
 Eclipse Temurin
 Security Assessment

 June 14, 2024

 Prepared for:

 Stewart Addison
 The Eclipse Foundation

 Organized by the Open Source Technology Improvement Fund, Inc.

 Prepared by: Sam Alws and Matt Schwager

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 100+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositories at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” page at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 497 Carroll St., Space 71, Seventh Floor
 Brooklyn, NY 11215
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 1 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

 Notices and Remarks

 Copyright and Distribution
 © 2024 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be public information; it is licensed to the Eclipse
 Foundation under the terms of the project statement of work and has been made public at
 the Eclipse Foundation’s request. Material within this report may not be reproduced or
 distributed in part or in whole without the express written permission of Trail of Bits.

 The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page .
 Reports accessed through any source other than that page may have been modified and
 should not be considered authentic.

 Test Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and agreed upon project plan.

 Security assessment projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As a result, the findings documented in
 this report should not be considered a comprehensive list of security issues, flaws, or
 defects in the target system or codebase.

 Trail of Bits uses automated testing techniques to rapidly test the controls and security
 properties of software. These techniques augment our manual security review work, but
 each has its limitations: for example, a tool may not generate a random edge case that
 violates a property or may not fully complete its analysis during the allotted time. Their use
 is also limited by the time and resource constraints of a project.

 Trail of Bits 2 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/trailofbits/publications

 Table of Contents

 About Trail of Bits 1
 Notices and Remarks 2
 Table of Contents 3
 Project Summary 5
 Executive Summary 6
 Project Goals 8
 Project Targets 9
 Project Coverage 10
 Automated Testing 11
 Codebase Maturity Evaluation 12
 Summary of Findings 15
 Detailed Findings 17

 1. Command injection vulnerability in WinRM script 17
 2. Docker Compose ports exposed on all interfaces 19
 3. Insecure installation of Xcode software 21
 4. Insecure software downloads in Ansible playbooks 23
 5. Signature verification disabled during software installation 25
 6. Missing integrity check in Dragonwell Dockerfile 27
 7. Hostname verification disabled on MongoDB client 29
 8. RHEL build image includes password 30
 9. Insecure downloads using wget command 31
 10. Hard-coded CA bundle keystore password 33
 11. Hard-coded Vagrant VM password 35
 12. Missing integrity or authenticity check in jcov script download 36
 13. SSH client disables host key verification 37
 14. Compiler mitigations are not enabled 39
 15. Use of unpinned third-party workflows 41
 16. Third-party dependencies used without signature or checksum verification 43
 17. Code injection vulnerability in build-scripts pipeline jobs 45
 18. Docker commands specify root user in containers 47
 19. Incorrect Dependabot configuration filename 48

 A. Vulnerability Categories 49
 B. Code Maturity Categories 51

 Trail of Bits 3 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 C. Insecure Download Semgrep Results 53
 D. Compiler Mitigations 54
 E. Code Quality Recommendations 58
 F. Fix Review Results 62

 Detailed Fix Review Results 64
 G. Fix Review Status Categories 67

 Trail of Bits 4 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 Project Summary

 Contact Information
 The following project manager was associated with this project:

 Jeff Braswell , Project Manager
 jeff.braswell@trailofbits.com

 The following engineering director was associated with this project:

 Anders Helsing , Engineering Director, Application Security
 anders.helsing@trailofbits.com

 The following consultants were associated with this project:

 Sam Alws , Consultant Matt Schwager , Consultant
 sam.alws@trailofbits.com matt.schwager@trailofbits.com

 Project Timeline
 The significant events and milestones of the project are listed below.

 Date Event

 December 1, 2023 Pre-project kickoff call

 December 11, 2023 Status update meeting #1

 December 15, 2023 Delivery of report draft

 December 15, 2023 Report readout meeting

 June 14, 2024 Delivery of comprehensive report

 Trail of Bits 5 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

mailto:jeff.braswell@trailofbits.com
mailto:anders.helsing@trailofbits.com
mailto:sam.alws@trailofbits.com
mailto:matt.schwager@trailofbits.com

 Executive Summary

 Engagement Overview
 OSTIF engaged Trail of Bits to review the security of the Eclipse Foundation’s Temurin
 project. The Temurin project is part of the top-level project Adoptium, and provides code
 and processes that support the building of quality Java runtime binaries and associated
 technologies that are high performance, enterprise caliber, cross platform, open-source
 licensed, and secure. At the highest level, Temurin takes source code for the
 implementation of Java SE versions from OpenJDK, builds and tests the code across a
 number of platform architectures, and makes the results available to end users in a wide
 variety of consumable formats.

 A team of two consultants conducted the review from December 4 to December 15, 2023,
 for a total of four engineer-weeks of effort. Our testing efforts focused on authentication
 and authorization, data flow, and command injection vulnerabilities. With full access to
 source code and documentation, we performed static and dynamic testing of the
 codebase, using automated and manual processes.

 During the audit, we also developed a set of Semgrep rules, which will be provided
 alongside this report in a zip file.

 Observations and Impact
 We found a number of issues in which downloads (mainly software downloads) are
 performed without proper verification (TOB-TEMURIN-3 , TOB-TEMURIN-4 , TOB-TEMURIN-5 ,
 TOB-TEMURIN-6 , TOB-TEMURIN-9 , TOB-TEMURIN-12 , TOB-TEMURIN-15 , TOB-TEMURIN-16).
 We also found that the GitHub bot responsible for checking dependencies in the
 infrastructure repository is not configured correctly, preventing out-of-date
 dependencies from being detected (TOB-TEMURIN-19). We also noticed that dependencies
 are installed in many places in the temurin-build repository in an ad hoc manner,
 making it difficult to determine the full list of dependencies being used.

 We found two high-severity issues that allow privileged users to perform code injection
 attacks on Jenkins build machines and Vagrant virtual machines (VMs) (TOB-TEMURIN-1 ,
 TOB-TEMURIN-17). We found two other high-severity issues involving vulnerabilities to
 person-in-the-middle attacks, through the API server’s connection to its MongoDB database
 (TOB-TEMURIN-7) and SSH connections to a Nagios instance (TOB-TEMURIN-13).

 Recommendations
 Based on the codebase maturity evaluation and findings identified during the security
 review, Trail of Bits recommends that the Eclipse Foundation take the following steps:

 Trail of Bits 6 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 ● Remediate the findings disclosed in this report. These findings should be
 addressed as part of a direct remediation or as part of any refactor that may occur
 when addressing other recommendations.

 ● Create a centralized list of all the code locations where Temurin adds external
 dependencies. Currently, Temurin adds dependencies throughout multiple
 Dockerfiles, Bash scripts, Ansible playbooks, and so on. This is especially true in the
 temurin-build repository, where it is very difficult to track down all the places
 where binaries are downloaded and run. We recommend making a single piece of
 documentation (or one piece of documentation per repository) containing a list of
 filenames and line numbers where dependencies are added.

 Finding Severities and Categories
 The following tables provide the number of findings by severity and category.

 EXPOSURE ANALYSIS

 Severity Count

 High 8

 Medium 1

 Low 4

 Informational 5

 Undetermined 1

 CATEGORY BREAKDOWN

 Category Count

 Access Controls 3

 Configuration 2

 Cryptography 8

 Data Exposure 1

 Data Validation 2

 Patching 3

 Trail of Bits 7 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 Project Goals

 The engagement was scoped to provide a security assessment of the Eclipse Foundation’s
 Temurin project. Specifically, we sought to answer the following non-exhaustive list of
 questions:

 ● How and where is data stored?

 ● How do users authenticate to the application(s)?

 ● How do internal systems authenticate to each other?

 ● How does user input flow through the system?

 ● How is the infrastructure managed?

 ● How does the system use cryptography?

 ● How does the system download and install software?

 ● What types of users or privileged parties exist in the system?

 ● Does the system interact with external services?

 ● Where do production workloads run?

 Trail of Bits 8 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 Project Targets

 The engagement involved a review and testing of the targets listed below.

 api.adoptium.net
 Repository https://github.com/adoptium/api.adoptium.net

 Version 52be774c47a374cd0cf13c40f2eb28f4b1158a16

 Type Kotlin

 Platform Server

 ci-jenkins-pipelines
 Repository https://github.com/adoptium/ci-jenkins-pipelines

 Version 7b9559ce88321ff8111180fdc58421a0f9eadcef

 Type Groovy

 Platform Server

 infrastructure
 Repository https://github.com/adoptium/infrastructure

 Version 9f6e77549a67031bea07efae3030942729baa186

 Type Various scripting languages; Ansible playbooks

 Platform Server

 jenkins-helper
 Repository https://github.com/adoptium/jenkins-helper

 Version 3e12d3e25fe100e62275656342ee3f5396abb55e

 Type Groovy

 Platform Server

 temurin-build
 Repository https://github.com/adoptium/temurin-build

 Version da2408e4ea988090835f15f29cb170873cced045

 Type Bash

 Platform Server

 Trail of Bits 9 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/api.adoptium.net
https://github.com/adoptium/ci-jenkins-pipelines
https://github.com/adoptium/infrastructure
https://github.com/adoptium/jenkins-helper
https://github.com/adoptium/temurin-build

 Project Coverage

 This section provides an overview of the analysis coverage of the review, as determined by
 our high-level engagement goals. Our approaches included the following:

 ● Static analysis of the codebase using Semgrep rules, focused on the following:

 ○ Connections to HTTP endpoints

 ○ Connections to HTTPS endpoints

 ○ Software authenticity verification

 ○ Hostname or host key verification

 ○ Excessive user privileges

 ○ Basic Java and Kotlin code quality issues

 ● Manual review of the codebase, focused on the following:

 ○ Authentication, authorization, and access controls

 ○ Command injection and other forms of injection bugs

 ○ SSL hostname verification, authenticity, and integrity validation

 ● Binary analysis focused on various forms of security hardening using the checksec
 tool

 Coverage Limitations
 Because of the time-boxed nature of testing work, it is common to encounter coverage
 limitations. The following list outlines the coverage limitations of the engagement and
 indicates system elements that may warrant further review:

 ● We did not review each of Temurin’s dependencies to ensure that they are up to
 date and secure.

 ○ We did not review the temurin-build/security/mk-ca-bundle.pl file,
 which was made by the cURL project.

 Trail of Bits 10 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 Automated Testing

 Trail of Bits uses automated techniques to extensively test the security properties of
 software. We use both open-source static analysis and fuzzing utilities, along with tools
 developed in house, to perform automated testing of source code and compiled software.

 Test Harness Configuration
 We used the following tools in the automated testing phase of this project:

 Tool Description Policy

 Semgrep An open-source static analysis tool for finding bugs
 and enforcing code standards when editing or
 committing code and during build time

 Rules to be
 provided in
 accompanying zip
 file

 checksec An open-source binary analysis tool for checking
 security properties of executables like PIE, RELRO,
 stack canaries, ASLR, and source fortification

 Default

 route-detect An open-source static analysis tool for finding
 authentication and authorization security bugs in
 web application routes

 Default, with Java
 Jakarta package
 namespace added

 Areas of Focus
 Our automated testing and verification work focused on the following system properties:

 ● Secure HTTP downloads and endpoint access

 ● Authenticity and integrity guarantees

 ● Least privilege access controls

 ● Binary hardening flags

 ● Web application route authentication and authorization controls

 Our testing work focused on finding the following types of issues:

 ● Cryptographic weaknesses and insecure algorithms

 ● Hard-coded or exposed secrets, credentials, and tokens

 Trail of Bits 11 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/returntocorp/semgrep
https://github.com/slimm609/checksec.sh
https://github.com/mschwager/route-detect

 Codebase Maturity Evaluation

 Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
 the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
 identified here often stem from root causes within the software development life cycle that
 should be addressed through standardization measures (e.g., the use of common libraries,
 functions, or frameworks) or training and awareness programs.

 Category Summary Result

 Arithmetic Due to the nature of the project, Temurin makes minimal
 use of arithmetic.

 Not
 Applicable

 Auditing Log messages are saved while building and testing
 OpenJDK releases. The API server tracks telemetry data
 using Microsoft Application Insights. Both of these
 features will make incident response much easier in the
 event of a security problem.

