TRAL
B'Ts

Eclipse Temurin

Security Assessment

June 14, 2024

Prepared for:

Stewart Addison

The Eclipse Foundation

Organized by the Open Source Technology Improvement Fund, Inc.

Prepared by: Sam Alws and Matt Schwager

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we've helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O'Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.

497 Carroll St., Space 71, Seventh Floor
Brooklyn, NY 11215
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2024 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to the Eclipse
Foundation under the terms of the project statement of work and has been made public at
the Eclipse Foundation’s request. Material within this report may not be reproduced or
distributed in part or in whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer

All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Project Summary 5
Executive Summary 6
Project Goals 8
Project Targets 9
Project Coverage 10
Automated Testing 11
Codebase Maturity Evaluation 12
Summary of Findings 15
Detailed Findings 17
1. Command injection vulnerability in WinRM script 17
2. Docker Compose ports exposed on all interfaces 19
3. Insecure installation of Xcode software 21
4. Insecure software downloads in Ansible playbooks 23
5. Signature verification disabled during software installation 25
6. Missing integrity check in Dragonwell Dockerfile 27
7. Hostname verification disabled on MongoDB client 29
8. RHEL build image includes password 30
9. Insecure downloads using wget command 31
10. Hard-coded CA bundle keystore password 33
11. Hard-coded Vagrant VM password 35
12. Missing integrity or authenticity check in jcov script download 36
13. SSH client disables host key verification 37
14. Compiler mitigations are not enabled 39
15. Use of unpinned third-party workflows 41
16. Third-party dependencies used without signature or checksum verification =~ 43
17. Code injection vulnerability in build-scripts pipeline jobs 45
18. Docker commands specify root user in containers 47
19. Incorrect Dependabot configuration filename 48
A. Vulnerability Categories 49
B. Code Maturity Categories 51
Trail of Bits 3 OSTIF Eclipse: Temurin Security Assessment

PUBLIC

C. Insecure Download Semgrep Results
D. Compiler Mitigations
E. Code Quality Recommendations
F. Fix Review Results
Detailed Fix Review Results
G. Fix Review Status Categories

Trail of Bits
PUBLIC

53
54
58
62
64
67

OSTIF Eclipse: Temurin Security Assessment

Project Summary

Contact Information

The following project manager was associated with this project:

Jeff Braswell, Project Manager
jeff.braswell@trailofbits.com

The following engineering director was associated with this project:

Anders Helsing, Engineering Director, Application Security
anders.helsing@trailofbits.com

The following consultants were associated with this project:

Sam Alws, Consultant Matt Schwager, Consultant
sam.alws@trailofbits.com matt.schwager@trailofbits.com

Project Timeline

The significant events and milestones of the project are listed below.

Date Event

December 1, 2023 Pre-project kickoff call

December 11, 2023 Status update meeting #1

December 15, 2023 Delivery of report draft

December 15, 2023 Report readout meeting

June 14, 2024 Delivery of comprehensive report

Trail of Bits 5 OSTIF Eclipse: Temurin Security Assessment

PUBLIC

mailto:jeff.braswell@trailofbits.com
mailto:anders.helsing@trailofbits.com
mailto:sam.alws@trailofbits.com
mailto:matt.schwager@trailofbits.com

Executive Summary

Engagement Overview

OSTIF engaged Trail of Bits to review the security of the Eclipse Foundation’s Temurin
project. The Temurin project is part of the top-level project Adoptium, and provides code
and processes that support the building of quality Java runtime binaries and associated
technologies that are high performance, enterprise caliber, cross platform, open-source
licensed, and secure. At the highest level, Temurin takes source code for the
implementation of Java SE versions from OpenJDK, builds and tests the code across a
number of platform architectures, and makes the results available to end users in a wide
variety of consumable formats.

A team of two consultants conducted the review from December 4 to December 15, 2023,
for a total of four engineer-weeks of effort. Our testing efforts focused on authentication
and authorization, data flow, and command injection vulnerabilities. With full access to
source code and documentation, we performed static and dynamic testing of the
codebase, using automated and manual processes.

During the audit, we also developed a set of Semgrep rules, which will be provided
alongside this report in a zip file.

Observations and Impact

We found a number of issues in which downloads (mainly software downloads) are
performed without proper verification (TOB-TEMURIN-3, TOB-TEMURIN-4, TOB-TEMURIN-5,
TOB-TEMURIN-6, TOB-TEMURIN-9, TOB-TEMURIN-12, TOB-TEMURIN-15, TOB-TEMURIN-16).
We also found that the GitHub bot responsible for checking dependencies in the
infrastructure repository is not configured correctly, preventing out-of-date
dependencies from being detected (TOB-TEMURIN-19). We also noticed that dependencies
are installed in many places in the temurin-build repository in an ad hoc manner,
making it difficult to determine the full list of dependencies being used.

We found two high-severity issues that allow privileged users to perform code injection
attacks on Jenkins build machines and Vagrant virtual machines (VMs) (TOB-TEMURIN-1,
TOB-TEMURIN-17). We found two other high-severity issues involving vulnerabilities to
person-in-the-middle attacks, through the API server’s connection to its MongoDB database
(TOB-TEMURIN-7) and SSH connections to a Nagios instance (TOB-TEMURIN-13).

Recommendations

Based on the codebase maturity evaluation and findings identified during the security
review, Trail of Bits recommends that the Eclipse Foundation take the following steps:

Trail of Bits 6 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

e Remediate the findings disclosed in this report. These findings should be
addressed as part of a direct remediation or as part of any refactor that may occur
when addressing other recommendations.

e Create a centralized list of all the code locations where Temurin adds external
dependencies. Currently, Temurin adds dependencies throughout multiple
Dockerfiles, Bash scripts, Ansible playbooks, and so on. This is especially true in the
temurin-build repository, where it is very difficult to track down all the places
where binaries are downloaded and run. We recommend making a single piece of
documentation (or one piece of documentation per repository) containing a list of
filenames and line numbers where dependencies are added.

Finding Severities and Categories

The following tables provide the number of findings by severity and category.

EXPOSURE ANALYSIS CATEGORY BREAKDOWN
Severity Count Category Count
High 8 Access Controls 3
Medium 1 Configuration 2
Low 4 Cryptography 8
Informational 5 Data Exposure 1
Undetermined 1 Data Validation 2
Patching 3
Trail of Bits 7 OSTIF Eclipse: Temurin Security Assessment

PUBLIC

Project Goals

The engagement was scoped to provide a security assessment of the Eclipse Foundation’s
Temurin project. Specifically, we sought to answer the following non-exhaustive list of
questions:

e How and where is data stored?

e How do users authenticate to the application(s)?

e How do internal systems authenticate to each other?

e How does user input flow through the system?

e How is the infrastructure managed?

e How does the system use cryptography?

e How does the system download and install software?

e What types of users or privileged parties exist in the system?
e Does the system interact with external services?

e Where do production workloads run?

Trail of Bits 8 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

Project Targets

The engagement involved a review and testing of the targets listed below.

api.adoptium.net

Repository
Version

Type

Platform

https://github.com/adoptium/api.adoptium.net
52be774c47a374cdBcf13c40f2eb28f4b1158a16
Kotlin

Server

ci-jenkins-pipelines

Repository
Version

Type

Platform

infrastructure

Repository
Version

Type

Platform
jenkins-helper
Repository
Version

Type

Platform

temurin-build

Repository
Version
Type
Platform

Trail of Bits
PUBLIC

https://github.com/adoptium/ci-jenkins-pipelines
7b9559¢ce88321ff8111180fdc58421a0f9%eadcef
Groovy

Server

https://github.com/adoptium/infrastructure
9f6e77549a67031beab7efae3030942729baa186
Various scripting languages; Ansible playbooks

Server

https://github.com/adoptium/jenkins-helper
3e12d3e25fe100e62275656342ee315396abb55e
Groovy

Server

https://github.com/adoptium/temurin-build
da2408e4ea988090835f15f29cb170873ccedd45
Bash

Server

9 OSTIF Eclipse: Temurin Security Assessment

https://github.com/adoptium/api.adoptium.net
https://github.com/adoptium/ci-jenkins-pipelines
https://github.com/adoptium/infrastructure
https://github.com/adoptium/jenkins-helper
https://github.com/adoptium/temurin-build

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following;:

e Static analysis of the codebase using Semgrep rules, focused on the following:
o Connections to HTTP endpoints
o Connections to HTTPS endpoints
o Software authenticity verification
o Hostname or host key verification
o Excessive user privileges
o BasicJava and Kotlin code quality issues
e Manual review of the codebase, focused on the following:
o Authentication, authorization, and access controls
o Command injection and other forms of injection bugs
o SSL hostname verification, authenticity, and integrity validation

e Binary analysis focused on various forms of security hardening using the checksec
tool

Coverage Limitations

Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. The following list outlines the coverage limitations of the engagement and
indicates system elements that may warrant further review:

e We did not review each of Temurin's dependencies to ensure that they are up to
date and secure.

o We did not review the temurin-build/security/mk-ca-bundle.pl file,
which was made by the cURL project.

Trail of Bits 10 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

Automated Testing

Trail of Bits uses automated techniques to extensively test the security properties of
software. We use both open-source static analysis and fuzzing utilities, along with tools
developed in house, to perform automated testing of source code and compiled software.

Test Harness Configuration
We used the following tools in the automated testing phase of this project:

Tool Description Policy
Semgrep An open-source static analysis tool for finding bugs Rules to be
and enforcing code standards when editing or provided in
committing code and during build time accompanying zip
file
checksec An open-source binary analysis tool for checking Default

security properties of executables like PIE, RELRO,
stack canaries, ASLR, and source fortification

route-detect An open-source static analysis tool for finding Default, with Java
authentication and authorization security bugs in Jakarta package
web application routes namespace added

Areas of Focus

Our automated testing and verification work focused on the following system properties:
e Secure HTTP downloads and endpoint access
e Authenticity and integrity guarantees
e Least privilege access controls
e Binary hardening flags
e Web application route authentication and authorization controls
Our testing work focused on finding the following types of issues:
e Cryptographic weaknesses and insecure algorithms

e Hard-coded or exposed secrets, credentials, and tokens

Trail of Bits 11 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/returntocorp/semgrep
https://github.com/slimm609/checksec.sh
https://github.com/mschwager/route-detect

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result
Arithmetic Due to the nature of the project, Temurin makes minimal Not

use of arithmetic. Applicable
Auditing Log messages are saved while building and testing Strong

Open)DK releases. The API server tracks telemetry data
using Microsoft Application Insights. Both of these
features will make incident response much easier in the
event of a security problem.

Authentication / End-user authentication is minimal and is soundly Satisfactory

Access Controls implemented where necessary. Access controls are
generally limited to least privilege, with the exception of
the controls described in TOB-TEMURIN-18. Although
lower priority, improvements to password management
can be made to address TOB-TEMURIN-8,
TOB-TEMURIN-10, and TOB-TEMURIN-11.

Complexity Code complexity varies across repositories. For example, Moderate
Management the api.adoptium.net repository is well structured,

while the temurin-build repository lacks inherent

structure. The use of a modern programming language

for the API server versus the ad hoc scripting in the build

repository may account for this discrepancy. In many

cases, good documentation accompanies disorganized

code, making it easier to manage and understand.

