
‭OpenSSL‬
‭Security Assessment‬

‭April 18, 2024‬

‭Prepared for:‬
‭Anton Arapov‬
‭Matt Caswell‬
‭OpenSSL‬
‭Organized by the Open Source Technology Improvement Fund, Inc.‬

‭Prepared by:‬‭Max Ammann, Fredrik Dahlgren, Spencer‬‭Michaels, and Jim Miller‬

‭About Trail of Bits‬

‭Founded in 2012 and headquartered in New York, Trail of Bits provides technical security‬
‭assessment and advisory services to some of the world’s most targeted organizations. We‬
‭combine high-end security research with a real-world attacker mentality to reduce risk and‬
‭fortify code. With 100+ employees around the globe, we’ve helped secure critical software‬
‭elements that support billions of end users, including Kubernetes and the Linux kernel.‬

‭We maintain an exhaustive list of publications at‬‭https://github.com/trailofbits/publications‬‭,‬
‭with links to papers, presentations, public audit reports, and podcast appearances.‬

‭In recent years, Trail of Bits consultants have showcased cutting-edge research through‬
‭presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,‬
‭the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.‬

‭We specialize in software testing and code review projects, supporting client organizations‬
‭in the technology, defense, and finance industries, as well as government entities. Notable‬
‭clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.‬

‭Trail of Bits also operates a center of excellence with regard to blockchain security. Notable‬
‭projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,‬
‭MakerDAO, Matic, Uniswap, Web3, and Zcash.‬

‭To keep up to date with our latest news and announcements, please follow‬‭@trailofbits‬‭on‬
‭Twitter and explore our public repositories at‬‭https://github.com/trailofbits‬‭.‬‭To engage us‬
‭directly, visit our “Contact” page at‬‭https://www.trailofbits.com/contact‬‭,‬‭or email us at‬
‭info@trailofbits.com‬‭.‬

‭Trail of Bits, Inc.‬
‭497 Carroll St., Space 71, Seventh Floor‬
‭Brooklyn, NY 11215‬
‭https://www.trailofbits.com‬
‭info@trailofbits.com‬

‭Trail of Bits‬ ‭1‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

‭Notices and Remarks‬

‭Copyright and Distribution‬
‭© 2024 by Trail of Bits, Inc.‬

‭All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this‬
‭report in the United Kingdom.‬

‭This report is considered by Trail of Bits to be public information;‬‭it is licensed to OSTIF‬
‭under the terms of the project statement of work and has been made public at OSTIF’s‬
‭request.‬‭Material within this report may not be reproduced‬‭or distributed in part or in‬
‭whole without the express written permission of Trail of Bits.‬

‭The sole canonical source for Trail of Bits publications is the‬‭Trail of Bits Publications page‬‭.‬
‭Reports accessed through any source other than that page may have been modified and‬
‭should not be considered authentic.‬

‭Test Coverage Disclaimer‬
‭All activities undertaken by Trail of Bits in association with this project were performed in‬
‭accordance with a statement of work and agreed upon project plan.‬

‭Security assessment projects are time-boxed and often reliant on information that may be‬
‭provided by a client, its affiliates, or its partners. As a result, the findings documented in‬
‭this report should not be considered a comprehensive list of security issues, flaws, or‬
‭defects in the target system or codebase.‬

‭Trail of Bits uses automated testing techniques to rapidly test the controls and security‬
‭properties of software. These techniques augment our manual security review work, but‬
‭each has its limitations: for example, a tool may not generate a random edge case that‬
‭violates a property or may not fully complete its analysis during the allotted time. Their use‬
‭is also limited by the time and resource constraints of a project.‬

‭Trail of Bits‬ ‭2‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/trailofbits/publications

‭Table of Contents‬

‭About Trail of Bits‬ ‭1‬
‭Notices and Remarks‬ ‭2‬
‭Table of Contents‬ ‭3‬
‭Project Summary‬ ‭5‬
‭Executive Summary‬ ‭6‬
‭Project Goals‬ ‭9‬
‭Project Targets‬ ‭10‬
‭Project Coverage‬ ‭11‬
‭Automated Testing‬ ‭14‬
‭Codebase Maturity Evaluation‬ ‭16‬
‭Summary of Findings‬ ‭19‬
‭Detailed Findings‬ ‭21‬

‭1. Risk of signed integer overflows when parsing property queries‬ ‭21‬
‭2. The provider configuration format is prone to misuse‬ ‭23‬
‭3. The default provider supports insecure algorithms‬ ‭26‬
‭4. Provider configuration section can cause a stack overflow‬ ‭28‬
‭5. Risk of heap buffer overflow during parsing of OIDs‬ ‭30‬
‭6. Risk of segmentation fault when loading property list in “stable” configuration‬
‭section‬ ‭32‬
‭7. The ossl_prov_memdup function does not update dst_len if the call fails‬ ‭34‬
‭8. API misuse may lead to unexpected segmentation fault‬ ‭35‬
‭9. Insufficient validation in dh_gen_common_set_params‬ ‭38‬
‭10. HTTP client redirects to local host instead of remote one‬ ‭40‬
‭11. OCSP requests might hang if the server responds with infinite headers‬ ‭42‬
‭12. Calling EVP_KDF_CTX_reset causes a double free when the context is freed‬ ‭44‬
‭13. The aesni_cbc_hmac_sha256_cipher function depends on compiler-specific‬
‭behavior‬ ‭46‬
‭14. Use after free when setting invalid properties on the Scrypt algorithm or if‬
‭SHA-256 is missing‬ ‭48‬
‭15. Setting OSSL_MAC_PARAM_DIGEST_NOINIT for HMAC causes segmentation fault‬
‭51‬
‭16. Functions of EVP_CIPHER_CTX are missing null checks‬ ‭53‬
‭17. Assertion could be hit when fetching algorithms by name‬ ‭55‬
‭18. Reinitialization of EVP_MAC for GMAC fails if parameters are not provided‬ ‭57‬

‭Trail of Bits‬ ‭3‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭19. Creation of X.509 extensions can lead to undefined behavior‬ ‭60‬
‭20. Missing null checks in OSSL_PARAM getters‬ ‭62‬
‭21. The ossl_blake2b_final function fails to zeroize sensitive data‬ ‭64‬
‭22. The kdf_pbkdf1_do_derive function fails to zeroize sensitive data‬ ‭66‬
‭23. Out-of-bounds read in kdf_pbkdf1_do_derive‬ ‭68‬

‭A. Vulnerability Categories‬ ‭71‬
‭B. Code Maturity Categories‬ ‭73‬
‭C. Automated Testing‬ ‭75‬
‭D. Fuzzing‬ ‭77‬
‭E. Code Quality Recommendations‬ ‭82‬
‭F. Driver Code for a Malicious HTTP Server‬ ‭85‬
‭G. Integer Type Recommendations‬ ‭87‬
‭H. Fix Review Results‬ ‭90‬

‭Detailed Fix Review Results‬ ‭91‬
‭I. Fix Review Status Categories‬ ‭96‬

‭Trail of Bits‬ ‭4‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭Project Summary‬

‭Contact Information‬
‭The following project manager was associated with this project:‬

‭Jeff Braswell‬‭, Project Manager‬
‭jeff.braswell@trailofbits.com‬

‭The following engineering directors were associated with this project:‬

‭David Pokora‬‭, Engineering Director, Application Security‬
‭david.pokora@trailofbits.com‬

‭Jim Miller‬‭, Engineering Director, Cryptography‬
‭james.miller@trailofbits.com‬

‭The following engineers were associated with this project:‬

‭Max Ammann‬‭, Consultant‬ ‭Fredrik Dahlgren‬‭, Consultant‬
‭maximilian.ammann@trailofbits.com‬ ‭fredrik.dahlgren@trailofbits.com‬

‭Spencer Michaels‬‭, Consultant‬ ‭Jim Miller‬‭, Consultant‬
‭spencer.michaels@trailofbits.com‬ ‭jim.miller@trailofbits.com‬

‭Project Timeline‬
‭The significant events and milestones of the project are listed below.‬

‭Date‬ ‭Event‬

‭August 21, 2023‬ ‭Pre-project kickoff call‬

‭September 7, 2023‬ ‭Status update meeting #1‬

‭September 12, 2023‬ ‭Status update meeting #2‬

‭September 19, 2023‬ ‭Status update meeting #3‬

‭September 27, 2023‬ ‭Delivery of report draft‬

‭September 27, 2023‬ ‭Report readout meeting‬

‭April 18, 2024‬ ‭Delivery of comprehensive report with fix review appendix‬

‭Trail of Bits‬ ‭5‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

mailto:jeff.braswell@trailofbits.com
mailto:david.pokora@trailofbits.com
mailto:james.miller@trailofbits.com
mailto:maximilian.ammann@trailofbits.com
mailto:fredrik.dahlgren@trailofbits.com
mailto:spencer.michaels@trailofbits.com
mailto:jim.miller@trailofbits.com

‭Executive Summary‬

‭Engagement Overview‬
‭OSTIF engaged Trail of Bits to review the security of the OpenSSL cryptographic library. The‬
‭focus of the engagement was the new provider architecture and eight new cryptographic‬
‭primitives, all of which were introduced in version 3 of OpenSSL.‬

‭A team of four consultants conducted the review from August 28 to September 22, 2023,‬
‭for a total of nine engineer-weeks of effort. Our testing efforts focused on the‬
‭implementation of the new provider architecture, including the implementations of library‬
‭contexts, encoders and decoders, and the provider-based implementation of the high-level‬
‭EVP API. We also reviewed a number of new cryptographic primitives included in version 3‬
‭of the library. With full access to the source code, documentation, Coverity reports,‬
‭Coveralls test coverage data, and fuzzing coverage data from OSS-Fuzz, we performed‬
‭static and dynamic testing of the OpenSSL codebase, using automated and manual‬
‭processes.‬

‭Observations and Impact‬
‭Overall, we found the OpenSSL library to be defensively implemented and well tested. The‬
‭project has an extensive test suite with known test vectors for implemented cryptographic‬
‭primitives. Code coverage is tracked and improved when needed, and the project also‬
‭regularly runs static analysis through Coverity and continuous fuzzing through OSS-Fuzz.‬
‭However, during the engagement, we identified a number of development practices that‬
‭could have security implications for future releases of the library.‬

‭We found that the C integer types are used inconsistently throughout the codebase. Signed‬
‭types are often used to represent unsigned quantities, signed and unsigned integers are‬
‭often mixed in arithmetic expressions, and larger types are passed to APIs that expect‬
‭smaller types, which leads to implicit truncations. Although we did not identify any‬
‭security-relevant issues due to integer truncation or implicit integer promotions or‬
‭conversions during this engagement, we believe that this practice introduces unnecessary‬
‭risks that should be avoided.‬

‭We also noted that internal APIs often lack source-level documentation. This makes it hard‬
‭to understand the exact security properties the API is expected to satisfy. Adding‬
‭source-level documentation and documenting the security properties expected and upheld‬
‭by internal provider APIs would go a long way in making the codebase easier to review and‬
‭maintain. Such documentation would also be a useful resource for any developers looking‬
‭to implement third-party providers for OpenSSL.‬

‭Trail of Bits‬ ‭6‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭Recommendations‬
‭Based on the codebase maturity evaluation and findings identified during the security‬
‭review, Trail of Bits recommends that OpenSSL take the following steps:‬

‭●‬ ‭Remediate the findings disclosed in this report.‬‭These‬‭findings should be‬
‭addressed as part of a direct remediation or as part of any refactor that may occur‬
‭when addressing other recommendations.‬

‭●‬ ‭Standardize the use of C integer types.‬‭Using signed‬‭types to represent unsigned‬
‭values, mixing signed and unsigned types in arithmetic expressions, and passing‬
‭larger types to APIs that expect smaller types all represent latent security risks to‬
‭downstream consumers of the library. These anti-patterns should generally be‬
‭avoided, as they are known to be the cause of truncation issues and overflows and‬
‭could lead to memory-safety issues or undefined behavior. We recommend that the‬
‭OpenSSL team develop a secure coding standard for integer types. This standard‬
‭could initially apply to only new or refactored code to allow the team to safely‬
‭transition the entire codebase over time. For our related recommendations, refer to‬
‭appendix G‬‭.‬

‭●‬ ‭Add source-level documentation for internal APIs.‬‭Currently, internal APIs are‬
‭mostly undocumented. This leaves maintainers and code reviewers guessing as to‬
‭which security properties are expected to hold when the APIs are called. Better‬
‭source-level documentation would make the codebase easier to review and‬
‭maintain. It would also make it generally easier to ensure that source-level‬
‭documentation is up to date, as it would already be part of the codebase.‬

‭●‬ ‭Introduce a deprecation schedule for weak algorithms.‬‭We found that the‬
‭default provider contains a number of algorithms based on both the two-key and‬
‭three-key variants of Triple-DES (‬‭TOB-OSSL-3‬‭). This‬‭algorithm is considered broken‬
‭by the cryptographic community, and there are known and practical attacks on‬
‭Triple-DES-based ciphers that enable plaintext recovery. We understand that the‬
‭team has to balance development velocity against backward compatibility and‬
‭cannot immediately remove algorithms that are found to be insecure. However, we‬
‭think it would be a good idea to introduce a deprecation schedule that outlines how‬
‭and when weak and legacy algorithms are moved from the default provider to the‬
‭legacy provider. This, along with a regular release schedule, would make it easier for‬
‭downstream consumers to plan how and when to move away from legacy‬
‭algorithms.‬

‭●‬ ‭Develop new fuzzers to increase fuzzing coverage.‬‭The OpenSSL project already‬
‭runs a number of fuzzers on its codebase to detect issues related to memory‬
‭corruption and undefined behavior. Implemented fuzzers focus mainly on APIs that‬
‭receive untrusted user input. This effort could be extended to include APIs that may‬

‭Trail of Bits‬ ‭7‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭be prone to misuse. An example of this is the provider fuzzer developed as part of‬
‭this engagement, described in‬‭appendix D‬‭.‬

‭The following tables provide the number of findings by severity and category.‬

‭EXPOSURE ANALYSIS‬

‭Severity‬ ‭Count‬

‭High‬ ‭0‬

‭Medium‬ ‭4‬

‭Low‬ ‭6‬

‭Informational‬ ‭13‬

‭Undetermined‬ ‭0‬

‭CATEGORY BREAKDOWN‬

‭Category‬ ‭Count‬

‭Configuration‬ ‭2‬

‭Cryptography‬ ‭2‬

‭Data Exposure‬ ‭1‬

‭Data Validation‬ ‭7‬

‭Denial of Service‬ ‭5‬

‭Error Reporting‬ ‭1‬

‭Undefined Behavior‬ ‭5‬

‭Trail of Bits‬ ‭8‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭Project Goals‬

‭The engagement was scoped to provide a security assessment of the OpenSSL‬
‭cryptographic library. Specifically, we sought to answer the following non-exhaustive list of‬
‭questions:‬

‭●‬ ‭Do library contexts and included providers manage memory correctly? Are allocated‬
‭pointers checked for null and freed correctly before going out of scope?‬

‭●‬ ‭Are reference counts for shared resources incremented and decremented correctly?‬

‭●‬ ‭Are resource locks managed correctly by the library context implementation?‬

‭●‬ ‭Are the default library context and the default provider resolved correctly?‬

‭●‬ ‭Is the provider scaffolding for each supported algorithm implemented correctly?‬

‭●‬ ‭Does the EVP API use the new provider architecture correctly?‬

‭●‬ ‭Are provider implementations written defensively to prevent misuse?‬

‭●‬ ‭Are legacy engine fallbacks in the EVP API implemented correctly?‬

‭●‬ ‭Are OpenSSL configuration files parsed correctly?‬

‭●‬ ‭Is the configuration file format resistant to misuse?‬

‭●‬ ‭Are cryptographic primitives implemented correctly, according to their‬
‭specifications?‬

‭●‬ ‭Are cryptographic primitives implemented using constant-time code?‬

‭●‬ ‭Is sensitive data like key material zeroized when it goes out of scope?‬

‭Trail of Bits‬ ‭9‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭Project Targets‬

‭The engagement involved a review and testing of the following target.‬

‭OpenSSL‬

‭Repository‬ ‭https://github.com/openssl/openssl‬

‭Version‬ ‭3.1.2 (commit‬‭17a2c5111864d8e016c5f2d29c40a3746b559e9d​​‬‭)‬

‭Type‬ ‭C‬

‭Platforms‬ ‭Linux, macOS, Windows‬

‭Trail of Bits‬ ‭10‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl

‭Project Coverage‬

‭This section provides an overview of the analysis coverage of the review, as determined by‬
‭our high-level engagement goals. Our approaches included the following:‬

‭●‬ ‭Providers:‬‭We manually reviewed the provider architecture‬‭and utility code,‬
‭focusing on memory management, reference counting, and resource locks. We‬
‭manually reviewed the default, FIPS, legacy, base, and null providers included with‬
‭OpenSSL. Here, we focused on correctness, and we also ensured that the default‬
‭and FIPS providers do not support any legacy algorithms. Finally, we reviewed the‬
‭high-level provider implementations under the‬‭providers/implementations‬
‭directory. Here, we focused on overall correctness, memory management, and‬
‭misuse resistance of the APIs. We also gave a best-effort review of the implemented‬
‭cryptographic primitives. However, since the focus of the review was the new‬
‭provider architecture, we did not perform an in-depth cryptographic review of each‬
‭primitive as part of this engagement.‬

‭The following provider implementations were reviewed as part of the engagement:‬

‭○‬ ‭The RSA and SM2 asymmetric ciphers‬

‭○‬ ‭The AES-CBC-HMAC-SHA256, AES-CCM, AES-GCM, and ChaCha20-Poly1305‬
‭ciphers‬

‭○‬ ‭The Blake2, MD2, MD4, MD5, RipeMD, SHA2, SHA3, SM3, and Whirlpool hash‬
‭functions‬

