This could create a posibility of leaking out information
from wrong HTTP method specification from malformed input.

Websocket URL Poisoning

WebSocket connections are generally long-lived connections. HTTP requests/responses can be sent at
any time during the lifetime of the wesocket connections. If an attacker could control the web socket
connection URL, they could redirect the users to malicious locations or sensitive locations if the web
server does not verify the web socket connection URL. This plugin does not take the web socket URL
from untrusted data input from the users. Thus it is believed that this plugin is not vulnerable to URL
Poisoning attacks.

Items audited

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

✓ ✓ ✓ ✓

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26

✓ ✓ ✓ ✓ ✓

Fastify Security Audit 2023-2024 47

Fastify Security Audit 2023-2024 2024-05-15

Fuzzing

The Fastify framework provides an extensive list of plugins for supporting different customized features
for the core Fastify web framework functionality. The list of fuzzers targets different processing methods
that take random input across different Fastify plugins.

Fuzzers

Each of the fuzzers targets one or more of the Fastify plugins by creating objects of the target Fastify
plugins or registering them to the core Fastify framework to retrieve its exposed functions. Then each
of those exposed functions in the target Fastify plugins is fed with random data to fuzz its ability to
handle random data. Known Errors and Exceptions are caught to avoid fuzzing blockage. The fuzzers
can be found in https://github.com/AdaLogics/ada-fuzzers/tree/cf6b2dcf7c0931f0da556b6998ba56a
2b9c9054c/projects/fastify.

There is a very long list of Fastify plugins in the wild, many of them are maintained by the Fastify team,
but also some that are maintained by separate developers. In this audit report, we only target the
Fastify plugins that the core Fastify maintains. To further narrow down the fuzzers to target more
fuzz-worthy functions, we rank the plugins in their sensitivity and importance and aim to create fuzzers
for those high in rank.

As the core Fasitfy framework is a simple and fast web application, it relies on the inclusion and
registration of different Fastify plugins to provide certain designated features. Some of those features
are related to the security perspective of a web application, like @fastify/secure-session or
@fastify/csrf-protectionwhich handle HTTP sessions or provides CSRF protection for the
web application sessions and cookies. Besides, some of them are more vulnerable to web applications
framework attacks, like @fastify/cors or @fastify/fuzz_auth which handle cross-origin-
request control or basic user authentication. These plugins are usually more sensitive to malicious or
invalid input. Malformed or malicious input passes through these plugins are more likely to bypass
security mechanisms of the core Fastify web framework or crash the framework and cause Denial-of-
Service. For that reason, we target these more sensitive plugins (which are high in our ranking) in our
limited list of fuzzers.

For each of the plugins, we analyse the main entry points and their lib directory as the main logic of
the plugin is located in these locations. The fuzzers are in separate .js files which export the Fuzz
module for the Jazzer engine (https://github.com/CodeIntelligenceTesting/jazzer.js) to pick up and
call with different sets of random input. As it is a separate .js file, it can only access the functions
or components that have been explicitly exported by other .js files. We discovered these exported
functions from the plugins and their lib directories. We also capture the expected Error that is

Fastify Security Audit 2023-2024 48

https://github.com/AdaLogics/ada-fuzzers/tree/cf6b2dcf7c0931f0da556b6998ba56a2b9c9054c/projects/fastify
https://github.com/AdaLogics/ada-fuzzers/tree/cf6b2dcf7c0931f0da556b6998ba56a2b9c9054c/projects/fastify

Fastify Security Audit 2023-2024 2024-05-15

thrown explicitly from the code to avoid crashing the fuzzer easily and allow exploring more branches
in the code. Each of the fuzzers targets one of the Fastify plugins on our list.

Besides exported functions, some of the Fastify plugins will decorate or register some internal functions
to the Fastify core instance during the plugin registration process. Decorated functions and functions
registered on different life cycle hooks can be accessed through the Fastify instance. For this kind of
function, we first register to target the Fastify plugin to a newly created Fastify core instance, and then
we access and fuzz those decorated or hooked functions through the Fastify instance with random
data. This could extend the fuzzers coverage and possibly discover potential problems in the code.

At the entry point of the Fuzz module in each of our fuzzers, the fuzzer takes in a random set of byte
arrays from the Jazzer fuzzing engine and uses that as the random data to fuzz those target methods.
Although Javascript does not have strong typing, some functions may still require a certain format
of data and could throw TypeError if the data does not pass some of the checks. In most cases,
string, byte buffer, byte array and JSON. is the most common type of data expected by those target
functions. To avoid these kinds of false-positive crashes in the fuzzers, we specifically create a random
JSON generator. The generator takes in the byte array provided by the Jazzer engine and generates a
random JSON object with maximum depth. These settings provide additional data types on top of the
base string, byte buffer and byte array and could decrease those false-positive crashes because of the
wrong data type used during the fuzzing process.