Configuration The targets rely heavily on Ansible for configuration Weak

management. The infrastructure codebase contains
a significant number of insecure configurations, such as
those described in TOB-TEMURIN-4, TOB-TEMURIN-5,

and TOB-TEMURIN-13, and multiple code quality issues,
described in appendix E. Configuration practices related

Trail of Bits 12 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

to password and dependency management can also be

improved.
Cryptography We found multiple places where important cryptography Weak
and Key features, such as HTTPS downloads and signature
Management verifications, are disabled. A large portion of the findings

in this report are related to these disabled cryptography
features (TOB-TEMURIN-3, TOB-TEMURIN-4,
TOB-TEMURIN-5, TOB-TEMURIN-7, TOB-TEMURIN-9,
TOB-TEMURIN-12, TOB-TEMURIN-13, TOB-TEMURIN-16).

Data Handling In general, we found that Temurin correctly handles its Satisfactory
data (such as its binaries). However, we noticed multiple
cases in which command injection is possible
(TOB-TEMURIN-1, TOB-TEMURIN-17). We also noticed one
case in which a Red Hat password is exposed
(TOB-TEMURIN-8). In addition, issues related to
cryptography (see above) often have the potential to lead
to leakage or corruption of Temurin's data.

Documentation Temurin provides comprehensive documentation Strong
describing the project layout and build process.
READMEs, network diagrams, a basic threat model, and
other thorough, text-based documentation describe
necessary workflows and design decisions. Code is
commented where needed.

Maintenance Dependabot is used to keep the api.adoptium.net, Weak
ci-jenkins-pipelines, and temurin-build
repositories up to date. Dependabot was incorrectly
added in the infrastructure repository
(TOB-TEMURIN-19). (It is not used in the
jenkins-helper repository since the repository does
not specify any dependencies.) In most cases,
dependencies are pinned using a checksum or verified
using a signature; however, there are a number of
exceptions to this (TOB-TEMURIN-3, TOB-TEMURIN-4,
TOB-TEMURIN-5, TOB-TEMURIN-6, TOB-TEMURIN-9,
TOB-TEMURIN-12, TOB-TEMURIN-15, TOB-TEMURIN-16).
Additionally, in the temurin-build repository,
dependencies are downloaded in many different places
in an ad hoc fashion, making it difficult to determine the
full list of dependencies being used. We recommend, at
the very least, documenting a list of all locations where

Trail of Bits 13 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

these downloads are performed (see the executive

summary).
Memory Safety The Temurin project uses memory-safe languages, with Strong
and Error very few exceptions. We did not find any issues related to
Handling memory safety or error handling.
Testing and Tests are run on JDK builds as part of the pipeline to Satisfactory
Verification ensure correctness. The api.adoptium.net repository

includes tests for its Kotlin code, including tests for both
happy-path and unhappy-path behavior. Temurin would
benefit from having Semgrep run on each new PR
submitted to each of its repositories.

Trail of Bits 14 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title

1 Command injection vulnerability in WinRM script

2 Docker Compose ports exposed on all interfaces

3 Insecure installation of Xcode software

4 Insecure software downloads in Ansible
playbooks

5 Signature verification disabled during software
installation

6 Missing integrity check in Dragonwell Dockerfile

7 Hostname verification disabled on MongoDB
client

8 RHEL build image includes password

9 Insecure downloads using wget command

10 Hard-coded CA bundle keystore password

11 Hard-coded Vagrant VM password

12 Missing integrity or authenticity check in jcov
script download

13 SSH client disables host key verification

14 Compiler mitigations are not enabled

15 Use of unpinned third-party workflows

Trail of Bits 15

PUBLIC

Type

Data Validation

Configuration

Cryptography

Cryptography

Cryptography

Cryptography

Cryptography

Data Exposure

Cryptography

Access Controls

Access Controls

Cryptography

Cryptography
Configuration

Patching

Severity

High

Low

High

High

High

Low

High

Low

High

Informational

Informational

Low

High

Informational

Medium

OSTIF Eclipse: Temurin Security Assessment

16 Third-party dependencies used without signature
or checksum verification
17 Code injection vulnerability in build-scripts
pipeline jobs
18 Docker commands specify root user in containers
19 Incorrect Dependabot configuration filename
Trail of Bits 16

PUBLIC

Patching Informational

Data Validation High

Access Controls Informational

Patching Undetermined

OSTIF Eclipse: Temurin Security Assessment

Detailed Findings

1. Command injection vulnerability in WinRM script
Severity: High Difficulty: High
Type: Data Validation Finding ID: TOB-TEMURIN-1

Target: infrastructure/ansible/pbTestScripts/startScriptWin.py

Description

The run_winrm function allows callers to specify commands to run on a Vagrant virtual
machine (VM). It is the primary functionality of the startScriptWin.py script, which is
itself executed by the vagrantPlaybookCheck. sh shell script. This function receives input
from command-line arguments and uses string concatenation to build a shell command to
execute on a Vagrant VM:

def run_winrm(vmIP, buildArgs, mode):
cmd_str = "Start-Process powershell.exe -Verb runAs; cd C:/tmp; sh
C:/vagrant/pbTestScripts/"
print(mode)
if mode ==
cmd_str += "buildJDKWin.sh "
else:
cmd_str += "testJDKWin.sh "
cmd_str += buildArgs
print("Running : %s" %cmd_str)
session = winrm.Session(str(vmIP), auth=('vagrant', 'vagrant'))
session.run_ps(cmd_str, sys.stdout, sys.stderr)

Figure 1.1: A shell command generated with string concatenation
(infrastructure/ansible/pbTestScripts/startScriptWin.py:12-22)

If an attacker can influence the buildArgs parameter, either through the
startScriptWin.py or vagrantPlaybookCheck.sh command-line arguments, then
they could be able to execute code on the Vagrant VM. The Eclipse Foundation has
confirmed that these parameters can be specified in a Jenkins job web form; however,
access to these forms is restricted.

Exploit Scenario

An attacker sends a malicious shell payload through the --build-fork or
--build-branch command-line argument to vagrantPlaybookCheck. sh, or through
the -a command-line argument to startScriptWin.py. While building the cmd_str, the

Trail of Bits 17 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/pbTestScripts/startScriptWin.py#L12%E2%80%93L22

run_winrm function concatenates the buildArgs string and executes it on the Vagrant
VM. The attacker is able to execute arbitrary commands by using shell operators such as ;,
&&, or | |, and to append additional commands.

It is worth noting that spaces cannot be used in the payload if it is sent to
vagrantPlaybookCheck.sh. However, shell brace expansion can be used to bypass this
restriction. For example, the following command results in successful command injection:

./vagrantPlaybookCheck.sh ... --branch main; {echo, command, injection}; ...

Recommendations

Short term, build a list of command arguments to be passed to the run_winrm method
instead of using string concatenation to generate a command argument string and passing
itto run_ps.

Long term, implement static analysis rules to automatically detect string concatenation
data that is passed to the run_ps method.

Trail of Bits 18 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

2. Docker Compose ports exposed on all interfaces
Severity: Low Difficulty: High
Type: Configuration Finding ID: TOB-TEMURIN-2

Target: api.adoptium.net/docker-compose.yml

Description

The docker-compose.yml configuration file for the api.adoptium.net API server (which
is used in development but not in production) specifies Docker ports using a ports
configuration option of 27017 :27017 for the MongoDB container and 80860 : 8080 for the
front-end container (see figure 2.1). This means that these ports are accessible not just to
other processes running on the same computer, but also from other computers on the
same network.

version: '3.6'
services:
mongodb:
image: mongo:4.2
ports:
- "27017:27017"
frontend:
depends_on:
- mongodb
image: "adoptium-api”
build:
context:
dockerfile: Dockerfile
ports:
- "8080:8080"
environment:
MONGODB_HOST : mongodb
updater:
depends_on:
- mongodb
image: "adoptium-api”
command: "java -jar /deployments/adoptium-api-v3-updater-runner.jar
build:
context:
dockerfile: Dockerfile
environment:
MONGODB_HOST: mongodb
GITHUB_TOKEN: "S{GITHUB_TOKEN}"
GITHUB_APP_ID: "${GITHUB_APP_ID}"
GITHUB_APP_PRIVATE_KEY: "${GITHUB_APP_PRIVATE_KEY}"

Trail of Bits 19 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

GITHUB_APP_INSTALLATION_ID: "${GITHUB_APP_INSTALLATION_ID}"

Figure 2.1: api.adoptium.net/docker-compose.yml

Exploit Scenario

A Temurin developer runs this docker-compose . yml file while on a public Wi-Fi network.
An attacker who is on the same network connects to the MongoDB database running on
the developer’'s computer; this database is available on port 27017 without any password
protection. The attacker modifies an entry in the database containing a link to a binary file,
which eventually causes the developer to unwittingly download and run a malicious file.

Recommendations
Short term, set these configuration values to 127.0.0.1:27017:27017 and
127.0.0.1:8080:8080, instead of 27017 :27017 and 8080 :8080.

Long term, use static analysis rules to automatically detect ports that are exposed on all
interfaces; the set of Semgrep rules provided alongside this report includes such a rule.

Trail of Bits 20 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/api.adoptium.net/blob/52be774c47a374cd0cf13c40f2eb28f4b1158a16/docker-compose.yml

3. Insecure installation of Xcode software

Severity: High Difficulty: High
Type: Cryptography Finding ID: TOB-TEMURIN-3
Target:

infrastructure/ansible/playbooks/AdoptOpenJDK_ITW_Playbook/roles/Com
mon/scripts/install-xcode.sh

Description
The install-xcode. sh script uses unencrypted HTTP endpoints to download Xcode
command-line tools and then installs them using the ~allowUntrusted flag:

if [["Sosx_vers" -eq 7 1] || [["Sosx_vers" -eq 8]]; then

if [["Sosx_vers" -eq 7]]; then
DMGURL=http://devimages.apple.com/downloads/xcode/command_line_tools_for_xcode_os_x_lion_april_
2013 .dmg

fi

if [["Sosx_vers" -eq 8]]; then
DMGURL=http://devimages.apple.com/downloads/xcode/command_line_tools_for_osx_mountain_lion_apri
1_2014.dmg

fi

TOOLS=cltools.dmg
curl "SDMGURL" -o "$TOOLS"
TMPMOUNT="/usr/bin/mktemp -d /tmp/clitools.XXXX"
hdiutil attach "STOOLS" -mountpoint "STMPMOUNT" -nobrowse
The "-allowUntrusted" flag has been added to the installer
command to accomodate for now-expired certificates used
to sign the downloaded command line tools.
installer -allowUntrusted -pkg "S(find STMPMOUNT -name '*.mpkg')" -target /
hdiutil detach "STMPMOUNT"
rm -rf "STMPMOUNT"
rm "$TOOLS"
fi

Figure 3.1: Untrusted installation of Xcode software

(infrastructure/ansible/playbooks/AdoptOpenJDK_ITW_Playbook/roles/Common/
scripts/install-xcode.sh:23-44)

Also, the OS X version check performs an imprecise comparison. This increases the
likelihood that the untrusted installation will be performed on versions it is not intended
for. The osx_vers variable considers only the system minor version rather than the minor
and major version:

Trail of Bits 21 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_ITW_Playbook/roles/Common/scripts/install-xcode.sh#L23%E2%80%93L44
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_ITW_Playbook/roles/Common/scripts/install-xcode.sh#L23%E2%80%93L44

osx_vers=S(sw_vers -productVersion | awk -F "." '{print $2}')

Figure 3.2: The code checks only the system minor version.
(infrastructure/ansible/playbooks/AdoptOpenJDK_ITW_Playbook/roles/Common/
scripts/install-xcode.sh:2)

This script is meant to perform the untrusted installation only if it is running on OS X
version 10.7 or 10.8. Because the code checks only the minor version, this script will also
perform the untrusted installation on macOS versions 11.7, 12.7, 13.7, and so on.