‭○‬ ‭RSA KEM‬

‭○‬ ‭The HKDF, KBKDF, PBKDF1, PBKDF2, Scrypt, SSH KDF, SSKDF, and X9.42 KDFs‬

‭○‬ ‭The DH, DSA, EC, ECX, and RSA key management functions‬

‭○‬ ‭The Blake2, GMAC, KMAC, HMAC, Poly1305, and Siphash MACs‬

‭○‬ ‭The ECDSA, EDDSA, RSA, and SM2 signature providers‬

‭○‬ ‭All pseudo-random number generators (PRNGs), and random number‬
‭generator seeding for the ARM64, x86, and Unix platforms‬

‭○‬ ‭All encoders and decoders (refer to the bullet point on coverage of encoders‬
‭and decoders below)‬

‭Trail of Bits‬ ‭11‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭●‬ ‭LibCTX:‬‭We performed a manual review of the library context implementation,‬
‭focusing on overall correctness, memory management, and potential‬
‭concurrency-related issues.‬

‭●‬ ‭Encoders and decoders:‬‭We manually reviewed the implementation‬‭of encoders‬
‭and decoders. This review included the low-level API that runs data or objects‬
‭through a chain of coders, and the high-level API for public and private keys‬
‭(‬‭OSSL_ENCODER_CTX_new_for_pkey‬‭).‬

‭●‬ ‭EVP:‬‭We manually reviewed the parts of the high-level‬‭EVP API that interacts with‬
‭the new provider architecture and legacy engine APIs. As the EVP API is large and it‬
‭is unrealistic to manually audit the whole API surface, we focused on the interaction‬
‭points between the EVP code and the new provider code to check that it was‬
‭correctly implemented. For example, we audited the instantiation of EVP objects‬
‭that use the provider API and EVP APIs that use the new LibCTX code to fetch‬
‭provider implementations.‬

‭●‬ ‭Cryptographic primitives:‬‭The following new cryptographic‬‭primitives are included‬
‭in version 3.0 of the OpenSSL library and were reviewed as part of the engagement:‬

‭○‬ ‭SIV and CTS cipher modes‬

‭○‬ ‭Blake2‬

‭○‬ ‭Scrypt‬

‭○‬ ‭SSH KDF‬

‭○‬ ‭SSKDF‬

‭○‬ ‭KBKDF‬

‭○‬ ‭Siphash‬

‭We reviewed each primitive against the relevant specification or RFCs, focusing on‬
‭correctness and on identifying potential issues related to input parameter‬
‭validation, timing side channels, and the zeroization of sensitive data.‬

‭●‬ ‭HTTP client:‬‭We manually reviewed the new HTTP client‬‭implementation, focusing‬
‭on functionality where we typically see issues, like URL parsing, HTTP header‬
‭parsing, and HTTP redirects.‬

‭●‬ ‭Fuzz testing:‬‭We developed several fuzzers for internal‬‭OpenSSL APIs, provider‬
‭implementations, and the configuration file parser. For more detail on the fuzzers‬
‭developed during the engagement, refer to‬‭appendix‬‭D‬‭.‬

‭Trail of Bits‬ ‭12‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭Coverage Limitations‬
‭Because of the time-boxed nature of testing work, it is common to encounter coverage‬
‭limitations. The following list outlines the coverage limitations of the engagement and‬
‭indicates system elements that may warrant further review:‬

‭●‬ ‭Providers:‬‭The main focus of the review was the new‬‭provider architecture. For this‬
‭reason, we performed only a best-effort review of the cryptographic code under the‬
‭providers/implementations‬‭directory. Additionally,‬‭we did not manage to‬
‭review all of the primitives implemented. In particular, the following provider‬
‭implementations were not reviewed during this engagement:‬

‭○‬ ‭AES variants other than the ones listed above, as well as the Aria, Blowfish,‬
‭Camellia, CAST5, DES, IDEA, RC2, RC4, RC5, Seed, SM4, and Triple-DES ciphers‬

‭○‬ ‭The ECX and KDF key exchanges‬

‭○‬ ‭The TLS1 PRF and the KRB5 and PKCS12 KDFs‬

‭○‬ ‭The ECX, KDF legacy, and MAC legacy key management functions‬

‭○‬ ‭CMAC‬

‭○‬ ‭PRNG seeding using RDTSC, and OpenVMS-, VXWorks-, and Windows-specific‬
‭seeding‬

‭●‬ ‭EVP:‬‭We did not have time to review the entire EVP‬‭API implementation as part of‬
‭this review. Instead, we focused on how the EVP API interacts with the new provider‬
‭and legacy engine architectures.‬

‭●‬ ‭Random number generation:‬‭We did not have time to‬‭perform an end-to-end‬
‭review of the random number generator seeding and generation during this‬
‭engagement.‬

‭Trail of Bits‬ ‭13‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭Automated Testing‬

‭Trail of Bits uses automated techniques to extensively test the security properties of‬
‭software. We use both open-source static analysis and fuzzing utilities, along with tools‬
‭developed in house, to perform automated testing of source code and compiled software.‬

‭Test Harness Configuration‬
‭We used the following tools in the automated testing phase of this project:‬

‭Tool‬ ‭Description‬ ‭Policy‬

‭Clang‬ ‭An open-source LLVM front end for C and C++‬ ‭Appendix C.1‬

‭CodeQL‬ ‭A code analysis engine developed by GitHub to automate‬
‭security checks‬

‭Appendix C.2‬

‭Cppcheck‬ ‭An open-source static analysis tool focusing on detecting‬
‭undefined behavior and dangerous coding constructs in C‬
‭and C++ codebases‬

‭Appendix C.3‬

‭Semgrep‬ ‭An open-source static analysis tool for finding bugs and‬
‭enforcing code standards when editing or committing code‬
‭and during build time‬

‭Appendix C.4‬

‭LibFuzzer‬ ‭An open-source library for in-process, coverage-guided fuzz‬
‭testing‬

‭Appendix D‬

‭Areas of Focus‬
‭Our automated testing and verification work focused on the following:‬

‭●‬ ‭Code quality issues and potentially fragile code patterns‬

‭●‬ ‭Overflow and truncation issues due to implicit integer conversions‬

‭●‬ ‭General undefined behavior‬

‭Test Results‬
‭The results of this focused testing are detailed below.‬

‭Trail of Bits‬ ‭14‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://clang.llvm.org/
https://codeql.github.com/
https://cppcheck.sourceforge.io/
https://github.com/returntocorp/semgrep
https://llvm.org/docs/LibFuzzer.html

‭OpenSSL:‬‭We built the OpenSSL library using Clang with warnings for integer truncation‬
‭and implicit sign conversions enabled. We also ran the static analysis tools CodeQL,‬
‭Semgrep, and Cppcheck on the codebase and triaged the results. Here, we focused on‬
‭issues related to the new provider architecture. Finally, we fuzzed the configuration,‬
‭property list parsers, and provider implementations using LibFuzzer.‬

‭Property‬ ‭Tool‬ ‭Result‬

‭The project adheres to best practices by avoiding implicit‬
‭conversions that truncate the input.‬

‭Clang‬ ‭Appendix C.1‬

‭The project avoids common issues and fragile coding‬
‭constructs often found in C codebases.‬

‭CodeQL‬
‭Semgrep‬

‭Passed‬

‭The codebase does not contain compiler-specific or undefined‬
‭behavior.‬

‭Cppcheck‬ ‭TOB-OSSL-13‬

‭Input parsers are robust against malformed or malicious‬
‭inputs.‬

‭LibFuzzer‬ ‭TOB-OSSL-4‬
‭TOB-OSSL-5‬
‭TOB-OSSL-6‬

‭Trail of Bits‬ ‭15‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭Codebase Maturity Evaluation‬

‭Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of‬
‭the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies‬
‭identified here often stem from root causes within the software development life cycle that‬
‭should be addressed through standardization measures (e.g., the use of common libraries,‬
‭functions, or frameworks) or training and awareness programs.‬

‭Category‬ ‭Summary‬ ‭Result‬

‭Arithmetic‬ ‭The library often mixes signed and unsigned integer‬
‭types in arithmetic expressions. Also, parts of the‬
‭codebase use signed integer types to represent unsigned‬
‭quantities like buffer sizes. Due to these practices, the‬
‭codebase contains numerous cases of implicit integer‬
‭promotions and conversions, which could cause‬
‭hard-to-diagnose signed-overflow or truncation issues.‬
‭That being said, we did not identify any security issues‬
‭due to implicit truncations as part of this engagement.‬

‭Moderate‬

‭Auditing‬ ‭The library does not implement auditing or logging.‬ ‭Not‬
‭Applicable‬

‭Authentication /‬
‭Access Controls‬

‭The library does not implement access controls.‬ ‭Not‬
‭Applicable‬

‭Complexity‬
‭Management‬

‭The new provider architecture is well engineered and‬
‭provides an easy way to load additional cryptographic‬
‭modules. The design also provides a clear and logical‬
‭separation between library contexts, providers, and‬
‭cryptographic primitives. The new implementation of‬
‭encoders and decoders is well designed but is currently‬
‭targeted at a narrow use case, which means that the‬
‭public APIs are less ergonomic.‬

‭Satisfactory‬

‭Configuration‬ ‭The library can be configured using a configuration file,‬
‭which allows the end user to load and activate different‬
‭providers. We found the sections of the configuration file‬
‭format related to providers to be easy to misuse‬
‭(‬‭TOB-OSSL-2‬‭) and the corresponding parser to be‬
‭vulnerable to malicious inputs (‬‭TOB-OSSL-4‬‭,‬‭TOB-OSSL-5‬‭,‬
‭TOB-OSSL-6‬‭). However, since the configuration file‬‭is‬

‭Moderate‬

‭Trail of Bits‬ ‭16‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭never attacker controlled, this is typically not a serious‬
‭issue.‬

‭Cryptography‬
‭and Key‬
‭Management‬

‭The reviewed cryptographic primitive implementations all‬
‭match the relevant specifications and RFCs, and each‬
‭implementation comes with known test vectors, which‬
‭also gives some confidence that the implementation is‬
‭correct. We did not identify any side-channel leakages in‬
‭any of the implementations. Sensitive data is generally‬
‭scrubbed from memory as it goes out of scope. However,‬
‭we found two issues in which key material in memory is‬
‭not zeroized correctly by the corresponding‬
‭implementation (‬‭TOB-OSSL-21‬‭and‬‭TOB-OSSL-22‬‭).‬

‭Satisfactory‬

‭Data Handling‬ ‭We found that parameters for cryptographic algorithms‬
‭are validated to ensure that the code follows the relevant‬
‭specifications, and that the implementation generally‬
‭protects against potential memory-safety issues like‬
‭out-of-bounds reads and writes. However, we did identify‬
‭one issue that could lead to an out-of-bounds read in‬
‭PBKDF1 (‬‭TOB-OSSL-23‬‭). The library performs a minimal‬
‭amount of pointer validation for user-provided inputs.‬
‭This is typically enough to be safe against adversarial‬
‭inputs, but failing to check for null pointers often makes‬
‭the high-level APIs less resistant to misuse.‬

‭Moderate‬

‭Documentation‬ ‭The high-level APIs and library design are well‬
‭documented through man pages and internal‬
‭documentation. However, source-level documentation is‬
‭very scant, and it is often difficult to know which security‬
‭invariants functions expect to hold or uphold. This makes‬
‭the codebase difficult to review for security and‬
‭correctness.‬

‭Moderate‬

‭Low-Level‬
‭Manipulation‬

‭The low-level, platform-specific cryptographic‬
‭implementations were not reviewed as part of this‬
‭engagement.‬

‭Not‬
‭Considered‬

‭Maintenance‬ ‭The project’s maintenance practices were not reviewed‬
‭as part of this engagement.‬

‭Not‬
‭Considered‬

‭Memory Safety‬
‭and Error‬

‭Functions typically signal errors by returning‬‭0‬‭(or‬‭null for‬
‭functions returning pointers) to the caller. We found that‬

‭Satisfactory‬

‭Trail of Bits‬ ‭17‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭Handling‬ ‭return values are checked consistently throughout the‬
‭codebase and that returned pointers are checked to‬
‭ensure they are not null. We did identify a number of‬
‭possible segmentation faults due to null pointer‬
‭dereferences (‬‭TOB-OSSL-6‬‭,‬‭TOB-OSSL-8‬‭,‬‭TOB-OSSL-15‬‭,‬
‭TOB-OSSL-16‬‭,‬‭TOB-OSSL-19‬‭), one instance of a possible‬
‭double free (‬‭TOB-OSSL-12‬‭), and one instance of a‬
‭possible use after free (‬‭TOB-OSSL-14‬‭) during the‬
‭engagement. These all resulted from invoking the‬
‭high-level APIs in unexpected ways.‬

‭Testing and‬
‭Verification‬

‭The library comes with an extensive test suite covering‬
‭both low-level cryptographic primitives and high-level‬
‭APIs. Cryptographic primitives are tested against known‬
‭test vectors, tests cover both the happy path and‬
‭different failure cases, and coverage is tracked‬
‭continuously through‬‭Coveralls‬‭. In addition to this,‬
‭OpenSSL relies on the test suite from the Python‬
‭cryptography project for integration testing. OpenSSL‬
‭uses Coverity for static analysis and regularly triages‬
‭found issues. The project also runs continuous fuzzing‬
‭campaigns as part of‬‭OSS-Fuzz‬‭. However, fuzz tests‬
‭running on OSS-Fuzz cover only around 28% of the‬
‭codebase, and parts of the new provider architecture are‬
‭not covered by fuzz testing.‬

‭Satisfactory‬

‭Trail of Bits‬ ‭18‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://coveralls.io/github/openssl/openssl
https://storage.googleapis.com/oss-fuzz-introspector/openssl/inspector-report/20230918/fuzz_report.html

‭Summary of Findings‬

‭The table below summarizes the findings of the review, including type and severity details.‬

‭ID‬ ‭Title‬ ‭Type‬ ‭Severity‬

‭1‬ ‭Risk of signed integer overflows when parsing‬
‭property queries‬

‭Undefined‬
‭Behavior‬

‭Informational‬

‭2‬ ‭The provider configuration format is prone to‬
‭misuse‬

‭Configuration‬ ‭Low‬

‭3‬ ‭The default provider supports insecure algorithms‬ ‭Configuration‬ ‭Informational‬

‭4‬ ‭Provider configuration section can cause a stack‬
‭overflow‬

‭Denial of Service‬ ‭Informational‬

‭5‬ ‭Risk of heap buffer overflow during parsing of‬
‭OIDs‬

‭Undefined‬
‭Behavior‬

‭Informational‬

‭6‬ ‭Risk of segmentation fault when loading property‬
‭list in “stable” configuration section‬

‭Denial of Service‬ ‭Informational‬

‭7‬ ‭The ossl_prov_memdup function does not update‬
‭dst_len if the call fails‬

‭Error Reporting‬ ‭Informational‬

‭8‬ ‭API misuse may lead to unexpected segmentation‬
‭fault‬

‭Undefined‬
‭Behavior‬

‭Informational‬

‭9‬ ‭Insufficient validation in‬
‭dh_gen_common_set_params‬

‭Data Validation‬ ‭Low‬

‭10‬ ‭HTTP client redirects to local host instead of‬
‭remote one‬

‭Data Validation‬ ‭Informational‬

‭11‬ ‭OCSP requests might hang if the server responds‬
‭with infinite headers‬

‭Denial of Service‬ ‭Medium‬

‭Trail of Bits‬ ‭19‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭12‬ ‭Calling EVP_KDF_CTX_reset causes a double free‬
‭when the context is freed‬

‭Undefined‬
‭Behavior‬

‭Low‬

‭13‬ ‭The aesni_cbc_hmac_sha256_cipher function‬
‭depends on compiler-specific behavior‬

‭Data Validation‬ ‭Low‬

‭14‬ ‭Use after free when setting invalid properties on‬
‭the Scrypt algorithm or if SHA-256 is missing‬

‭Undefined‬
‭Behavior‬

‭Low‬

‭15‬ ‭Setting OSSL_MAC_PARAM_DIGEST_NOINIT for‬
‭HMAC causes segmentation fault‬

‭Denial of Service‬ ‭Informational‬

‭16‬ ‭Functions of EVP_CIPHER_CTX are missing null‬
‭checks‬

‭Denial of Service‬ ‭Informational‬

‭17‬ ‭Assertion could be hit when fetching algorithms‬
‭by name‬

‭Data Validation‬ ‭Informational‬

‭18‬ ‭Reinitialization of EVP_MAC for GMAC fails if‬
‭parameters are not provided‬

‭Data Validation‬ ‭Low‬

‭19‬ ‭Creation of X.509 extensions can lead to‬
‭undefined behavior‬

‭Data Validation‬ ‭Informational‬

‭20‬ ‭Missing null checks in OSSL_PARAM getters‬ ‭Data Validation‬ ‭Informational‬

‭21‬ ‭The ossl_blake2b_final function fails to zeroize‬
‭sensitive data‬

‭Cryptography‬ ‭Medium‬

‭22‬ ‭The kdf_pbkdf1_do_derive function fails to zeroize‬
‭sensitive data‬

‭Cryptography‬ ‭Medium‬

‭23‬ ‭Out-of-bounds read in kdf_pbkdf1_do_derive‬ ‭Data Exposure‬ ‭Medium‬

‭Trail of Bits‬ ‭20‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭Detailed Findings‬

‭1. Risk of signed integer overflows when parsing property queries‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Undefined Behavior‬ ‭Finding ID: TOB-OSSL-1‬

‭Target:‬‭crypto/property/property_parse.c‬

‭Description‬
‭The‬‭parse_number‬‭,‬‭parse_hex‬‭, and‬‭parse_oct‬‭functions‬‭are used to parse strings to an‬
‭OSSL_PROPERTY_LIST‬‭; their arithmetic operations could‬‭result in signed integer‬
‭overflows, which is undefined behavior.‬

‭static‬‭int‬‭parse_number(‬‭const‬‭char‬‭*t[], OSSL_PROPERTY_DEFINITION‬‭*res)‬
‭{‬