 Strong

 Authentication /
 Access Controls

 End-user authentication is minimal and is soundly
 implemented where necessary. Access controls are
 generally limited to least privilege, with the exception of
 the controls described in TOB-TEMURIN-18 . Although
 lower priority, improvements to password management
 can be made to address TOB-TEMURIN-8 ,
 TOB-TEMURIN-10 , and TOB-TEMURIN-11 .

 Satisfactory

 Complexity
 Management

 Code complexity varies across repositories. For example,
 the api.adoptium.net repository is well structured,
 while the temurin-build repository lacks inherent
 structure. The use of a modern programming language
 for the API server versus the ad hoc scripting in the build
 repository may account for this discrepancy. In many
 cases, good documentation accompanies disorganized
 code, making it easier to manage and understand.

 Moderate

 Configuration The targets rely heavily on Ansible for configuration
 management. The infrastructure codebase contains
 a significant number of insecure configurations, such as
 those described in TOB-TEMURIN-4 , TOB-TEMURIN-5 ,
 and TOB-TEMURIN-13 , and multiple code quality issues,
 described in appendix E . Configuration practices related

 Weak

 Trail of Bits 12 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 to password and dependency management can also be
 improved.

 Cryptography
 and Key
 Management

 We found multiple places where important cryptography
 features, such as HTTPS downloads and signature
 verifications, are disabled. A large portion of the findings
 in this report are related to these disabled cryptography
 features (TOB-TEMURIN-3 , TOB-TEMURIN-4 ,
 TOB-TEMURIN-5 , TOB-TEMURIN-7 , TOB-TEMURIN-9 ,
 TOB-TEMURIN-12 , TOB-TEMURIN-13 , TOB-TEMURIN-16).

 Weak

 Data Handling In general, we found that Temurin correctly handles its
 data (such as its binaries). However, we noticed multiple
 cases in which command injection is possible
 (TOB-TEMURIN-1 , TOB-TEMURIN-17). We also noticed one
 case in which a Red Hat password is exposed
 (TOB-TEMURIN-8). In addition, issues related to
 cryptography (see above) often have the potential to lead
 to leakage or corruption of Temurin’s data.

 Satisfactory

 Documentation Temurin provides comprehensive documentation
 describing the project layout and build process.
 READMEs, network diagrams, a basic threat model, and
 other thorough, text-based documentation describe
 necessary workflows and design decisions. Code is
 commented where needed.

 Strong

 Maintenance Dependabot is used to keep the api.adoptium.net ,
 ci-jenkins-pipelines , and temurin-build
 repositories up to date. Dependabot was incorrectly
 added in the infrastructure repository
 (TOB-TEMURIN-19). (It is not used in the
 jenkins-helper repository since the repository does
 not specify any dependencies.) In most cases,
 dependencies are pinned using a checksum or verified
 using a signature; however, there are a number of
 exceptions to this (TOB-TEMURIN-3 , TOB-TEMURIN-4 ,
 TOB-TEMURIN-5 , TOB-TEMURIN-6 , TOB-TEMURIN-9 ,
 TOB-TEMURIN-12 , TOB-TEMURIN-15 , TOB-TEMURIN-16).
 Additionally, in the temurin-build repository,
 dependencies are downloaded in many different places
 in an ad hoc fashion, making it difficult to determine the
 full list of dependencies being used. We recommend, at
 the very least, documenting a list of all locations where

 Weak

 Trail of Bits 13 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 these downloads are performed (see the executive
 summary).

 Memory Safety
 and Error
 Handling

 The Temurin project uses memory-safe languages, with
 very few exceptions. We did not find any issues related to
 memory safety or error handling.

 Strong

 Testing and
 Verification

 Tests are run on JDK builds as part of the pipeline to
 ensure correctness. The api.adoptium.net repository
 includes tests for its Kotlin code, including tests for both
 happy-path and unhappy-path behavior. Temurin would
 benefit from having Semgrep run on each new PR
 submitted to each of its repositories.

 Satisfactory

 Trail of Bits 14 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 Summary of Findings

 The table below summarizes the findings of the review, including type and severity details.

 ID Title Type Severity

 1 Command injection vulnerability in WinRM script Data Validation High

 2 Docker Compose ports exposed on all interfaces Configuration Low

 3 Insecure installation of Xcode software Cryptography High

 4 Insecure software downloads in Ansible
 playbooks

 Cryptography High

 5 Signature verification disabled during software
 installation

 Cryptography High

 6 Missing integrity check in Dragonwell Dockerfile Cryptography Low

 7 Hostname verification disabled on MongoDB
 client

 Cryptography High

 8 RHEL build image includes password Data Exposure Low

 9 Insecure downloads using wget command Cryptography High

 10 Hard-coded CA bundle keystore password Access Controls Informational

 11 Hard-coded Vagrant VM password Access Controls Informational

 12 Missing integrity or authenticity check in jcov
 script download

 Cryptography Low

 13 SSH client disables host key verification Cryptography High

 14 Compiler mitigations are not enabled Configuration Informational

 15 Use of unpinned third-party workflows Patching Medium

 Trail of Bits 15 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 16 Third-party dependencies used without signature
 or checksum verification

 Patching Informational

 17 Code injection vulnerability in build-scripts
 pipeline jobs

 Data Validation High

 18 Docker commands specify root user in containers Access Controls Informational

 19 Incorrect Dependabot configuration filename Patching Undetermined

 Trail of Bits 16 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 Detailed Findings

 1. Command injection vulnerability in WinRM script

 Severity: High Difficulty: High

 Type: Data Validation Finding ID: TOB-TEMURIN-1

 Target: infrastructure/ansible/pbTestScripts/startScriptWin.py

 Description
 The run_winrm function allows callers to specify commands to run on a Vagrant virtual
 machine (VM). It is the primary functionality of the startScriptWin.py script, which is
 itself executed by the vagrantPlaybookCheck.sh shell script. This function receives input
 from command-line arguments and uses string concatenation to build a shell command to
 execute on a Vagrant VM:

 def run_winrm (vmIP, buildArgs , mode):
 cmd_str = "Start-Process powershell.exe -Verb runAs; cd C:/tmp; sh

 C:/vagrant/pbTestScripts/"
 print (mode)
 if mode == 1 :

 cmd_str += "buildJDKWin.sh "
 else :

 cmd_str += "testJDKWin.sh "
 cmd_str += buildArgs
 print ("Running : %s " %cmd_str)
 session = winrm.Session(str (vmIP), auth=('vagrant' , 'vagrant'))
 session.run_ps(cmd_str, sys.stdout, sys.stderr)

 Figure 1.1: A shell command generated with string concatenation
 (infrastructure/ansible/pbTestScripts/startScriptWin.py:12–22)

 If an attacker can influence the buildArgs parameter, either through the
 startScriptWin.py or vagrantPlaybookCheck.sh command-line arguments, then
 they could be able to execute code on the Vagrant VM. The Eclipse Foundation has
 confirmed that these parameters can be specified in a Jenkins job web form; however,
 access to these forms is restricted.

 Exploit Scenario
 An attacker sends a malicious shell payload through the --build-fork or
 --build-branch command-line argument to vagrantPlaybookCheck.sh , or through
 the -a command-line argument to startScriptWin.py . While building the cmd_str , the

 Trail of Bits 17 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/pbTestScripts/startScriptWin.py#L12%E2%80%93L22

 run_winrm function concatenates the buildArgs string and executes it on the Vagrant
 VM. The attacker is able to execute arbitrary commands by using shell operators such as ; ,
 && , or || , and to append additional commands.

 It is worth noting that spaces cannot be used in the payload if it is sent to
 vagrantPlaybookCheck.sh . However, shell brace expansion can be used to bypass this
 restriction. For example, the following command results in successful command injection:

 ./vagrantPlaybookCheck.sh ... --branch main;{echo,command,injection}; ...

 Recommendations
 Short term, build a list of command arguments to be passed to the run_winrm method
 instead of using string concatenation to generate a command argument string and passing
 it to run_ps .

 Long term, implement static analysis rules to automatically detect string concatenation
 data that is passed to the run_ps method.

 Trail of Bits 18 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 2. Docker Compose ports exposed on all interfaces

 Severity: Low Difficulty: High

 Type: Configuration Finding ID: TOB-TEMURIN-2

 Target: api.adoptium.net/docker-compose.yml

 Description
 The docker-compose.yml configuration file for the api.adoptium.net API server (which
 is used in development but not in production) specifies Docker ports using a ports
 configuration option of 27017:27017 for the MongoDB container and 8080:8080 for the
 front-end container (see figure 2.1). This means that these ports are accessible not just to
 other processes running on the same computer, but also from other computers on the
 same network.

 version : '3.6'
 services :
 mongodb :
 image : mongo:4.2
 ports :
 - "27017:27017"

 frontend :
 depends_on :
 - mongodb

 image : "adoptium-api"
 build :
 context : .
 dockerfile : Dockerfile

 ports :
 - "8080:8080"

 environment :
 MONGODB_HOST : mongodb

 updater :
 depends_on :
 - mongodb

 image : "adoptium-api"
 command : "java -jar /deployments/adoptium-api-v3-updater-runner.jar"
 build :
 context : .
 dockerfile : Dockerfile

 environment :
 MONGODB_HOST : mongodb
 GITHUB_TOKEN : "${GITHUB_TOKEN}"
 GITHUB_APP_ID : "${GITHUB_APP_ID}"
 GITHUB_APP_PRIVATE_KEY : "${GITHUB_APP_PRIVATE_KEY}"

 Trail of Bits 19 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 GITHUB_APP_INSTALLATION_ID : "${GITHUB_APP_INSTALLATION_ID}"

 Figure 2.1: api.adoptium.net/docker-compose.yml

 Exploit Scenario
 A Temurin developer runs this docker-compose.yml file while on a public Wi-Fi network.
 An attacker who is on the same network connects to the MongoDB database running on
 the developer’s computer; this database is available on port 27017 without any password
 protection. The attacker modifies an entry in the database containing a link to a binary file,
 which eventually causes the developer to unwittingly download and run a malicious file.

 Recommendations
 Short term, set these configuration values to 127.0.0.1:27017:27017 and
 127.0.0.1:8080:8080 , instead of 27017:27017 and 8080:8080 .

 Long term, use static analysis rules to automatically detect ports that are exposed on all
 interfaces; the set of Semgrep rules provided alongside this report includes such a rule.

 Trail of Bits 20 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/api.adoptium.net/blob/52be774c47a374cd0cf13c40f2eb28f4b1158a16/docker-compose.yml

 3. Insecure installation of Xcode software

 Severity: High Difficulty: High

 Type: Cryptography Finding ID: TOB-TEMURIN-3

 Target:
 infrastructure/ansible/playbooks/AdoptOpenJDK_ITW_Playbook/roles/Com
 mon/scripts/install-xcode.sh

 Description
 The install-xcode.sh script uses unencrypted HTTP endpoints to download Xcode
 command-line tools and then installs them using the -allowUntrusted flag:

 if [[" $osx_vers " -eq 7]] || [[" $osx_vers " -eq 8]]; then

 if [[" $osx_vers " -eq 7]]; then
 DMGURL =http://devimages.apple.com/downloads/xcode/command_line_tools_for_xcode_os_x_lion_april_
 2013.dmg

 fi

 if [[" $osx_vers " -eq 8]]; then
 DMGURL =http://devimages.apple.com/downloads/xcode/command_line_tools_for_osx_mountain_lion_apri
 l_2014.dmg

 fi

 TOOLS =cltools.dmg
 curl " $DMGURL " -o " $TOOLS "
 TMPMOUNT = ̀ /usr/bin/mktemp -d /tmp/clitools.XXXX ̀
 hdiutil attach " $TOOLS " -mountpoint " $TMPMOUNT " -nobrowse
 # The "-allowUntrusted" flag has been added to the installer
 # command to accomodate for now-expired certificates used
 # to sign the downloaded command line tools.
 installer -allowUntrusted -pkg " $(find $TMPMOUNT -name '*.mpkg') " -target /
 hdiutil detach " $TMPMOUNT "
 rm -rf " $TMPMOUNT "
 rm " $TOOLS "

 fi

 Figure 3.1: Untrusted installation of Xcode software
 (infrastructure/ansible/playbooks/AdoptOpenJDK_ITW_Playbook/roles/Common/

 scripts/install-xcode.sh:23–44)

 Also, the OS X version check performs an imprecise comparison. This increases the
 likelihood that the untrusted installation will be performed on versions it is not intended
 for. The osx_vers variable considers only the system minor version rather than the minor
 and major version:

 Trail of Bits 21 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_ITW_Playbook/roles/Common/scripts/install-xcode.sh#L23%E2%80%93L44
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_ITW_Playbook/roles/Common/scripts/install-xcode.sh#L23%E2%80%93L44

 osx_vers = $(sw_vers -productVersion | awk -F "." '{print $2}')

 Figure 3.2: The code checks only the system minor version.
 (infrastructure/ansible/playbooks/AdoptOpenJDK_ITW_Playbook/roles/Common/

 scripts/install-xcode.sh:2)

 This script is meant to perform the untrusted installation only if it is running on OS X
 version 10.7 or 10.8. Because the code checks only the minor version, this script will also
 perform the untrusted installation on macOS versions 11.7, 12.7, 13.7, and so on.