Exploit Scenario

An attacker is in a privileged network position relative to a system installing Xcode software
and is able to actively intercept and modify the system’s network traffic. Because the
software is downloaded over HTTP and its installation is untrusted, the attacker can modify
the download in transit and replace the software with a malicious version.

Recommendations
Short term, have the script use HTTPS to download the software and ensure the integrity of
the software by validating it against a known SHA-256 checksum.

Long term, deprecate and remove support for OS X and macQOS versions requiring an
untrusted installation of the Xcode command-line tools.

Trail of Bits 22 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_ITW_Playbook/roles/Common/scripts/install-xcode.sh#L2
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_ITW_Playbook/roles/Common/scripts/install-xcode.sh#L2

4. Insecure software downloads in Ansible playbooks
Severity: High Difficulty: High
Type: Cryptography Finding ID: TOB-TEMURIN-4

Target: The full list of targets is provided in appendix C.

Description

Ansible playbooks are used to configure various parts of the system infrastructure. These
playbooks install software and generally configure systems to be in a consistent state.
Many of the playbooks install software and package data in an insecure manner, using
unencrypted channels such as HTTP (figure 4.1) or disabling certificate validation when
performing the download (figure 4.2). The full list of such instances is provided in appendix
C.

- name: Add Azul Zulu GPG Package Signing Key for x86_64
apt_key:
url: http://repos.azulsystems.com/RPM-GPG-KEY-azulsystems
state: present
when:
- ansible_architecture == "x86_64"
tags: [patch_update, azul-key]

Figure 4.1: HTTP download
(infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common
/tasks/Ubuntu.yml :25-31)

- name: Enable EPEL release (not Cent0S8)
yum:
name: epel-release
state: installed
update_cache: yes
validate_certs: no
when: ansible_distribution_major_version != "8"
tags: patch_update

Figure 4.2: Disabled SSL certificate validation
(infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common
/tasks/Cent0S.yml:15-22)

Note that there are many more instances in which validate_certs is disabled. However,
packages or downloads that specify a checksum alongside disabled validation are
considered secure. This configuration was assumed to mean “trust on first use” and that

Trail of Bits 23 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common/tasks/Ubuntu.yml#L25%E2%80%93L31
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common/tasks/Ubuntu.yml#L25%E2%80%93L31
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common/tasks/CentOS.yml#L15%E2%80%93L22
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common/tasks/CentOS.yml#L15%E2%80%93L22

integrity of the software has been verified out of band and validated with a checksum. An
example of the configuration is provided below:

- name: Download expat
get_url:
url:
https://github.com/libexpat/libexpat/releases/download/R_2_2_5/expat-2.2.5.tar.bz2
dest: /tmp/
mode : 0440
timeout: 25
validate_certs: no
checksum:
sha256 :d9dc32efba7e741f788fcc4f212a43216fc37cf5f23f4c2339664d473353aedf6

Figure 4.3: SSL certificate validation disabled and checksum provided

(infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common
/tasks/openSUSE.yml:151-158)

Exploit Scenario

An attacker is in a privileged network position relative to a system installing software using
an Ansible playbook and is able to actively intercept and modify the system’s network
traffic. Because the software is downloaded over HTTP, the attacker can modify the
download in transit and replace the software with a malicious version.

Recommendations
Short term, change HTTP downloads to HTTPS, and enable SSL certificate validation.

Long term, implement static analysis rules to automatically detect HTTP downloads and
disabled SSL certificate validation in Ansible playbooks.

Trail of Bits 24 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common/tasks/openSUSE.yml#L151%E2%80%93L158
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common/tasks/openSUSE.yml#L151%E2%80%93L158

5. Signature verification disabled during software installation

Severity: High Difficulty: High
Type: Cryptography Finding ID: TOB-TEMURIN-5
Target:

infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Co
mmon/tasks/openSUSE.yml,
infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/NV
idia_Cuda_Toolkit/tasks/main.yml,

infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Do
cker/tasks/rhel.yml

Description

Software package signatures are verified upon installation to ensure their authenticity.
GNU Privacy Guard (GPG) signatures are a common signing method. A number of Ansible
playbooks disable GPG verification when installing packages. The following snippets show
four locations where verification is disabled:

- name: Sed change gpgcheck for gcc repo on x86_64
replace:
path: /etc/zypp/repos.d/devel_gcc.repo
regexp: 'gpgcheck=1"'
replace: "gpgcheck=0"
when:
- (ansible_distribution_major_version == "12" and ansible_architecture ==
"x86_64")
tags: SUSE_gcc48

Figure 5.1: openSUSE playbook disabling GPG verification
(infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common
/tasks/openSUSE.yml :29-36)

- name: Sed change gpgcheck for SLES12 on x86_64
command: sed 's/gpgcheck=1/gpgcheck=0/' -i /etc/zypp/repos.d/cuda.repo
when:
- cuda_installed.stat.islnk is not defined
- ansible_architecture == "x86_64"
- ansible_distribution == "SLES" or ansible_distribution == "openSUSE"
- ansible_distribution_major_version == "12"
tags:
- nvidia_cuda_toolkit
#TODO: rpm used in place of yum or rpm_key module
- skip_ansible_lint

Trail of Bits 25 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common/tasks/openSUSE.yml#L29%E2%80%93L36
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common/tasks/openSUSE.yml#L29%E2%80%93L36

Figure 5.2: NVIDIA playbook disabling GPG verification
(infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/NVidia
_Cuda_Toolkit/tasks/main.yml:105-115)

- name: Add Docker Repo x86-64/ppc64le
yum_repository:
name: docker
description: docker repository
baseurl: "https://download.docker.com/linux/centos/{{
ansible_distribution_major_version }}/{{ ansible_architecture }}/stable"
enabled: true
gpgcheck: false
when:
- ansible_architecture == "x86_64" or ansible_architecture == "ppc64le"

- name: Add Docker repo for s398x on RHEL
yum_repository:
name: docker
description: docker YUM repo s390x
baseurl: https://download.docker.com/linux/rhel/{{
ansible_distribution_major_version }}/s390x/stable/
enabled: true
gpgcheck: false
when:
- ansible_architecture == "s390x"

Figure 5.3: Docker playbook disabling GPG verification
(infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Docker
/tasks/rhel.yml:13-31)

Exploit Scenario

An attacker wants to upload a malicious package to one of the repositories. He is able to
bypass the repository signing process or sign the package with an untrusted GPG key and
successfully upload the package. The system performing the installation then installs the
malicious package despite receiving an incorrect signature, or no signature at all.

Recommendations
Short term, import the correct package repository GPG keys, and enable GPG signature
verification.

Long term, implement static analysis rules to automatically detect disabled GPG signature
verification in Ansible playbooks.

Trail of Bits 26 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/NVidia_Cuda_Toolkit/tasks/main.yml#L105%E2%80%93L115
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/NVidia_Cuda_Toolkit/tasks/main.yml#L105%E2%80%93L115
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Docker/tasks/rhel.yml#L13%E2%80%93L31
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Docker/tasks/rhel.yml#L13%E2%80%93L31

6. Missing integrity check in Dragonwell Dockerfile

Severity: Low Difficulty: High
Type: Cryptography Finding ID: TOB-TEMURIN-6
Target:

ci-jenkins-pipelines/pipelines/build/dockerFiles/dragonwell.dockerfi
le

Description

The Dragonwell Dockerfile downloads and installs the Dragonwell software without
verifying its integrity. A hashsum like SHA-256 should be used to ensure the integrity of the
download and that the system is receiving the same data across multiple downloads.

RUN \

Dragonewell 8 requires a dragonwell 8 BootJDK

mkdir -p /opt/dragonwell; \

wget
https://github.com/alibaba/dragonwell8/releases/download/dragonwell-8.4.4_jdk8u262-g
a/Alibaba_Dragonwell_8.4.4-GA_Linux_x64.tar.gz; \

tar -xf Alibaba_Dragonwell_8.4.4-GA_Linux_x64.tar.gz -C /opt/; \

mv /opt/jdk8u262-b10 /opt/dragonwell8

Figure 6.1: Download of the Dragonwell software
(ci-jenkins-pipelines/pipelines/build/dockerFiles/dragonwell.dockerfile:5
-10)

Note that the equivalent AArch64 download of the same software does verify the integrity
with an MD5 hashsum:

RUN \

Dragonewell 8 requires a dragonwell 8 BootJDK

mkdir -p /opt/dragonwell8; \

wget
https://github.com/alibaba/dragonwell8/releases/download/dragonwell-8.5.5_jdk8u275-b
2/Alibaba_Dragonwell_8.5.5-FP1_Linux_aarch64.tar.gz; \

test $(md5sum Alibaba_Dragonwell_8.5.5-FP1_Linux_aarch64.tar.gz | cut -d '
-f1) = "ab80c4f638510de8c7211b7b77341946" || exit 1; \

tar -xf Alibaba_Dragonwell_8.5.5-FP1_Linux_aarch64.tar.gz -C /opt/dragonwell8
--strip-components=1

Figure 6.2: Download of the AArch64 Dragonwell software
(ci-jenkins-pipelines/pipelines/build/dockerFiles/dragonwell_aarch64.dock
erfile:5-19)

Trail of Bits 27 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/ci-jenkins-pipelines/blob/7b9559ce88321ff8111180fdc58421a0f9eadcef/pipelines/build/dockerFiles/dragonwell.dockerfile#L5%E2%80%93L10
https://github.com/adoptium/ci-jenkins-pipelines/blob/7b9559ce88321ff8111180fdc58421a0f9eadcef/pipelines/build/dockerFiles/dragonwell.dockerfile#L5%E2%80%93L10
https://github.com/adoptium/ci-jenkins-pipelines/blob/7b9559ce88321ff8111180fdc58421a0f9eadcef/pipelines/build/dockerFiles/dragonwell_aarch64.dockerfile#L5%E2%80%93L10
https://github.com/adoptium/ci-jenkins-pipelines/blob/7b9559ce88321ff8111180fdc58421a0f9eadcef/pipelines/build/dockerFiles/dragonwell_aarch64.dockerfile#L5%E2%80%93L10

Exploit Scenario

An attacker is able to upload a malicious package to one of the repositories. The system
performing the installation then installs the malicious package even though the underlying
data within the package has changed.

Recommendations
Short term, add a SHA-256 hashsum check to ensure the integrity of the software.

Trail of Bits 28 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

7. Hostname verification disabled on MongoDB client

Severity: High Difficulty: High
Type: Cryptography Finding ID: TOB-TEMURIN-7
Target:

api.adoptium.net/adoptium-api-v3-persistence/src/main/kotlin/net/ado
ptium/api/v3/dataSources/persitence/mongo/MongoClient .kt

Description

The MongoDB client used by the API server disables hostname verification when SSL is
enabled. This could enable attackers to steal the database username and password
through person-in-the-middle attacks.

var settingsBuilder = MongoClientSettings.builder()
.applyConnectionString(ConnectionString(connectionString))
val sslEnabled = System.getenv("MONGODB_SSL")?.toBoolean()
if (sslEnabled == true) {
settingsBuilder = settingsBuilder.applyToSslSettings {
it.enabled(true).invalidHostNameAllowed(true) }

}
client = KMongo.createClient(settingsBuilder.build()).coroutine
database = client.getDatabase(dbName)

Figure 7.1: Configuration code that disables hostname verification
(api.adoptium.net/adoptium-api-v3-persistence/src/main/kotlin/net/adoptiu
m/api/v3/dataSources/persitence/mongo/MongoClient.kt#67—-74)

Exploit Scenario

The API server sends a request to the MongoDB database. A person-in-the-middle attacker
impersonates the database, using his own SSL key. The APl server then sends over its
database username and password, encrypted using the attacker’s public key, rather than
the database’s public key. The attacker now knows the database’s username and password
and can tamper with its contents.