‭const‬‭char‬‭*s = *t;‬
‭int64_t‬‭v =‬‭0‬‭;‬

‭if‬‭(!ossl_isdigit(*s))‬
‭return‬‭0‬‭;‬

‭do‬‭{‬
‭v = v *‬‭10‬‭+ (*s++ -‬‭'0'‬‭);‬

‭}‬‭while‬‭(ossl_isdigit(*s));‬

‭// ...‬
‭}‬

‭Figure 1.1: Passing a string representing a large number to‬‭parse_number‬‭causes undefined‬
‭behavior. (‬‭crypto/property/property_parse.c‬‭)‬

‭The following figures show example inputs to these functions that cause undefined‬
‭behavior due to overflow.‬

‭char‬‭*‬‭input‬‭=‬
‭"f.a=0x00ff0ffffffffffffffffffffffffff‬
‭fffffffffffff0fffffff"‬
‭// crypto/property/property_parse.c:124:11: runtime error: left shift of‬
‭6148914691236517205 by 4 places cannot be represented in type 'int64_t' (aka 'long‬
‭long')‬

‭Figure 1.2: An overflow that results from parsing a large hexadecimal number‬

‭char‬‭*‬‭input‬‭=‬‭"a.a=401846744073709551615"‬

‭Trail of Bits‬ ‭21‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/property/property_parse.c#L103
https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/property/property_parse.c#L124
https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/property/property_parse.c#L149
https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/property/property_parse.c#L95-L114

‭// crypto/property/property_parse.c:103:15: runtime error: signed integer overflow:‬
‭4018467440737095516 * 10 cannot be represented in type 'long long'‬

‭Figure 1.3: An overflow that results from parsing a large decimal number‬

‭char‬‭*‬‭input‬‭=‬‭"a.a=0000000000020000000000000000000000000000000"‬
‭// crypto/property/property_parse.c:149:16: runtime error: left shift of‬
‭2305843009213693952 by 3 places cannot be represented in type 'int64_t' (aka 'long‬
‭long')‬

‭Figure 1.4: An overflow that results from parsing a large octal number‬

‭The following code can be used to reproduce the bug. In order to log the same messages‬
‭shown in the above examples, UndefinedBehaviorSanitizer (UBSan) must be enabled‬
‭(‬‭enable-ubsan‬‭in OpenSSL).‬

‭OSSL_PROPERTY_LIST‬‭*list‬ ‭=‬‭ossl_parse_property(‬‭NULL‬‭,‬‭input);‬
‭if‬‭(list)‬‭{‬

‭ossl_property_free(list);‬
‭}‬

‭Figure 1.5: Code that reproduces the signed long integer overflows‬

‭This finding was discovered by the provider fuzzer described in‬‭appendix D‬‭.‬

‭Recommendations‬
‭Short term, add checks to prevent overflows to the arithmetic operations in‬
‭parse_number‬‭,‬‭parse_hex‬‭, and‬‭parse_oct‬‭.‬

‭Long term, review the project’s current fuzzing coverage to ensure that all input parsers‬
‭have sufficient coverage.‬

‭Trail of Bits‬ ‭22‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/property/property_parse.c#L103
https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/property/property_parse.c#L124
https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/property/property_parse.c#L149

‭2. The provider configuration format is prone to misuse‬

‭Severity:‬‭Low‬ ‭Difficulty:‬‭High‬

‭Type: Configuration‬ ‭Finding ID: TOB-OSSL-2‬

‭Target:‬‭crypto/provider_conf.c‬

‭Description‬
‭Users can load and activate providers using the OpenSSL library configuration file. The file‬
‭format appears to be inspired by the Windows INI configuration file format. The‬
‭documentation in the provider‬‭README‬‭file contains‬‭the following example, describing how‬
‭to load and activate the default and legacy providers.‬

‭openssl_conf = openssl_init‬

‭[openssl_init]‬
‭providers = provider_sect‬

‭[provider_sect]‬
‭default = default_sect‬
‭legacy = legacy_sect‬

‭[default_sect]‬
‭activate =‬‭1‬

‭[legacy_sect]‬
‭activate =‬‭1‬

‭Figure 2.1: An example provider configuration section from the provider‬‭README‬‭file‬
‭(‬‭README-PROVIDERS.md‬‭)‬

‭From the example and the overall file format, end users could easily infer that they could‬
‭use the syntax‬‭activate‬‭=‬‭0‬‭to ensure that a particular‬‭provider is‬‭not‬‭used. This would‬
‭also be consistent with the INI file format, in which values such as‬‭1‬‭,‬‭yes‬‭,‬‭true‬‭, and‬‭on‬
‭would typically be interpreted as true, and in which‬‭0‬‭,‬‭no‬‭,‬‭false‬‭, and‬‭off‬‭would be‬
‭interpreted as false. However, by looking at the provider section parser function‬
‭provider_conf_load‬‭, we see that the value assigned‬‭to the‬‭activate‬‭key is ignored by‬
‭the parser.‬

‭for‬‭(i =‬‭0‬‭; i < sk_CONF_VALUE_num(ecmds); i++) {‬
‭CONF_VALUE *ecmd = sk_CONF_VALUE_value(ecmds, i);‬
‭const‬‭char‬‭*confname = skip_dot(ecmd->name);‬
‭const‬‭char‬‭*confvalue = ecmd->value;‬

‭Trail of Bits‬ ‭23‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/README-PROVIDERS.md#L84

‭OSSL_TRACE2(CONF,‬‭"Provider command: %s = %s\n"‬‭,‬
‭confname, confvalue);‬

‭/* First handle some special pseudo confs */‬

‭/* Override provider name to use */‬
‭if‬‭(strcmp(confname,‬‭"identity"‬‭) ==‬‭0‬‭)‬

‭name = confvalue;‬
‭else‬‭if‬‭(strcmp(confname,‬‭"soft_load"‬‭) ==‬‭0‬‭)‬

‭soft =‬‭1‬‭;‬
‭/* Load a dynamic PROVIDER */‬
‭else‬‭if‬‭(strcmp(confname,‬‭"module"‬‭) ==‬‭0‬‭)‬

‭path = confvalue;‬
‭else‬‭if‬‭(strcmp(confname,‬‭"activate"‬‭) ==‬‭0‬‭)‬

‭activate =‬‭1‬‭;‬
‭}‬

‭if‬‭(activate) {‬
‭ok = provider_conf_activate(libctx, name, value,‬‭path, soft, cnf);‬

‭}‬‭else‬‭{‬
‭// ...‬

‭}‬

‭Figure 2.2: The value assigned to‬‭activate‬‭is ignored‬‭by the‬‭provider_conf_load‬‭function.‬
‭(‬‭crypto/provider_conf.c‬‭)‬

‭We note that this surprising behavior is described in the‬‭man page for the OpenSSL‬
‭configuration file format‬‭, which says the following‬‭about the‬‭activate‬‭key:‬

‭If present, the module is activated. The value assigned to this name is not significant.‬

‭However, users who are not aware of this behavior may end up activating insecure‬
‭providers by mistake.‬

‭Exploit Scenario‬
‭An OpenSSL end user wants to ensure that an application is using only FIPS-compliant‬
‭algorithms. To ensure that the legacy provider is not active, she includes the following‬
‭section in her OpenSSL configuration file and thus enables the legacy provider by mistake‬
‭instead of disabling it as intended.‬

‭[provider_sect]‬
‭# ...‬
‭legacy = legacy_sect‬

‭[legacy_sect]‬
‭activate =‬‭0‬

‭Figure 2.3: An end user could enable an insecure provider by mistake by setting the value for the‬
‭corresponding‬‭activate‬‭key to‬‭0‬‭.‬

‭Trail of Bits‬ ‭24‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/provider_conf.c#L228-L252
https://www.openssl.org/docs/man3.0/man5/config.html
https://www.openssl.org/docs/man3.0/man5/config.html

‭Recommendations‬
‭Short term, have the‬‭provider_conf_load‬‭function return‬‭0‬‭, signaling a fatal error, if a‬
‭user attempts to set the‬‭activate‬‭key to a value different‬‭from‬‭1‬‭.‬

‭Long term, extend the parser to take the value assigned to the‬‭activate‬‭key into account,‬
‭document the values accepted by the parser along with their interpretations, and have the‬
‭parser activate the corresponding provider only on truthy values.‬

‭Trail of Bits‬ ‭25‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭3. The default provider supports insecure algorithms‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭Not Applicable‬

‭Type: Configuration‬ ‭Finding ID: TOB-OSSL-3‬

‭Target:‬‭providers/defltprov.c‬

‭Description‬
‭The default provider includes multiple versions of Triple-DES (based on both the two-key‬
‭and three-key variants of the algorithm). The DES block size is only 64 bits, and the cipher is‬
‭vulnerable to (practical) birthday attacks against long-lived sessions‬‭.‬

‭#ifndef OPENSSL_NO_DES‬
‭ALG(PROV_NAMES_DES_EDE3_ECB, ossl_tdes_ede3_ecb_functions),‬
‭ALG(PROV_NAMES_DES_EDE3_CBC, ossl_tdes_ede3_cbc_functions),‬
‭ALG(PROV_NAMES_DES_EDE3_OFB, ossl_tdes_ede3_ofb_functions),‬
‭ALG(PROV_NAMES_DES_EDE3_CFB, ossl_tdes_ede3_cfb_functions),‬
‭ALG(PROV_NAMES_DES_EDE3_CFB8, ossl_tdes_ede3_cfb8_functions),‬
‭ALG(PROV_NAMES_DES_EDE3_CFB1, ossl_tdes_ede3_cfb1_functions),‬
‭ALG(PROV_NAMES_DES3_WRAP, ossl_tdes_wrap_cbc_functions),‬
‭ALG(PROV_NAMES_DES_EDE_ECB, ossl_tdes_ede2_ecb_functions),‬
‭ALG(PROV_NAMES_DES_EDE_CBC, ossl_tdes_ede2_cbc_functions),‬
‭ALG(PROV_NAMES_DES_EDE_OFB, ossl_tdes_ede2_ofb_functions),‬
‭ALG(PROV_NAMES_DES_EDE_CFB, ossl_tdes_ede2_cfb_functions),‬

‭#endif‬‭/* OPENSSL_NO_DES */‬

‭Figure 3.1: The default provider supports a number of Triple-DES based algorithms.‬
‭(‬‭providers/defltprov.c‬‭)‬

‭NIST SP 800-131A revision 2‬‭disallows the use of the‬‭two-key variant of Triple-DES for‬
‭encryption and has deprecated use of the three-key variant.‬

‭Algorithm‬ ‭Status‬

‭Two-key TDEA Encryption‬ ‭Disallowed‬

‭Two-key TDEA Decryption‬ ‭Legacy use‬

‭Three-key TDEA Encryption‬ ‭Deprecated through 2023‬
‭Disallowed after 2023‬

‭Three-key TDEA Decryption‬ ‭Legacy use‬

‭Figure 3.2: Table 1 in NIST SP 800-131A revision 2 details the current status of two-key and‬
‭three-key Triple-DES (TDEA).‬

‭Trail of Bits‬ ‭26‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://sweet32.info/
https://github.com/openssl/openssl/blob/967f20144025e51d6bce5d115f5eaebea328394d/providers/defltprov.c#L278-L290
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf

‭Exploit Scenario‬
‭An application that supports cipher negotiation relies on OpenSSL for cryptographic‬
‭operations. Because the default provider is loaded, the application supports legacy‬
‭algorithms like the two-key variant of Triple-DES, making it vulnerable to birthday attacks‬
‭like‬‭Sweet32‬‭.‬

‭Recommendations‬
‭Short term, publish a deprecation schedule for Triple-DES-based algorithms.‬

‭Long term, move all Triple-DES-based algorithms to the legacy provider in the next major‬
‭release of OpenSSL.‬

‭Trail of Bits‬ ‭27‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://sweet32.info/

‭4. Provider configuration section can cause a stack overflow‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Denial of Service‬ ‭Finding ID: TOB-OSSL-4‬

‭Target:‬‭crypto/provider_conf.c‬

‭Description‬
‭Parsing a configuration containing a self-referencing string value causes the‬
‭provider_conf_params‬‭function to call itself recursively‬‭and overflow the stack. For‬
‭example, loading the following configuration file, which references the‬‭provider_sect‬
‭section within the same section, causes OpenSSL to crash with a stack overflow.‬

‭openssl_conf‬‭=‬‭openssl_init‬

‭[openssl_init]‬
‭providers‬‭=‬‭provider_sect‬

‭[provider_sect]‬
‭=‬‭provider_sect‬

‭Figure 4.1: A configuration file that causes a stack overflow‬

‭The following code snippet shows the vulnerable code. If the‬‭value‬‭references the section‬
‭in which the corresponding key-value pair is defined, the function will call itself recursively.‬
‭The recursion depth is limited by the‬‭name‬‭buffer‬‭size of 512 bytes. However, if‬‭name‬‭is‬
‭empty, then up to 512 recursive calls are possible. This is because each recursive call will‬
‭append only a single period character [‬‭.‬‭] to the‬‭name‬‭buffer if‬‭name‬‭is empty. Experiments‬
‭show that the stack size limit is hit quickly.‬

‭static‬‭int‬‭provider_conf_params‬‭(OSSL_PROVIDER‬‭*prov,‬
‭OSSL_PROVIDER_INFO‬‭*provinfo,‬
‭const‬‭char‬‭*name‬‭,‬‭const‬‭char‬‭*value,‬
‭const‬‭CONF‬‭*cnf)‬

‭{‬
‭STACK_OF(CONF_VALUE)‬‭*sect;‬
‭int‬‭ok‬‭=‬‭1‬‭;‬

‭sect‬‭=‬‭NCONF_get_section(cnf,‬‭value);‬
‭if‬‭(sect‬‭!=‬‭NULL‬‭)‬‭{‬

‭int‬‭i;‬
‭char‬‭buffer[‬‭512‬‭];‬
‭size_t‬‭buffer_len‬‭=‬‭0‬‭;‬

‭Trail of Bits‬ ‭28‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭OSSL_TRACE1(CONF,‬‭"Provider params: start‬‭section %s\n"‬‭,‬‭value);‬

‭if‬‭(name‬‭!=‬‭NULL‬‭)‬‭{‬
‭OPENSSL_strlcpy(buffer,‬‭name,‬‭sizeof‬‭(buffer));‬
‭OPENSSL_strlcat(buffer,‬‭"."‬‭,‬‭sizeof‬‭(buffer));‬
‭buffer_len‬‭=‬‭strlen(buffer);‬

‭}‬

‭for‬‭(i‬‭=‬‭0‬‭;‬‭i‬‭<‬‭sk_CONF_VALUE_num(sect);‬‭i++)‬‭{‬
‭CONF_VALUE‬‭*sectconf‬‭=‬‭sk_CONF_VALUE_value(sect,‬‭i);‬

‭if‬‭(buffer_len‬‭+‬‭strlen(sectconf->name)‬‭>=‬‭sizeof‬‭(buffer))‬
‭return‬‭0‬‭;‬

‭buffer[buffer_len]‬‭=‬‭'\0'‬‭;‬
‭OPENSSL_strlcat(buffer,‬‭sectconf->name,‬‭sizeof‬‭(buffer));‬
‭if‬‭(!‬‭provider_conf_params(prov,‬‭provinfo,‬‭buffer,‬‭sectconf->value,‬

‭cnf)‬‭)‬
‭return‬‭0‬‭;‬

‭}‬

‭OSSL_TRACE1(CONF,‬‭"Provider params: finish‬‭section %s\n"‬‭,‬‭value);‬
‭}‬‭else‬‭{‬

‭// ...‬
‭}‬

‭return‬‭ok;‬
‭}‬

‭Figure 4.2: The‬‭provider_conf_params‬‭function can‬‭cause a stack overflow.‬
‭(‬‭crypto/provider_conf.c#67–111‬‭)‬

‭Recommendations‬
‭Short term, have the‬‭provider_conf_params‬‭function‬‭count the number of recursive‬
‭calls that will result depending on the configuration file; impose a hard limit (e.g., 10) on the‬
‭number of recursive calls allowed. Alternatively, rewrite this function to store the‬
‭allocations on the heap instead of the stack and iteratively go over the configuration.‬

‭Long term, use‬‭clang-tidy‬‭to detect‬‭recursive calls‬‭and verify that a recursion base case‬
‭prevents the stack from overflowing. Also, improve the project’s fuzzing coverage by fuzzing‬
‭not only the configuration parsing code but also the configuration module initialization‬
‭code.‬

‭Trail of Bits‬ ‭29‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/provider_conf.c#L67-L111
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/checks/misc/no-recursion.html

‭5. Risk of heap buffer overflow during parsing of OIDs‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Undefined Behavior‬ ‭Finding ID: TOB-OSSL-5‬

‭Target:‬‭crypto/asn1/asn_moid.c‬

‭Description‬
‭The ASN1 configuration module reads 1 byte out of bounds when interpreting OIDs‬
‭starting with a comma. The following configuration file contains an OID section that causes‬
‭the parser to read out of bounds.‬

‭openssl_conf‬‭=‬‭openssl_init‬
‭[openssl_init]‬
‭oid_secti‬‭=‬‭asdf‬
‭[asdf]‬
‭lt‬‭=‬‭,comma‬

‭Figure 5.1: A configuration file that causes an out-of-bounds read‬

‭The out-of-bounds read happens in the‬‭do_create‬‭function.‬‭The function first looks for‬
‭the pointer‬‭p‬‭to the first comma. Then, it decrements‬‭the pointer by 1 byte. If the input‬
‭value‬‭starts with a comma,‬‭p‬‭will then point to an‬‭out-of-bounds memory region.‬

‭p‬‭=‬‭strrchr(value,‬‭','‬‭);‬
‭if‬‭(p‬‭==‬‭NULL‬‭)‬‭{‬

‭// ...‬
‭}‬‭else‬‭{‬

‭// ...‬
‭p--;‬
‭while‬‭(ossl_isspace(*p))‬‭{‬

‭// ...‬
‭}‬
‭// ...‬

‭}‬

‭Figure 5.2: The‬‭do_create‬‭function may read 1 byte‬‭out of bounds.‬
‭(‬‭crypto/asn1/asn_moid.c#66–93‬‭)‬