 Exploit Scenario
 An attacker is in a privileged network position relative to a system installing Xcode software
 and is able to actively intercept and modify the system’s network traffic. Because the
 software is downloaded over HTTP and its installation is untrusted, the attacker can modify
 the download in transit and replace the software with a malicious version.

 Recommendations
 Short term, have the script use HTTPS to download the software and ensure the integrity of
 the software by validating it against a known SHA-256 checksum.

 Long term, deprecate and remove support for OS X and macOS versions requiring an
 untrusted installation of the Xcode command-line tools.

 Trail of Bits 22 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_ITW_Playbook/roles/Common/scripts/install-xcode.sh#L2
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_ITW_Playbook/roles/Common/scripts/install-xcode.sh#L2

 4. Insecure software downloads in Ansible playbooks

 Severity: High Difficulty: High

 Type: Cryptography Finding ID: TOB-TEMURIN-4

 Target: The full list of targets is provided in appendix C .

 Description
 Ansible playbooks are used to configure various parts of the system infrastructure. These
 playbooks install software and generally configure systems to be in a consistent state.
 Many of the playbooks install software and package data in an insecure manner, using
 unencrypted channels such as HTTP (figure 4.1) or disabling certificate validation when
 performing the download (figure 4.2). The full list of such instances is provided in appendix
 C.

 - name : Add Azul Zulu GPG Package Signing Key for x86_64
 apt_key :
 url : http://repos.azulsystems.com/RPM-GPG-KEY-azulsystems
 state : present

 when :
 - ansible_architecture == "x86_64"

 tags : [patch_update , azul-key]

 Figure 4.1: HTTP download
 (infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common

 /tasks/Ubuntu.yml:25–31)

 - name : Enable EPEL release (not CentOS8)
 yum :
 name : epel-release
 state : installed
 update_cache : yes
 validate_certs : no

 when : ansible_distribution_major_version != "8"
 tags : patch_update

 Figure 4.2: Disabled SSL certificate validation
 (infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common

 /tasks/CentOS.yml:15–22)

 Note that there are many more instances in which validate_certs is disabled. However,
 packages or downloads that specify a checksum alongside disabled validation are
 considered secure. This configuration was assumed to mean “trust on first use” and that

 Trail of Bits 23 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common/tasks/Ubuntu.yml#L25%E2%80%93L31
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common/tasks/Ubuntu.yml#L25%E2%80%93L31
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common/tasks/CentOS.yml#L15%E2%80%93L22
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common/tasks/CentOS.yml#L15%E2%80%93L22

 integrity of the software has been verified out of band and validated with a checksum. An
 example of the configuration is provided below:

 - name : Download expat
 get_url :
 url :

 https://github.com/libexpat/libexpat/releases/download/R_2_2_5/expat-2.2.5.tar.bz2
 dest : /tmp/
 mode : 0440
 timeout : 25
 validate_certs : no
 checksum :

 sha256:d9dc32efba7e74f788fcc4f212a43216fc37cf5f23f4c2339664d473353aedf6

 Figure 4.3: SSL certificate validation disabled and checksum provided
 (infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common

 /tasks/openSUSE.yml:151–158)

 Exploit Scenario
 An attacker is in a privileged network position relative to a system installing software using
 an Ansible playbook and is able to actively intercept and modify the system’s network
 traffic. Because the software is downloaded over HTTP, the attacker can modify the
 download in transit and replace the software with a malicious version.

 Recommendations
 Short term, change HTTP downloads to HTTPS, and enable SSL certificate validation.

 Long term, implement static analysis rules to automatically detect HTTP downloads and
 disabled SSL certificate validation in Ansible playbooks.

 Trail of Bits 24 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common/tasks/openSUSE.yml#L151%E2%80%93L158
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common/tasks/openSUSE.yml#L151%E2%80%93L158

 5. Signature verification disabled during software installation

 Severity: High Difficulty: High

 Type: Cryptography Finding ID: TOB-TEMURIN-5

 Target:
 infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Co
 mmon/tasks/openSUSE.yml ,
 infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/NV
 idia_Cuda_Toolkit/tasks/main.yml ,
 infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Do
 cker/tasks/rhel.yml

 Description
 Software package signatures are verified upon installation to ensure their authenticity.
 GNU Privacy Guard (GPG) signatures are a common signing method. A number of Ansible
 playbooks disable GPG verification when installing packages. The following snippets show
 four locations where verification is disabled:

 - name : Sed change gpgcheck for gcc repo on x86_64
 replace :
 path : /etc/zypp/repos.d/devel_gcc.repo
 regexp : 'gpgcheck=1'
 replace : "gpgcheck=0"

 when :
 - (ansible_distribution_major_version == "12" and ansible_architecture ==

 "x86_64")
 tags : SUSE_gcc48

 Figure 5.1: openSUSE playbook disabling GPG verification
 (infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common

 /tasks/openSUSE.yml:29–36)

 - name : Sed change gpgcheck for SLES12 on x86_64
 command : sed 's/gpgcheck=1/gpgcheck=0/' -i /etc/zypp/repos.d/cuda.repo
 when :
 - cuda_installed.stat.islnk is not defined
 - ansible_architecture == "x86_64"
 - ansible_distribution == "SLES" or ansible_distribution == "openSUSE"
 - ansible_distribution_major_version == "12"

 tags :
 - nvidia_cuda_toolkit
 #TODO: rpm used in place of yum or rpm_key module
 - skip_ansible_lint

 Trail of Bits 25 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common/tasks/openSUSE.yml#L29%E2%80%93L36
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common/tasks/openSUSE.yml#L29%E2%80%93L36

 Figure 5.2: NVIDIA playbook disabling GPG verification
 (infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/NVidia

 _Cuda_Toolkit/tasks/main.yml:105–115)

 - name : Add Docker Repo x86-64/ppc64le
 yum_repository :
 name : docker
 description : docker repository
 baseurl : "https://download.docker.com/linux/centos/{{

 ansible_distribution_major_version }}/{{ ansible_architecture }}/stable"
 enabled : true
 gpgcheck : false

 when :
 - ansible_architecture == "x86_64" or ansible_architecture == "ppc64le"

 - name : Add Docker repo for s390x on RHEL
 yum_repository :
 name : docker
 description : docker YUM repo s390x
 baseurl : https://download.docker.com/linux/rhel/{{

 ansible_distribution_major_version }}/s390x/stable/
 enabled : true
 gpgcheck : false

 when :
 - ansible_architecture == "s390x"

 Figure 5.3: Docker playbook disabling GPG verification
 (infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Docker

 /tasks/rhel.yml:13–31)

 Exploit Scenario
 An attacker wants to upload a malicious package to one of the repositories. He is able to
 bypass the repository signing process or sign the package with an untrusted GPG key and
 successfully upload the package. The system performing the installation then installs the
 malicious package despite receiving an incorrect signature, or no signature at all.

 Recommendations
 Short term, import the correct package repository GPG keys, and enable GPG signature
 verification.

 Long term, implement static analysis rules to automatically detect disabled GPG signature
 verification in Ansible playbooks.

 Trail of Bits 26 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/NVidia_Cuda_Toolkit/tasks/main.yml#L105%E2%80%93L115
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/NVidia_Cuda_Toolkit/tasks/main.yml#L105%E2%80%93L115
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Docker/tasks/rhel.yml#L13%E2%80%93L31
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Docker/tasks/rhel.yml#L13%E2%80%93L31

 6. Missing integrity check in Dragonwell Dockerfile

 Severity: Low Difficulty: High

 Type: Cryptography Finding ID: TOB-TEMURIN-6

 Target:
 ci-jenkins-pipelines/pipelines/build/dockerFiles/dragonwell.dockerfi
 le

 Description
 The Dragonwell Dockerfile downloads and installs the Dragonwell software without
 verifying its integrity. A hashsum like SHA-256 should be used to ensure the integrity of the
 download and that the system is receiving the same data across multiple downloads.

 RUN \
 # Dragonewell 8 requires a dragonwell 8 BootJDK
 mkdir -p /opt/dragonwell; \
 wget

 https://github.com/alibaba/dragonwell8/releases/download/dragonwell- 8.4 . 4 _jdk8u262-g
 a/Alibaba_Dragonwell_8. 4.4 -GA_Linux_x64.tar.gz; \

 tar -xf Alibaba_Dragonwell_8. 4.4 -GA_Linux_x64.tar.gz -C /opt/; \
 mv /opt/jdk8u262-b10 /opt/dragonwell8

 Figure 6.1: Download of the Dragonwell software
 (ci-jenkins-pipelines/pipelines/build/dockerFiles/dragonwell.dockerfile:5

 –10)

 Note that the equivalent AArch64 download of the same software does verify the integrity
 with an MD5 hashsum:

 RUN \
 # Dragonewell 8 requires a dragonwell 8 BootJDK
 mkdir -p /opt/dragonwell8; \
 wget

 https://github.com/alibaba/dragonwell8/releases/download/dragonwell- 8.5 . 5 _jdk8u275-b
 2/Alibaba_Dragonwell_8. 5.5 -FP1_Linux_aarch64.tar.gz; \

 test $(md5sum Alibaba_Dragonwell_8. 5.5 -FP1_Linux_aarch64.tar.gz | cut -d ' '
 -f1) = "ab80c4f638510de8c7211b7b7734f946" || exit 1 ; \

 tar -xf Alibaba_Dragonwell_8. 5.5 -FP1_Linux_aarch64.tar.gz -C /opt/dragonwell8
 --strip-components= 1

 Figure 6.2: Download of the AArch64 Dragonwell software
 (ci-jenkins-pipelines/pipelines/build/dockerFiles/dragonwell_aarch64.dock

 erfile:5–10)

 Trail of Bits 27 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/ci-jenkins-pipelines/blob/7b9559ce88321ff8111180fdc58421a0f9eadcef/pipelines/build/dockerFiles/dragonwell.dockerfile#L5%E2%80%93L10
https://github.com/adoptium/ci-jenkins-pipelines/blob/7b9559ce88321ff8111180fdc58421a0f9eadcef/pipelines/build/dockerFiles/dragonwell.dockerfile#L5%E2%80%93L10
https://github.com/adoptium/ci-jenkins-pipelines/blob/7b9559ce88321ff8111180fdc58421a0f9eadcef/pipelines/build/dockerFiles/dragonwell_aarch64.dockerfile#L5%E2%80%93L10
https://github.com/adoptium/ci-jenkins-pipelines/blob/7b9559ce88321ff8111180fdc58421a0f9eadcef/pipelines/build/dockerFiles/dragonwell_aarch64.dockerfile#L5%E2%80%93L10

 Exploit Scenario
 An attacker is able to upload a malicious package to one of the repositories. The system
 performing the installation then installs the malicious package even though the underlying
 data within the package has changed.

 Recommendations
 Short term, add a SHA-256 hashsum check to ensure the integrity of the software.