In conclusion, the fuzzers target the more sensitive Fastify plugins with random data that is slightly
controlled to less false-positive crashing and optimizing for better target function fuzzing.

List of fuzzers

Fuzzers Description

fuzz_auth.js This fuzzer registers both @Fastify/basic-auth and @Fastify/bearer-auth
plugins to the Fastify instance and fuzz those decorated functions from
the Fastify core and those exposed functions from Bearer-Auth plugin
with random data.

fuzz_cookie.js This fuzzer fuzzes those exposed cookie-handling functions from the
@Fastify/cookie plugin with random data.

fuzz_cors.js This fuzzer fuzzes those exposed Cors and Vary handling functions from
the @Fastify/cors plugin with random data.

fuzz_ct_parse.js This fuzzer fuzzes those exposed parsing functions from the
@Fastify/content-type-parse plugin with random data.

Fastify Security Audit 2023-2024 49

Fastify Security Audit 2023-2024 2024-05-15

Fuzzers Description

fuzz_json.js This fuzzer fuzzes those exposed JSON and string handling functions
from the @Fastify/fast-json-stringify,
@Fastify/fast-json-stringify-compiler and @Fastify/secure-json-parse
plugins with random data.

fuzz_jwt.js This fuzzer registers the @Fastify/jwt plugin to the Fastify instance and
fuzzes those decorated JWT-processing functions from the Fastify core
with random data.

fuzz_response_validation.js This fuzzer registers the @Fastify/response-validation plugin to the
Fastify instance and fuzzes those decorated validating functions from the
Fastify core with random data and schema.

fuzz_secure_session.js This fuzzer registers the @Fastify/secure-session plugin to the Fastify
instance and fuzzes those decorated secure session handling functions
from the Fastify core with random data.

Fastify Security Audit 2023-2024 50

Fastify Security Audit 2023-2024 2024-05-15

Here we present the issues that we identified during the audit.

Findings

ID Title Severity Fixed

1 ADA-FASTIFY-2023-1 Weak signing key in default
signer

Informational Yes

2 ADA-FASTIFY-2023-3 Possible regular expression
DOS in Fastify-Cors

Informational Yes

3 ADA-FASTIFY-2023-7 Possible regular expression
DOS in fastify-middie
dependency

Informational Yes

4 ADA-FASTIFY-2023-9 Possible reuse of destroyed
secure session cookie

High Yes

5 ADA-FASTIFY-2023-10 Possible use of weak SHA-1
algorithm for session
persistent hash

Informational Yes

Fastify Security Audit 2023-2024 51

Fastify Security Audit 2023-2024 2024-05-15

[Fastify-Cookie] Weak signing key in default signer

Severity Informational

Status Fixed

id ADA-FASTIFY-2023-1

Component Fastify-cookie/signer.js

Description

The default signer of the cookie plugin directly uses the secret key and algorithm provided by the
developer when the cookie plugin is being registered to the Fastify instance.

Source direct link

https://github.com/fastify/fastify-cookie/blob/9f883217af8751437e82f91feff183621a668fd1/signer.
js#L13-L24

13 function Signer (secrets, algorithm = 'sha256') {
14 if (!(this instanceof Signer)) {
15 return new Signer(secrets, algorithm)
16 }
17
18 this.secrets = Array.isArray(secrets) ? secrets : [secrets]
19 this.signingKey = this.secrets[0]
20 this.algorithm = algorithm
21
22 validateSecrets(this.secrets)
23 validateAlgorithm(this.algorithm)
24 }

fastify-cookie implements checking for both the algorithm and secret to ensure the corresponding
algorithm provider does exist in the web server and all the provided secrets are string or buffer. However,
the current checks are insufficient to maintain sufficient security protection towards the cookie signing
and unsigning. The signer uses the node js crypto framework to create hmac as the signature of
cookies. According to Hmac definition in RFC2104 (https://www.rfc-editor.org/rfc/rfc2104.html),
the cryptographic strength of the HMAC depends upon the size of the secret key that is used and the
security of the underlying hash function used. In the current configuration of the fastify cookie plugin,
it is possible to use an insecure cryptographic algorithm like MD5 and SHA1. Also, it is possible to have
a very short secret. These two insecure settings will affect the security properties of the signed cookie

Fastify Security Audit 2023-2024 52

https://github.com/fastify/fastify-cookie/blob/9f883217af8751437e82f91feff183621a668fd1/signer.js#L13-L24
https://github.com/fastify/fastify-cookie/blob/9f883217af8751437e82f91feff183621a668fd1/signer.js#L13-L24
https://www.rfc-editor.org/rfc/rfc2104.html

Fastify Security Audit 2023-2024 2024-05-15

which a man-in-the-middle attacker could easily use a collision attack to create a malicious cookie
which could still match the signature if the developer fails to provide a secure key and algorithm for
the plugin.