‭Recommendations‬
‭Short term, have the‬‭do_create‬‭function check that‬‭p‬‭will be in bounds before‬
‭decrementing it.‬

‭Trail of Bits‬ ‭30‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/asn1/asn_moid.c#L66-L93

‭Long term, improve the project’s fuzzing coverage by fuzzing not only the configuration‬
‭parsing code but also the configuration module initialization code, which contains further‬
‭parsing code (e.g., for OIDs).‬

‭Trail of Bits‬ ‭31‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭6. Risk of segmentation fault when loading property list in “stable”‬
‭configuration section‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Denial of Service‬ ‭Finding ID: TOB-OSSL-6‬

‭Target:‬‭crypto/asn1/asn_mstbl.c‬

‭Description‬
‭Parsing a configuration containing a malicious property string in a “stable” section can‬
‭cause a segmentation fault. The following configuration file contains the property string‬
‭min‬‭. Loading this configuration will cause a null‬‭pointer dereference because the value of‬
‭the property named‬‭min‬‭is null.‬

‭openssl_conf‬‭=‬‭openssl_init‬

‭[openssl_init]‬
‭s‬‭=‬‭mstbl‬

‭[mstbl]‬
‭id-tc26‬‭=‬‭min‬

‭Figure 6.1: An example configuration that causes a segmentation fault‬

‭The null pointer dereference happens in the‬‭do_tcreate‬‭function. When parsing the‬
‭property list, the value is assumed to be non-null. Passing a null value to‬‭strtoul‬‭is‬
‭undefined behavior. On macOS, this causes OpenSSL to crash with a segmentation fault.‬

‭lst‬‭=‬‭X509V3_parse_list(value);‬
‭if‬‭(!lst)‬

‭goto‬‭err;‬
‭for‬‭(i‬‭=‬‭0‬‭;‬‭i‬‭<‬‭sk_CONF_VALUE_num(lst);‬‭i++)‬‭{‬

‭cnf‬‭=‬‭sk_CONF_VALUE_value(lst,‬‭i);‬
‭if‬‭(strcmp(cnf->name,‬‭"min"‬‭)‬‭==‬‭0‬‭)‬‭{‬

‭tbl_min‬‭=‬‭strtoul(‬‭cnf->value‬‭,‬‭&eptr,‬‭0‬‭);‬
‭if‬‭(*eptr)‬

‭goto‬‭err;‬
‭}‬‭else‬‭if‬‭(strcmp(cnf->name,‬‭"max"‬‭)‬‭==‬‭0‬‭)‬‭{‬

‭tbl_max‬‭=‬‭strtoul(‬‭cnf->value‬‭,‬‭&eptr,‬‭0‬‭);‬
‭if‬‭(*eptr)‬

‭goto‬‭err;‬
‭}‬‭else‬‭if‬‭(strcmp(cnf->name,‬‭"mask"‬‭)‬‭==‬‭0‬‭)‬‭{‬

‭if‬‭(!ASN1_str2mask(‬‭cnf->value‬‭,‬‭&tbl_mask)‬‭||‬‭!tbl_mask)‬
‭goto‬‭err;‬

‭}‬‭else‬‭if‬‭(strcmp(cnf->name,‬‭"flags"‬‭)‬‭==‬‭0‬‭)‬‭{‬

‭Trail of Bits‬ ‭32‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭if‬‭(strcmp(‬‭cnf->value‬‭,‬‭"nomask"‬‭)‬‭==‬‭0‬‭)‬
‭tbl_flags‬‭=‬‭STABLE_NO_MASK;‬

‭else‬‭if‬‭(strcmp(cnf->value,‬‭"none"‬‭)‬‭==‬‭0‬‭)‬
‭tbl_flags‬‭=‬‭STABLE_FLAGS_CLEAR;‬

‭else‬
‭goto‬‭err;‬

‭}‬‭else‬
‭goto‬‭err;‬

‭}‬

‭Figure 6.2: The implementation of‬‭do_tcreate‬‭fails‬‭to check whether‬‭cnf->value‬‭is null.‬
‭(‬‭crypto/asn1/asn_mstbl.c#70–95‬‭)‬

‭Recommendations‬
‭Short term, add a null check before the use of‬‭cnf->value‬‭.‬

‭Long term, improve the project’s fuzzing coverage by fuzzing not only the configuration‬
‭parsing code but also the configuration module initialization code.‬

‭Trail of Bits‬ ‭33‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/asn1/asn_mstbl.c#L70-L95

‭7. The ossl_prov_memdup function does not update dst_len if the call fails‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Error Reporting‬ ‭Finding ID: TOB-OSSL-7‬

‭Target:‬‭providers/common/provider_util.c‬

‭Description‬
‭The‬‭ossl_prov_memdup‬‭function is used throughout the‬‭provider implementations to‬
‭securely duplicate a contiguous block of memory. If the copy operation succeeds, the‬
‭function updates‬‭dst_len‬‭to the value of‬‭src_len‬‭.‬‭However, if the allocation fails, the‬
‭function sets‬‭dst‬‭to‬‭NULL‬‭but fails to set‬‭dst_len‬‭to‬‭0‬‭.‬

‭/* Duplicate a lump of memory safely */‬
‭int‬‭ossl_prov_memdup‬‭(‬‭const‬‭void‬‭*src,‬‭size_t‬‭src_len,‬

‭unsigned‬‭char‬‭**dest,‬‭size_t‬‭*dest_len)‬
‭{‬

‭if‬‭(src !=‬‭NULL‬‭) {‬
‭if‬‭((*dest = OPENSSL_memdup(src, src_len))‬‭==‬‭NULL‬‭) {‬

‭ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);‬
‭return‬‭0‬‭;‬

‭}‬
‭*dest_len = src_len;‬

‭}‬‭else‬‭{‬
‭*dest =‬‭NULL‬‭;‬
‭*dest_len =‬‭0‬‭;‬

‭}‬
‭return‬‭1‬‭;‬

‭}‬

‭Figure 7.1: If the‬‭src‬‭argument is‬‭NULL‬‭, then‬‭dst_len‬‭is set to‬‭0‬‭, but if the allocation fails,‬
‭dst_len‬‭is not updated. (‬‭providers/common/provider_util.c‬‭)‬

‭Recommendations‬
‭Short term, have‬‭ossl_prov_memdup‬‭set‬‭dst_len‬‭to‬‭0‬‭if the call to‬‭OPENSSL_memdup‬‭fails.‬

‭Long term, ensure that return values are always initialized before returning control to the‬
‭calling function.‬

‭Trail of Bits‬ ‭34‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/967f20144025e51d6bce5d115f5eaebea328394d/providers/common/provider_util.c#L355-L369

‭8. API misuse may lead to unexpected segmentation fault‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Undefined Behavior‬ ‭Finding ID: TOB-OSSL-8‬

‭Target: Multiple files‬

‭Description‬
‭Several API usage patterns might lead to unexpected segmentation faults.‬

‭1. If the encoder API is used without calling the‬‭OSSL_ENCODER_CTX_set_cleanup‬
‭function, a null pointer dereference will occur in the‬‭encoder_process‬‭function.‬

‭OSSL_ENCODER_CTX‬‭*ctx‬‭=‬‭NULL‬‭;‬

‭if‬‭((ctx‬‭=‬‭OSSL_ENCODER_CTX_new())‬‭==‬‭NULL‬‭)‬‭{‬
‭ERR_raise(ERR_LIB_OSSL_ENCODER,‬‭ERR_R_MALLOC_FAILURE);‬
‭return‬‭0‬‭;‬

‭}‬

‭OSSL_ENCODER_CTX_set_construct(ctx,‬‭test_construct);‬

‭OSSL_ENCODER‬‭*encoder‬‭=‬‭OSSL_ENCODER_fetch(‬‭NULL‬‭,‬‭"RSA"‬‭,‬
‭"output=pem,structure=SubjectPublicKeyInfo"‬‭);‬

‭OSSL_ENCODER_CTX_add_encoder(ctx,‬‭encoder);‬

‭// Not including this call leads to a SEGV.‬
‭// OSSL_ENCODER_CTX_set_cleanup(ctx, cleanup);‬

‭OSSL_ENCODER_to_bio(ctx,‬‭mem);‬

‭Figure 8.1: An example of an invalid use of‬‭OSSL_ENCODER_CTX‬

‭2. The following dispatch array definition passes the initialization checks but causes null‬
‭pointer dereferences when used later on. This provider is missing a‬‭NEWCTX‬‭and‬‭FREE‬
‭function. However, during the initialization checks (figure 8.3), only the number of‬
‭OSSL_FUNC_KDF_NEWCTX‬‭entries is checked, regardless‬‭of whether they are null.‬

‭const‬‭OSSL_DISPATCH‬‭ossl_kdf_hkdf_functions[]‬‭=‬‭{‬
‭{‬‭OSSL_FUNC_KDF_NEWCTX,‬‭NULL‬‭},‬
‭{‬‭OSSL_FUNC_KDF_NEWCTX,‬‭NULL‬‭},‬
‭{‬‭OSSL_FUNC_KDF_DUPCTX,‬‭(‬‭void‬‭(*)(‬‭void‬‭))kdf_hkdf_dup‬‭},‬
‭{‬‭OSSL_FUNC_KDF_RESET,‬‭(‬‭void‬‭(*)(‬‭void‬‭))kdf_hkdf_reset‬‭},‬
‭{‬‭OSSL_FUNC_KDF_DERIVE,‬‭(‬‭void‬‭(*)(‬‭void‬‭))kdf_hkdf_derive‬‭},‬

‭Trail of Bits‬ ‭35‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/encode_decode/encoder_lib.c#L673

‭{‬‭OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,‬
‭(‬‭void‬‭(*)(‬‭void‬‭))kdf_hkdf_settable_ctx_params‬‭},‬

‭{‬‭OSSL_FUNC_KDF_SET_CTX_PARAMS,‬‭(‬‭void‬‭(*)(‬‭void‬‭))kdf_hkdf_set_ctx_params‬‭},‬
‭{‬‭OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,‬
‭(‬‭void‬‭(*)(‬‭void‬‭))kdf_hkdf_gettable_ctx_params‬‭},‬

‭{‬‭OSSL_FUNC_KDF_GET_CTX_PARAMS,‬‭(‬‭void‬‭(*)(‬‭void‬‭))kdf_hkdf_get_ctx_params‬‭},‬
‭{‬‭0‬‭,‬‭NULL‬‭}‬

‭};‬

‭Figure 8.2: An invalid provider definition‬

‭for‬‭(;‬‭fns->function_id‬‭!=‬‭0‬‭;‬‭fns++)‬‭{‬
‭switch‬‭(fns->function_id)‬‭{‬
‭case‬‭OSSL_FUNC_KDF_NEWCTX‬‭:‬

‭if‬‭(kdf->newctx‬‭!=‬‭NULL‬‭)‬
‭break‬‭;‬

‭kdf->newctx‬‭=‬‭OSSL_FUNC_kdf_newctx(fns);‬
‭fnctxcnt++;‬
‭break‬‭;‬

‭// ...‬
‭}‬
‭// ...‬
‭if‬‭(fnkdfcnt‬‭!=‬‭1‬‭||‬‭fnctxcnt‬‭!=‬‭2‬‭)‬‭{‬

‭/*‬
‭* In order to be a consistent set of functions we must have at least‬
‭* a derive function, and a complete set of context management‬
‭* functions.‬
‭*/‬
‭evp_kdf_free(kdf);‬
‭ERR_raise(ERR_LIB_EVP,‬‭EVP_R_INVALID_PROVIDER_FUNCTIONS);‬
‭return‬‭NULL‬‭;‬

‭}‬

‭Figure 8.3: Initialization checks (‬‭openssl/crypto/evp/kdf_meth.c#78–85‬‭)‬

‭EVP_KDF‬‭*kdf‬‭=‬‭EVP_KDF_fetch(‬‭NULL‬‭,‬‭"HKDF"‬‭,‬‭NULL‬‭);‬
‭EVP_KDF_CTX‬‭*kctx‬‭=‬‭EVP_KDF_CTX_new(kdf);‬
‭EVP_KDF_CTX_free(kctx);‬

‭Figure 8.4: Example code that causes a null pointer dereference when used with the above‬
‭dispatch array‬

‭This finding is related to‬‭this GitHub issue‬‭, which‬‭discusses the lack of the‬
‭EVP_CIPHER_CTX_copy‬‭function.‬

‭Recommendations‬
‭Short term, add null checks to the relevant implementation. For the first issue, the code‬
‭should check whether a cleanup function is defined. For the second issue, add null checks‬
‭for the functions in the dispatch array.‬

‭Trail of Bits‬ ‭36‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/evp/kdf_meth.c#L78-L85
https://github.com/openssl/openssl/issues/21887

‭Long term, develop more precise guidelines on the parameters and functions for which‬
‭users are responsible for adding null checks.‬

‭Trail of Bits‬ ‭37‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭9. Insufficient validation in dh_gen_common_set_params‬

‭Severity:‬‭Low‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-OSSL-9‬

‭Target:‬‭providers/implementations/keymgmt/dh_kmgmt.c‬

‭Description‬
‭The‬‭dh_gen_common_set_params‬‭function is used to set‬‭or update the parameters held‬
‭by a Diffie-Hellman (DH) key management context. (It is invoked if a user calls‬
‭evp_keymgmt_set_params‬‭on a DH‬‭EVP_KEYMGMT‬‭object.)‬‭One of the settable‬
‭parameters that the function accepts is the generation type, which determines how DH‬
‭parameters (like primes and sub-group generators) are generated.‬

‭p = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_FFC_TYPE);‬
‭if‬‭(p !=‬‭NULL‬‭) {‬

‭if‬‭(p->data_type != OSSL_PARAM_UTF8_STRING‬
‭||‬‭((gctx->gen_type =‬

‭dh_gen_type_name2id_w_default(p->data,‬‭gctx->dh_type)) ==‬‭-1‬‭)‬‭) {‬
‭ERR_raise(ERR_LIB_PROV, ERR_R_PASSED_INVALID_ARGUMENT);‬
‭return‬‭0‬‭;‬

‭}‬
‭}‬

‭Figure 9.1: The‬‭gen_type‬‭field on‬‭gctx‬‭could be updated‬‭with an invalid value (‬‭-1‬‭).‬
‭(‬‭providers/implementations/keymgmt/dh_kmgmt.c‬‭)‬

‭If the parameter value is invalid, the function will return‬‭0‬‭, signaling an error, but will still‬
‭update the generation type‬‭gctx->gen_type‬‭to‬‭-1‬‭, which‬‭does not represent a valid‬
‭parameter generation type.‬

‭/* DH parameter generation types used by EVP_PKEY_CTX_set_dh_paramgen_type() */‬
‭# define DH_PARAMGEN_TYPE_GENERATOR 0‬ ‭/* Use‬‭a safe prime generator */‬
‭# define DH_PARAMGEN_TYPE_FIPS_186_2 1‬ ‭/* Use‬‭FIPS186-2 standard */‬
‭# define DH_PARAMGEN_TYPE_FIPS_186_4 2‬ ‭/* Use‬‭FIPS186-4 standard */‬
‭# define DH_PARAMGEN_TYPE_GROUP 3‬ ‭/* Use‬‭a named safe prime group */‬

‭Figure 9.2: Valid parameter generation types (‬‭include/openssl/dh.h‬‭)‬

‭Since the value of the parameter generation type is typically not checked exhaustively, this‬
‭could lead to type confusion issues or segmentation faults.‬

‭if‬‭(‬‭gctx->gen_type == DH_PARAMGEN_TYPE_GROUP‬
‭&& gctx->ffc_params ==‬‭NULL‬‭) {‬

‭Trail of Bits‬ ‭38‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/cb224f4e27b0f0e8d0a88193aa92eb8bfd17ef15/providers/implementations/keymgmt/dh_kmgmt.c#L530-L538
https://github.com/openssl/openssl/blob/e265fe3ad2805e66d706f03da8c82e6694607573/include/openssl/dh.h#L28-L32

‭// ...‬
‭}‬‭else‬‭{‬

‭// ...‬

‭if‬‭((gctx->selection & OSSL_KEYMGMT_SELECT_DOMAIN_PARAMETERS)‬‭!=‬‭0‬‭) {‬
‭if‬‭(‬‭gctx->gen_type == DH_PARAMGEN_TYPE_GENERATOR‬‭)‬

‭// ...‬
‭else‬

‭ret = ossl_dh_generate_ffc_parameters(dh,‬‭gctx->gen_type,‬
‭gctx->pbits, gctx->qbits,‬
‭gencb);‬

‭// ...‬
‭}‬

‭}‬

‭Figure 9.3: An invalid generation type would not be detected in‬‭dh_gen‬‭during DH parameter‬
‭generation. (‬‭providers/implementations/keymgmt/dh_kmgmt.c‬‭)‬

‭Exploit Scenario‬
‭An application that relies on OpenSSL for key management attempts to set the parameter‬
‭generation type for a DH key exchange. This fails, but the parameter generation type is still‬
‭updated. When the context is used to generate DH parameters, the wrong parameter type‬
‭is generated by the library. When the application attempts to use the context to complete‬
‭the key exchange, the library crashes with a segmentation fault.‬

‭Recommendations‬
‭Short term, have the‬‭dh_gen_common_set_params‬‭function‬‭check the return value before‬
‭updating the generation type on the context.‬

‭Long term, unit test error paths to ensure parameters are not updated if a call fails.‬

‭Trail of Bits‬ ‭39‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/cb224f4e27b0f0e8d0a88193aa92eb8bfd17ef15/providers/implementations/keymgmt/dh_kmgmt.c#L707-L763

‭10. HTTP client redirects to local host instead of remote one‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-OSSL-10‬

‭Target:‬‭crypto/http/http_client.c‬

‭Description‬
‭The HTTP client redirects to a local host even if the redirection response contains a URL‬
‭with a remote host. A server responding with the following HTTP response redirects a client‬
‭to the same server instead of a different one.‬

‭HTTP/1.1 302 Everything Is Just Fine‬
‭Server: netcat‬
‭Location: //openssl.org‬