Recommendations
Short term, enable hostname verification by removing the call to
invalidHostNameAllowed.

Trail of Bits 29 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/api.adoptium.net/blob/52be774c47a374cd0cf13c40f2eb28f4b1158a16/adoptium-api-v3-persistence/src/main/kotlin/net/adoptium/api/v3/dataSources/persitence/mongo/MongoClient.kt#L67-L74
https://github.com/adoptium/api.adoptium.net/blob/52be774c47a374cd0cf13c40f2eb28f4b1158a16/adoptium-api-v3-persistence/src/main/kotlin/net/adoptium/api/v3/dataSources/persitence/mongo/MongoClient.kt#L67-L74

8. RHEL build image includes password
Severity: Low Difficulty: High
Type: Data Exposure Finding ID: TOB-TEMURIN-8

Target: infrastructure/ansible/docker/Dockerfile.RHEL7

Description

The Red Hat Enterprise Linux (RHEL) build image takes a Red Hat username and password
as a build argument. Docker build arguments are persisted in the resulting image, meaning
that anyone who gains access to Temurin's RHEL image will also have access to the Red Hat

login information.

FROM registry.access.redhat.com/rhel?7

This dockerfile should be built using:

docker build --no-cache -t rhel7_build_image -f ansible/docker/Dockerfile.RHEL7
--build-arg ROSIUSER=##****%* --buyild-arg ROSIPW=******* --phuyild-arg git_sha=#******%*
“pwd"

ARG ROSIUSER

ARG ROSIPW

RUN sed -i 's/\(def in_container():\)/\1\n return False/g'
/usr/1ib64/python*/*-packages/rhsm/config.py

RUN subscription-manager register --username=${ROSIUSER} --password=S{ROSIPW}
--auto-attach

Figure 8.1: infrastructure/ansible/docker/Dockerfile.RHEL7#1-7

Recommendations
Short term, use build secrets, rather than build arguments, to provide login information.

Trail of Bits 30 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/docker/Dockerfile.RHEL7#L1-L7
https://docs.docker.com/build/building/secrets/

9. Insecure downloads using wget command
Severity: High Difficulty: High
Type: Cryptography Finding ID: TOB-TEMURIN-9

Target: jenkins-helper/Jenkins_jobs/CreateNewNode.groovy,
infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Do
ckerStatic/Dockerfiles/Dockerfile,
infrastructure/docs/Setup-QEMU-Images.md

Description

The wget command is used to download data over a network. The target codebases use
wget in an insecure manner in a number of locations, using unencrypted channels such as
HTTP or disabling certificate validation when performing the download. The following
snippets show five locations where wget is used in an insecure manner:

RUN wget
"http://mirror.centos.org/centos/8-stream/Base0S/x86_64/o0s/Packages/centos-gpg-keys-
8-3.el8.noarch.rpm' -0 /tmp/gpgkey.rpm

RUN rpm -i '/tmp/gpgkey.rpm'

RUN wget
"http://mirror.centos.org/centos/8-stream/Base0S/x86_64/os/Packages/centos-stream-re
pos-8-3.el8.noarch.rpm' -0 /tmp/centosrepos.rpm

Figure 9.1: Unencrypted, HTTP download
(infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Docker
Static/Dockerfiles/Dockerfile.ubi8:7-9)

wget -0 installer-vmlinuz
http://http.us.debian.org/debian/dists/jessie/main/installer-armhf/current/images/ne
tboot/vmlinuz

wget -0 installer-initrd.gz
http://http.us.debian.org/debian/dists/jessie/main/installer-armhf/current/images/ne
tboot/initrd.gz

Figure 9.2: Unencrypted, HTTP download
(infrastructure/docs/Setup-QEMU-Images.md:166-167)

launcher = new CommandLauncher(Constants.SSH_COMMAND + "${machineIPs[index]} " +
"\"wget -q --no-check-certificate -0 slave.jar S${JENKINS_URL}jnlpJars/slave.jar ;
java -jar slave.jar\"");

Figure 9.3: Download with certificate validation disabled
(jenkins-helper/Jenkins_jobs/CreateNewNode.groovy:32)

Trail of Bits 31 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/DockerStatic/Dockerfiles/Dockerfile.ubi8#L7L9
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/DockerStatic/Dockerfiles/Dockerfile.ubi8#L7L9
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/docs/Setup-QEMU-Images.md?plain=1#L166%E2%80%93L167
https://github.com/adoptium/jenkins-helper/blob/3e12d3e25fe100e62275656342ee3f5396abb55e/Jenkins_jobs/CreateNewNode.groovy#L32

Exploit Scenario

An attacker is in a privileged network position relative to a system downloading data using
wget and is able to actively intercept and modify the system'’s network traffic. Because the
data is downloaded without SSL certificate verification, the attacker can modify the
download in transit and replace the data with a malicious version.

Recommendations

Short term, change HTTP downloads to HTTPS, and enable SSL certificate validation. If it is
not possible to change an HTTP download to HTTPS, such as in a package installation, then
a verification key such as a GPG key should be included out of band and used to verify the
package installation. In other words, a key can be hard-coded into an installation procedure
and used to “trust on first use.”

Long term, implement static analysis rules to automatically detect HTTP downloads and
disabled SSL certificate validation in wget commands.

Trail of Bits 32 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

10. Hard-coded CA bundle keystore password
Severity: Informational Difficulty: High
Type: Access Controls Finding ID: TOB-TEMURIN-10

Target: api.adoptium.net/deploy/run.sh,
temurin-build/security/mk-cacerts.sh

Description
The password used for the certificate authority (CA) bundle generated for the API service is
hard-coded as changeit:

keytool -import -alias mongodb -storepass changeit -keystore ./cacerts -file
"S{MONGO_CERT_FILE}" -noprompt

JAVA_OPTS="SJAVA_OPTS -Djavax.net.ssl.trustStore=./cacerts
-Djavax.net.ssl.trustStorePassword=changeit"

Figure 10.1: Hard-coded password (api.adoptium.net/deploy/run.sh:29-30)

echo "Processing certificate with alias: SALIAS"
"SKEYTOOL" -noprompt \

-import \

-storetype JKS \

-alias "SALIAS" \

-file "SFILE" \

-keystore "cacerts" \

-storepass "changeit”

num_certs=$("SKEYTOOL" -v -list -storepass changeit -keystore cacerts | grep -c
"Alias name:")

Figure 10.2: Hard-coded password
(temurin-build/security/mk-cacerts.sh:118-125, 143)

This CA bundle is generated in a deterministic manner from publicly available Mozilla
certificate data. This may seem to indicate that it need not be password-protected.
However, the keystore password is used to verify the integrity and authenticity of the
bundle. Without a confidential password set, the integrity and authenticity of the data
cannot be verified as the data moves from the build to runtime environment. Due to the
lack of potentially attacker-controlled inputs into this functionality, this finding's severity is
set to informational.

Trail of Bits 33 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/api.adoptium.net/blob/52be774c47a374cd0cf13c40f2eb28f4b1158a16/deploy/run.sh#L29-L30
https://github.com/adoptium/temurin-build/blob/da2408e4ea988090835f15f29cb170873cced045/security/mk-cacerts.sh

Recommendations
Short term, use a strong, randomly generated password to store this keystore data, and
include this password at runtime to verify the authenticity of the CA bundle data.

Trail of Bits 34 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

11. Hard-coded Vagrant VM password
Severity: Informational Difficulty: High
Type: Access Controls Finding ID: TOB-TEMURIN-11

Target: infrastructure/ansible/pbTestScripts/startScriptWin.py

Description
Vagrant VMs are used to execute build and test workloads in a Cl environment. The VMs
use a hard-coded password for authentication:

session = winrm.Session(str(vmIP), auth=('vagrant', ‘'vagrant'))
session.run_ps(cmd_str, sys.stdout, sys.stderr)

Figure 11.1: Hard-coded password
(infrastructure/ansible/pbTestScripts/startScriptWin.py:21-22)

These VMs are run on an internal system without public access and are discarded upon
completion of the workload. Due to the ephemeral nature of these VMs, the severity of this
finding is set to informational. However, using a strong, random password may limit lateral
movement in the event of an unrelated compromise and would be a beneficial
defense-in-depth mechanism.

Recommendations
Short term, use a strong, randomly generated password to authenticate Vagrant VMs at
runtime.

Trail of Bits 35 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/pbTestScripts/startScriptWin.py#L21%E2%80%93L22

12. Missing integrity or authenticity check in jcov script download
Severity: Low Difficulty: High
Type: Cryptography Finding ID: TOB-TEMURIN-12

Target: ci-jenkins-pipelines/tools/code-tools/jcov.sh

Description
The jcov.sh script downloads ASM tools without verifying their integrity or authenticity:

local tools="asm asm-tree asm-util"”
local main_url="https://repository.ow2.org/nexus/content/repositories/releases/org/ow2/asm"
ASM_TITLE="Built against 'Stools' tools in version 'Sasm_version'"
ASM_URLS=""
ASM_JARS=""
ASM_PROPS=""
for tool in Stools; do
local tool_prop="‘echo S$tool|sed "s/-/./g" .jar"
local tool_versioned="$tool-Sasm_version.jar"
local tool_url="S$main_url/$tool/Sasm_version/$tool_versioned"

if ["Sasm_manual" == "true"] ; then
if [! -e Stool_versioned] ; then
wget Stool_url
fi

Figure 12.1: Download missing integrity or authenticity check
(ci-jenkins-pipelines/tools/code-tools/jcov.sh:65-78)

The integrity or authenticity should be verified using a hashsum like SHA-256 or a signature
like a GPG signature. This would ensure that the system is receiving the same data across
multiple downloads. This download does use HTTPS, so this issue is marked as low severity.

Exploit Scenario

An attacker is able to upload a malicious package to one of the repositories. The system
performing the installation then installs the malicious package even though the underlying
data within the package has changed.

Recommendations

Short term, add a SHA-256 hashsum check to ensure the integrity of the software, or a GPG
verification to ensure the authenticity of the software. Both mechanisms are made
available by the repository.ow2.org ASM repository.