We recommend adding a paragraph to the documentation detailing that for production use cases, the
user should use a secure hash function and a long secret.

Fastify Security Audit 2023-2024 53

Fastify Security Audit 2023-2024 2024-05-15

[Fastify-Cors] Possible regular expression DOS in Fastify-Cors

Severity Informational

Status Fixed

id ADA-FASTIFY-2023-3

Component Fastify-cors/plugin.js

Description

According to the documentation https://github.com/fastify/fastify-cors/tree/master#options, the de-
veloper could configure the fastify-cors plugins with an origin option which specify the allowed origin
for cors processing. This option is used to match if the requested origin is allowed to use cross origin
resources sharing. One of the accepted types of the origin option is JS RegExp object which is vulnera-
ble to ReDos. Although the pattern is crafted by the developer and not using any untrusted input, a
badly crafted regular expression pattern could allow an attacker to craft a specific origin in the request
and create a ReDos situation. For example, if the pattern aims to match any subdomain of trusted.com
and the developer created the pattern as /([0-9.]+)*trusted.com$/, an attacker could create
an input to trigger the ReDos, like 000t.

Source direct link:

https://github.com/fastify/fastify-cors/blob/042b14b7d6bbd5ddf1ca73482c6c9dcfa57304f9/index.j
s#L290-L292

290 } else if (allowedOrigin instanceof RegExp) {
291 allowedOrigin.lastIndex = 0
292 return allowedOrigin.test(reqOrigin)

It shows that both the allowedOrigin pattern and the origin from http request are not checked and
used directly. It is possible that if the developer is not aware of those dangerous regular expression
patterns and creates one of them and causes the problem. Without a proper checking and validation
of regex pattern (like using safe-regex package), an unaware developer could imply a dangerous regex
pattern for the cors origin matching.

We recommend adding a section to Fastifys documentation about the risks of usign Regex in this
scenario. Specifically, users should audit their regular expressions before putting them to use in
production.

Fastify Security Audit 2023-2024 54

https://github.com/fastify/fastify-cookie/tree/master#options
https://github.com/fastify/fastify-cors/blob/042b14b7d6bbd5ddf1ca73482c6c9dcfa57304f9/index.js#L290-L292
https://github.com/fastify/fastify-cors/blob/042b14b7d6bbd5ddf1ca73482c6c9dcfa57304f9/index.js#L290-L292

Fastify Security Audit 2023-2024 2024-05-15

[Fastify-Middie] Possible regular expression DOS in fastify-middie
dependency

Severity Informational

Status Fixed

id ADA-FASTIFY-2023-7

Component Fastify-middie/plugin.js

Description

The Fastify-middie provides a function to register additional middleware to different lifecycle hooks on
the core Fastify instance. After certain middleware registration, Fastify provides a decorated function to
use that registered middleware from the core Fasitfy instance. The use of that decorated function calls
the pathToRegexp function from the path-to-regexp module to retrieve a regular expression
pattern for retrieving the path of the target middleware to manage. pathToRegexp could return a
vulnerable regular expression pattern which could be abused to cause Regular Expression Denial-of-
Service.

1 var groupsRegex = /\((?:\?<(.*?)>)?(?!\?)/g;

Fastify developers using the method with unexpected or strange paths for the method could result in
Redos. Similar to issue 1, it could be detected during web instance initialisation.

Users should audit the paths of their middlewares before deploying to production. The risk of being
affected is low, however users with the risk of generating vulnerable paths - such as by way of automated
services - could be affected by this.

Fastify Security Audit 2023-2024 55

Fastify Security Audit 2023-2024 2024-05-15

[Fastify-Secure-Session] Possible reuse of destroyed secure session
cookie

Severity High

Status Fixed

id ADA-FASTIFY-2023-9

Component Fastify-secure-session/index.js

Description

The Fastify-secure-session plugin is not really using a “traditional session” which stores everything in
the server side and just returns a cookie storing the session ID to keep track of the user. It uses stateless
session which stores everything in an encrypted cookie on the client side and depends solely on that
encrypted cookie.