‭Figure 10.1: HTTP server response‬

‭This is due to an invalid assumption about URLs. The HTTP client assumes that URLs‬
‭starting with a slash [‬‭/‬‭] generally refer to a host-relative‬‭resource location. However, URLs‬
‭can start with a double slash to indicate that a resource is located on a different host but is‬
‭accessible over the same protocol (i.e., HTTP/HTTPS). The bug exists in the following code,‬
‭where the redirection URL is compared with a slash.‬

‭if‬‭(resp‬‭==‬‭NULL‬‭&&‬‭redirection_url‬‭!=‬‭NULL‬‭)‬‭{‬
‭if‬‭(redirection_ok(++n_redirs,‬‭current_url,‬‭redirection_url)‬

‭&&‬‭may_still_retry(max_time,‬‭&timeout))‬‭{‬
‭(‬‭void‬‭)BIO_reset(bio);‬
‭OPENSSL_free(current_url);‬
‭current_url‬‭=‬‭redirection_url;‬
‭if‬‭(*redirection_url‬‭==‬‭'/'‬‭)‬‭{‬‭/* redirection‬‭to same server */‬

‭// ...‬
‭goto‬‭new_rpath;‬

‭}‬
‭// ...‬
‭(‬‭void‬‭)OSSL_HTTP_close(rctx,‬‭1‬‭);‬
‭// ...‬
‭continue‬‭;‬

‭}‬
‭// ...‬

‭}‬

‭Figure 10.2: The invalid assumption about URLs when interpreting redirection URLs‬
‭(‬‭openssl/crypto/http/http_client.c#1183–1210‬‭)‬

‭Trail of Bits‬ ‭40‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/http/http_client.c#L1183-L1210

‭A similar comparison is done in the‬‭redirection_ok‬‭function. Even though the check in‬
‭that function does not conform to the URL specification, it does not constitute a bug.‬

‭The issue can be reproduced by launching a server using the command‬‭while‬‭true;‬‭do‬
‭cat‬‭$HTTP_RESPONSE‬‭|‬‭nc‬‭-l‬‭8000;‬‭done‬‭, where‬‭$HTTP_RESPONSE‬‭points to a file‬
‭containing the contents of figure 10.1.‬

‭Note that this issue could allow an attacker to circumvent a web application firewall (WAF)‬
‭protecting an application. Consider using a WAF that disallows requests to local hosts‬
‭because they could be used to launch SSRF attacks against server A. Now if server A makes‬
‭a request to server B using the OpenSSL client, which is redirected to‬ ‭//openssl.org‬‭,‬
‭the OpenSSL client will attempt to load a local resource on server A. However, the WAF‬
‭would not recognize this as a request to a local host and would allow it. This opens up‬
‭server A to SSRF attacks from malicious third-party servers.‬

‭Recommendations‬
‭Short term, modify the code to check whether the URL starts with a double slash and to not‬
‭redirect to the‬‭new_rpath‬‭goto‬‭if so.‬

‭Long term, replace the URL parser with a tested implementation. Also, avoid implementing‬
‭checks on plain URL strings. Instead, provide the functionality in‬‭http_lib.c‬‭, which can be‬
‭tested.‬

‭Trail of Bits‬ ‭41‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/http/http_client.c#L1125-L1131

‭11. OCSP requests might hang if the server responds with infinite headers‬

‭Severity:‬‭Medium‬ ‭Difficulty:‬‭High‬

‭Type: Denial of Service‬ ‭Finding ID: TOB-OSSL-11‬

‭Target:‬‭crypto/http/http_client.c‬

‭Description‬
‭An OCSP request sent by the OpenSSL library might cause a hang in the HTTP client. This is‬
‭because the HTTP client accepts an unbounded number of HTTP headers. The behavior can‬
‭be reproduced by creating an HTTP server that sends headers in a loop. The following‬
‭figure (which is an excerpt from figure F.1 in‬‭appendix‬‭F‬‭) shows how to create a malicious‬
‭server that never stops sending HTTP headers.‬

‭char‬‭validreq[]‬‭=‬‭"HTTP/1.1 200 OK\x0D\x0A"‬
‭"Content-Type: application/ocsp-response\x0D\x0A"‬‭;‬

‭void‬‭send_payload‬‭(‬‭int‬‭fd)‬‭{‬
‭send(fd,‬‭validreq,‬‭sizeof‬‭(validreq)‬‭-‬‭1‬‭,‬‭MSG_MORE);‬
‭while‬‭(‬‭1‬‭)‬‭{‬

‭send(fd,‬‭"a:b\x0d\x0a"‬‭,‬‭5‬‭,‬‭MSG_MORE);‬
‭}‬

‭}‬

‭// driver code from figure F.1‬

‭Figure 11.1: This is a malicious HTTP server that sends an infinite stream of HTTP headers. The‬
‭driver code from appendix F is required to execute this.‬

‭When the following OpenSSL OCSP command is invoked against a malicious OCSP server,‬
‭the program will hang indefinitely:‬

‭openssl‬‭ocsp‬‭-issuer‬‭cert1.pem‬‭-cert‬‭cert.pem‬‭-url‬
‭http://localhost:8080‬‭.‬

‭This is due to the following code in‬‭http_client.c‬‭,‬‭which loops indefinitely:‬

‭/* Attempt to read a line in */‬
‭next_line‬‭:‬

‭// ...‬
‭n‬‭=‬‭BIO_get_mem_data(rctx->mem,‬‭&p);‬
‭// ...‬
‭n‬‭=‬‭BIO_gets(rctx->mem,‬‭buf,‬‭rctx->buf_size);‬
‭// ...‬

‭Trail of Bits‬ ‭42‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭key‬‭=‬‭buf;‬
‭value‬‭=‬‭strchr(key,‬‭':'‬‭);‬
‭if‬‭(value‬‭!=‬‭NULL‬‭)‬‭{‬

‭// ...‬
‭}‬
‭if‬‭(value‬‭!=‬‭NULL‬‭&&‬‭line_end‬‭!=‬‭NULL‬‭)‬‭{‬

‭if‬‭(rctx->state‬‭==‬‭OHS_REDIRECT‬
‭&&‬‭OPENSSL_strcasecmp(key,‬‭"Location"‬‭)‬‭==‬‭0‬‭)‬‭{‬

‭// ...‬
‭}‬
‭if‬‭(OPENSSL_strcasecmp(key,‬‭"Content-Type"‬‭)‬‭==‬‭0‬‭)‬‭{‬

‭// ...‬
‭}‬
‭// ...‬

‭}‬
‭/* Look for blank line indicating end of headers‬‭*/‬
‭for‬‭(p‬‭=‬‭rctx->buf;‬‭*p‬‭!=‬‭'\0'‬‭;‬‭p++)‬‭{‬

‭if‬‭(*p‬‭!=‬‭'\r'‬‭&&‬‭*p‬‭!=‬‭'\n'‬‭)‬
‭break‬‭;‬

‭}‬
‭if‬‭(*p‬‭!=‬‭'\0'‬‭)‬‭/* not end of headers */‬

‭goto‬‭next_line;‬

‭Figure 11.2: The code responsible for parsing headers, which can loop indefinitely‬
‭(‬‭openssl/crypto/http/http_client.c#639–756‬‭)‬

‭This finding is inspired by‬‭CVE-2023-38039‬‭.‬

‭Exploit Scenario‬
‭A server application is checking the validity of certificates using OpenSSL. A malicious OCSP‬
‭server causes the server application to hang by sending an infinite stream of headers.‬

‭Recommendations‬
‭Short term, limit the number of headers received to a reasonable number (e.g., 30). This is‬
‭already done for the length of HTTP lines using‬‭OSSL_HTTP_DEFAULT_MAX_LINE_LEN‬‭.‬

‭Long term, consider switching to a more battle-hardened HTTP client library. The‬
‭third-party library could be an optional dependency and the current implementation could‬
‭be used as fallback. The‬‭PicoHTTPParser‬‭(MIT/Perl‬‭licensed) by the‬‭h2o‬‭project could be a‬
‭candidate for such a library.‬

‭Trail of Bits‬ ‭43‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/http/http_client.c#L639-L756
https://curl.se/docs/CVE-2023-38039.html
https://github.com/h2o/picohttpparser
https://github.com/h2o/h2o

‭12. Calling EVP_KDF_CTX_reset causes a double free when the context is‬
‭freed‬

‭Severity:‬‭Low‬ ‭Difficulty:‬‭High‬

‭Type: Undefined Behavior‬ ‭Finding ID: TOB-OSSL-12‬

‭Target:‬‭providers/implementations/kdfs/scrypt.c‬

‭Description‬
‭A KDF context allows the current state to be reset using the‬‭EVP_KDF_CTX_reset‬‭function.‬
‭After a reset, the Scrypt implementation will cause a double free either when it is reset‬
‭again or when it is eventually freed. Since pointer fields in the context are not explicitly set‬
‭to null after the corresponding data is freed, the next reset will cause the‬‭OPENSSL_free‬
‭function to be called on already freed data. This behavior is implemented in the‬
‭kdf_scrypt_reset‬‭function, which frees data but does‬‭not set the pointers to null, like‬
‭the‬‭kdf_hkdf_reset‬‭function does, for example.‬

‭static‬‭void‬‭kdf_scrypt_reset‬‭(‬‭void‬‭*vctx)‬
‭{‬

‭KDF_SCRYPT‬‭*ctx‬‭=‬‭(KDF_SCRYPT‬‭*)vctx;‬

‭OPENSSL_free(ctx->salt);‬
‭OPENSSL_clear_free(ctx->pass,‬‭ctx->pass_len);‬
‭kdf_scrypt_init(ctx);‬

‭}‬

‭Figure 12.1: The function that frees the current‬‭salt‬‭and‬‭pass‬‭field but does not set them to‬
‭null (‬‭openssl/providers/implementations/kdfs/scrypt.c#92–99‬‭)‬

‭The code is reachable through the following test case.‬

‭EVP_KDF‬‭*kdf;‬
‭EVP_KDF_CTX‬‭*kctx‬‭=‬‭NULL‬‭;‬
‭OSSL_PARAM‬‭params[‬‭6‬‭],‬‭*p‬‭=‬‭params;‬

‭if‬‭((kdf‬‭=‬‭EVP_KDF_fetch(‬‭NULL‬‭,‬‭"scrypt"‬‭,‬‭NULL‬‭))‬‭==‬‭NULL‬‭)‬‭{‬
‭goto‬‭end;‬

‭}‬

‭kctx‬‭=‬‭EVP_KDF_CTX_new(kdf);‬
‭EVP_KDF_free(kdf);‬
‭if‬‭(kctx‬‭==‬‭NULL‬‭)‬‭{‬

‭goto‬‭end;‬
‭}‬

‭Trail of Bits‬ ‭44‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/providers/implementations/kdfs/hkdf.c#L127
https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/providers/implementations/kdfs/scrypt.c#L92-L99

‭*p++‬‭=‬‭OSSL_PARAM_construct_utf8_string(‬‭"digest"‬‭,‬‭"sha256"‬‭,‬‭(‬‭size_t‬‭)‬‭7‬‭);‬
‭*p++‬‭=‬‭OSSL_PARAM_construct_octet_string(‬‭"salt"‬‭,‬‭"salt"‬‭,‬‭(‬‭size_t‬‭)‬‭4‬‭);‬
‭*p++‬‭=‬‭OSSL_PARAM_construct_octet_string(‬‭"key"‬‭,‬‭"secret"‬‭,‬‭(‬‭size_t‬‭)‬‭6‬‭);‬
‭*p++‬‭=‬‭OSSL_PARAM_construct_octet_string(‬‭"info"‬‭,‬‭"label"‬‭,‬‭(‬‭size_t‬‭)‬‭5‬‭);‬
‭*p‬‭=‬‭OSSL_PARAM_construct_end();‬

‭if‬‭(EVP_KDF_CTX_set_params(kctx,‬‭params)‬‭<=‬‭0‬‭)‬‭{‬
‭goto‬‭end;‬

‭}‬

‭EVP_KDF_CTX_reset(kctx);‬
‭// calling reset here again also causes a double free:‬‭EVP_KDF_CTX_reset(kctx);‬

‭end‬‭:‬
‭EVP_KDF_CTX_free(kctx);‬
‭return‬‭1‬‭;‬

‭Figure 12.2: A test case that resets and clears the KDF context‬

‭Exploit Scenario‬
‭A user of OpenSSL implements a function that conditionally resets the Scrypt KDF before‬
‭freeing it. During testing, the double free is not triggered because the branch that executes‬
‭EVP_KDF_CTX_reset‬‭is not tested. In the production‬‭system, this branch is reachable‬
‭through a specific input. An attacker could use this behavior to either crash the system or‬
‭cause undefined behavior.‬

‭Recommendations‬
‭Short term, have the code set the‬‭salt‬‭,‬‭pass‬‭, and‬‭pass_len‬‭fields to‬‭0‬‭. Alternatively, have‬
‭the code clear out the memory of the whole context if this is desired (i.e.,‬‭memset(ctx,‬‭0,‬
‭sizeof(*ctx))‬‭).‬

‭Long term, add tests that call all operation functions for each provider implementation.‬
‭Also, deploy the fuzzer for the providers, which is provided in‬‭appendix D‬‭.‬

‭Trail of Bits‬ ‭45‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭13. The aesni_cbc_hmac_sha256_cipher function depends on‬
‭compiler-specific behavior‬

‭Severity:‬‭Low‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-OSSL-13‬

‭Target:‬‭crypto/evp/e_aes_cbc_hmac_sha256.c‬

‭Description‬
‭The implementation of the‬‭aesni_cbc_hmac_sha256_cipher‬‭function uses signed‬
‭integer right-shifts when verifying the HMAC. The type of shift used is‬
‭implementation-dependent according to the C99 standard, which means that the behavior‬
‭of the function may vary between compilers.‬

‭for‬‭(res =‬‭0‬‭, i =‬‭0‬‭, j =‬‭0‬‭; j < maxpad + SHA256_DIGEST_LENGTH;‬
‭j++) {‬
‭c = p[j];‬
‭cmask =‬

‭((‬‭int‬‭)(j - off - SHA256_DIGEST_LENGTH)) >>‬
‭(‬‭sizeof‬‭(‬‭int‬‭) *‬‭8‬‭-‬‭1‬‭);‬

‭res |= (c ^ pad) & ~cmask;‬‭/* ... and padding‬‭*/‬
‭cmask &=‬‭((‬‭int‬‭)(off -‬‭1‬‭- j)) >> (‬‭sizeof‬‭(‬‭int‬‭)‬‭*‬‭8‬‭-‬‭1‬‭);‬
‭res |= (c ^ pmac->c[i]) & cmask;‬
‭i +=‬‭1‬‭& cmask;‬

‭}‬

‭Figure 13.1: HMAC verification in‬‭aesni_cbc_hmac_sha256_cipher‬‭depends on‬
‭compiler-specific behavior. (‬‭crypto/evp/e_aes_cbc_hmac_sha256.c‬‭)‬

‭Signed integer right-shifts may be implemented as either arithmetic or logical right-shifts‬
‭according to section 6.5.7 of‬‭the C99 standard‬‭:‬

‭If E1 has a signed type and a negative value, the resulting value is‬
‭implementation-defined.‬

‭This means that if the shifted value‬‭E1‬‭is negative,‬‭E1‬‭>>‬‭(sizeof(int)‬‭*‬‭8‬‭-‬‭1)‬‭may be‬
‭either‬‭1‬‭or‬‭-1‬‭, depending on the compiler. It follows‬‭that the behavior of the code above‬
‭may also be compiler-dependent.‬

‭The same issue is also present in the implementations of the following functions:‬

‭●‬ ‭aesni_cbc_hmac_sha1_cipher‬‭(in‬‭e_aes_cbc_hmac_sha1.c‬‭)‬

‭●‬ ‭aesni_cbc_hmac_sha1_cipher‬‭(in‬‭cipher_aes_cbc_hmac_sha1_hw.c‬‭)‬

‭Trail of Bits‬ ‭46‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/ed576acdf591d4164905ab98e89ca5a3b99d90ab/crypto/evp/e_aes_cbc_hmac_sha256.c#L709-L719
https://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
https://github.com/openssl/openssl/blob/967f20144025e51d6bce5d115f5eaebea328394d/crypto/evp/e_aes_cbc_hmac_sha1.c#L712-L721
https://github.com/openssl/openssl/blob/38fc02a7084438e384e152effa84d4bf085783c9/providers/implementations/ciphers/cipher_aes_cbc_hmac_sha1_hw.c#L606-L616

‭●‬ ‭aesni_cbc_hmac_sha256_cipher‬‭(in‬‭cipher_aes_cbc_hmac_sha256_hw.c‬‭)‬

‭Exploit Scenario‬
‭A developer builds OpenSSL with a C99-compliant compiler that uses a logical right-shift for‬
‭signed integer right-shifts. This causes the library to fail to validate TLS-record HMACs.‬

‭Recommendations‬
‭Short term, rewrite the HMAC verification in all of the implementations of‬
‭aesni_cbc_hmac_sha256_cipher‬‭and‬‭aesni_cbc_hmac_sha1_cipher‬‭to not use‬
‭signed integer right-shifts.‬

‭Long term, regularly run static analysis tools that detect undefined and‬
‭implementation-specific behavior like Cppcheck.‬

‭Trail of Bits‬ ‭47‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/38fc02a7084438e384e152effa84d4bf085783c9/providers/implementations/ciphers/cipher_aes_cbc_hmac_sha256_hw.c#L658-L669

‭14. Use after free when setting invalid properties on the Scrypt algorithm or if‬
‭SHA-256 is missing‬

‭Severity:‬‭Low‬ ‭Difficulty:‬‭High‬

‭Type: Undefined Behavior‬ ‭Finding ID: TOB-OSSL-14‬

‭Target:‬‭providers/implementations/kdfs/scrypt.c‬

‭Description‬
‭The Scrypt KDF implementation frees the‬‭EVP_KDF_CTX‬‭data if it fails to fetch the SHA-256‬
‭algorithm. This can happen either if an invalid‬‭properties‬‭string is set through the‬
‭OSSL_PARAM‬‭array (‬‭OSSL_KDF_PARAM_PROPERTIES‬‭) or if‬‭SHA-256 is not available through‬
‭the currently loaded providers. After the unexpected free, a use-after-free bug can occur.‬