 Trail of Bits 28 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 7. Hostname verification disabled on MongoDB client

 Severity: High Difficulty: High

 Type: Cryptography Finding ID: TOB-TEMURIN-7

 Target:
 api.adoptium.net/adoptium-api-v3-persistence/src/main/kotlin/net/ado
 ptium/api/v3/dataSources/persitence/mongo/MongoClient.kt

 Description
 The MongoDB client used by the API server disables hostname verification when SSL is
 enabled. This could enable attackers to steal the database username and password
 through person-in-the-middle attacks.

 var settingsBuilder = MongoClientSettings.builder()
 .applyConnectionString(ConnectionString(connectionString))

 val sslEnabled = System.getenv("MONGODB_SSL")?.toBoolean()
 if (sslEnabled == true) {

 settingsBuilder = settingsBuilder.applyToSslSettings {
 it .enabled(true). invalidHostNameAllowed(true) }
 }
 client = KMongo.createClient(settingsBuilder.build()).coroutine
 database = client.getDatabase(dbName)

 Figure 7.1: Configuration code that disables hostname verification
 (api.adoptium.net/adoptium-api-v3-persistence/src/main/kotlin/net/adoptiu

 m/api/v3/dataSources/persitence/mongo/MongoClient.kt#67–74)

 Exploit Scenario
 The API server sends a request to the MongoDB database. A person-in-the-middle attacker
 impersonates the database, using his own SSL key. The API server then sends over its
 database username and password, encrypted using the attacker’s public key, rather than
 the database’s public key. The attacker now knows the database’s username and password
 and can tamper with its contents.

 Recommendations
 Short term, enable hostname verification by removing the call to
 invalidHostNameAllowed .

 Trail of Bits 29 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/api.adoptium.net/blob/52be774c47a374cd0cf13c40f2eb28f4b1158a16/adoptium-api-v3-persistence/src/main/kotlin/net/adoptium/api/v3/dataSources/persitence/mongo/MongoClient.kt#L67-L74
https://github.com/adoptium/api.adoptium.net/blob/52be774c47a374cd0cf13c40f2eb28f4b1158a16/adoptium-api-v3-persistence/src/main/kotlin/net/adoptium/api/v3/dataSources/persitence/mongo/MongoClient.kt#L67-L74

 8. RHEL build image includes password

 Severity: Low Difficulty: High

 Type: Data Exposure Finding ID: TOB-TEMURIN-8

 Target: infrastructure/ansible/docker/Dockerfile.RHEL7

 Description
 The Red Hat Enterprise Linux (RHEL) build image takes a Red Hat username and password
 as a build argument. Docker build arguments are persisted in the resulting image, meaning
 that anyone who gains access to Temurin’s RHEL image will also have access to the Red Hat
 login information.

 FROM registry.access.redhat.com/rhel7
 # This dockerfile should be built using:
 # docker build --no-cache -t rhel7_build_image -f ansible/docker/Dockerfile.RHEL7
 --build-arg ROSIUSER=******* --build-arg ROSIPW=******* --build-arg git_sha=*******
 ̀pwd`
 ARG ROSIUSER
 ARG ROSIPW
 RUN sed -i 's/\(def in_container():\)/\1\n return False/g'
 /usr/lib64/python*/*-packages/rhsm/config.py
 RUN subscription-manager register --username= ${ ROSIUSER } --password= ${ ROSIPW }
 --auto-attach

 Figure 8.1: infrastructure/ansible/docker/Dockerfile.RHEL7#1–7

 Recommendations
 Short term, use build secrets , rather than build arguments, to provide login information.

 Trail of Bits 30 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/docker/Dockerfile.RHEL7#L1-L7
https://docs.docker.com/build/building/secrets/

 9. Insecure downloads using wget command

 Severity: High Difficulty: High

 Type: Cryptography Finding ID: TOB-TEMURIN-9

 Target: jenkins-helper/Jenkins_jobs/CreateNewNode.groovy ,
 infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Do
 ckerStatic/Dockerfiles/Dockerfile ,
 infrastructure/docs/Setup-QEMU-Images.md

 Description
 The wget command is used to download data over a network. The target codebases use
 wget in an insecure manner in a number of locations, using unencrypted channels such as
 HTTP or disabling certificate validation when performing the download. The following
 snippets show five locations where wget is used in an insecure manner:

 RUN wget
 'http://mirror.centos.org/centos/8-stream/BaseOS/x86_64/os/Packages/centos-gpg-keys-
 8-3.el8.noarch.rpm' -O /tmp/gpgkey.rpm
 RUN rpm -i '/tmp/gpgkey.rpm'
 RUN wget
 'http://mirror.centos.org/centos/8-stream/BaseOS/x86_64/os/Packages/centos-stream-re
 pos-8-3.el8.noarch.rpm' -O /tmp/centosrepos.rpm

 Figure 9.1: Unencrypted, HTTP download
 (infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Docker

 Static/Dockerfiles/Dockerfile.ubi8:7–9)

 wget -O installer-vmlinuz
 http://http.us.debian.org/debian/dists/jessie/main/installer-armhf/current/images/ne
 tboot/vmlinuz
 wget -O installer-initrd.gz
 http://http.us.debian.org/debian/dists/jessie/main/installer-armhf/current/images/ne
 tboot/initrd.gz

 Figure 9.2: Unencrypted, HTTP download
 (infrastructure/docs/Setup-QEMU-Images.md:166–167)

 launcher = new CommandLauncher(Constants.SSH_COMMAND + "${machineIPs[index]} " +
 "\" wget -q --no-check-certificate -O slave.jar ${JENKINS_URL}jnlpJars/slave.jar ;
 java -jar slave.jar\"");

 Figure 9.3: Download with certificate validation disabled
 (jenkins-helper/Jenkins_jobs/CreateNewNode.groovy:32)

 Trail of Bits 31 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/DockerStatic/Dockerfiles/Dockerfile.ubi8#L7L9
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/DockerStatic/Dockerfiles/Dockerfile.ubi8#L7L9
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/docs/Setup-QEMU-Images.md?plain=1#L166%E2%80%93L167
https://github.com/adoptium/jenkins-helper/blob/3e12d3e25fe100e62275656342ee3f5396abb55e/Jenkins_jobs/CreateNewNode.groovy#L32

 Exploit Scenario
 An attacker is in a privileged network position relative to a system downloading data using
 wget and is able to actively intercept and modify the system’s network traffic. Because the
 data is downloaded without SSL certificate verification, the attacker can modify the
 download in transit and replace the data with a malicious version.

 Recommendations
 Short term, change HTTP downloads to HTTPS, and enable SSL certificate validation. If it is
 not possible to change an HTTP download to HTTPS, such as in a package installation, then
 a verification key such as a GPG key should be included out of band and used to verify the
 package installation. In other words, a key can be hard-coded into an installation procedure
 and used to “trust on first use.”

 Long term, implement static analysis rules to automatically detect HTTP downloads and
 disabled SSL certificate validation in wget commands.

 Trail of Bits 32 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 10. Hard-coded CA bundle keystore password

 Severity: Informational Difficulty: High

 Type: Access Controls Finding ID: TOB-TEMURIN-10

 Target: api.adoptium.net/deploy/run.sh ,
 temurin-build/security/mk-cacerts.sh

 Description
 The password used for the certificate authority (CA) bundle generated for the API service is
 hard-coded as changeit :

 keytool -import -alias mongodb -storepass changeit -keystore ./cacerts -file
 " ${ MONGO_CERT_FILE } " -noprompt
 JAVA_OPTS = " $JAVA_OPTS -Djavax.net.ssl.trustStore=./cacerts
 -Djavax.net.ssl. trustStorePassword=changeit "

 Figure 10.1: Hard-coded password (api.adoptium.net/deploy/run.sh:29–30)

 echo "Processing certificate with alias: $ALIAS "
 " $KEYTOOL " -noprompt \
 -import \
 -storetype JKS \
 -alias " $ALIAS " \
 -file " $FILE " \
 -keystore "cacerts" \
 -storepass "changeit"
 ...
 num_certs = $(" $KEYTOOL " -v -list -storepass changeit -keystore cacerts | grep -c
 "Alias name:")

 Figure 10.2: Hard-coded password
 (temurin-build/security/mk-cacerts.sh:118–125,143)

 This CA bundle is generated in a deterministic manner from publicly available Mozilla
 certificate data. This may seem to indicate that it need not be password-protected.
 However, the keystore password is used to verify the integrity and authenticity of the
 bundle. Without a confidential password set, the integrity and authenticity of the data
 cannot be verified as the data moves from the build to runtime environment. Due to the
 lack of potentially attacker-controlled inputs into this functionality, this finding’s severity is
 set to informational.

 Trail of Bits 33 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/api.adoptium.net/blob/52be774c47a374cd0cf13c40f2eb28f4b1158a16/deploy/run.sh#L29-L30
https://github.com/adoptium/temurin-build/blob/da2408e4ea988090835f15f29cb170873cced045/security/mk-cacerts.sh

 Recommendations
 Short term, use a strong, randomly generated password to store this keystore data, and
 include this password at runtime to verify the authenticity of the CA bundle data.

 Trail of Bits 34 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 11. Hard-coded Vagrant VM password

 Severity: Informational Difficulty: High

 Type: Access Controls Finding ID: TOB-TEMURIN-11

 Target: infrastructure/ansible/pbTestScripts/startScriptWin.py

 Description
 Vagrant VMs are used to execute build and test workloads in a CI environment. The VMs
 use a hard-coded password for authentication:

 session = winrm.Session(str (vmIP), auth=('vagrant' , 'vagrant'))
 session.run_ps(cmd_str, sys.stdout, sys.stderr)

 Figure 11.1: Hard-coded password
 (infrastructure/ansible/pbTestScripts/startScriptWin.py:21–22)

 These VMs are run on an internal system without public access and are discarded upon
 completion of the workload. Due to the ephemeral nature of these VMs, the severity of this
 finding is set to informational. However, using a strong, random password may limit lateral
 movement in the event of an unrelated compromise and would be a beneficial
 defense-in-depth mechanism.

 Recommendations
 Short term, use a strong, randomly generated password to authenticate Vagrant VMs at
 runtime.

 Trail of Bits 35 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/pbTestScripts/startScriptWin.py#L21%E2%80%93L22

 12. Missing integrity or authenticity check in jcov script download

 Severity: Low Difficulty: High

 Type: Cryptography Finding ID: TOB-TEMURIN-12

 Target: ci-jenkins-pipelines/tools/code-tools/jcov.sh

 Description
 The jcov.sh script downloads ASM tools without verifying their integrity or authenticity:

 local tools = "asm asm-tree asm-util"
 local main_url = "https://repository.ow2.org/nexus/content/repositories/releases/org/ow2/asm"
 ASM_TITLE = "Built against ' $tools ' tools in version ' $asm_version '"
 ASM_URLS = ""
 ASM_JARS = ""
 ASM_PROPS = ""
 for tool in $tools ; do
 local tool_prop = "`echo $tool |sed " s/-/./g "`.jar"
 local tool_versioned = " $tool - $asm_version .jar"
 local tool_url = " $main_url / $tool / $asm_version / $tool_versioned "
 if [" $asm_manual " == "true"] ; then
 if [! -e $tool_versioned] ; then
 wget $tool_url

 fi
 ...

 Figure 12.1: Download missing integrity or authenticity check
 (ci-jenkins-pipelines/tools/code-tools/jcov.sh:65–78)

 The integrity or authenticity should be verified using a hashsum like SHA-256 or a signature
 like a GPG signature. This would ensure that the system is receiving the same data across
 multiple downloads. This download does use HTTPS, so this issue is marked as low severity.

 Exploit Scenario
 An attacker is able to upload a malicious package to one of the repositories. The system
 performing the installation then installs the malicious package even though the underlying
 data within the package has changed.

 Recommendations
 Short term, add a SHA-256 hashsum check to ensure the integrity of the software, or a GPG
 verification to ensure the authenticity of the software. Both mechanisms are made
 available by the repository.ow2.org ASM repository.