Trail of Bits 36 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/ci-jenkins-pipelines/blob/7b9559ce88321ff8111180fdc58421a0f9eadcef/tools/code-tools/jcov.sh#L65-L78

13. SSH client disables host key verification

Severity: High Difficulty: High
Type: Cryptography Finding ID: TOB-TEMURIN-13
Target:

infrastructure/ansible/playbooks/Supporting_Scripts/Nagios_Ansible_C
onfig_tool/Nagios_RemoteTunnel.sh,
infrastructure/ansible/playbooks/Supporting_Scripts/Nagios_Ansible_C
onfig_tool/Nagios_Ansible_Config_tool.sh,
infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Na
gios_Master_Config/tasks/main.yml

Description

SSH clients maintain a list of known-good hosts they have connected to before. Host key
verification is then used to prevent person-in-the-middle attacks. There are a number of
locations across the target repositories that disable SSH host key verification, such as when
connecting to a Nagios instance:

Reverse_Tunnel="ssh -o StrictHostKeyChecking=no -f -n -N -R SREMOTE_PORT:127.0.0.1:SLOCAL_PORT
SUSER_NAME@SREMOTE__HOST -p SLOGIN_PORT -i SIDENTITY_KEY"
Figure 13.1: Nagios SSH connection disabling SSH host key verification
(infrastructure/ansible/playbooks/Supporting_Scripts/Nagios_Ansible_Confi
g_tool/Nagios_RemoteTunnel.sh:18-21)

Nagios_Login="su nagios -c "ssh -o StrictHostKeyChecking=no $Sys_IPAddress uptime""

Figure 13.2: Nagios SSH connection disabling SSH host key verification
(infrastructure/ansible/playbooks/Supporting_Scripts/Nagios_Ansible_Confi
g_tool/Nagios_Ansible_Config_tool.sh:170)

command: ssh -o StrictHostKeyChecking=no root@{{ Nagios_Master_IP }}
"/usr/local/nagios/Nagios_Ansible_Config_tool/Nagios_Ansible_Config_tool.sh {{
ansible_distribution }} {{ ansible_architecture }} {{ inventory_hostname }} {{
ansible_host }} {{ provider }} {{ ansible_port }} "

Figure 13.3: Nagios SSH connection disabling SSH host key verification
(infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Nagios
_Master_Config/tasks/main.yml:25)

Trail of Bits 37 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/Supporting_Scripts/Nagios_Ansible_Config_tool/Nagios_RemoteTunnel.sh#L18%E2%80%93L21
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/Supporting_Scripts/Nagios_Ansible_Config_tool/Nagios_RemoteTunnel.sh#L18%E2%80%93L21
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/Supporting_Scripts/Nagios_Ansible_Config_tool/Nagios_Ansible_Config_tool.sh#L170
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/Supporting_Scripts/Nagios_Ansible_Config_tool/Nagios_Ansible_Config_tool.sh#L170
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Nagios_Master_Config/tasks/main.yml#L25
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Nagios_Master_Config/tasks/main.yml#L25

There are also a number of benign locations where SSH host key verification is disabled.
These locations are considered benign because they are connecting to internal, short-lived,
or local-only services. They are included here for completeness’s sake:

launcher = new SSHLauncher (

machines[index],

22,

params.SSHCredentialld.isEmpty() ? Constants.SSH_CREDENTIAL_ID :
params.SSHCredentialld,

null, null, null, null, null, null, null,
new NonVerifyingKeyVerificationStrategy());
Figure 13.4: Groovy SSH launcher disabling host key verification
(jenkins-helper/Jenkins_jobs/CreateNewNode.groovy :38-43)

sshpass -p 'password' ssh linux@localhost -p "$PORTNO" -o StrictHostKeyChecking=no 'uname -a'

Figure 13.5: Test script disabling host key verification
(infrastructure/ansible/pbTestScripts/qemuPlaybookCheck.sh:273)

ssh_args="S$ssh_args -o StrictHostKeyChecking=no"

Figure 13.6: Test script disabling host key verification
(infrastructure/ansible/pbTestScripts/vagrantPlaybookCheck.sh:253)

Exploit Scenario

An attacker is in a privileged network position relative to a system initiating an SSH
connection and is able to actively intercept and modify the system'’s network traffic.
Because SSH host key verification is disabled, the attacker can intercept SSH network traffic
and perform a person-in-the-middle attack.

Recommendations
Short term, in all locations where SSH host key verification is currently disabled, have the
code gather the host's SSH public key and add it out of band to the client's known_hosts

file.

Long term, implement static analysis rules to automatically detect when SSH host key
verification is disabled.

Trail of Bits 38 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/jenkins-helper/blob/3e12d3e25fe100e62275656342ee3f5396abb55e/Jenkins_jobs/CreateNewNode.groovy#L38-L43
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/pbTestScripts/qemuPlaybookCheck.sh#L273
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/pbTestScripts/vagrantPlaybookCheck.sh#L253

14. Compiler mitigations are not enabled
Severity: Informational Difficulty: High
Type: Configuration Finding ID: TOB-TEMURIN-14

Target: temurin-build/sbin/build.sh

Description

The Temurin build does not have all modern compiler security mitigations enabled. This
makes it easier for an attacker who finds a low-level vulnerability to exploit it and gain
control over the process. Modern compilers support exploit mitigations such as the
following:

e Non-executable flag: Marks the program’s data sections as non-executable

e PIE flag: Makes the program compiled as a position-independent executable, which
is position-independent code for address space layout randomization (ASLR)

e Stack canaries: Used for buffer overflow detection
e RELRO: Used for data section hardening

e Source fortification: Used for buffer overflow detection and format string
protection

e Stack clash protection: Used for the detection of clashes between a stack pointer
and another memory region

e Control flow integrity (CFI) checks: Used to prevent control flow hijacking
e SafeStack: Used for stack overflow protection

Compilers enable a few of these mitigations by default. For more detail on these exploit
mitigation technologies, refer to appendix D: Compiler Mitigations.

In particular, the checksec tool reports that binaries produced by Temurin do not have
stack canaries or source fortification enabled.

Recommendations

Short term, enable security mitigations for Temurin builds by using the compiler and linker
flags described in appendix D: Compiler Mitigations. These flags can be added using the
--with-extra-cflags and --with-extra-cxxflags arguments during configuration.

Trail of Bits 39 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

While compilers often enable certain mitigations by default, if they are explicitly enabled,
they will be used regardless of a compiler’s defaults.

Long term, enable security mitigations for all binaries built by Temurin and add a scan for
them into the test phase to ensure that certain options are always enabled. This will make
it more difficult for an attacker to exploit any bugs found in the binaries.

References
e Airbus: Getting the maximum of your C compiler, for security

e Debian Hardening: Notes on Memory Corruption Mitigation Methods
e GCC Linux man page
e LD Linux man page

e OpenSSF's Compiler Options Hardening Guide for C and C++

Trail of Bits 40 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://airbus-seclab.github.io/c-compiler-security
https://wiki.debian.org/Hardening#Notes_on_Memory_Corruption_Mitigation_Methods
https://linux.die.net/man/1/gcc
https://linux.die.net/man/1/ld
https://best.openssf.org/Compiler-Hardening-Guides/Compiler-Options-Hardening-Guide-for-C-and-C++.html

15. Use of unpinned third-party workflows
Severity: Medium Difficulty: High
Type: Patching Finding ID: TOB-TEMURIN-15

Target: temurin-build/.github/workflows/build-autotriage.yml,
ci-jenkins-pipelines/.github/workflows/labeler.yml,
infrastructure/.github/workflows/build_gemu.yml

Description

Workflows throughout the Temurin repositories directly use third-party workflows. Most of
them are pinned to commit hashes, but there are some exceptions, such as in
ci-jenkins-pipelines/.github/workflows/labeler.yml:

- uses: fuxingloh/multi-labeler@v2
with:
github-token: "${{secrets.GITHUB_TOKEN}}"
config-path: .github/regex_labeler.yml
Figure 15.1: Use of third-party workflow
(ci-jenkins-pipelines/.github/workflows/labeler.yml:19-22)

Git tags are malleable. This means that, while fuxingloh/multi-labeler is pinned to v2,
the upstream may silently change the reference pointed to by v2. This can include
malicious re-tags, in which case Temurin’s various dependent workflows will silently update
to the malicious workflow.

GitHub's security hardening guidelines for third-party actions encourage developers to pin
third-party actions to a full-length commit hash. Generally excluded from this are “official”
actions under the actions organization.

The following are the affected workflows:

e temurin-build/.github/workflows/build-autotriage.yml
e ci-jenkins-pipelines/.github/workflows/labeler.yml

e infrastructure/.github/workflows/build_gemu.yml

Exploit Scenario

An attacker (or compromised maintainer) silently overwrites the v2 tag on
fuxingloh/multi-labeler with a malicious version of the action, allowing the
secrets.GITHUB_TOKEN value for the ci-jenkins-pipeline repository to be stolen.

Trail of Bits 41 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/ci-jenkins-pipelines/blob/7b9559ce88321ff8111180fdc58421a0f9eadcef/.github/workflows/labeler.yml#L19-L22
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions

Recommendations
Short term, replace the current version tags with full-length commit hashes corresponding
to the revision that each workflow is intended to use.

Trail of Bits 42 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

16. Third-party dependencies used without signature or checksum
verification

Severity: Informational Difficulty: High
Type: Patching Finding ID: TOB-TEMURIN-16

Target: temurin-build

Description

In many places in the temurin-build repository, third-party dependencies are installed
via https download without a signature or checksum check. The following is a (not
necessarily exhaustive) list of the dependencies that are installed in this way:

e Intooling/linux_repro_build_compare.sh:
o https://ftp.gnu.org/gnu/autoconf/autoconf-2.69.tar.gz

o https://archive.apache.org/dist/ant/binaries/apache-ant-${AN
T_VERSION}-bin.zip

o https://sourceforge.net/projects/ant-contrib/files/ant-contr
ib/S${ANT_CONTRIB_VERSION}/ant-contrib-S{ANT_CONTRIB_VERSION}
-bin.zip

e Intooling/release_download_test.sh:

o https://github.com/CycloneDX/cyclonedx-cli/releases/download
/v0.25.08/"${cyclonedx_tool}

e Inbuild-farm/platform-specific-configurations/linux.sh:

o https://github.com/alibaba/dragonwell8/releases/download/dra
gonwell-8.11.12_jdk8u332-ga/Alibaba_Dragonwell_8.11.12_x64_1
inux.tar.gz

o https://github.com/alibaba/dragonwell8/releases/download/dra
gonwell-8.8.9_jdk8u302-ga/Alibaba_Dragonwell_8.8.9_aarch64_1
inux.tar.gz

e In .azure-devops/build/steps/windows/before.yml
o https://cygwin.com/setup-x86_64.exe

e In .github/workflows/build.yml:

Trail of Bits 43 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

o https://download.visualstudio.microsoft.com/download/pr/c5c7
5dfa-1b29-4419-80f8-bd39aedbbcd9/7ed8fa27575648163e07548f 156
67b55b95663a2323e2b2a5f87b16284e481e6/vs_Community.exe

o https://download.visualstudio.microsoft.com/download/pr/6b65
5578-de8c-4862-ad77-65044ca714cf/f29399a618bd3a8d1dcc96d3494
53f686b6176590d904308402a6402543e310b/vs_Community.exe

e [ndocker/buildDocker.sh:

o https://raw.githubusercontent.com/eclipse-openj9/openj9/mast
er/buildenv/docker/mkdocker.sh

Recommendations
Short term, add a checksum or signature check to these downloads, wherever possible.

Trail of Bits 44 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

17. Code injection vulnerability in build-scripts pipeline jobs

Severity: High Difficulty: High
Type: Data Validation Finding ID: TOB-TEMURIN-17
Target:

ci-jenkins-pipelines/pipelines/build/common/build_base_file.groovy,
ci-jenkins-pipelines/pipelines/build/common/openjdk_build_pipeline.g
roovy, ci-jenkins-pipelines/pipelines/build/openjdk_pipeline.groovy

Description

Jenkins pipeline jobs can execute arbitrary shell script code with the sh step. User input
may reach sh calls through parameters or configurations originating from web-based form
input. This allows for code injection and arbitrary code execution. The following sh calls
receive input from external sources:

context.sh "rm -rf target/${config.TARGET_0S}/${config.ARCHITECTURE}/S{config.VARIANT}/"

Figure 17.1: TARGET_0S, ARCHITECTURE, and VARIANT input passed to sh
(ci-jenkins-pipelines/pipelines/build/common/build_base_file.groovy:898)

context.sh(script: "docker pull ${buildConfig.DOCKER_IMAGE} ${buildConfig.DOCKER_ARGS}")
context.sh(script: "docker pull ${buildConfig.DOCKER_IMAGE} ${buildConfig.DOCKER_ARGS}")

dockerImageDigest = context.sh(script: "docker inspect --format='{{.RepoDigests}}'
${buildConfig.DOCKER_IMAGE}", returnStdout:true)

Figure 17.2: DOCKER_IMAGE and DOCKER_ARGS input passed to sh
(ci-jenkins-pipelines/pipelines/build/common/openjdk_build_pipeline.groov
y:1915,1922,1928)

sh("curl -0Os
https://raw.githubusercontent.com/adoptium/aqa-tests/S{params.aqaReference}/testenv/
S{propertyFile}")
Figure 17.3: AQA_REF input passed to sh
(ci-jenkins-pipelines/pipelines/build/openjdk_pipeline.groovy:35)

If an attacker can influence any of these parameters, then they can execute arbitrary code
on the Jenkins machine running the given job. The Eclipse Foundation has confirmed that
these parameters can be specified in a Jenkins job web form; however, access to these
forms is restricted.