‭Figure 14.1 shows a test case that will trigger the use-after-free bug.‬

‭int‬‭r‬‭=‬‭1‬‭;‬
‭EVP_KDF‬‭*kdf;‬
‭EVP_KDF_CTX‬‭*kctx‬‭=‬‭NULL‬‭;‬
‭unsigned‬‭char‬‭derived[‬‭32‬‭];‬
‭OSSL_PARAM‬‭params[‬‭9‬‭],‬‭*p‬‭=‬‭params;‬
‭uint64_t‬‭s_N‬‭=‬‭2‬‭;‬
‭uint64_t‬‭s_r‬‭=‬‭8‬‭;‬
‭uint64_t‬‭s_P‬‭=‬‭1‬‭;‬

‭if‬‭((kdf‬‭=‬‭EVP_KDF_fetch(‬‭NULL‬‭,‬‭"scrypt"‬‭,‬‭NULL‬‭))‬‭==‬‭NULL‬‭)‬‭{‬
‭goto‬‭end;‬

‭}‬

‭kctx‬‭=‬‭EVP_KDF_CTX_new(kdf);‬
‭EVP_KDF_free(kdf);‬
‭if‬‭(kctx‬‭==‬‭NULL‬‭)‬‭{‬

‭goto‬‭end;‬
‭}‬
‭/* Build up the parameters for the derivation */‬
‭*p++‬‭=‬‭OSSL_PARAM_construct_octet_string(‬‭"secret"‬‭,‬‭"secret"‬‭,‬‭(‬‭size_t‬‭)‬‭6‬‭);‬
‭*p++‬‭=‬‭OSSL_PARAM_construct_octet_string(‬‭"pass"‬‭,‬‭"pass"‬‭,‬‭(‬‭size_t‬‭)‬‭4‬‭);‬
‭*p++‬‭=‬‭OSSL_PARAM_construct_octet_string(‬‭"salt"‬‭,‬‭"salt"‬‭,‬‭(‬‭size_t‬‭)‬‭4‬‭);‬
‭*p++‬‭=‬‭OSSL_PARAM_construct_uint64(‬‭"n"‬‭,‬‭&s_N);‬
‭*p++‬‭=‬‭OSSL_PARAM_construct_uint64(‬‭"r"‬‭,‬‭&s_r);‬
‭*p++‬‭=‬‭OSSL_PARAM_construct_uint64(‬‭"p"‬‭,‬‭&s_P);‬
‭// The following line causes a use-after-free later on.‬
‭*p++‬‭=‬‭OSSL_PARAM_construct_utf8_string(‬‭"properties"‬‭,‬‭"invalid"‬‭,‬‭(‬‭size_t‬‭)‬‭1‬‭);‬
‭*p‬‭=‬‭OSSL_PARAM_construct_end();‬
‭if‬‭(EVP_KDF_CTX_set_params(kctx,‬‭params)‬‭<=‬‭0‬‭)‬‭{‬

‭r‬‭=‬‭0‬‭;‬

‭Trail of Bits‬ ‭48‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭goto‬‭end;‬
‭}‬
‭if‬‭(EVP_KDF_CTX_set_params(kctx,‬‭params)‬‭<=‬‭0‬‭)‬‭{‬

‭r‬‭=‬‭0‬‭;‬
‭goto‬‭end;‬

‭}‬
‭if‬‭(EVP_KDF_derive(kctx,‬‭derived,‬‭sizeof‬‭(derived),‬‭NULL‬‭)‬‭<=‬‭0‬‭)‬‭{‬

‭r‬‭=‬‭0‬‭;‬
‭goto‬‭end;‬

‭}‬
‭end‬‭:‬
‭EVP_KDF_CTX_free(kctx);‬

‭Figure 14.1: A test case that causes a use after free‬

‭When the‬‭EVP_KDF_CTX_set_params‬‭function is called,‬‭the Scrypt implementation will try‬
‭to set a digest based on the provided‬‭properties‬‭string,‬‭which is stored in‬‭ctx->propq‬
‭(figure 14.2). If the‬‭properties‬‭string is invalid‬‭or the SHA-256 algorithm cannot be‬
‭fetched because it is not available, then‬‭EVP_KDF_CTX_set_params‬‭returns false, and the‬
‭context is freed. Freeing the context at the end of the test case in figure 14.1 will then‬
‭trigger a use after free in the‬‭EVP_KDF_CTX_free‬‭function.‬

‭static‬‭int‬‭set_digest‬‭(KDF_SCRYPT‬‭*ctx)‬
‭{‬

‭EVP_MD_free(ctx->sha256);‬
‭ctx->sha256‬‭=‬‭EVP_MD_fetch(ctx->libctx,‬‭"sha256"‬‭,‬‭ctx->propq‬‭);‬
‭if‬‭(ctx->sha256‬‭==‬‭NULL‬‭)‬‭{‬

‭OPENSSL_free(ctx)‬‭;‬
‭ERR_raise(ERR_LIB_PROV,‬‭PROV_R_UNABLE_TO_LOAD_SHA256);‬
‭return‬‭0‬‭;‬

‭}‬
‭return‬‭1‬‭;‬

‭}‬

‭Figure 14.2: The function that frees the whole context in the error case‬
‭(‬‭openssl/providers/implementations/kdfs/scrypt.c#164–174‬‭)‬

‭This bug is a use after free because before the actual context is freed, the members are‬
‭freed in‬‭EVP_KDF_CTX_free‬‭(refer to‬‭scrypt:85‬‭).‬

‭This finding was discovered through the fuzzer described in‬‭appendix D‬‭. Interestingly, the‬
‭unit tests did not exercise the branch that led to the use after free, as shown in‬‭the‬
‭Coveralls report‬‭.‬

‭Exploit Scenario‬
‭A user of OpenSSL implements a function that conditionally sets properties on the Scrypt‬
‭algorithm. During testing, the use after free is not triggered because the branch that adds‬
‭OSSL_KDF_PARAM_PROPERTIES‬‭is not tested. In the production‬‭system, this branch is‬

‭Trail of Bits‬ ‭49‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/967f20144025e51d6bce5d115f5eaebea328394d/providers/implementations/kdfs/scrypt.c#L164-L174
https://github.com/openssl/openssl/blob/967f20144025e51d6bce5d115f5eaebea328394d/providers/implementations/kdfs/scrypt.c#L85
https://coveralls.io/builds/62798592/source?filename=providers%2Fimplementations%2Fkdfs%2Fscrypt.c#L165
https://coveralls.io/builds/62798592/source?filename=providers%2Fimplementations%2Fkdfs%2Fscrypt.c#L165

‭reachable through a specific input. An attacker uses this behavior to either crash the‬
‭system or cause undefined behavior.‬

‭Recommendations‬
‭Short term, remove the call to the‬‭OPENSSL_free‬‭function‬‭from the‬‭set_digest‬‭function.‬

‭Long term, deploy and run the provider fuzzer described in‬‭appendix D‬‭.‬

‭Trail of Bits‬ ‭50‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭15. Setting OSSL_MAC_PARAM_DIGEST_NOINIT for HMAC causes‬
‭segmentation fault‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Denial of Service‬ ‭Finding ID: TOB-OSSL-15‬

‭Target:‬‭crypto/evp/digest.c‬

‭Description‬
‭Using the parameter‬‭OSSL_MAC_PARAM_DIGEST_NOINIT‬‭along‬‭with an HMAC causes a‬
‭segmentation fault during HMAC initialization. The parameter is translated to the‬‭EVP_MD‬
‭flag‬‭EVP_MD_CTX_FLAG_NO_INIT‬‭. This digest parameter‬‭skips certain initialization steps.‬
‭Users are supposed to set a custom update function by calling the function‬
‭​​EVP_MD_CTX_set_update_fn‬‭. However, the new provider‬‭API does not provide an API to‬
‭set an update for the internal digest. The following figure presents a test case that crashes‬
‭during the execution of the‬‭EVP_MAC_init‬‭function.‬

‭int‬‭r‬‭=‬‭1‬‭;‬
‭const‬‭char‬‭*key‬‭=‬‭"mac_key"‬‭;‬
‭EVP_MAC_CTX‬‭*ctx‬‭=‬‭NULL‬‭;‬
‭OSSL_PARAM‬‭params[‬‭6‬‭],‬‭*p‬‭=‬‭params;‬
‭EVP_MAC‬‭*evp_mac‬‭=‬‭NULL‬‭;‬
‭// ...‬

‭if‬‭((evp_mac‬‭=‬‭EVP_MAC_fetch(‬‭NULL‬‭,‬‭"hmac"‬‭,‬‭NULL‬‭))‬‭==‬‭NULL‬‭)‬‭{‬
‭goto‬‭end;‬

‭}‬

‭int‬‭noinit‬‭=‬‭1‬‭;‬
‭*p++‬‭=‬‭OSSL_PARAM_construct_int(OSSL_MAC_PARAM_DIGEST_NOINIT,‬‭&noinit);‬
‭*p++‬‭=‬‭OSSL_PARAM_construct_utf8_string(‬‭"digest"‬‭,‬‭"SHA3-224"‬‭,‬‭9‬‭);‬
‭*p‬‭=‬‭OSSL_PARAM_construct_end();‬

‭if‬‭((ctx‬‭=‬‭EVP_MAC_CTX_new(evp_mac))‬‭==‬‭NULL‬
‭||‬‭!‬‭EVP_MAC_init(ctx,‬‭(‬‭const‬‭unsigned‬‭char‬‭*)‬‭key,‬‭strlen(key), params)‬‭)‬‭{‬
‭r‬‭=‬‭0‬‭;‬
‭goto‬‭end;‬

‭}‬
‭// ...‬

‭Figure 15.1: A test case that causes a segmentation fault‬

‭The segmentation fault happens when the digest calls the noninitialized‬‭update‬‭function‬
‭(figure 15.2).‬

‭Trail of Bits‬ ‭51‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭int‬‭EVP_DigestUpdate‬‭(EVP_MD_CTX‬‭*ctx,‬‭const‬‭void‬‭*data,‬‭size_t‬‭count)‬
‭{‬

‭// ...‬
‭if‬‭(ctx->pctx‬‭!=‬‭NULL‬

‭&&‬‭EVP_PKEY_CTX_IS_SIGNATURE_OP(ctx->pctx)‬
‭&&‬‭ctx->pctx->op.sig.algctx‬‭!=‬‭NULL‬‭)‬‭{‬

‭// ...‬
‭if‬‭(ctx->digest‬‭==‬‭NULL‬

‭||‬‭ctx->digest->prov‬‭==‬‭NULL‬
‭||‬‭(ctx->flags‬‭&‬‭EVP_MD_CTX_FLAG_NO_INIT)‬‭!=‬‭0‬‭)‬

‭goto‬‭legacy;‬
‭// ...‬
‭/* Code below to be removed when legacy support‬‭is dropped. */‬

‭legacy‬‭:‬
‭return‬‭ctx->update(ctx,‬‭data,‬‭count);‬

‭}‬

‭Figure 15.2: The digest update function that calls the internal‬‭update‬‭function‬
‭(‬‭openssl/crypto/evp/digest.c#388–426‬‭)‬

‭This finding was discovered using the fuzzer described in‬‭appendix D‬‭.‬

‭Recommendations‬
‭Short term, add a null check for‬‭ctx->update‬‭. That‬‭way, the use of‬
‭OSSL_MAC_PARAM_DIGEST_NOINIT‬‭cannot cause segmentation‬‭faults.‬

‭Long term, expose an API for the new KDFs that allows functions to be called on the‬
‭underlying digest. Alternatively, deprecate the‬‭OSSL_MAC_PARAM_DIGEST_NOINIT‬
‭parameter type and remove it from the next OpenSSL version.‬

‭Trail of Bits‬ ‭52‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/evp/digest.c#L388-L426

‭16. Functions of EVP_CIPHER_CTX are missing null checks‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Denial of Service‬ ‭Finding ID: TOB-OSSL-16‬

‭Target:‬‭crypto/evp/evp_lib.c‬

‭Description‬
‭Several functions that operate on an‬‭EVP_CIPHER*‬‭run‬‭into a segmentation fault if no‬
‭cipher is set. None of the following functions can be called on an uninitialized context‬
‭created using‬‭EVP_CIPHER_CTX_new‬‭:‬

‭●‬ ‭EVP_CIPHER_CTX_get_key_length‬

‭●‬ ‭EVP_CIPHER_CTX_get_nid‬

‭●‬ ‭EVP_CIPHER_CTX_get_block_size‬

‭●‬ ‭EVP_CIPHER_CTX_get_iv_length‬

‭●‬ ‭EVP_CIPHER_CTX_get1_cipher‬

‭●‬ ‭EVP_Cipher‬

‭●‬ ‭EVP_CIPHER_param_to_asn1‬

‭●‬ ‭EVP_CIPHER_asn1_to_param‬

‭●‬ ‭EVP_CIPHER_get_asn1_iv‬

‭●‬ ‭EVP_CIPHER_set_asn1_iv‬

‭For example, the following code will crash:‬

‭EVP_CIPHER_CTX*‬‭cipher_ctx‬‭=‬‭EVP_CIPHER_CTX_new();‬
‭if‬‭(!cipher_ctx)‬‭{‬

‭return‬‭0‬‭;‬
‭}‬
‭EVP_CIPHER_CTX_get_key_length(cipher_ctx);‬

‭Figure 16.1: Example code that crashes in the second function call‬

‭This is because‬‭EVP_CIPHER_CTX_get_key_length‬‭does‬‭not check‬‭whether‬
‭cipher_ctx->cipher‬‭is non-null before dereferencing‬‭it. We believe null checks in these‬

‭Trail of Bits‬ ‭53‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/cb224f4e27b0f0e8d0a88193aa92eb8bfd17ef15/crypto/evp/evp_lib.c#L656

‭functions are worth the potential performance impact because this code is reachable‬
‭through higher level APIs like‬‭EVP_RAND‬‭. The following‬‭example initializes an HMAC-DRBG‬
‭that uses GMAC but does not set a cipher:‬

‭unsigned‬‭char‬‭buf[‬‭4096‬‭];‬
‭int‬‭r‬‭=‬‭1‬‭;‬
‭EVP_RAND_CTX‬‭*ctx‬‭=‬‭NULL‬‭;‬
‭OSSL_PARAM‬‭params[‬‭6‬‭],‬‭*p‬‭=‬‭params;‬
‭EVP_RAND‬‭*evp_rand‬‭=‬‭NULL‬‭;‬

‭if‬‭((evp_rand‬‭=‬‭EVP_RAND_fetch(‬‭NULL‬‭,‬‭"HMAC-DRBG"‬‭,‬‭NULL‬‭))‬‭==‬‭NULL‬‭)‬‭{‬
‭goto‬‭end;‬

‭}‬

‭// Missing cipher: *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_CIPHER,‬
‭"AES-256-GCM", sizeof("AES-256-GCM"));‬
‭*p++‬‭=‬‭OSSL_PARAM_construct_utf8_string(‬‭"mac"‬‭,‬‭"GMAC"‬‭,‬‭9‬‭);‬
‭*p‬‭=‬‭OSSL_PARAM_construct_end();‬

‭if‬‭(!(ctx‬‭=‬‭EVP_RAND_CTX_new(evp_rand,‬‭NULL‬‭)))‬‭{‬
‭r‬‭=‬‭0‬‭;‬
‭goto‬‭end;‬

‭}‬
‭if‬‭(EVP_RAND_CTX_set_params(ctx,‬‭params)‬‭<=‬‭0‬‭)‬‭{‬

‭r‬‭=‬‭0‬‭;‬
‭goto‬‭end;‬

‭}‬
‭if‬‭(!EVP_RAND_generate(ctx,‬‭buf,‬‭sizeof‬‭(buf),‬‭0‬‭,‬‭0‬‭,‬‭NULL‬‭,‬‭0‬‭))‬‭{‬

‭r‬‭=‬‭0‬‭;‬
‭goto‬‭end;‬

‭}‬
‭// ...‬

‭Figure 16.2: Example code that crashes because the underlying cipher is not set‬

‭This finding was discovered by the fuzzer described in‬‭appendix D‬‭.‬

‭Recommendations‬
‭Short term, add null checks for‬‭cipher_ctx->cipher‬‭in each of the above functions.‬

‭Long term, deploy the provider fuzzer described in‬‭appendix D‬‭.‬

‭Trail of Bits‬ ‭54‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭17. Assertion could be hit when fetching algorithms by name‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-OSSL-17‬

‭Target:‬‭crypto/evp/evp_fetch.c‬

‭Description‬
‭If the name in an algorithm fetch operation (i.e., the‬‭name‬‭argument to a function like‬
‭EVP_MD_fetch‬‭or‬‭EVP_CIPHER_fetch‬‭) contains a colon‬‭after the algorithm name, then an‬
‭assertion is hit in the‬‭evp_method_id‬‭function. For‬‭example, the call‬
‭EVP_CIPHER_fetch(NULL,‬‭"AES256:something",‬‭0)‬‭aborts‬‭with the message‬‭OpenSSL‬
‭internal‬‭error:‬‭Assertion‬‭failed:‬‭name_id‬‭>‬‭0‬‭&&‬‭name_id‬‭<=‬
‭METHOD_ID_NAME_MAX‬‭.‬‭This assertion is hit because‬‭of a logic bug.‬

‭static‬‭void‬‭*‬‭inner_evp_generic_fetch‬‭(‬‭/* ... */‬‭)‬‭{‬
‭// ...‬
‭if‬‭(meth_id‬‭==‬‭0‬

‭||‬‭!ossl_method_store_cache_get(store,‬‭prov,‬‭meth_id,‬‭propq,‬‭&method))‬‭{‬
‭// ...‬
‭methdata->names‬‭=‬‭name;‬
‭// ...‬
‭if‬‭((method‬‭=‬‭ossl_method_construct‬‭(methdata->libctx,‬‭operation_id,‬