 Trail of Bits 36 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/ci-jenkins-pipelines/blob/7b9559ce88321ff8111180fdc58421a0f9eadcef/tools/code-tools/jcov.sh#L65-L78

 13. SSH client disables host key verification

 Severity: High Difficulty: High

 Type: Cryptography Finding ID: TOB-TEMURIN-13

 Target:
 infrastructure/ansible/playbooks/Supporting_Scripts/Nagios_Ansible_C
 onfig_tool/Nagios_RemoteTunnel.sh ,
 infrastructure/ansible/playbooks/Supporting_Scripts/Nagios_Ansible_C
 onfig_tool/Nagios_Ansible_Config_tool.sh ,
 infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Na
 gios_Master_Config/tasks/main.yml

 Description
 SSH clients maintain a list of known-good hosts they have connected to before. Host key
 verification is then used to prevent person-in-the-middle attacks. There are a number of
 locations across the target repositories that disable SSH host key verification, such as when
 connecting to a Nagios instance:

 Reverse_Tunnel = "ssh -o StrictHostKeyChecking=no -f -n -N -R $REMOTE_PORT :127.0.0.1: $LOCAL_PORT
 $USER_NAME @ $REMOTE_HOST -p $LOGIN_PORT -i $IDENTITY_KEY "

 Figure 13.1: Nagios SSH connection disabling SSH host key verification
 (infrastructure/ansible/playbooks/Supporting_Scripts/Nagios_Ansible_Confi

 g_tool/Nagios_RemoteTunnel.sh:18–21)

 Nagios_Login = ̀ su nagios -c "ssh -o StrictHostKeyChecking=no $Sys_IPAddress uptime"`

 Figure 13.2: Nagios SSH connection disabling SSH host key verification
 (infrastructure/ansible/playbooks/Supporting_Scripts/Nagios_Ansible_Confi

 g_tool/Nagios_Ansible_Config_tool.sh:170)

 command : ssh -o StrictHostKeyChecking=no root@{{ Nagios_Master_IP }}
 "/usr/local/nagios/Nagios_Ansible_Config_tool/Nagios_Ansible_Config_tool.sh {{
 ansible_distribution }} {{ ansible_architecture }} {{ inventory_hostname }} {{
 ansible_host }} {{ provider }} {{ ansible_port }} "

 Figure 13.3: Nagios SSH connection disabling SSH host key verification
 (infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Nagios

 _Master_Config/tasks/main.yml:25)

 Trail of Bits 37 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/Supporting_Scripts/Nagios_Ansible_Config_tool/Nagios_RemoteTunnel.sh#L18%E2%80%93L21
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/Supporting_Scripts/Nagios_Ansible_Config_tool/Nagios_RemoteTunnel.sh#L18%E2%80%93L21
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/Supporting_Scripts/Nagios_Ansible_Config_tool/Nagios_Ansible_Config_tool.sh#L170
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/Supporting_Scripts/Nagios_Ansible_Config_tool/Nagios_Ansible_Config_tool.sh#L170
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Nagios_Master_Config/tasks/main.yml#L25
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Nagios_Master_Config/tasks/main.yml#L25

 There are also a number of benign locations where SSH host key verification is disabled.
 These locations are considered benign because they are connecting to internal, short-lived,
 or local-only services. They are included here for completeness’s sake:

 launcher = new SSHLauncher(
 machines[index],
 22 ,
 params.SSHCredentialId.isEmpty() ? Constants.SSH_CREDENTIAL_ID :

 params.SSHCredentialId,
 null , null , null , null , null , null , null ,
 new NonVerifyingKeyVerificationStrategy());

 Figure 13.4: Groovy SSH launcher disabling host key verification
 (jenkins-helper/Jenkins_jobs/CreateNewNode.groovy:38–43)

 sshpass -p 'password' ssh linux@localhost -p " $PORTNO " -o StrictHostKeyChecking =no 'uname -a'

 Figure 13.5: Test script disabling host key verification
 (infrastructure/ansible/pbTestScripts/qemuPlaybookCheck.sh:273)

 ssh_args = " $ssh_args -o StrictHostKeyChecking=no"

 Figure 13.6: Test script disabling host key verification
 (infrastructure/ansible/pbTestScripts/vagrantPlaybookCheck.sh:253)

 Exploit Scenario
 An attacker is in a privileged network position relative to a system initiating an SSH
 connection and is able to actively intercept and modify the system’s network traffic.
 Because SSH host key verification is disabled, the attacker can intercept SSH network traffic
 and perform a person-in-the-middle attack.

 Recommendations
 Short term, in all locations where SSH host key verification is currently disabled, have the
 code gather the host’s SSH public key and add it out of band to the client’s known_hosts
 file.

 Long term, implement static analysis rules to automatically detect when SSH host key
 verification is disabled.

 Trail of Bits 38 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/jenkins-helper/blob/3e12d3e25fe100e62275656342ee3f5396abb55e/Jenkins_jobs/CreateNewNode.groovy#L38-L43
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/pbTestScripts/qemuPlaybookCheck.sh#L273
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/pbTestScripts/vagrantPlaybookCheck.sh#L253

 14. Compiler mitigations are not enabled

 Severity: Informational Difficulty: High

 Type: Configuration Finding ID: TOB-TEMURIN-14

 Target: temurin-build/sbin/build.sh

 Description
 The Temurin build does not have all modern compiler security mitigations enabled. This
 makes it easier for an attacker who finds a low-level vulnerability to exploit it and gain
 control over the process. Modern compilers support exploit mitigations such as the
 following:

 ● Non-executable flag: Marks the program’s data sections as non-executable

 ● PIE flag: Makes the program compiled as a position-independent executable, which
 is position-independent code for address space layout randomization (ASLR)

 ● Stack canaries: Used for buffer overflow detection

 ● RELRO: Used for data section hardening

 ● Source fortification: Used for buffer overflow detection and format string
 protection

 ● Stack clash protection: Used for the detection of clashes between a stack pointer
 and another memory region

 ● Control flow integrity (CFI) checks: Used to prevent control flow hijacking

 ● SafeStack: Used for stack overflow protection

 Compilers enable a few of these mitigations by default. For more detail on these exploit
 mitigation technologies, refer to appendix D: Compiler Mitigations .

 In particular, the checksec tool reports that binaries produced by Temurin do not have
 stack canaries or source fortification enabled.

 Recommendations
 Short term, enable security mitigations for Temurin builds by using the compiler and linker
 flags described in appendix D: Compiler Mitigations . These flags can be added using the
 --with-extra-cflags and --with-extra-cxxflags arguments during configuration.

 Trail of Bits 39 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 While compilers often enable certain mitigations by default, if they are explicitly enabled,
 they will be used regardless of a compiler’s defaults.

 Long term, enable security mitigations for all binaries built by Temurin and add a scan for
 them into the test phase to ensure that certain options are always enabled. This will make
 it more difficult for an attacker to exploit any bugs found in the binaries.

 References
 ● Airbus: Getting the maximum of your C compiler, for security

 ● Debian Hardening: Notes on Memory Corruption Mitigation Methods

 ● GCC Linux man page

 ● LD Linux man page

 ● OpenSSF’s Compiler Options Hardening Guide for C and C++

 Trail of Bits 40 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://airbus-seclab.github.io/c-compiler-security
https://wiki.debian.org/Hardening#Notes_on_Memory_Corruption_Mitigation_Methods
https://linux.die.net/man/1/gcc
https://linux.die.net/man/1/ld
https://best.openssf.org/Compiler-Hardening-Guides/Compiler-Options-Hardening-Guide-for-C-and-C++.html

 15. Use of unpinned third-party workflows

 Severity: Medium Difficulty: High

 Type: Patching Finding ID: TOB-TEMURIN-15

 Target: temurin-build/.github/workflows/build-autotriage.yml ,
 ci-jenkins-pipelines/.github/workflows/labeler.yml ,
 infrastructure/.github/workflows/build_qemu.yml

 Description
 Workflows throughout the Temurin repositories directly use third-party workflows. Most of
 them are pinned to commit hashes, but there are some exceptions, such as in
 ci-jenkins-pipelines/.github/workflows/labeler.yml :

 - uses : fuxingloh/multi-labeler@v2
 with :
 github-token : "${{secrets.GITHUB_TOKEN}}"
 config-path : .github/regex_labeler.yml

 Figure 15.1: Use of third-party workflow
 (ci-jenkins-pipelines/.github/workflows/labeler.yml:19–22)

 Git tags are malleable. This means that, while fuxingloh/multi-labeler is pinned to v2 ,
 the upstream may silently change the reference pointed to by v2 . This can include
 malicious re-tags, in which case Temurin’s various dependent workflows will silently update
 to the malicious workflow.

 GitHub’s security hardening guidelines for third-party actions encourage developers to pin
 third-party actions to a full-length commit hash. Generally excluded from this are “official”
 actions under the actions organization.

 The following are the affected workflows:

 ● temurin-build/.github/workflows/build-autotriage.yml

 ● ci-jenkins-pipelines/.github/workflows/labeler.yml

 ● infrastructure/.github/workflows/build_qemu.yml

 Exploit Scenario
 An attacker (or compromised maintainer) silently overwrites the v2 tag on
 fuxingloh/multi-labeler with a malicious version of the action, allowing the
 secrets.GITHUB_TOKEN value for the ci-jenkins-pipeline repository to be stolen.

 Trail of Bits 41 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/ci-jenkins-pipelines/blob/7b9559ce88321ff8111180fdc58421a0f9eadcef/.github/workflows/labeler.yml#L19-L22
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions

 Recommendations
 Short term, replace the current version tags with full-length commit hashes corresponding
 to the revision that each workflow is intended to use.

 Trail of Bits 42 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 16. Third-party dependencies used without signature or checksum
 verification

 Severity: Informational Difficulty: High

 Type: Patching Finding ID: TOB-TEMURIN-16

 Target: temurin-build

 Description
 In many places in the temurin-build repository, third-party dependencies are installed
 via https download without a signature or checksum check. The following is a (not
 necessarily exhaustive) list of the dependencies that are installed in this way:

 ● In tooling/linux_repro_build_compare.sh :

 ○ https://ftp.gnu.org/gnu/autoconf/autoconf-2.69.tar.gz

 ○ https://archive.apache.org/dist/ant/binaries/apache-ant-${AN
 T_VERSION}-bin.zip

 ○ https://sourceforge.net/projects/ant-contrib/files/ant-contr
 ib/${ANT_CONTRIB_VERSION}/ant-contrib-${ANT_CONTRIB_VERSION}
 -bin.zip

 ● In tooling/release_download_test.sh :

 ○ https://github.com/CycloneDX/cyclonedx-cli/releases/download
 /v0.25.0/"${cyclonedx_tool}

 ● In build-farm/platform-specific-configurations/linux.sh :

 ○ https://github.com/alibaba/dragonwell8/releases/download/dra
 gonwell-8.11.12_jdk8u332-ga/Alibaba_Dragonwell_8.11.12_x64_l
 inux.tar.gz

 ○ https://github.com/alibaba/dragonwell8/releases/download/dra
 gonwell-8.8.9_jdk8u302-ga/Alibaba_Dragonwell_8.8.9_aarch64_l
 inux.tar.gz

 ● In .azure-devops/build/steps/windows/before.yml :

 ○ https://cygwin.com/setup-x86_64.exe

 ● In .github/workflows/build.yml :

 Trail of Bits 43 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 ○ https://download.visualstudio.microsoft.com/download/pr/c5c7
 5dfa-1b29-4419-80f8-bd39aed6bcd9/7ed8fa27575648163e07548ff56
 67b55b95663a2323e2b2a5f87b16284e481e6/vs_Community.exe

 ○ https://download.visualstudio.microsoft.com/download/pr/6b65
 5578-de8c-4862-ad77-65044ca714cf/f29399a618bd3a8d1dcc96d3494
 53f686b6176590d904308402a6402543e310b/vs_Community.exe

 ● In docker/buildDocker.sh :

 ○ https://raw.githubusercontent.com/eclipse-openj9/openj9/mast
 er/buildenv/docker/mkdocker.sh

 Recommendations
 Short term, add a checksum or signature check to these downloads, wherever possible.