Trail of Bits 45 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/ci-jenkins-pipelines/blob/7b9559ce88321ff8111180fdc58421a0f9eadcef/pipelines/build/common/build_base_file.groovy#L898
https://github.com/adoptium/ci-jenkins-pipelines/blob/7b9559ce88321ff8111180fdc58421a0f9eadcef/pipelines/build/common/openjdk_build_pipeline.groovy
https://github.com/adoptium/ci-jenkins-pipelines/blob/7b9559ce88321ff8111180fdc58421a0f9eadcef/pipelines/build/common/openjdk_build_pipeline.groovy
https://github.com/adoptium/ci-jenkins-pipelines/blob/7b9559ce88321ff8111180fdc58421a0f9eadcef/pipelines/build/openjdk_pipeline.groovy#L35

Exploit Scenario

An attacker sends a malicious shell payload through the TARGET_0S, ARCHITECTURE,
VARIANT, DOCKER_IMAGE, DOCKER_ARGS, or AQA_REF Jenkins job parameters. The input
then reaches the sh process, which allows the execution of arbitrary shell scripts. The
attacker is able to execute arbitrary commands by using shell operators such as ;, &&, or
| |, and to append additional commands.

Recommendations

Short term, instead of specifying shell script commands to run in the sh step, use Groovy
code or Jenkins plugins to accomplish the same action. For example, instead of rm or curl,
use the deleteDir step or the File Operations plugin. Instead of using shell scripts for
Docker operations, use the Docker Pipeline plugin where possible. If additional Docker
command flags are necessary, use Boolean inputs that enable or disable specific flags
instead of interpolating arbitrary string input.

Long term, implement static analysis rules to automatically detect when user input is
passed to sh steps.

References
e Jenkins, sh: Shell Script

e Docker Pipeline plugin, Advanced usage

Trail of Bits 46 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://www.jenkins.io/doc/pipeline/steps/workflow-basic-steps/#deletedir-recursively-delete-the-current-directory-from-the-workspace
https://plugins.jenkins.io/file-operations/
https://plugins.jenkins.io/docker-workflow/
https://www.jenkins.io/doc/pipeline/steps/workflow-durable-task-step/#sh-shell-script
https://docs.cloudbees.com/docs/cloudbees-ci/latest/pipelines/docker-workflow#docker-workflow-sect-advanced

18. Docker commands specify root user in containers
Severity: Informational Difficulty: High
Type: Access Controls Finding ID: TOB-TEMURIN-18

Target: temurin-build/docker/buildDocker.sh

Description

Docker may specify a container user during the build process in a Dockerfile or at runtime
on the command line. Running containers as root violates the principle of least privilege
and should be avoided. The following Docker commands specify root as the container user:

docker run -it -u root -d --name="${dockerContainer} S{dockerImage}"

docker exec -u root -i "S${dockerContainer}" sh -c "git clone
https://github.com/ibmruntimes/openj9-openjdk-S${jdk}"

docker exec -u root -i "S${dockerContainer}" sh -c "cd openj9-openjdk-${jdk} && bash
./get_source.sh && bash ./configure --with-freemarker-jar=/root/freemarker.jar &&
make all"

Figure 18.1: Commands specifying root container users
(temurin-build/docker/buildDocker.sh:141-143)

Recommendations
Short term, have any necessary root actions performed at build-time in the Dockerfile, and
have containers run as a lower privileged user at runtime.

Long term, once containers are no longer being run as root, enable the
--security-opt=no-new-privileges flag when running Docker, in order to prevent
privilege escalation using setuid or setgid binaries.

Trail of Bits 47 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/temurin-build/blob/da2408e4ea988090835f15f29cb170873cced045/docker/buildDocker.sh#L141-L143

19. Incorrect Dependabot configuration filename
Severity: Undetermined Difficulty: High
Type: Patching Finding ID: TOB-TEMURIN-19

Target: infrastructure/.github/dependabot

Description

The infrastructure repository has a Dependabot configuration file, used to configure
the Dependabot bot, which detects out-of-date dependencies. However, this file is
incorrectly named dependabot rather than dependabot.yml, preventing the bot from
being run on this repository.

In order to test this, we created a private copy of the infrastructure repository and
renamed the dependabot file to dependabot.yml. Dependabot detected many
out-of-date Github Actions dependencies. We did not determine whether any of the
out-of-date dependencies present in the infrastructure repository have security
problems that could affect the Temurin infrastructure or build system.

Recommendations
Short term, rename the dependabot file to dependabot.yml.

Trail of Bits 48 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category

Access Controls
Auditing and Logging
Authentication
Configuration
Cryptography

Data Exposure

Data Validation
Denial of Service
Error Reporting
Patching

Session Management
Testing

Timing

Undefined Behavior

Trail of Bits
PUBLIC

Description

Insufficient authorization or assessment of rights
Insufficient auditing of actions or logging of problems
Improper identification of users

Misconfigured servers, devices, or software components
A breach of system confidentiality or integrity
Exposure of sensitive information

Improper reliance on the structure or values of data
A system failure with an availability impact

Insecure or insufficient reporting of error conditions
Use of an outdated software package or library
Improper identification of authenticated users
Insufficient test methodology or test coverage

Race conditions or other order-of-operations flaws

Undefined behavior triggered within the system

49 OSTIF Eclipse: Temurin Security Assessment

Severity Levels
Severity

Informational

Undetermined
Low

Medium

High

Description

The issue does not pose an immediate risk but is relevant to security best
practices.

The extent of the risk was not determined during this engagement.
The risk is small or is not one the client has indicated is important.

User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels
Difficulty
Undetermined

Low
Medium

High

Trail of Bits
PUBLIC

Description
The difficulty of exploitation was not determined during this engagement.

The flaw is well known; public tools for its exploitation exist or can be
scripted.

An attacker must write an exploit or will need in-depth knowledge of the
system.

An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

50 OSTIF Eclipse: Temurin Security Assessment

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category
Arithmetic
Auditing

Authentication /
Access Controls

Complexity
Management

Configuration
Cryptography and
Key Management
Data Handling
Documentation
Maintenance

Memory Safety

and Error Handling

Testing and
Verification

Description
The proper use of mathematical operations and semantics
The use of event auditing and logging to support monitoring

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

The configuration of system components in accordance with best
practices

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

The safe handling of user inputs and data processed by the system
The presence of comprehensive and readable codebase documentation
The timely maintenance of system components to mitigate risk

The presence of memory safety and robust error-handling mechanisms

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Rating Criteria
Rating

Strong
Satisfactory

Moderate

Trail of Bits
PUBLIC

Description
No issues were found, and the system exceeds industry standards.
Minor issues were found, but the system is compliant with best practices.

Some issues that may affect system safety were found.

51 OSTIF Eclipse: Temurin Security Assessment

I Weak Many issues that affect system safety were found.
I Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further Further investigation is required to reach a meaningful conclusion.
Investigation
Required

Trail of Bits 52 OSTIF Eclipse: Temurin Security Assessment

PUBLIC

C. Insecure Download Semgrep Results

The following Semgrep results were produced by searching for insecure software
downloads, including downloads over unencrypted channels such as HTTP and those in
which SSL certificate validation is disabled.

infrastructure/ansible/playbooks/AdoptOpen]DK_AIX_Playbook/roles/yum/tasks/main.ymi
get-url-validate-certs-disabled
Found file download with SSL verification disabled
53 | validate_certs: false

infrastructure/ansible/playbooks/AdoptOpen]DK_ITW_Playbook/roles/Common/tasks/CentOS.yml
yum-validate-certs-disabled
Found yum with SSL verification disabled
14 | validate_certs: no

infrastructure/ansible/playbooks/AdoptOpen]DK_Unix_Playbook/roles/Common/tasks/CentOS.yml

yum-validate-certs-disabled
Found yum with SSL verification disabled
20 | validate_certs: no

infrastructure/ansible/playbooks/AdoptOpen]DK_Unix_Playbook/roles/Common/tasks/Debian.ymi
apt-key-unencrypted-url
Found apt key download with unencrypted URL (e.g. HTTP, FTP, etc.)
63 | url: http://repos.azulsystems.com/RPM-GPG-KEY-azulsystems

infrastructure/ansible/playbooks/AdoptOpen)]DK_Unix_Playbook/roles/Common/tasks/SLES.yml

get-url-validate-certs-disabled
Found file download with SSL verification disabled
222 | validate_certs: no

infrastructure/ansible/playbooks/AdoptOpen]DK_Unix_Playbook/roles/Common/tasks/Ubuntu.yml
apt-key-unencrypted-url
Found apt key download with unencrypted URL (e.g. HTTP, FTP, etc.)
27 | url: http://repos.azulsystems.com/RPM-GPG-KEY-azulsystems

infrastructure/ansible/playbooks/AdoptOpen)DK_Unix_Playbook/roles/OpenSSL/tasks/main.yml
get-url-validate-certs-disabled
Found file download with SSL verification disabled
62 | validate_certs: no

infrastructure/ansible/playbooks/AdoptOpen]DK_Unix_Playbook/roles/freemarker/tasks/main.yml
unarchive-validate-certs-disabled
Found unarchive download with SSL verification disabled
33 | validate_certs: False

Trail of Bits 53 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

D. Compiler Mitigations

The following table lists compiler security hardening flags available in modern compilers.
Note that some of them can be enabled by default in a given compiler (like
--enable-default-pie in GCC) and they may also influence the program's performance.
We recommend reviewing those settings in order to harden production builds as much as

possible.

GCC or Clang Flag

W1, -z, noexecstack

-W1,-z,relro,-z,now

Trail of Bits
PUBLIC

What It Enables or Does

This flag marks the program’s data sections (including
the stack and heap) as non-executable (NX).

This makes it more difficult for an attacker to execute
shellcode. Attackers who wish to bypass NX must resort
to return-oriented programming (ROP), an exploitation
method that is more difficult and less reliable across
different builds of a program. This mitigation is enabled
by default.

This flag enables full RELRO (relocations read-only).
Segments are read-only after relocation, and lazy
bindings are disabled.

It is a mitigation technique used to harden the data
sections of an ELF process. It has three modes of
operation: disabled, partial, and full. When a program
uses a function from a dynamically loaded library, the
function address is stored in the GOT . PLT section.

When RELRO is disabled, each function address entry in
the GOT.PLT table points to a dynamic resolver that
resolves the entry to the actual address of the intended
function when it is first called. In such a case, the
memory location of the address is both readable and
writable. As a result, an attacker who has control over
the process control flow could change the entry of a
given function in GOT.PLT to point to any other
executable address. For example, the attacker could
change the puts function's GOT.PLT entry to point to a
system function. Then, if the program called
puts(“bin/sh”), system(“/bin/sh”) would be
called instead. When RELRO is fully enabled, the
dynamic resolver resolves all of the addresses upon a

54 OSTIF Eclipse: Temurin Security Assessment

https://en.wikipedia.org/wiki/Shellcode

program's startup and changes the permissions of data
sections (and therefore GOT . PLT) to read-only.