‭&prov,‬‭0‬‭/* !force_cache */‬‭,‬
‭&mcm,‬‭methdata))‬‭!=‬‭NULL‬‭)‬‭{‬

‭/*‬
‭*‬‭If construction did create a method‬‭for us, we know that‬
‭*‬‭there is a correct name_id and meth_id‬‭,‬‭(...)‬
‭*/‬
‭if‬‭(name_id‬‭==‬‭0‬‭)‬

‭name_id‬‭=‬‭ossl_namemap_name2num‬‭(namemap,‬‭name‬‭);‬
‭meth_id‬‭=‬‭evp_method_id‬‭(name_id,‬‭operation_id);‬
‭if‬‭(name_id‬‭!=‬‭0‬‭)‬

‭ossl_method_store_cache_set(store,‬‭prov,‬‭meth_id,‬‭propq,‬
‭method,‬‭up_ref_method,‬‭free_method);‬

‭}‬
‭// ...‬

‭}‬
‭// ...‬
‭return‬‭method;‬

‭}‬

‭Figure 17.1: The invalid logic for‬‭name_id‬‭(‬‭openssl/crypto/evp/evp_fetch.c#239–349‬‭)‬

‭The‬‭inner_evp_generic_fetch‬‭function first constructs‬‭a method using the‬
‭ossl_method_construct‬‭function. The name of the algorithm‬‭is passed through‬

‭Trail of Bits‬ ‭55‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/evp/evp_fetch.c#L239-L349

‭metadata->names‬‭. The‬‭ossl_method_construct‬‭function‬‭honors‬‭the colon that is used‬
‭to give algorithms alternative names. Then, the algorithm name is used to get a‬‭name_id‬
‭using the‬‭ossl_namemap_name2num‬‭function. This function‬‭cannot handle the colon in the‬
‭name‬‭and thus returns‬‭0‬‭for the‬‭name_id‬‭. This means‬‭that the comment in figure 17.1 is‬
‭incorrect. A successful method construction does not mean that there is a‬‭name_id‬‭for the‬
‭name‬‭in this case. The next call to‬‭evp_method_id‬‭raises an assertion error because the‬
‭name_id‬‭passed to the function is‬‭0‬‭:‬

‭static‬‭uint32_t‬‭evp_method_id‬‭(‬‭int‬‭name_id,‬‭unsigned‬‭int‬‭operation_id)‬
‭{‬

‭if‬‭(!‬‭ossl_assert(name_id‬‭>‬‭0‬‭&&‬‭name_id‬‭<=‬‭METHOD_ID_NAME_MAX)‬
‭||‬‭!ossl_assert(operation_id‬‭>‬‭0‬

‭&&‬‭operation_id‬‭<=‬‭METHOD_ID_OPERATION_MAX))‬
‭return‬‭0‬‭;‬

‭// ...‬
‭}‬

‭Figure 17.2: The assertion in‬‭evp_method_id‬
‭(‬‭openssl/crypto/evp/evp_fetch.c#110–118‬‭)‬

‭The OpenSSL library aborts only in debug mode, not release mode. Therefore, this is not a‬
‭security issue. Still, a failed assertion indicates a bug.‬

‭This finding was discovered by the provider fuzzer described in‬‭appendix D‬‭.‬

‭Recommendations‬
‭Short term, have the code call‬‭evp_method_id‬‭only‬‭if‬‭name_id‬‭is not‬‭0‬‭. That way, the fetch‬
‭operation will fail gracefully.‬

‭Long term, consider making‬‭ossl_namemap_name2num‬‭honor‬‭the colon, just like the‬
‭method construction‬‭.‬

‭Trail of Bits‬ ‭56‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/4a929c7c5cb06dcf1952691ee8732007cc1a41d4/crypto/evp/evp_fetch.c#L134-L141
https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/crypto/evp/evp_fetch.c#L110-L118
https://github.com/openssl/openssl/blob/4a929c7c5cb06dcf1952691ee8732007cc1a41d4/crypto/evp/evp_fetch.c#L134-L141

‭18. Reinitialization of EVP_MAC for GMAC fails if parameters are not provided‬

‭Severity:‬‭Low‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-OSSL-18‬

‭Target:‬‭providers/implementations/macs/gmac_prov.c‬

‭Description‬
‭Reinitialization of an‬‭EVP_MAC‬‭that uses GMAC does‬‭not completely reset its state. This‬
‭means that calling the‬‭EVP_MAC_init‬‭function on a‬‭context that was previously finished‬
‭using the‬‭EVP_MAC_final‬‭function does not completely‬‭reset the‬‭EVP_MAC‬‭from that‬
‭context. A successive call to the‬‭EVP_MAC_update‬‭function‬‭will error out.‬

‭The unit test in figure 18.2 demonstrates this behavior. The test runs the chain of‬
‭initializing, updating, and finalizing the‬‭EVP_MAC‬‭twice. The second update call fails in the‬
‭gcm_cipher_internal‬‭function because the IV cannot‬‭be reused (figure 18.1).‬

‭static‬‭int‬‭gcm_cipher_internal‬‭(PROV_GCM_CTX‬‭*ctx,‬‭unsigned‬‭char‬‭*out,‬
‭size_t‬‭*padlen,‬‭const‬‭unsigned‬‭char‬‭*in,‬
‭size_t‬‭len)‬

‭{‬
‭// ...‬
‭if‬‭(!ctx->key_set‬‭||‬‭ctx->iv_state‬‭==‬‭IV_STATE_FINISHED)‬

‭goto‬‭err;‬
‭// ...‬
‭if‬‭(in‬‭!=‬‭NULL‬‭)‬‭{‬

‭// ...‬
‭}‬‭else‬‭{‬

‭// ...‬
‭ctx->iv_state‬‭=‬‭IV_STATE_FINISHED;‬‭/* Don't‬‭reuse the IV */‬
‭goto‬‭finish;‬

‭}‬
‭// ...‬

‭}‬

‭Figure 18.1: The internal GCM function that requires a fresh IV‬
‭(‬‭openssl/providers/implementations/ciphers/ciphercommon_gcm.c#388–444‬‭)‬

‭The IV should have been reset with the second call to‬‭EVP_MAC_init‬‭in the test. This‬
‭happens when calling the‬‭EVP_MAC_CTX_set_params‬‭function‬‭before the call to‬
‭EVP_MAC_init‬‭, or if the parameters are passed directly‬‭to‬‭EVP_MAC_init‬‭. This is because‬
‭the cipher is (re)initialized only when the cipher, key, or IV parameters are set (refer to‬
‭gmac_prov.c:215–242‬‭).‬

‭Trail of Bits‬ ‭57‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/4b20cbbe1ccd6b3aea2da70f314c38691f99436d/providers/implementations/ciphers/ciphercommon_gcm.c#L388-L444
https://github.com/openssl/openssl/blob/4aa3eb454e89fd78884faa168a90ccf19d0bca3a/providers/implementations/macs/gmac_prov.c#L215-L242

‭int‬‭r‬‭=‬‭1‬‭;‬
‭EVP_MAC_CTX‬‭*ctx‬‭=‬‭NULL‬‭;‬
‭unsigned‬‭char‬‭buf[‬‭4096‬‭];‬
‭OSSL_PARAM‬‭params[‬‭6‬‭],‬‭*p‬‭=‬‭params;‬
‭size_t‬‭final_l;‬
‭EVP_MAC‬‭*evp_mac‬‭=‬‭NULL‬‭;‬
‭char‬‭*key‬‭=‬‭OPENSSL_zalloc(‬‭32‬‭);‬

‭if‬‭((evp_mac‬‭=‬‭EVP_MAC_fetch(‬‭NULL‬‭,‬‭"gmac"‬‭,‬‭NULL‬‭))‬‭==‬‭NULL‬‭)‬‭{‬
‭goto‬‭end;‬

‭}‬

‭*p++‬‭=‬‭OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,‬‭key,‬‭32‬‭);‬
‭*p++‬‭=‬‭OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_CIPHER,‬‭"AES-256-GCM"‬‭,‬
‭sizeof‬‭(‬‭"AES-256-GCM"‬‭));‬
‭*p‬‭=‬‭OSSL_PARAM_construct_end();‬

‭if‬‭((ctx‬‭=‬‭EVP_MAC_CTX_new(evp_mac))‬‭==‬‭NULL‬‭)‬‭{‬
‭r‬‭=‬‭0‬‭;‬
‭goto‬‭end;‬

‭}‬

‭if‬‭(EVP_MAC_CTX_set_params(ctx,‬‭params)‬‭<=‬‭0‬‭)‬‭{‬
‭r‬‭=‬‭0‬‭;‬
‭goto‬‭end;‬

‭}‬

‭if‬‭(!EVP_MAC_init(ctx,‬‭(‬‭const‬‭unsigned‬‭char‬‭*)‬‭key,‬‭32‬‭,‬‭params)‬‭||‬
‭!EVP_MAC_update(ctx,‬‭(‬‭unsigned‬‭char‬‭*)‬‭text,‬‭sizeof‬‭(text))‬‭||‬
‭!EVP_MAC_final(ctx,‬‭buf,‬‭&final_l,‬‭sizeof‬‭(buf))‬‭||‬
‭!‬‭EVP_MAC_init‬‭(ctx,‬‭(‬‭const‬‭unsigned‬‭char‬‭*)‬‭key,‬‭32‬‭,‬‭NULL‬‭)‬‭||‬
‭// The following update call fails. Adding EVP_MAC_CTX_set_params(ctx,‬‭params)‬

‭would fix it.‬
‭!‬‭EVP_MAC_update‬‭(ctx,‬‭(‬‭unsigned‬‭char‬‭*)‬‭text,‬‭sizeof‬‭(text))‬‭||‬
‭!EVP_MAC_final(ctx,‬‭buf,‬‭&final_l,‬‭sizeof‬‭(buf)))‬‭{‬
‭r‬‭=‬‭0‬‭;‬
‭goto‬‭end;‬

‭}‬

‭end‬‭:‬
‭EVP_MAC_CTX_free(ctx);‬

‭Figure 18.2: The unit test that fails for GMAC‬

‭The use of an‬‭EVP_MAC‬‭like in the above unit test‬‭is common. The following figure shows an‬
‭existing use in the random number generator, which contains a similar call chain.‬

‭static‬‭int‬‭do_hmac‬‭(PROV_DRBG_HMAC‬‭*hmac,‬‭unsigned‬‭char‬‭inbyte,‬
‭const‬‭unsigned‬‭char‬‭*in1,‬‭size_t‬‭in1len,‬
‭const‬‭unsigned‬‭char‬‭*in2,‬‭size_t‬‭in2len,‬
‭const‬‭unsigned‬‭char‬‭*in3,‬‭size_t‬‭in3len)‬

‭{‬

‭Trail of Bits‬ ‭58‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭EVP_MAC_CTX‬‭*ctx‬‭=‬‭hmac->ctx;‬

‭if‬‭(!‬‭EVP_MAC_init‬‭(ctx,‬‭hmac->K,‬‭hmac->blocklen,‬‭NULL‬‭)‬
‭/* K = HMAC(K, V || inbyte || [in1] ||‬‭[in2] || [in3]) */‬
‭||‬‭!EVP_MAC_update(ctx,‬‭hmac->V,‬‭hmac->blocklen)‬
‭||‬‭!EVP_MAC_update(ctx,‬‭&inbyte,‬‭1‬‭)‬
‭||‬‭!(in1‬‭==‬‭NULL‬‭||‬‭in1len‬‭==‬‭0‬‭||‬‭EVP_MAC_update(ctx,‬‭in1,‬‭in1len))‬
‭||‬‭!(in2‬‭==‬‭NULL‬‭||‬‭in2len‬‭==‬‭0‬‭||‬‭EVP_MAC_update(ctx,‬‭in2,‬‭in2len))‬
‭||‬‭!(in3‬‭==‬‭NULL‬‭||‬‭in3len‬‭==‬‭0‬‭||‬‭EVP_MAC_update(ctx,‬‭in3,‬‭in3len))‬
‭||‬‭!‬‭EVP_MAC_final‬‭(ctx,‬‭hmac->K,‬‭NULL‬‭,‬‭sizeof‬‭(hmac->K)))‬

‭return‬‭0‬‭;‬

‭/* V = HMAC(K, V) */‬
‭return‬‭EVP_MAC_init‬‭(ctx,‬‭hmac->K,‬‭hmac->blocklen,‬‭NULL‬‭)‬

‭&&‬‭EVP_MAC_update‬‭(ctx,‬‭hmac->V,‬‭hmac->blocklen)‬
‭&&‬‭EVP_MAC_final(ctx,‬‭hmac->V,‬‭NULL‬‭,‬‭sizeof‬‭(hmac->V));‬

‭}‬

‭Figure 18.3: The use of an‬‭EVP_MAC‬‭in the‬‭DRBG_HMAC‬
‭(‬‭openssl/providers/implementations/rands/drbg_hmac.c#57–78‬‭)‬

‭According to the‬‭OpenSSL documentation‬‭, the IV is‬‭generated automatically for GCM:‬

‭For EVP_CIPH_GCM_MODE the IV will be generated internally if it is not specified.‬

‭If we use an HMAC rather than GMAC in the unit test above, the code works without‬
‭resetting the parameters. This is because HMAC does not depend on an IV.‬

‭Exploit Scenario‬
‭A user of OpenSSL implements a function that conditionally chooses GMAC or HMAC.‬
‭During testing, the error is not hit because the branch that uses GMAC is not tested. In the‬
‭production system, this branch is reachable through a specific input. An attacker uses this‬
‭behavior to cause an unexpected and potentially unhandled error.‬

‭Recommendations‬
‭Short term, have the code reset the cipher for GMAC when‬‭EVP_MAC_init‬‭is called, if that‬
‭is the intended functionality. If reusing an‬‭EVP_MAC_CTX‬‭context for GMAC should not be‬
‭allowed, then have the‬‭EVP_MAC_init‬‭function return‬‭an error when called with a reused‬
‭GMAC.‬

‭Long term, add the fuzzer for providers described in‬‭appendix D‬‭. In order to detect this‬
‭issue automatically, additional API call flows must be added. In this case, the fuzzer must‬
‭assert that executing an algorithm twice with the same input gives the same output.‬

‭Trail of Bits‬ ‭59‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/17a2c5111864d8e016c5f2d29c40a3746b559e9d/providers/implementations/rands/drbg_hmac.c#L57-L78
https://www.openssl.org/docs/man3.0/man3/EVP_EncryptInit_ex2.html

‭19. Creation of X.509 extensions can lead to undefined behavior‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-OSSL-19‬

‭Target:‬‭X509V3_EXT_METHOD‬‭implementations‬

‭Description‬
‭Several configurations for X.509 extension creation cause undefined behavior. Depending‬
‭on the platform, these configurations could cause a segmentation fault. X.509 extensions‬
‭must not be confused with TLS certificate extensions here.‬

‭Multiple‬‭X509V3_EXT_METHOD‬‭implementations falsely‬‭assume that key-value pairs in an‬
‭X509V3 list (created through the‬‭X509V3_parse_list‬‭function) have non-null values. For‬
‭example, the‬‭issuerSignTool‬‭extension expects the‬‭signTool‬‭value to be non-null‬
‭(figure 19.1).‬

‭static‬‭ISSUER_SIGN_TOOL‬‭*‬‭v2i_issuer_sign_tool‬‭(X509V3_EXT_METHOD‬‭*method,‬
‭X509V3_CTX‬‭*ctx, STACK_OF(CONF_VALUE)‬‭*nval)‬

‭{‬
‭// ...‬
‭for‬‭(i‬‭=‬‭0‬‭;‬‭i‬‭<‬‭sk_CONF_VALUE_num(nval);‬‭++i)‬‭{‬

‭CONF_VALUE‬‭*cnf‬‭=‬‭sk_CONF_VALUE_value(nval,‬‭i);‬

‭if‬‭(cnf‬‭==‬‭NULL‬‭)‬‭{‬
‭continue‬‭;‬

‭}‬
‭if‬‭(strcmp(cnf->name,‬‭"signTool"‬‭)‬‭==‬‭0‬‭)‬‭{‬

‭ist->signTool‬‭=‬‭ASN1_UTF8STRING_new();‬
‭if‬‭(ist->signTool‬‭==‬‭NULL‬‭||‬

‭!ASN1_STRING_set(ist->signTool,‬‭cnf->value,‬‭strlen(cnf->value)‬‭))‬‭{‬
‭ERR_raise(ERR_LIB_X509V3,‬‭ERR_R_ASN1_LIB);‬
‭goto‬‭err;‬

‭}‬
‭}‬‭else‬‭if‬‭(strcmp(cnf->name,‬‭"cATool"‬‭)‬‭==‬‭0‬‭)‬‭{‬

‭// ...‬
‭}‬‭else‬‭if‬‭(strcmp(cnf->name,‬‭"signToolCert"‬‭)‬‭==‬‭0‬‭)‬‭{‬

‭// ...‬
‭}‬‭else‬‭if‬‭(strcmp(cnf->name,‬‭"cAToolCert"‬‭)‬‭==‬‭0‬‭)‬‭{‬

‭// ...‬
‭}‬‭else‬‭{‬

‭// ...‬
‭}‬

‭}‬
‭// ...‬

‭Trail of Bits‬ ‭60‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭}‬

‭Figure 19.1: The code that does not check‬‭cnf->value‬‭for null‬
‭(‬‭openssl/crypto/x509/v3_ist.c#35–85‬‭)‬

‭A segmentation fault can be triggered using the following OpenSSL command.‬

‭openssl‬‭x509‬‭-req‬‭-in‬‭request.csr‬‭-signkey‬‭key.pem‬‭-out‬‭certificate.crt‬‭-days‬‭3650‬
‭-extensions‬‭ext‬‭-extfile‬‭openss-ext.conf‬

‭Figure 19.2: An OpenSSL command that crashes‬

‭The configuration file‬‭openss-ext.conf‬‭must contain‬‭a specifically crafted extension‬
‭configuration. The following table summarizes our findings, by showing the configurations‬
‭along with a reference to the code where the crash occurs.‬