At the end of the request handling, it will encrypt all data in the session with a secret key and attach
the ciphertext as a cookie value with the defined cookie name. After that, the session on the server
side is destroyed. When an encrypted cookie with matching session name is provided with subsequent
requests, it will decrypt the ciphertext to get the data. The plugin then creates a new session with the
data in the ciphertext. Thus theoretically the web instance is still accessing the data from a server-side
session, but technically that session is generated solely from a user provided cookie (which is assumed
to be non-craftable because it is encrypted with a secret key not known to the user).

The issue happens in the session removal process. In general, when a “traditional session” is destroyed,
that data no longer exists on the server side, even if you provided the old session ID cookie, it still
cannot be used because that data no longer exists on the server side. But it is a different story for this
stateless cookie based session. In the delete function of the code, when the session is deleted, it is
marked for deletion.

Source direct link:

https://github.com/fastify/fastify-secure-session/blob/881694b2364229d61aefff688d4c4ad81a5cb7
a6/index.js#L289-L292

289 delete () {
290 this.changed = true
291 this.deleted = true

Fastify Security Audit 2023-2024 56

https://github.com/fastify/fastify-secure-session/blob/881694b2364229d61aefff688d4c4ad81a5cb7a6/index.js#L289-L292
https://github.com/fastify/fastify-secure-session/blob/881694b2364229d61aefff688d4c4ad81a5cb7a6/index.js#L289-L292

Fastify Security Audit 2023-2024 2024-05-15

292 }

When the request has ended, during the onSend hook, it will execute the session deletion logic if it
is flagged as deleted.

Source direct link:

https://github.com/fastify/fastify-secure-session/blob/881694b2364229d61aefff688d4c4ad81a5cb7
a6/index.js#L237-L255

237 } else if (session.deleted) {
238 request.log.debug('@fastify/secure-session: deleting session'

)
239 const tmpCookieOptions = Object.assign(
240 {},
241 cookieOptions,
242 session[kCookieOptions],
243 { expires: new Date(0), maxAge: 0 }
244)
245 reply.setCookie(cookieName, '', tmpCookieOptions)
246 continue
247 }

We can see that the only session removal logic is to clear the encrypted session cookie. That is no
more encrypted session cookie is returned in the reply and assuming the subsequent request won’t
send in that cookie anymore. That could create a problem. If an attacker could control what cookie
to be sent, it could still attach the encrypted session cookie and still gain access to some route which
requires the data in the session cookie because the session does not keep track of any information in
the server-side and thus it does not have the ability to verify if a provided encrypted session cookie is
“destroyed” or not if the validity of the cookie is still valid. It has been tested that if the session cookie
is still attached to subsequent requests after “destroying” the session, it can stilsl be identified as a
“legit” cookie.

This issue was assigned CVE-2024-31999

Fastify Security Audit 2023-2024 57

https://github.com/fastify/fastify-secure-session/blob/881694b2364229d61aefff688d4c4ad81a5cb7a6/index.js#L237-L255
https://github.com/fastify/fastify-secure-session/blob/881694b2364229d61aefff688d4c4ad81a5cb7a6/index.js#L237-L255

Fastify Security Audit 2023-2024 2024-05-15

[Fastify-Session] Possible use of weak SHA-1 algorithm for session
persistent hash

Severity Informational

Status Fixed

id ADA-FASTIFY-2023-10

Component Fastify-session/lib/session.js

Description

The fastify-Session plugin provides session support to the base Fastify framework. It uses a custom
Session object in the lib/ directory to manage the configuration and data for the creation and
management of the session. Hash values are very often used as checksum to verify the integrity of
data. When an attacker finds another set of information which gives the same hash value after hashing,
then the illegal change of the data may not be detected and result in collision attacks.

The Session class created in /lib/session.js used by the Fastify-session plugin adopts SHA-1
as the hashing algorithm for generating the hash value for checking the session persistency. There is
an instance method [hash](){} in the Session class which stringifies the whole session object
and uses the result string to generate a hash value. From Line#84 of the Session class constructor,
Fastify-Session uses the result of the instance method[hash](){} as the persistent checksum. Since
SHA1 is considered weak and broken, an attacker can potentially find a collision with altered data in
session.