 Trail of Bits 44 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 17. Code injection vulnerability in build-scripts pipeline jobs

 Severity: High Difficulty: High

 Type: Data Validation Finding ID: TOB-TEMURIN-17

 Target:
 ci-jenkins-pipelines/pipelines/build/common/build_base_file.groovy ,
 ci-jenkins-pipelines/pipelines/build/common/openjdk_build_pipeline.g
 roovy , ci-jenkins-pipelines/pipelines/build/openjdk_pipeline.groovy

 Description
 Jenkins pipeline jobs can execute arbitrary shell script code with the sh step. User input
 may reach sh calls through parameters or configurations originating from web-based form
 input. This allows for code injection and arbitrary code execution. The following sh calls
 receive input from external sources:

 context.sh "rm -rf target/ ${config.TARGET_OS}/${config.ARCHITECTURE}/${config.VARIANT} /"

 Figure 17.1: TARGET_OS , ARCHITECTURE , and VARIANT input passed to sh
 (ci-jenkins-pipelines/pipelines/build/common/build_base_file.groovy:898)

 context.sh(script: "docker pull ${buildConfig.DOCKER_IMAGE} ${buildConfig.DOCKER_ARGS} ")
 ...
 context.sh(script: "docker pull ${buildConfig.DOCKER_IMAGE} ${buildConfig.DOCKER_ARGS} ")
 ...
 dockerImageDigest = context.sh(script: "docker inspect --format='{{.RepoDigests}}'
 ${buildConfig.DOCKER_IMAGE} " , returnStdout:true)

 Figure 17.2: DOCKER_IMAGE and DOCKER_ARGS input passed to sh
 (ci-jenkins-pipelines/pipelines/build/common/openjdk_build_pipeline.groov

 y:1915,1922,1928)

 sh("curl -Os
 https://raw.githubusercontent.com/adoptium/aqa-tests/ ${params.aqaReference} /testenv/
 ${propertyFile}")

 Figure 17.3: AQA_REF input passed to sh
 (ci-jenkins-pipelines/pipelines/build/openjdk_pipeline.groovy:35)

 If an attacker can influence any of these parameters, then they can execute arbitrary code
 on the Jenkins machine running the given job. The Eclipse Foundation has confirmed that
 these parameters can be specified in a Jenkins job web form; however, access to these
 forms is restricted.

 Trail of Bits 45 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/ci-jenkins-pipelines/blob/7b9559ce88321ff8111180fdc58421a0f9eadcef/pipelines/build/common/build_base_file.groovy#L898
https://github.com/adoptium/ci-jenkins-pipelines/blob/7b9559ce88321ff8111180fdc58421a0f9eadcef/pipelines/build/common/openjdk_build_pipeline.groovy
https://github.com/adoptium/ci-jenkins-pipelines/blob/7b9559ce88321ff8111180fdc58421a0f9eadcef/pipelines/build/common/openjdk_build_pipeline.groovy
https://github.com/adoptium/ci-jenkins-pipelines/blob/7b9559ce88321ff8111180fdc58421a0f9eadcef/pipelines/build/openjdk_pipeline.groovy#L35

 Exploit Scenario
 An attacker sends a malicious shell payload through the TARGET_OS , ARCHITECTURE ,
 VARIANT , DOCKER_IMAGE , DOCKER_ARGS , or AQA_REF Jenkins job parameters. The input
 then reaches the sh process, which allows the execution of arbitrary shell scripts. The
 attacker is able to execute arbitrary commands by using shell operators such as ; , && , or
 || , and to append additional commands.

 Recommendations
 Short term, instead of specifying shell script commands to run in the sh step, use Groovy
 code or Jenkins plugins to accomplish the same action. For example, instead of rm or curl ,
 use the deleteDir step or the File Operations plugin. Instead of using shell scripts for
 Docker operations, use the Docker Pipeline plugin where possible. If additional Docker
 command flags are necessary, use Boolean inputs that enable or disable specific flags
 instead of interpolating arbitrary string input.

 Long term, implement static analysis rules to automatically detect when user input is
 passed to sh steps.

 References
 ● Jenkins, sh : Shell Script

 ● Docker Pipeline plugin, Advanced usage

 Trail of Bits 46 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://www.jenkins.io/doc/pipeline/steps/workflow-basic-steps/#deletedir-recursively-delete-the-current-directory-from-the-workspace
https://plugins.jenkins.io/file-operations/
https://plugins.jenkins.io/docker-workflow/
https://www.jenkins.io/doc/pipeline/steps/workflow-durable-task-step/#sh-shell-script
https://docs.cloudbees.com/docs/cloudbees-ci/latest/pipelines/docker-workflow#docker-workflow-sect-advanced

 18. Docker commands specify root user in containers

 Severity: Informational Difficulty: High

 Type: Access Controls Finding ID: TOB-TEMURIN-18

 Target: temurin-build/docker/buildDocker.sh

 Description
 Docker may specify a container user during the build process in a Dockerfile or at runtime
 on the command line. Running containers as root violates the principle of least privilege
 and should be avoided. The following Docker commands specify root as the container user:

 docker run -it -u root -d --name= " ${ dockerContainer } " " ${ dockerImage } "
 docker exec -u root -i " ${ dockerContainer } " sh -c "git clone
 https://github.com/ibmruntimes/openj9-openjdk- ${ jdk } "
 docker exec -u root -i " ${ dockerContainer } " sh -c "cd openj9-openjdk- ${ jdk } && bash
 ./get_source.sh && bash ./configure --with-freemarker-jar=/root/freemarker.jar &&
 make all"

 Figure 18.1: Commands specifying root container users
 (temurin-build/docker/buildDocker.sh:141–143)

 Recommendations
 Short term, have any necessary root actions performed at build-time in the Dockerfile, and
 have containers run as a lower privileged user at runtime.

 Long term, once containers are no longer being run as root, enable the
 --security-opt=no-new-privileges flag when running Docker, in order to prevent
 privilege escalation using setuid or setgid binaries.

 Trail of Bits 47 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/temurin-build/blob/da2408e4ea988090835f15f29cb170873cced045/docker/buildDocker.sh#L141-L143

 19. Incorrect Dependabot configuration filename

 Severity: Undetermined Difficulty: High

 Type: Patching Finding ID: TOB-TEMURIN-19

 Target: infrastructure/.github/dependabot

 Description
 The infrastructure repository has a Dependabot configuration file, used to configure
 the Dependabot bot, which detects out-of-date dependencies. However, this file is
 incorrectly named dependabot rather than dependabot.yml , preventing the bot from
 being run on this repository.

 In order to test this, we created a private copy of the infrastructure repository and
 renamed the dependabot file to dependabot.yml . Dependabot detected many
 out-of-date Github Actions dependencies. We did not determine whether any of the
 out-of-date dependencies present in the infrastructure repository have security
 problems that could affect the Temurin infrastructure or build system.

 Recommendations
 Short term, rename the dependabot file to dependabot.yml .

 Trail of Bits 48 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 A. Vulnerability Categories

 The following tables describe the vulnerability categories, severity levels, and difficulty
 levels used in this document.

 Vulnerability Categories

 Category Description

 Access Controls Insufficient authorization or assessment of rights

 Auditing and Logging Insufficient auditing of actions or logging of problems

 Authentication Improper identification of users

 Configuration Misconfigured servers, devices, or software components

 Cryptography A breach of system confidentiality or integrity

 Data Exposure Exposure of sensitive information

 Data Validation Improper reliance on the structure or values of data

 Denial of Service A system failure with an availability impact

 Error Reporting Insecure or insufficient reporting of error conditions

 Patching Use of an outdated software package or library

 Session Management Improper identification of authenticated users

 Testing Insufficient test methodology or test coverage

 Timing Race conditions or other order-of-operations flaws

 Undefined Behavior Undefined behavior triggered within the system

 Trail of Bits 49 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 Severity Levels

 Severity Description

 Informational The issue does not pose an immediate risk but is relevant to security best
 practices.

 Undetermined The extent of the risk was not determined during this engagement.

 Low The risk is small or is not one the client has indicated is important.

 Medium User information is at risk; exploitation could pose reputational, legal, or
 moderate financial risks.

 High The flaw could affect numerous users and have serious reputational, legal,
 or financial implications.

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploitation was not determined during this engagement.

 Low The flaw is well known; public tools for its exploitation exist or can be
 scripted.

 Medium An attacker must write an exploit or will need in-depth knowledge of the
 system.

 High An attacker must have privileged access to the system, may need to know
 complex technical details, or must discover other weaknesses to exploit this
 issue.

 Trail of Bits 50 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 B. Code Maturity Categories

 The following tables describe the code maturity categories and rating criteria used in this
 document.

 Code Maturity Categories

 Category Description

 Arithmetic The proper use of mathematical operations and semantics

 Auditing The use of event auditing and logging to support monitoring

 Authentication /
 Access Controls

 The use of robust access controls to handle identification and
 authorization and to ensure safe interactions with the system

 Complexity
 Management

 The presence of clear structures designed to manage system complexity,
 including the separation of system logic into clearly defined functions

 Configuration The configuration of system components in accordance with best
 practices

 Cryptography and
 Key Management

 The safe use of cryptographic primitives and functions, along with the
 presence of robust mechanisms for key generation and distribution

 Data Handling The safe handling of user inputs and data processed by the system

 Documentation The presence of comprehensive and readable codebase documentation

 Maintenance The timely maintenance of system components to mitigate risk

 Memory Safety
 and Error Handling

 The presence of memory safety and robust error-handling mechanisms

 Testing and
 Verification

 The presence of robust testing procedures (e.g., unit tests, integration
 tests, and verification methods) and sufficient test coverage

 Rating Criteria

 Rating Description

 Strong No issues were found, and the system exceeds industry standards.

 Satisfactory Minor issues were found, but the system is compliant with best practices.

 Moderate Some issues that may affect system safety were found.

 Trail of Bits 51 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 Weak Many issues that affect system safety were found.

 Missing A required component is missing, significantly affecting system safety.

 Not Applicable The category is not applicable to this review.

 Not Considered The category was not considered in this review.

 Further
 Investigation
 Required

 Further investigation is required to reach a meaningful conclusion.

 Trail of Bits 52 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 C. Insecure Download Semgrep Results

 The following Semgrep results were produced by searching for insecure software
 downloads, including downloads over unencrypted channels such as HTTP and those in
 which SSL certificate validation is disabled.

 infrastructure/ansible/playbooks/AdoptOpenJDK_AIX_Playbook/roles/yum/tasks/main.yml
 get-url-validate-certs-disabled

 Found file download with SSL verification disabled
 53┆ validate_certs: false

 infrastructure/ansible/playbooks/AdoptOpenJDK_ITW_Playbook/roles/Common/tasks/CentOS.yml
 yum-validate-certs-disabled

 Found yum with SSL verification disabled
 14┆ validate_certs: no

 infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common/tasks/CentOS.yml
 yum-validate-certs-disabled

 Found yum with SSL verification disabled
 20┆ validate_certs: no

 infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common/tasks/Debian.yml
 apt-key-unencrypted-url

 Found apt key download with unencrypted URL (e.g. HTTP, FTP, etc.)
 63┆ url: http://repos.azulsystems.com/RPM-GPG-KEY-azulsystems

 infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common/tasks/SLES.yml
 get-url-validate-certs-disabled

 Found file download with SSL verification disabled
 222┆ validate_certs: no

 infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/Common/tasks/Ubuntu.yml
 apt-key-unencrypted-url

 Found apt key download with unencrypted URL (e.g. HTTP, FTP, etc.)
 27┆ url: http://repos.azulsystems.com/RPM-GPG-KEY-azulsystems

 infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/OpenSSL/tasks/main.yml
 get-url-validate-certs-disabled

 Found file download with SSL verification disabled
 62┆ validate_certs: no

 infrastructure/ansible/playbooks/AdoptOpenJDK_Unix_Playbook/roles/freemarker/tasks/main.yml
 unarchive-validate-certs-disabled

 Found unarchive download with SSL verification disabled
 33┆ validate_certs: False

 Trail of Bits 53 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 D. Compiler Mitigations

 The following table lists compiler security hardening flags available in modern compilers.
 Note that some of them can be enabled by default in a given compiler (like
 --enable-default-pie in GCC) and they may also influence the program's performance.
 We recommend reviewing those settings in order to harden production builds as much as
 possible.

 GCC or Clang Flag What It Enables or Does

 Wl,-z,noexecstack

 This flag marks the program’s data sections (including
 the stack and heap) as non-executable (NX).

 This makes it more difficult for an attacker to execute
 shellcode . Attackers who wish to bypass NX must resort
 to return-oriented programming (ROP), an exploitation
 method that is more difficult and less reliable across
 different builds of a program. This mitigation is enabled
 by default.

 -Wl,-z,relro,-z,now

 This flag enables full RELRO (relocations read-only).
 Segments are read-only after relocation, and lazy
 bindings are disabled.

 It is a mitigation technique used to harden the data
 sections of an ELF process. It has three modes of
 operation: disabled, partial, and full. When a program
 uses a function from a dynamically loaded library, the
 function address is stored in the GOT.PLT section.