This flag adds stack canaries (stack cookies) for all
functions. Note that this flag may affect the program's
performance.

Stack canaries make it more difficult to exploit stack
buffer overflow vulnerabilities. A stack canary is a
global, randomly generated value that is copied to the
stack between the stack variables and stack metadata in
a function's prologue. When a function returns, the
canary on the stack is checked against the global value.
The program exits if there is a mismatch, making it
more difficult for an attacker to overwrite the return
address on the stack. In certain circumstances, attackers
may be able to bypass this mitigation by disclosing the
canary through a separate information disclosure
vulnerability or by brute forcing the canary byte by byte.

-fstack-protector-all
Or (less secure):

-fstack-protector-strong
--param ssp-buffer-size=4

To protect only functions that have buffers, use the
alternative version of the flag indicated.

This flag compiles the program as a
position-independent executable, which address space
layout randomization (ASLR), detailed below in the
"System" rows, depends on.

-fPIE -pie

This flag enables source fortification protections. These
protections require an optimization flag (-01, -02, or
-03).

Only in GCC >=12.x:
The protection is a libc-specific feature that enables a

-D_FORTIFY_SOURCE=3 -02 series of mitigations primarily aimed at preventing
buffer overflows. It is supported by both glibc and Apple

Or (less secure): Libc, but not by musl or uclibc.

-D_FORTIFY_SOURCE=2 -02 With a _FORTIFY_SOURCE level of 1, compile-time
warnings are added for potentially unsafe calls to

Or (even less secure): common libc functions (e.g., memcpy and strcpy). With
a _FORTIFY_SOURCE level of 2, more stringent runtime

-D_FORTIFY_SOURCE=1 -02 checks are added to these functions and enable a

number of lesser-known mitigations. For example, it will
disallow the use of the %n format specifier in format
strings that are not located in read-only memory pages.

Trail of Bits 55 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

This will prevent overwriting data (and gaining code
execution) with format string vulnerabilities.

The latter version is less secure, as it enables only
compile-time measures; the former adds additional
runtime checks, which may affect the program's
performance.

The _FORTIFY_SOURCE level of 3 was added in GCC
12.x and further improves this feature's detection
capabilities and coverage.

This flag adds checks to functions that may allocate a
large amount of memory on the stack to ensure that the
new stack pointer and stack frame will not overlap with
another memory region, such as the heap.

It mitigates a "stack clash vulnerability" in which a
program's stack memory region grows so much that it
overlaps with another memory region. This bug makes
the program confuse the stack memory address with
another memory address (e.g., that of the heap); as a
result, the regions’ data will overlap, which could lead to
a denial of service or to control flow hijacking. The stack
clash protection mitigation adds explicit memory
probing to any function that allocates a large amount of
stack memory; when explicit memory probing is used,
the function's stack allocation will never make the stack
pointer jump over the stack memory guard page, which
is located before the stack.

-fstack-clash-protection

-fsanitize=cfi This flag enables control flow integrity (CFl) checks that
-fvisibility=hidden help prevent control flow hijacking.
-flto

(Clang/LLVM only)

This flag enables SafeStack, which splits the stack
frames of certain functions into a safe stack and an
unsafe stack, making hijacking of the program's control
flow more difficult (Clang/LLVM only).

-fsanitize=safe-stack

(Clang/LLVM only)

-Wall -Wextra -Wpedantic These flags enable compile-time checks and warnings to
-Wshadow -Wconversion detect potential problems in the code.
Trail of Bits 56 OSTIF Eclipse: Temurin Security Assessment

PUBLIC

https://developers.redhat.com/articles/2022/09/17/gccs-new-fortification-level
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/SafeStack.html

-Wformat-security
-Wshorten-64-to0-32

System What It Enables or Does

This feature randomizes the memory location of each
section of the program. This makes it more difficult for
an attacker to write reliable exploits, primarily by
impeding jumps to ROP gadgets. ASLR requires
cooperation from both the system and the compiler.

To fully support ASLR, a program must be compiled as a
position-independent executable. Most of the Linux

ASLR distributions have ASLR enabled. This can be checked by
reading the value stored in the
/proc/sys/kernel/randomize_va_space file: 0
means that ASLR is disabled, 1 means it is partially
enabled (only some bits of the addresses are
randomized), and 2 means it is fully enabled. This file is
writable, and an admin can disable or enable the
mitigation. An information disclosure in the program
may enable an attacker to bypass ASLR.

Trail of Bits 57 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

E. Code Quality Recommendations

This appendix contains findings that do not have immediate or obvious security
implications or that were discovered but not fully investigated due to time constraints or
scope limitations.

e Java Virtual Machine (JVM) garbage collector manually invoked: Calling
System.gc() suggests to the JVM that the garbage collector should be run and
memory should be reclaimed. This is only a suggestion; there is no guarantee that
anything will happen. Relying on this behavior for correctness should be considered
an anti-pattern. Note that this method is called only in test code. Nonetheless, it
should not be relied on to enforce correct behavior. The API server calls this
function in the following location:

override fun afterAll(p@: ExtensionContext?)

System.gc() // Don't ask, but also don't remove me, breaks deadlock that hangs
vm after all tests are completed

}

Figure E.1: Call to System.gc()
(api.adoptium.net/adoptium-frontend-parent/adoptium-api-v3-frontend/src/t
est/kotlin/net/adoptium/api/DbExtension.kt:13-15)

e Dependencies hard-coded in Dockerfile: Dependencies should instead be stored
in a proper package management file, like requirements. txt, when building the
Docker image. This allows a dependency scanner like Dependabot to automatically
warn when dependencies have known vulnerabilities. Dependencies are hard-coded
in the following location:

RUN pip install cryptography==2.9.2 PyYAML==5.3.1

Figure E.2: Hard-coded Python pip dependencies
(infrastructure/ansible/docker/Dockerfile.Ubuntu1664:15)

e WinRM authentication missing TLS: The current WinRM authentication
configuration (CredSSP) is considered secure; however, best practice states that TLS
should be used. Because TLS is disabled, WinRM server certificate validation is
disabled in the following locations:

[windows:vars]

ansible_connection=winrm

ansible_port=5986
ansible_user=administrator
ansible_winrm_server_cert_validation=ignore

Trail of Bits 58 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/api.adoptium.net/blob/52be774c47a374cd0cf13c40f2eb28f4b1158a16/adoptium-frontend-parent/adoptium-api-v3-frontend/src/test/kotlin/net/adoptium/api/DbExtension.kt#L13-L15
https://github.com/adoptium/api.adoptium.net/blob/52be774c47a374cd0cf13c40f2eb28f4b1158a16/adoptium-frontend-parent/adoptium-api-v3-frontend/src/test/kotlin/net/adoptium/api/DbExtension.kt#L13-L15
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/docker/Dockerfile.Ubuntu1604#L15
https://docs.ansible.com/ansible/latest/os_guide/windows_winrm.html#winrm-encryption
https://docs.ansible.com/ansible/latest/os_guide/windows_winrm.html#winrm-encryption

Figure E.3: Server certificate validation disabled
(jenkins-helper/Jenkins_jobs/inventory-ini.template:27-32)

ansible_port: 5986
ansible_connection: winrm
ansible_winrm_server_cert_validation: ignore

Figure E.4: Server certificate validation disabled

(infrastructure/ansible/playbooks/AdoptOpenJDK_Windows_Playbook/group_var

s/all/adoptopenjdk_variables.yml:2-4)

Manual override of in_container check in Dockerfile: Manually disabling this
check when the code is in fact running in a container may have unintended
consequences and cause unexpected behavior. This code is used to determine the
configuration file location. Instead of modifying the code, use the correct
configuration file location. This check is manually disabled in the following location:

RUN sed -i 's/\(def in_container():\)/\1\n return False/g'
/usr/1ib64/python*/*-packages/rhsm/config.py

Figure E.5: Disabling of in_container check
(infrastructure/ansible/docker/Dockerfile.RHEL7:6)

Multiple third-party GitHub Actions used to make pull request comments:
There are two GitHub Actions used to make pull request comments:
JJ/pr-greeting-action and peter-evans/create-or-update-comment.
Furthermore, both of these actions use pull_request_target, which has known
security weaknesses. To minimize the attack surface and reduce the risk of
pull_request_target events, use a single GitHub Action to make pull request
comments.

Broken link: The
temurin-build/.azure-devops/build/steps/mac0S/before.yml file
contains a broken link in a comment.

install Xcode command line tools based on

#

https://github.com/AdoptOpenJDK/openjdk-infrastructure/blob/master/ansible/playbooks
/AdoptOpenJDK_Unix_Playbook/roles/Common/scripts/install-xcode.sh
- bash: |

Figure E.6: temurin-build/.azure-devops/build/steps/mac0S/before.yml :20-22

Download from api.adoptopenjdk.net: The
temurin-build/build-farm/platform-specific-configurations/linux.s
h file performs a download from api.adoptopenjdk.net, Adoptium’s previous API
URL before its name was changed.

Trail of Bits 59 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/jenkins-helper/blob/3e12d3e25fe100e62275656342ee3f5396abb55e/Jenkins_jobs/inventory-ini.template#L27-L32
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Windows_Playbook/group_vars/all/adoptopenjdk_variables.yml#L2-L4
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Windows_Playbook/group_vars/all/adoptopenjdk_variables.yml#L2-L4
https://github.com/candlepin/python-rhsm/blob/ab645fabb0c8af6ea4837e83812afa8b958dd5b4/src/rhsm/config.py#L289-L320
https://github.com/candlepin/python-rhsm/blob/ab645fabb0c8af6ea4837e83812afa8b958dd5b4/src/rhsm/config.py#L289-L320
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/docker/Dockerfile.RHEL7#L6
https://securitylab.github.com/research/github-actions-preventing-pwn-requests/
https://securitylab.github.com/research/github-actions-preventing-pwn-requests/
https://github.com/adoptium/temurin-build/blob/da2408e4ea988090835f15f29cb170873cced045/.azure-devops/build/steps/macOS/before.yml#L20-L22

TOFIX: Switch this back once Semeru has an API to pull the nightly builds.

curl -L
"https://api.adoptopenjdk.net/v3/binary/latest/S{JAVA_FEATURE_VERSION}/ga/linux/${NA
TIVE_API_ARCH}/jdk/openj9/normal/adoptopenjdk” | tar xpzf - --strip-components=1 -C
"SBUILDJDK"

Figure E.7:
temurin-build/build-farm/platform-specific-configurations/linux.sh:56-57

e Use of sudo without resetting cached credentials: In the platform-specific
configuration for macOS, the sudo command is used without first resetting the
cached credentials by running sudo -k. This means that the configuration code may
perform actions as the root user without receiving explicit permission from the user.

echo "[WARNING] You may be asked for your su user password, attempting to switch
Xcode version to S${XCODE_SWITCH_PATH}"
sudo xcode-select --switch "S{XCODE_SWITCH_PATH}"

Figure E.8:
temurin-build/build-farm/platform-specific-configurations/mac.sh:85-86

e Commented keychain login code: The
temurin-build/build-farm/platform-specific-configurations/mac.sh
file contains commented-out code whose purpose is to “Login to KeyChain.”
Temurin developers should uncomment or remove this code.