Source direct link:

https://github.com/fastify/session/blob/8ea7e46a5542a1093a8f66cfbb2efd18024e49a5/lib/session
.js#L206-L221

206 [hash] () {
207 const sess = this
208 const str = stringify(sess, function (key, val) {
209 // ignore sess.cookie property
210 if (this === sess && key === 'cookie') {
211 return
212 }
213
214 return val

Fastify Security Audit 2023-2024 58

https://github.com/fastify/session/blob/8ea7e46a5542a1093a8f66cfbb2efd18024e49a5/lib/session.js#L206-L221
https://github.com/fastify/session/blob/8ea7e46a5542a1093a8f66cfbb2efd18024e49a5/lib/session.js#L206-L221

Fastify Security Audit 2023-2024 2024-05-15

215 })
216
217 return crypto
218 .createHash('sha1')
219 .update(str, 'utf8')
220 .digest('hex')
221 }

Source direct link:

https://github.com/fastify/session/blob/8ea7e46a5542a1093a8f66cfbb2efd18024e49a5/lib/session
.js#L22-L57

22 constructor (
23 sessionStore,
24 request,
25 idGenerator,
26 cookieOpts,
27 cookieSigner,
28 prevSession,
29 sessionId = idGenerator(request)
30) {
31 this[sessionStoreKey] = sessionStore
32 this[generateId] = idGenerator
33 this[cookieOptsKey] = cookieOpts
34 this[cookieSignerKey] = cookieSigner
35 this[requestKey] = request
36 this[sessionIdKey] = sessionId
37 this[encryptedSessionIdKey] = (
38 prevSession &&
39 prevSession[sessionIdKey] === sessionId &&
40 prevSession[encryptedSessionIdKey]
41) || cookieSigner.sign(this.sessionId)
42 this[savedKey] = false
43 this.cookie = new Cookie(prevSession?.cookie || cookieOpts, request

)
44
45 if (prevSession) {
46 // Copy over values from the previous session
47 for (const key in prevSession) {
48 (
49 key !== 'cookie' &&
50 key !== 'sessionId' &&
51 key !== 'encryptedSessionId'
52) && (this[key] = prevSession[key])
53 }
54 }
55
56 this[persistedHash] = this[hash]()
57 }

Fastify Security Audit 2023-2024 59

https://github.com/fastify/session/blob/8ea7e46a5542a1093a8f66cfbb2efd18024e49a5/lib/session.js#L22-L57
https://github.com/fastify/session/blob/8ea7e46a5542a1093a8f66cfbb2efd18024e49a5/lib/session.js#L22-L57

Fastify Security Audit 2023-2024 2024-05-15

Although the persistent hash is only used on the server side for validating the integrity of the stored ses-
sion data, it never assures that value will or will not pass on to the client side. Also, with a combination
of session prediction, session fixation or other server-side attacks in which an attacker could modify
session data on the server side or point the users to different sessions, it could break the integrity
check of the persisted hash with altered data which still result in the same hash. This could happen
since SHA1 is considered as weak and could result in collision easily. But in other cases, the abuse of
that hash is not too possible thus this is considered an informational report on the possible use of a
weak hashing algorithm.

Fastify Security Audit 2023-2024 60

	About Ada Logics
	Project dashboard
	Executive summary
	Threat model
	Introduction
	Data flow of Fastify
	Major components of Fastify
	Content type parser
	Decorators
	Hooks
	Logging
	Plugins
	Routing
	Fastify server configuration
	Errors handling

	Scope of Fastify
	Audit scope of Fastify

	Threat actors
	Threat actors’ objectives
	Stealing information
	Gain access to servers
	Perform unauthorized or unexpected activities
	Denial of services
	Relay attacks to other users

	Attack surface

	Manual Audit
	List of audited modules
	General List of items to look for
	Fastify plugin audit
	@fastify/auth
	@fastify/basic-auth
	@fastify/bearer-auth
	@fastify/busboy
	@fastify/caching
	@fastify/circuit-breaker
	@fastify/compress
	@fastify/cookie
	@fastify/cors
	@fastify/csrf @fastify/csrf-protection
	@fastify/elasticsearch
	@fastify/fast-json-stringify @fastify/fast-json-stringify-compiler
	@fastify/fast-uri
	@fastify-formbody
	@fastify/http-proxy
	@fastify/jwt
	@fastify/middie
	@fastify/multipart
	@fastify/oauth2
	@fastify/reply-from
	@fastify/response-validation
	@fastify/secure-json-parse
	@fastify/secure-session
	@fastify/session
	@fastify/soap-client
	@fastify/static
	@fastify/under-pressure
	@fastify/websocket

	Fuzzing
	Fuzzers
	List of fuzzers

	Findings
	[Fastify-Cookie] Weak signing key in default signer
	Description

	[Fastify-Cors] Possible regular expression DOS in Fastify-Cors
	Description

	[Fastify-Middie] Possible regular expression DOS in fastify-middie dependency
	Description

	[Fastify-Secure-Session] Possible reuse of destroyed secure session cookie
	Description

	[Fastify-Session] Possible use of weak SHA-1 algorithm for session persistent hash
	Description