 When RELRO is disabled, each function address entry in
 the GOT.PLT table points to a dynamic resolver that
 resolves the entry to the actual address of the intended
 function when it is first called. In such a case, the
 memory location of the address is both readable and
 writable. As a result, an attacker who has control over
 the process control flow could change the entry of a
 given function in GOT.PLT to point to any other
 executable address. For example, the attacker could
 change the puts function's GOT.PLT entry to point to a
 system function. Then, if the program called
 puts(“bin/sh”) , system(“/bin/sh”) would be
 called instead. When RELRO is fully enabled, the
 dynamic resolver resolves all of the addresses upon a

 Trail of Bits 54 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://en.wikipedia.org/wiki/Shellcode

 program’s startup and changes the permissions of data
 sections (and therefore GOT.PLT) to read-only.

 -fstack-protector-all

 Or (less secure):

 -fstack-protector-strong
 --param ssp-buffer-size=4

 This flag adds stack canaries (stack cookies) for all
 functions. Note that this flag may affect the program's
 performance.

 Stack canaries make it more difficult to exploit stack
 buffer overflow vulnerabilities. A stack canary is a
 global, randomly generated value that is copied to the
 stack between the stack variables and stack metadata in
 a function's prologue. When a function returns, the
 canary on the stack is checked against the global value.
 The program exits if there is a mismatch, making it
 more difficult for an attacker to overwrite the return
 address on the stack. In certain circumstances, attackers
 may be able to bypass this mitigation by disclosing the
 canary through a separate information disclosure
 vulnerability or by brute forcing the canary byte by byte.

 To protect only functions that have buffers, use the
 alternative version of the flag indicated.

 -fPIE -pie

 This flag compiles the program as a
 position-independent executable, which address space
 layout randomization (ASLR), detailed below in the
 "System" rows, depends on.

 Only in GCC >=12.x:

 -D_FORTIFY_SOURCE=3 -O2

 Or (less secure):

 -D_FORTIFY_SOURCE=2 -O2

 Or (even less secure):

 -D_FORTIFY_SOURCE=1 -O2

 This flag enables source fortification protections. These
 protections require an optimization flag (-O1 , -O2 , or
 -O3).

 The protection is a libc-specific feature that enables a
 series of mitigations primarily aimed at preventing
 buffer overflows. It is supported by both glibc and Apple
 Libc, but not by musl or uclibc.

 With a _FORTIFY_SOURCE level of 1 , compile-time
 warnings are added for potentially unsafe calls to
 common libc functions (e.g., memcpy and strcpy). With
 a _FORTIFY_SOURCE level of 2 , more stringent runtime
 checks are added to these functions and enable a
 number of lesser-known mitigations. For example, it will
 disallow the use of the %n format specifier in format
 strings that are not located in read-only memory pages.

 Trail of Bits 55 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 This will prevent overwriting data (and gaining code
 execution) with format string vulnerabilities.

 The latter version is less secure, as it enables only
 compile-time measures; the former adds additional
 runtime checks, which may affect the program's
 performance.

 The _FORTIFY_SOURCE level of 3 was added in GCC
 12.x and further improves this feature's detection
 capabilities and coverage.

 -fstack-clash-protection

 This flag adds checks to functions that may allocate a
 large amount of memory on the stack to ensure that the
 new stack pointer and stack frame will not overlap with
 another memory region, such as the heap.

 It mitigates a "stack clash vulnerability" in which a
 program's stack memory region grows so much that it
 overlaps with another memory region. This bug makes
 the program confuse the stack memory address with
 another memory address (e.g., that of the heap); as a
 result, the regions’ data will overlap, which could lead to
 a denial of service or to control flow hijacking. The stack
 clash protection mitigation adds explicit memory
 probing to any function that allocates a large amount of
 stack memory; when explicit memory probing is used,
 the function's stack allocation will never make the stack
 pointer jump over the stack memory guard page, which
 is located before the stack.

 -fsanitize=cfi
 -fvisibility=hidden
 -flto

 (Clang/LLVM only)

 This flag enables control flow integrity (CFI) checks that
 help prevent control flow hijacking.

 -fsanitize=safe-stack

 (Clang/LLVM only)

 This flag enables SafeStack , which splits the stack
 frames of certain functions into a safe stack and an
 unsafe stack, making hijacking of the program's control
 flow more difficult (Clang/LLVM only).

 -Wall -Wextra -Wpedantic
 -Wshadow -Wconversion

 These flags enable compile-time checks and warnings to
 detect potential problems in the code.

 Trail of Bits 56 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://developers.redhat.com/articles/2022/09/17/gccs-new-fortification-level
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/SafeStack.html

 -Wformat -security
 -Wshorten-64-to-32

 System What It Enables or Does

 ASLR

 This feature randomizes the memory location of each
 section of the program. This makes it more difficult for
 an attacker to write reliable exploits, primarily by
 impeding jumps to ROP gadgets. ASLR requires
 cooperation from both the system and the compiler.

 To fully support ASLR, a program must be compiled as a
 position-independent executable. Most of the Linux
 distributions have ASLR enabled. This can be checked by
 reading the value stored in the
 /proc/sys/kernel/randomize_va_space file: 0
 means that ASLR is disabled, 1 means it is partially
 enabled (only some bits of the addresses are
 randomized), and 2 means it is fully enabled. This file is
 writable, and an admin can disable or enable the
 mitigation. An information disclosure in the program
 may enable an attacker to bypass ASLR.

 Trail of Bits 57 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 E. Code Quality Recommendations

 This appendix contains findings that do not have immediate or obvious security
 implications or that were discovered but not fully investigated due to time constraints or
 scope limitations.

 ● Java Virtual Machine (JVM) garbage collector manually invoked: Calling
 System.gc() suggests to the JVM that the garbage collector should be run and
 memory should be reclaimed. This is only a suggestion; there is no guarantee that
 anything will happen. Relying on this behavior for correctness should be considered
 an anti-pattern. Note that this method is called only in test code. Nonetheless, it
 should not be relied on to enforce correct behavior. The API server calls this
 function in the following location:

 override fun afterAll (p0: ExtensionContext?) {
 System.gc() // Don't ask, but also don't remove me, breaks deadlock that hangs

 vm after all tests are completed
 }

 Figure E.1: Call to System.gc()
 (api.adoptium.net/adoptium-frontend-parent/adoptium-api-v3-frontend/src/t

 est/kotlin/net/adoptium/api/DbExtension.kt:13–15)

 ● Dependencies hard-coded in Dockerfile: Dependencies should instead be stored
 in a proper package management file, like requirements.txt , when building the
 Docker image. This allows a dependency scanner like Dependabot to automatically
 warn when dependencies have known vulnerabilities. Dependencies are hard-coded
 in the following location:

 RUN pip install cryptography==2.9.2 PyYAML==5.3.1

 Figure E.2: Hard-coded Python pip dependencies
 (infrastructure/ansible/docker/Dockerfile.Ubuntu1604:15)

 ● WinRM authentication missing TLS: The current WinRM authentication
 configuration (CredSSP) is considered secure; however, best practice states that TLS
 should be used . Because TLS is disabled, WinRM server certificate validation is
 disabled in the following locations:

 [windows:vars]
 ansible_connection= winrm
 ansible_port= 5986
 ansible_user= administrator
 ansible_winrm_server_cert_validation= ignore

 Trail of Bits 58 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/api.adoptium.net/blob/52be774c47a374cd0cf13c40f2eb28f4b1158a16/adoptium-frontend-parent/adoptium-api-v3-frontend/src/test/kotlin/net/adoptium/api/DbExtension.kt#L13-L15
https://github.com/adoptium/api.adoptium.net/blob/52be774c47a374cd0cf13c40f2eb28f4b1158a16/adoptium-frontend-parent/adoptium-api-v3-frontend/src/test/kotlin/net/adoptium/api/DbExtension.kt#L13-L15
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/docker/Dockerfile.Ubuntu1604#L15
https://docs.ansible.com/ansible/latest/os_guide/windows_winrm.html#winrm-encryption
https://docs.ansible.com/ansible/latest/os_guide/windows_winrm.html#winrm-encryption

 Figure E.3: Server certificate validation disabled
 (jenkins-helper/Jenkins_jobs/inventory-ini.template:27–32)

 ansible_port : 5986
 ansible_connection : winrm
 ansible_winrm_server_cert_validation : ignore

 Figure E.4: Server certificate validation disabled
 (infrastructure/ansible/playbooks/AdoptOpenJDK_Windows_Playbook/group_var

 s/all/adoptopenjdk_variables.yml:2–4)

 ● Manual override of in_container check in Dockerfile: Manually disabling this
 check when the code is in fact running in a container may have unintended
 consequences and cause unexpected behavior. This code is used to determine the
 configuration file location . Instead of modifying the code, use the correct
 configuration file location. This check is manually disabled in the following location:

 RUN sed -i 's/\(def in_container():\)/\ 1 \n return False /g'
 /usr/lib64/python*/*-packages/rhsm/config.py

 Figure E.5: Disabling of in_container check
 (infrastructure/ansible/docker/Dockerfile.RHEL7:6)

 ● Multiple third-party GitHub Actions used to make pull request comments:
 There are two GitHub Actions used to make pull request comments:
 JJ/pr-greeting-action and peter-evans/create-or-update-comment .
 Furthermore, both of these actions use pull_request_target , which has known
 security weaknesses . To minimize the attack surface and reduce the risk of
 pull_request_target events, use a single GitHub Action to make pull request
 comments.

 ● Broken link: The
 temurin-build/.azure-devops/build/steps/macOS/before.yml file
 contains a broken link in a comment.

 # install Xcode command line tools based on
 #
 https://github.com/AdoptOpenJDK/openjdk-infrastructure/blob/master/ansible/playbooks
 /AdoptOpenJDK_Unix_Playbook/roles/Common/scripts/install-xcode.sh
 - bash: |

 Figure E.6: temurin-build/.azure-devops/build/steps/macOS/before.yml:20–22

 ● Download from api.adoptopenjdk.net : The
 temurin-build/build-farm/platform-specific-configurations/linux.s
 h file performs a download from api.adoptopenjdk.net , Adoptium’s previous API
 URL before its name was changed.

 Trail of Bits 59 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/jenkins-helper/blob/3e12d3e25fe100e62275656342ee3f5396abb55e/Jenkins_jobs/inventory-ini.template#L27-L32
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Windows_Playbook/group_vars/all/adoptopenjdk_variables.yml#L2-L4
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/playbooks/AdoptOpenJDK_Windows_Playbook/group_vars/all/adoptopenjdk_variables.yml#L2-L4
https://github.com/candlepin/python-rhsm/blob/ab645fabb0c8af6ea4837e83812afa8b958dd5b4/src/rhsm/config.py#L289-L320
https://github.com/candlepin/python-rhsm/blob/ab645fabb0c8af6ea4837e83812afa8b958dd5b4/src/rhsm/config.py#L289-L320
https://github.com/adoptium/infrastructure/blob/9f6e77549a67031bea07efae3030942729baa186/ansible/docker/Dockerfile.RHEL7#L6
https://securitylab.github.com/research/github-actions-preventing-pwn-requests/
https://securitylab.github.com/research/github-actions-preventing-pwn-requests/
https://github.com/adoptium/temurin-build/blob/da2408e4ea988090835f15f29cb170873cced045/.azure-devops/build/steps/macOS/before.yml#L20-L22

 # TOFIX: Switch this back once Semeru has an API to pull the nightly builds.
 curl -L
 "https:// api.adoptopenjdk.net /v3/binary/latest/ ${ JAVA_FEATURE_VERSION } /ga/linux/ ${ NA
 TIVE_API_ARCH } /jdk/openj9/normal/adoptopenjdk" | tar xpzf - --strip-components= 1 -C
 " $BUILDJDK "

 Figure E.7:
 t emurin-build/build-farm/platform-specific-configurations/linux.sh:56–57

 ● Use of sudo without resetting cached credentials: In the platform-specific
 configuration for macOS, the sudo command is used without first resetting the
 cached credentials by running sudo -k . This means that the configuration code may
 perform actions as the root user without receiving explicit permission from the user.

 echo "[WARNING] You may be asked for your su user password, attempting to switch
 Xcode version to ${ XCODE_SWITCH_PATH } "
 sudo xcode-select --switch " ${ XCODE_SWITCH_PATH } "

 Figure E.8:
 temurin-build/build-farm/platform-specific-configurations/mac.sh:85–86

 ● Commented keychain login code: The
 temurin-build/build-farm/platform-specific-configurations/mac.sh
 file contains commented-out code whose purpose is to “Login to KeyChain.”
 Temurin developers should uncomment or remove this code.