Login to KeyChain

shellcheck disable=SC2046

shellcheck disable=SC2006

#security unlock-keychain -p ‘cat ~/.password’™ login.keychain-db

#rm -rf codesign-test && touch codesign-test

#codesign --sign "Developer ID Application: London Jamocha Community CIC"
codesign-test

#codesign -dvvv codesign-test

#export BUILD_ARGS="${BUILD_ARGS} --codesign-identity 'Developer ID Application:
London Jamocha Community CIC'"

Figure E.9:
temurin-build/build-farm/platform-specific-configurations/mac.sh:75-82

e Error not explicitly handled: In the
temurin-build/sbin/prepareWorkspace. sh file, an error during a GPG key
download is ignored, instead of immediately returning an exit code (line 348). A
failed download will still likely cause an error later in the script (line 352).

348 echo "ERROR: gpg recv-keys final attempt has failed. Will not try again.”
349 fi
350 done
351 echo -e "5\ny\n" | gpg --batch --command-fd 0 --expert --edit-key
Trail of Bits 60 OSTIF Eclipse: Temurin Security Assessment

PUBLIC

https://github.com/adoptium/temurin-build/blob/da2408e4ea988090835f15f29cb170873cced045/build-farm/platform-specific-configurations/linux.sh#L56-L57
https://github.com/adoptium/temurin-build/blob/da2408e4ea988090835f15f29cb170873cced045/build-farm/platform-specific-configurations/mac.sh#L85-L86
https://github.com/adoptium/temurin-build/blob/da2408e4ea988090835f15f29cb170873cced045/build-farm/platform-specific-configurations/mac.sh#L75-L82

"S{ALSA_LIB_GPGKEYID}" trust;
352 gpg --verify alsa-lib.tar.bz2.sig alsa-lib.tar.bz2 || exit 1

Figure E.10: temurin-build/sbin/preparelorkspace.sh:348-352

e Docker images run in writable filesystem: Docker images are run with the
read-only filesystem configuration option turned off. This makes it slightly easier for
the process running in these images to be compromised. The images should be run
with a read-only filesystem (using the --read-only flag), using volume mounts and
temporary volume mounts in locations where write access is needed.

docker run -it -u root -d --name="${dockerContainer} ${dockerImage}"

docker exec -u root -i "S${dockerContainer}" sh -c "git clone
https://github.com/ibmruntimes/openj9-openjdk-S{jdk}"

docker exec -u root -i "S${dockerContainer}" sh -c "cd openj9-openjdk-$S{jdk} && bash
./get_source.sh && bash ./configure --with-freemarker-jar=/root/freemarker.jar &&
make all"

Figure E.11: temurin-build/docker/buildDocker.sh:141-143

Trail of Bits 61 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/temurin-build/blob/da2408e4ea988090835f15f29cb170873cced045/sbin/prepareWorkspace.sh#L348-L352
https://github.com/adoptium/temurin-build/blob/da2408e4ea988090835f15f29cb170873cced045/docker/buildDocker.sh#L141-L143

F. Fix Review Results

When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
identified in the original report. This work involves a review of specific areas of the source
code and system configuration, not comprehensive analysis of the system.

From June 10 to June 11, 2024, Trail of Bits reviewed the fixes and mitigations implemented
by the Temurin team for the issues identified in this report. We reviewed each fix to
determine its effectiveness in resolving the associated issue.

In summary, of the 19 issues described in this report, Temurin has resolved 12 issues, has
partially resolved two issues, and has not resolved the remaining five issues. For additional
information, please see the Detailed Fix Review Results below.

ID Title Status

1 Command injection vulnerability in WinRM script Unresolved
2 Docker Compose ports exposed on all interfaces Resolved

3 Insecure installation of Xcode software Resolved

4 Insecure software downloads in Ansible playbooks Resolved

5 Signature verification disabled during software installation Resolved

6 Missing integrity check in Dragonwell Dockerfile Resolved

7 Hostname verification disabled on MongoDB client Resolved

8 RHEL build image includes password Resolved

9 Insecure downloads using wget command Resolved
10 Hard-coded CA bundle keystore password | Unresolved
11 Hard-coded Vagrant VM password | Unresolved

Trail of Bits 62 OSTIF Eclipse: Temurin Security Assessment

PUBLIC

12 Missing integrity or authenticity check in jcov script download Partially
Resolved
13 SSH client disables host key verification Partially
Resolved
14 Compiler mitigations are not enabled Unresolved
15 Use of unpinned third-party workflows Resolved
16 Third-party dependencies used without signature or checksum Resolved
verification
17 Code injection vulnerability in build-scripts pipeline jobs Resolved
18 Docker commands specify root user in containers Unresolved
19 Incorrect Dependabot configuration filename Resolved
Trail of Bits 63 OSTIF Eclipse: Temurin Security Assessment

PUBLIC

Detailed Fix Review Results

TOB-TEMURIN-1: Command injection vulnerability in WinRM script
Unresolved. The client provided the following context for this finding's fix status:

The job that runs this script has extremely controlled access, and anybody with
permissions to exploit this already has direct machine access when required.

TOB-TEMURIN-2: Docker Compose ports exposed on all interfaces

Resolved in PR #860. This PR changes the port descriptors from 27017 :27017 and
8080:8080t0127.0.0.1:27017:27017 and 127.0.0.1:8080:8080, respectively,
preventing these ports from being accessed from outside the localhost.

TOB-TEMURIN-3: Insecure installation of Xcode software

Resolved in PR #3282. This PR adds SHA-256 checksum checks on the relevant HTTP
download results. It also fixes the OS X version check so that it takes the major version into
account.

TOB-TEMURIN-4: Insecure software downloads in Ansible playbooks
Resolved in PR #3329. This PR changes various http links to https links and changes
validate_certs values from false to true.

TOB-TEMURIN-5: Signature verification disabled during software installation

Resolved in PR #3355 and PR #3591. PR #3355 removes the statement highlighted in figure
5.2, which disables GPG verification, and changes the gpgcheck variables shown in figure
5.3 from false to true. PR #3591 removes the statement highlighted in figure 5.1, which
disables GPG verification.

TOB-TEMURIN-6: Missing integrity check in Dragonwell Dockerfile
Resolved in PR #1000. This PR adds a SHA-256 checksum check after the download of the
Dragonwell software.

TOB-TEMURIN-7: Hostname verification disabled on MongoDB client

Resolved in PR #993 and PR #1054. PR #993 changes the argument passed to the
invalidHostNameAllowed function depending on the value of a
DISABLE_MONGO_HOST_CHECK environment variable. If the variable is unset, it defaults to
disabling hostname verification (i.e., invalidHostNameAllowed(true)). PR #1054
changes the default behavior of this value to enable hostname verification (i.e.,
invalidHostNameAllowed(false)).

The Temurin team told us that DISABLE_MONGO_HOST_CHECK is never set to true in
production; however, we are not able to verify that this is the case.

Trail of Bits 64 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/api.adoptium.net/pull/860/files
https://github.com/adoptium/infrastructure/pull/3282/files
https://github.com/adoptium/infrastructure/pull/3329/files
https://github.com/adoptium/infrastructure/pull/3355
https://github.com/adoptium/infrastructure/pull/3591
https://github.com/adoptium/ci-jenkins-pipelines/pull/1000/files
https://github.com/adoptium/api.adoptium.net/pull/993
https://github.com/adoptium/api.adoptium.net/pull/1054

TOB-TEMURIN-8: RHEL build image includes password
Resolved in PR #3320. This PR moves the ROSIPW variable into a Docker build secret.

TOB-TEMURIN-9: Insecure downloads using wget command

Resolved in PR #58 and PR #3363. PR #58 removes the --no-check-certificate flag
applied to the wget command shown in figure 9.3. PR #3363 adds a SHA-256 checksum
check to the downloads shown in figure 9.1 and changes the Setup-QEMU-Images.md
documentation page, replacing the wget command shown in figure 9.2 with an instruction
to download some FTP links “in a secure fashion.”

TOB-TEMURIN-10: Hard-coded CA bundle keystore password
Unresolved. The client provided the following context for this finding's fix status:

The hardcoded password in this code is only used to allow the update/deployment of a
new cacerts file, and is not used or available outside of these processes.

TOB-TEMURIN-11: Hard-coded Vagrant VM password
Unresolved. The client provided the following context for this finding's fix status:

The job that runs this script has extremely controlled access, and anybody with
permissions to exploit this already has direct machine access when required.

TOB-TEMURIN-12: Missing integrity or authenticity check in jcov script download
Partially resolved in PR #877. This PR adds commands to download an MD5 checksum and
compare the checksum against the MD5 hash of the ASM tools file. However, the checksum
and the file are downloaded from the same source, so this adds only a minimal amount of
security; an attacker who can replace the ASM tools file with a malicious file could also
replace the MD5 hash file. We recommend comparing the ASM tools file with a fixed hash.

In addition, MD5 is not collision-resistant, so a more secure hash function such as SHA-256
should be used instead.

TOB-TEMURIN-13: SSH client disables host key verification
Partially resolved in PR #3526. This PR removes the files shown in figures 13.1 through 13.3.
However, the issues shown in figures 13.4 through 13.6 are still present.

The client provided the following context for this finding's fix status:

These locations are considered benign because they are connecting to internal,
short-lived, or local-only services.

TOB-TEMURIN-14: Compiler mitigations are not enabled
Unresolved. The Temurin team has investigated the possibility of enabling compiler
mitigations but has not yet enabled them.

Trail of Bits 65 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/infrastructure/pull/3320
https://github.com/adoptium/jenkins-helper/pull/58
https://github.com/adoptium/infrastructure/pull/3363/
https://github.com/adoptium/ci-jenkins-pipelines/pull/877
https://github.com/adoptium/infrastructure/pull/3526

TOB-TEMURIN-15: Use of unpinned third-party workflows
Resolved in PR #3321, PR #3597, and PR #872. These PRs pin the versions of Github Actions
dependencies using full-length commit hashes.

TOB-TEMURIN-16: Third-party dependencies used without signature or checksum
verification

Resolved in PR #3522 and PR #3781. PR #3522 adds a checksum verification to the
download in tooling/release_download_test.sh, and PR #3781 adds checksum
verifications to all the other code locations listed in the issue.

TOB-TEMURIN-17: Code injection vulnerability in build-scripts pipeline jobs
Resolved in PR #873. This PR adds a check that sanitizes the relevant variables before they
are expanded.

TOB-TEMURIN-18: Docker commands specify root user in containers
Unresolved. The client provided the following context for this finding's fix status:

The scripts referenced in the issue are not used in the production of the Temurin JDK
binary deliverables, and are provided as part of a development toolset.

TOB-TEMURIN-19: Incorrect Dependabot configuration filename
Resolved in PR #3321. This PR renames the dependabot file to dependabot.yml.

Trail of Bits 66 OSTIF Eclipse: Temurin Security Assessment
PUBLIC

https://github.com/adoptium/infrastructure/pull/3321
https://github.com/adoptium/temurin-build/pull/3597
https://github.com/adoptium/ci-jenkins-pipelines/pull/872
https://github.com/adoptium/temurin-build/pull/3522
https://github.com/adoptium/temurin-build/pull/3781
https://github.com/adoptium/ci-jenkins-pipelines/pull/873
https://github.com/adoptium/infrastructure/pull/3321

G. Fix Review Status Categories

The following table describes the statuses used to indicate whether an issue has been

sufficiently addressed.

Fix Status
Status
Undetermined

I Unresolved
Partially Resolved

Resolved

Trail of Bits
PUBLIC

Description

The status of the issue was not determined during this engagement.
The issue persists and has not been resolved.

The issue persists but has been partially resolved.

The issue has been sufficiently resolved.

67 OSTIF Eclipse: Temurin Security Assessment