 ## Login to KeyChain
 ## shellcheck disable=SC2046
 ## shellcheck disable=SC2006
 #security unlock-keychain -p `cat ~/.password` login.keychain-db
 #rm -rf codesign-test && touch codesign-test
 #codesign --sign "Developer ID Application: London Jamocha Community CIC"
 codesign-test
 #codesign -dvvv codesign-test
 #export BUILD_ARGS="${BUILD_ARGS} --codesign-identity 'Developer ID Application:
 London Jamocha Community CIC'"

 Figure E.9:
 temurin-build/build-farm/platform-specific-configurations/mac.sh:75–82

 ● Error not explicitly handled: In the
 temurin-build/sbin/prepareWorkspace.sh file, an error during a GPG key
 download is ignored, instead of immediately returning an exit code (line 348). A
 failed download will still likely cause an error later in the script (line 352).

 348 echo "ERROR: gpg recv-keys final attempt has failed. Will not try again."
 349 fi
 350 done
 351 echo -e "5\ny\n" | gpg --batch --command-fd 0 --expert --edit-key

 Trail of Bits 60 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/temurin-build/blob/da2408e4ea988090835f15f29cb170873cced045/build-farm/platform-specific-configurations/linux.sh#L56-L57
https://github.com/adoptium/temurin-build/blob/da2408e4ea988090835f15f29cb170873cced045/build-farm/platform-specific-configurations/mac.sh#L85-L86
https://github.com/adoptium/temurin-build/blob/da2408e4ea988090835f15f29cb170873cced045/build-farm/platform-specific-configurations/mac.sh#L75-L82

 " ${ ALSA_LIB_GPGKEYID } " trust;
 352 gpg --verify alsa-lib.tar.bz2.sig alsa-lib.tar.bz2 || exit 1

 Figure E.10: temurin-build/sbin/prepareWorkspace.sh:348–352

 ● Docker images run in writable filesystem: Docker images are run with the
 read-only filesystem configuration option turned off. This makes it slightly easier for
 the process running in these images to be compromised. The images should be run
 with a read-only filesystem (using the --read-only flag), using volume mounts and
 temporary volume mounts in locations where write access is needed.

 docker run -it -u root -d --name= " ${ dockerContainer } " " ${ dockerImage } "
 docker exec -u root -i " ${ dockerContainer } " sh -c "git clone
 https://github.com/ibmruntimes/openj9-openjdk- ${ jdk } "
 docker exec -u root -i " ${ dockerContainer } " sh -c "cd openj9-openjdk- ${ jdk } && bash
 ./get_source.sh && bash ./configure --with-freemarker-jar=/root/freemarker.jar &&
 make all"

 Figure E.11: temurin-build/docker/buildDocker.sh:141–143

 Trail of Bits 61 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/temurin-build/blob/da2408e4ea988090835f15f29cb170873cced045/sbin/prepareWorkspace.sh#L348-L352
https://github.com/adoptium/temurin-build/blob/da2408e4ea988090835f15f29cb170873cced045/docker/buildDocker.sh#L141-L143

 F. Fix Review Results

 When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
 identified in the original report. This work involves a review of specific areas of the source
 code and system configuration, not comprehensive analysis of the system.

 From June 10 to June 11, 2024, Trail of Bits reviewed the fixes and mitigations implemented
 by the Temurin team for the issues identified in this report. We reviewed each fix to
 determine its effectiveness in resolving the associated issue.

 In summary, of the 19 issues described in this report, Temurin has resolved 12 issues, has
 partially resolved two issues, and has not resolved the remaining five issues. For additional
 information, please see the Detailed Fix Review Results below.

 ID Title Status

 1 Command injection vulnerability in WinRM script Unresolved

 2 Docker Compose ports exposed on all interfaces Resolved

 3 Insecure installation of Xcode software Resolved

 4 Insecure software downloads in Ansible playbooks Resolved

 5 Signature verification disabled during software installation Resolved

 6 Missing integrity check in Dragonwell Dockerfile Resolved

 7 Hostname verification disabled on MongoDB client Resolved

 8 RHEL build image includes password Resolved

 9 Insecure downloads using wget command Resolved

 10 Hard-coded CA bundle keystore password Unresolved

 11 Hard-coded Vagrant VM password Unresolved

 Trail of Bits 62 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 12 Missing integrity or authenticity check in jcov script download Partially
 Resolved

 13 SSH client disables host key verification Partially
 Resolved

 14 Compiler mitigations are not enabled Unresolved

 15 Use of unpinned third-party workflows Resolved

 16 Third-party dependencies used without signature or checksum
 verification

 Resolved

 17 Code injection vulnerability in build-scripts pipeline jobs Resolved

 18 Docker commands specify root user in containers Unresolved

 19 Incorrect Dependabot configuration filename Resolved

 Trail of Bits 63 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

 Detailed Fix Review Results
 TOB-TEMURIN-1: Command injection vulnerability in WinRM script
 Unresolved. The client provided the following context for this finding’s fix status:

 The job that runs this script has extremely controlled access, and anybody with
 permissions to exploit this already has direct machine access when required.

 TOB-TEMURIN-2: Docker Compose ports exposed on all interfaces
 Resolved in PR #860 . This PR changes the port descriptors from 27017:27017 and
 8080:8080 to 127.0.0.1:27017:27017 and 127.0.0.1:8080:8080 , respectively,
 preventing these ports from being accessed from outside the localhost.

 TOB-TEMURIN-3: Insecure installation of Xcode software
 Resolved in PR #3282 . This PR adds SHA-256 checksum checks on the relevant HTTP
 download results. It also fixes the OS X version check so that it takes the major version into
 account.

 TOB-TEMURIN-4: Insecure software downloads in Ansible playbooks
 Resolved in PR #3329 . This PR changes various http links to https links and changes
 validate_certs values from false to true .

 TOB-TEMURIN-5: Signature verification disabled during software installation
 Resolved in PR #3355 and PR #3591 . PR #3355 removes the statement highlighted in figure
 5.2, which disables GPG verification, and changes the gpgcheck variables shown in figure
 5.3 from false to true . PR #3591 removes the statement highlighted in figure 5.1, which
 disables GPG verification.

 TOB-TEMURIN-6: Missing integrity check in Dragonwell Dockerfile
 Resolved in PR #1000 . This PR adds a SHA-256 checksum check after the download of the
 Dragonwell software.

 TOB-TEMURIN-7: Hostname verification disabled on MongoDB client
 Resolved in PR #993 and PR #1054 . PR #993 changes the argument passed to the
 invalidHostNameAllowed function depending on the value of a
 DISABLE_MONGO_HOST_CHECK environment variable. If the variable is unset, it defaults to
 disabling hostname verification (i.e., invalidHostNameAllowed(true)). PR #1054
 changes the default behavior of this value to enable hostname verification (i.e.,
 invalidHostNameAllowed(false)).

 The Temurin team told us that DISABLE_MONGO_HOST_CHECK is never set to true in
 production; however, we are not able to verify that this is the case.

 Trail of Bits 64 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/api.adoptium.net/pull/860/files
https://github.com/adoptium/infrastructure/pull/3282/files
https://github.com/adoptium/infrastructure/pull/3329/files
https://github.com/adoptium/infrastructure/pull/3355
https://github.com/adoptium/infrastructure/pull/3591
https://github.com/adoptium/ci-jenkins-pipelines/pull/1000/files
https://github.com/adoptium/api.adoptium.net/pull/993
https://github.com/adoptium/api.adoptium.net/pull/1054

 TOB-TEMURIN-8: RHEL build image includes password
 Resolved in PR #3320 . This PR moves the ROSIPW variable into a Docker build secret.

 TOB-TEMURIN-9: Insecure downloads using wget command
 Resolved in PR #58 and PR #3363 . PR #58 removes the --no-check-certificate flag
 applied to the wget command shown in figure 9.3. PR #3363 adds a SHA-256 checksum
 check to the downloads shown in figure 9.1 and changes the Setup-QEMU-Images.md
 documentation page, replacing the wget command shown in figure 9.2 with an instruction
 to download some FTP links “in a secure fashion.”

 TOB-TEMURIN-10: Hard-coded CA bundle keystore password
 Unresolved. The client provided the following context for this finding’s fix status:

 The hardcoded password in this code is only used to allow the update/deployment of a
 new cacerts file, and is not used or available outside of these processes.

 TOB-TEMURIN-11: Hard-coded Vagrant VM password
 Unresolved. The client provided the following context for this finding’s fix status:

 The job that runs this script has extremely controlled access, and anybody with
 permissions to exploit this already has direct machine access when required.

 TOB-TEMURIN-12: Missing integrity or authenticity check in jcov script download
 Partially resolved in PR #877 . This PR adds commands to download an MD5 checksum and
 compare the checksum against the MD5 hash of the ASM tools file. However, the checksum
 and the file are downloaded from the same source, so this adds only a minimal amount of
 security; an attacker who can replace the ASM tools file with a malicious file could also
 replace the MD5 hash file. We recommend comparing the ASM tools file with a fixed hash.

 In addition, MD5 is not collision-resistant, so a more secure hash function such as SHA-256
 should be used instead.

 TOB-TEMURIN-13: SSH client disables host key verification
 Partially resolved in PR #3526 . This PR removes the files shown in figures 13.1 through 13.3.
 However, the issues shown in figures 13.4 through 13.6 are still present.

 The client provided the following context for this finding’s fix status:

 These locations are considered benign because they are connecting to internal,
 short-lived, or local-only services.

 TOB-TEMURIN-14: Compiler mitigations are not enabled
 Unresolved. The Temurin team has investigated the possibility of enabling compiler
 mitigations but has not yet enabled them.

 Trail of Bits 65 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/infrastructure/pull/3320
https://github.com/adoptium/jenkins-helper/pull/58
https://github.com/adoptium/infrastructure/pull/3363/
https://github.com/adoptium/ci-jenkins-pipelines/pull/877
https://github.com/adoptium/infrastructure/pull/3526

 TOB-TEMURIN-15: Use of unpinned third-party workflows
 Resolved in PR #3321 , PR #3597 , and PR #872 . These PRs pin the versions of Github Actions
 dependencies using full-length commit hashes.

 TOB-TEMURIN-16: Third-party dependencies used without signature or checksum
 verification
 Resolved in PR #3522 and PR #3781 . PR #3522 adds a checksum verification to the
 download in tooling/release_download_test.sh , and PR #3781 adds checksum
 verifications to all the other code locations listed in the issue.

 TOB-TEMURIN-17: Code injection vulnerability in build-scripts pipeline jobs
 Resolved in PR #873 . This PR adds a check that sanitizes the relevant variables before they
 are expanded.

 TOB-TEMURIN-18: Docker commands specify root user in containers
 Unresolved. The client provided the following context for this finding’s fix status:

 The scripts referenced in the issue are not used in the production of the Temurin JDK
 binary deliverables, and are provided as part of a development toolset.

 TOB-TEMURIN-19: Incorrect Dependabot configuration filename
 Resolved in PR #3321 . This PR renames the dependabot file to dependabot.yml .

 Trail of Bits 66 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

https://github.com/adoptium/infrastructure/pull/3321
https://github.com/adoptium/temurin-build/pull/3597
https://github.com/adoptium/ci-jenkins-pipelines/pull/872
https://github.com/adoptium/temurin-build/pull/3522
https://github.com/adoptium/temurin-build/pull/3781
https://github.com/adoptium/ci-jenkins-pipelines/pull/873
https://github.com/adoptium/infrastructure/pull/3321

 G. Fix Review Status Categories

 The following table describes the statuses used to indicate whether an issue has been
 sufficiently addressed.

 Fix Status

 Status Description

 Undetermined The status of the issue was not determined during this engagement.

 Unresolved The issue persists and has not been resolved.

 Partially Resolved The issue persists but has been partially resolved.

 Resolved The issue has been sufficiently resolved.

 Trail of Bits 67 OSTIF Eclipse: Temurin Security Assessment
 PUBLIC