‭Configuration‬ ‭Reference‬

‭[ext]‬
‭issuerSignTool‬‭=‬‭signTool‬

‭#1‬
‭#2‬
‭#3‬
‭#4‬

‭[ext]‬
‭sbgp-autonomousSysNum‬‭=‬‭AS‬

‭#5‬
‭#6‬

‭[ext]‬
‭issuingDistributionPoint‬‭=‬‭fullname‬

‭#7‬

‭[ext]‬
‭sbgp-ipAddrBlock‬‭=‬‭IPv4-SAFI‬

‭#8‬

‭This finding was discovered while looking for bugs similar to finding‬‭TOB-OSSL-6‬‭.‬

‭Recommendations‬
‭Short term, add null checks for‬‭cnf->value‬‭, where‬‭cnf‬‭refers to a pointer returned by the‬
‭sk_CONF_VALUE_value‬‭function.‬

‭Long term, write a rule for a static analyzer like Semgrep or CodeQL that scans the‬
‭codebase for similar issues.‬

‭Trail of Bits‬ ‭61‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/e265fe3ad2805e66d706f03da8c82e6694607573/crypto/x509/v3_ist.c#L35-L85
https://github.com/openssl/openssl/blob/e265fe3ad2805e66d706f03da8c82e6694607573/crypto/x509/v3_ist.c#L53
https://github.com/openssl/openssl/blob/e265fe3ad2805e66d706f03da8c82e6694607573/crypto/x509/v3_ist.c#L59
https://github.com/openssl/openssl/blob/e265fe3ad2805e66d706f03da8c82e6694607573/crypto/x509/v3_ist.c#L65
https://github.com/openssl/openssl/blob/e265fe3ad2805e66d706f03da8c82e6694607573/crypto/x509/v3_ist.c#L71
https://github.com/openssl/openssl/blob/36bbaa8b0522b07de290db9fa5a482ebc19e56ff/crypto/x509/v3_asid.c#L544
https://github.com/openssl/openssl/blob/36bbaa8b0522b07de290db9fa5a482ebc19e56ff/crypto/x509/v3_asid.c#L555-L574
https://github.com/openssl/openssl/blob/ee71383a8d35bebbd1debf366d9c9205a04e4993/crypto/x509/v3_crld.c#L74
https://github.com/openssl/openssl/blob/b3840494e921cdc2ed73ba4de59907f2e7a285fe/crypto/x509/v3_addr.c#L975

‭20. Missing null checks in OSSL_PARAM getters‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-OSSL-20‬

‭Target:‬‭crypto/params.c‬

‭Description‬
‭The getter functions for‬‭OSSL_PARAM‬‭values do not‬‭check that the data field is not null.‬
‭Therefore, the getter functions cause a segmentation fault if they are invoked for a‬
‭parameter value with a null data field. Users might accidentally construct a parameter‬
‭value that points to null (figure 20.1), so this condition should be checked for.‬

‭OSSL_PARAM‬‭params[‬‭9‬‭],‬‭*p‬‭=‬‭params;‬

‭OSSL_PARAM‬‭res;‬
‭res.key‬‭=‬‭"n"‬‭;‬
‭res.data_type‬‭=‬‭OSSL_PARAM_UNSIGNED_INTEGER;‬
‭res.data‬‭=‬‭NULL;‬
‭res.data_size‬‭=‬‭sizeof‬‭(‬‭uint64_t‬‭);‬
‭res.return_size‬‭=‬‭OSSL_PARAM_UNMODIFIED;‬

‭*p++‬‭= res;‬
‭*p‬‭=‬‭OSSL_PARAM_construct_end();‬

‭Figure 20.1: The construction of an invalid‬‭OSSL_PARAM‬

‭If the above parameter is used for Scrypt, then a segmentation fault is encountered when‬
‭the‬‭OSSL_PARAM_get_uint64‬‭function is called.‬

‭if‬‭((p‬‭=‬‭OSSL_PARAM_locate_const(params,‬‭OSSL_KDF_PARAM_SCRYPT_N))‬
‭!=‬‭NULL‬‭)‬‭{‬
‭if‬‭(!‬‭OSSL_PARAM_get_uint64(p,‬‭&u64_value)‬

‭||‬‭u64_value‬‭<=‬‭1‬
‭||‬‭!is_power_of_two(u64_value))‬
‭return‬‭0‬‭;‬

‭ctx->N‬‭=‬‭u64_value;‬
‭}‬

‭Figure 20.2: Scrypt gets the‬‭N‬‭parameter from the‬‭parameter array.‬
‭(‬‭openssl/providers/implementations/kdfs/scrypt.c#239–246‬‭)‬

‭The reason for the crash is that‬‭OSSL_PARAM_get_uint64‬‭dereferences the‬‭data‬‭field‬
‭without checking whether it is null.‬

‭Trail of Bits‬ ‭62‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/967f20144025e51d6bce5d115f5eaebea328394d/providers/implementations/kdfs/scrypt.c#L239-L246

‭int‬‭OSSL_PARAM_get_uint64‬‭(‬‭const‬‭OSSL_PARAM‬‭*p,‬‭uint64_t‬‭*val)‬
‭{‬

‭// ...‬
‭if‬‭(p->data_type‬‭==‬‭OSSL_PARAM_UNSIGNED_INTEGER)‬‭{‬

‭#ifndef OPENSSL_SMALL_FOOTPRINT‬
‭switch‬‭(p->data_size)‬‭{‬
‭case‬‭sizeof‬‭(‬‭uint32_t‬‭):‬

‭*val‬‭=‬‭*(‬‭const‬‭uint32_t‬‭*)p->data;‬
‭return‬‭1‬‭;‬

‭case‬‭sizeof‬‭(‬‭uint64_t‬‭):‬
‭*val‬‭=‬‭*(‬‭const‬‭uint64_t‬‭*)p->data‬‭;‬
‭return‬‭1‬‭;‬

‭}‬
‭#endif‬

‭return‬‭general_get_uint(p,‬‭val,‬‭sizeof‬‭(*val));‬
‭}‬‭else‬‭if‬‭(p->data_type‬‭==‬‭OSSL_PARAM_INTEGER)‬‭{‬
‭// ...‬

‭}‬

‭Figure 20.3: The dereference without a null check (‬‭openssl/crypto/params.c#823–894‬‭)‬

‭The‬‭OSSL_PARAM‬‭struct is part of the public API of‬‭OpenSSL, which should aim to catch this‬
‭type of mistake made by users.‬

‭Recommendations‬
‭Short term, add a check to all‬‭OSSL_PARAM_get_*‬‭functions‬‭to check whether the data‬
‭field is non-null.‬

‭Long term, deploy the provider fuzzer described in‬‭appendix D‬‭to find similar occurrences‬
‭in the provider API.‬

‭Trail of Bits‬ ‭63‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/7dfbf277e964828b696cdc3bd0f76c344de84974/crypto/params.c#L823-L894

‭21. The ossl_blake2b_final function fails to zeroize sensitive data‬

‭Severity:‬‭Medium‬ ‭Difficulty:‬‭High‬

‭Type: Cryptography‬ ‭Finding ID: TOB-OSSL-21‬

‭Target:‬‭providers/implementations/digests/blake2b_prov.c‬

‭Description‬
‭The‬‭ossl_blake2b_final‬‭function finalizes a Blake2b‬‭hash context and returns the‬
‭resulting digest. If the output size is not a multiple of 8, a temporary stack buffer‬
‭(‬‭outbuffer‬‭) is used to store the digest value. This‬‭buffer is not cleared, which means that‬
‭the value remains on the stack.‬

‭If the hash function is used as a KDF to derive key material, a copy of the resulting key‬
‭would remain in memory.‬

‭int‬‭ossl_blake2b_final‬‭(‬‭unsigned‬‭char‬‭*md, BLAKE2B_CTX‬‭*c)‬
‭{‬

‭uint8_t‬‭outbuffer[BLAKE2B_OUTBYTES] = {‬‭0‬‭};‬
‭uint8_t‬‭*target = outbuffer;‬
‭int‬‭iter = (c->outlen +‬‭7‬‭) /‬‭8‬‭;‬
‭int‬‭i;‬

‭/* Avoid writing to the temporary buffer if possible‬‭*/‬
‭if‬‭((c->outlen %‬‭sizeof‬‭(c->h[‬‭0‬‭])) ==‬‭0‬‭)‬

‭target = md;‬

‭// Finalize the hash function and store the result‬‭in the‬
‭// buffer pointed to by target.‬

‭if‬‭(target != md)‬
‭memcpy(md, target, c->outlen);‬

‭OPENSSL_cleanse(c,‬‭sizeof‬‭(BLAKE2B_CTX));‬
‭return‬‭1‬‭;‬

‭}‬

‭Figure 21.1: The Blake2b context is scrubbed, but‬‭outbuffer‬‭is not zeroized before the function‬
‭returns. (‬‭providers/implementations/digests/blake2b_prov.c‬‭)‬

‭The same issue is present in the‬‭ossl_blake2s_final‬‭function.‬

‭Exploit Scenario‬
‭A server uses Blake2b as a KDF to derive session keys. Because of another issue in the‬
‭server implementation, malicious users can send a specially crafted message to the server‬

‭Trail of Bits‬ ‭64‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/8020d79b4033400d0ef659a361c05b6902944042/providers/implementations/digests/blake2b_prov.c#L306-L331

‭that causes it to leak stack memory from the application process as part of the response.‬
‭This is used by an attacker to leak session keys belonging to other users, allowing the‬
‭attacker to decrypt their sessions.‬

‭Recommendations‬
‭Short term, ensure that the stack buffer‬‭outbuffer‬‭is cleared if‬‭target‬‭is different from‬
‭md‬‭before‬‭ossl_blake2b_final‬‭and‬‭ossl_blake2s_final‬‭return.‬

‭Long term, regularly review new cryptographic implementations to ensure that sensitive‬
‭data is scrubbed from memory.‬

‭Trail of Bits‬ ‭65‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭22. The kdf_pbkdf1_do_derive function fails to zeroize sensitive data‬

‭Severity:‬‭Medium‬ ‭Difficulty:‬‭High‬

‭Type: Cryptography‬ ‭Finding ID: TOB-OSSL-22‬

‭Target:‬‭providers/implementations/kdfs/pbkdf1.c‬

‭Description‬
‭The‬‭kdf_pbkdf1_do_derive‬‭function implements the PBKDF1‬‭KDF. When the key is‬
‭derived, the function uses the stack buffer‬‭md_tmp‬‭to hold intermediate outputs from the‬
‭hash function. At the end of the function, this buffer holds the derived key. The‬‭md_tmp‬
‭buffer is never cleared before the function returns, which means that the derived key is left‬
‭on the stack.‬

‭static‬‭int‬‭kdf_pbkdf1_do_derive(‬‭const‬‭unsigned‬‭char‬‭*pass,‬‭size_t‬‭passlen,‬
‭const‬‭unsigned‬‭char‬‭*salt,‬‭size_t‬‭saltlen,‬
‭uint64_t‬‭iter,‬‭const‬‭EVP_MD *md_type,‬
‭unsigned‬‭char‬‭*out,‬‭size_t‬‭n)‬

‭{‬
‭uint64_t‬‭i;‬
‭int‬‭mdsize, ret =‬‭0‬‭;‬
‭unsigned‬‭char‬‭md_tmp[EVP_MAX_MD_SIZE];‬
‭EVP_MD_CTX *ctx =‬‭NULL‬‭;‬

‭// Derive the PBKDF1 key and store the result in‬‭mp_tmp.‬

‭memcpy(out, md_tmp, n);‬
‭ret =‬‭1‬‭;‬

‭err‬‭:‬
‭EVP_MD_CTX_free(ctx);‬
‭return‬‭ret;‬

‭}‬

‭Figure 22.1: The implementation of PBKDF1 leaves the derived key on the stack.‬
‭(‬‭providers/implementations/kdfs/pbkdf1.c‬‭)‬

‭Exploit Scenario‬
‭A server uses PBKDF1 as the legacy fallback algorithm for hashing passwords. Because of‬
‭another issue in the server implementation, malicious users can send a specially crafted‬
‭message to the server that causes it to leak stack memory from the application process as‬
‭part of the response. This is used by an attacker to leak password hashes belonging to‬
‭other users, allowing the attacker to recover other users’ passwords through an offline‬
‭brute-force attack.‬

‭Trail of Bits‬ ‭66‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/967f20144025e51d6bce5d115f5eaebea328394d/providers/implementations/kdfs/pbkdf1.c#L51-L89

‭Recommendations‬
‭Short term, ensure that the buffer‬‭md_tmp‬‭is cleared‬‭before the‬‭kdf_pbkdf1_do_derive‬
‭function returns.‬

‭Long term, regularly review new cryptographic implementations to ensure that sensitive‬
‭data is scrubbed from memory.‬

‭Trail of Bits‬ ‭67‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭23. Out-of-bounds read in kdf_pbkdf1_do_derive‬

‭Severity:‬‭Medium‬ ‭Difficulty:‬‭High‬

‭Type: Data Exposure‬ ‭Finding ID: TOB-OSSL-23‬

‭Target:‬‭providers/implementations/kdfs/pbkdf1.c‬

‭Description‬
‭PBKDF1 key derivation is implemented by the function‬‭kdf_pbkdf1_derive‬‭, which calls‬
‭through to the‬‭kdf_pbkdf1_do_derive‬‭function to compute‬‭the actual key. Neither‬
‭function validates the requested output length‬‭keylen‬‭.‬‭If‬‭keylen‬‭is greater than the digest‬
‭output size, the‬‭kdf_pbkdf1_do_derive‬‭function will‬‭read out of bounds and leak‬
‭uninitialized stack memory as part of the returned buffer.‬

‭static‬‭int‬‭kdf_pbkdf1_derive(‬‭void‬‭*vctx,‬‭unsigned‬‭char‬‭*key,‬‭size_t‬‭keylen‬‭,‬
‭const‬‭ossl_param params[])‬

‭{‬
‭kdf_pbkdf1 *ctx = (kdf_pbkdf1 *)vctx;‬
‭const‬‭evp_md *md;‬

‭if‬‭(!ossl_prov_is_running() || !kdf_pbkdf1_set_ctx_params(ctx,‬‭params))‬
‭return‬‭0‬‭;‬

‭if‬‭(ctx->pass == null) {‬
‭err_raise(err_lib_prov, prov_r_missing_pass);‬
‭return‬‭0‬‭;‬

‭}‬

‭if‬‭(ctx->salt == null) {‬
‭err_raise(err_lib_prov, prov_r_missing_salt);‬
‭return‬‭0‬‭;‬

‭}‬

‭md = ossl_prov_digest_md(&ctx->digest);‬
‭return‬‭kdf_pbkdf1_do_derive‬‭(ctx->pass, ctx->pass_len,‬‭ctx->salt, ctx->salt_len,‬

‭ctx->iter, md, key,‬‭keylen‬‭);‬
‭}‬

‭Figure 23.1: The‬‭kdf_pbkdf1_derive‬‭function fails‬‭to validate the requested output length.‬
‭(‬‭providers/implementations/kdfs/pbkdf1.c‬‭)‬

‭static‬‭int‬‭kdf_pbkdf1_do_derive(‬‭const‬‭unsigned‬‭char‬‭*pass,‬‭size_t‬‭passlen,‬
‭const‬‭unsigned‬‭char‬‭*salt,‬‭size_t‬‭saltlen,‬
‭uint64_t‬‭iter,‬‭const‬‭EVP_MD *md_type‬‭,‬
‭unsigned‬‭char‬‭*out,‬‭size_t‬‭n‬‭)‬

‭Trail of Bits‬ ‭68‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/967f20144025e51d6bce5d115f5eaebea328394d/providers/implementations/kdfs/pbkdf1.c#L175-L197

‭{‬
‭uint64_t‬‭i;‬
‭int‬‭mdsize, ret =‬‭0‬‭;‬
‭unsigned‬‭char‬‭md_tmp[EVP_MAX_MD_SIZE]‬‭;‬
‭EVP_MD_CTX *ctx =‬‭NULL‬‭;‬

‭ctx = EVP_MD_CTX_new();‬
‭if‬‭(ctx ==‬‭NULL‬‭) {‬

‭ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);‬
‭goto‬‭err;‬

‭}‬

‭if‬‭(!EVP_DigestInit_ex(ctx, md_type,‬‭NULL‬‭)‬
‭|| !EVP_DigestUpdate(ctx, pass, passlen)‬
‭|| !EVP_DigestUpdate(ctx, salt, saltlen)‬
‭|| !EVP_DigestFinal_ex(ctx, md_tmp,‬‭NULL‬‭))‬
‭goto‬‭err;‬

‭mdsize = EVP_MD_size(md_type);‬
‭if‬‭(mdsize <‬‭0‬‭)‬

‭goto‬‭err;‬
‭for‬‭(i =‬‭1‬‭; i < iter; i++) {‬

‭if‬‭(!‬‭EVP_DigestInit_ex(ctx, md_type,‬‭NULL‬‭)‬‭)‬
‭goto‬‭err;‬

‭if‬‭(!EVP_DigestUpdate(ctx, md_tmp, mdsize))‬
‭goto‬‭err;‬

‭if‬‭(!‬‭EVP_DigestFinal_ex(ctx, md_tmp,‬‭NULL‬‭)‬‭)‬
‭goto‬‭err;‬

‭}‬

‭memcpy(out, md_tmp, n);‬
‭ret =‬‭1‬‭;‬

‭err‬‭:‬
‭EVP_MD_CTX_free(ctx);‬
‭return‬‭ret;‬

‭}‬

‭Figure 23.2: If the requested key length‬‭n‬‭is greater‬‭than the digest size, the‬
‭kdf_pbkdf1_do_derive‬‭function will copy uninitialized‬‭stack memory to the output buffer.‬

‭(‬‭providers/implementations/kdfs/pbkdf1.c‬‭)‬

‭Exploit Scenario‬
‭A server uses PBKDF1 as the legacy fallback algorithm for hashing passwords. A‬
‭configuration issue causes the server to request an output from PBKDF1 that is longer than‬
‭the digest size. This causes the output digest to contain uninitialized stack memory, making‬
‭the authentication process based on the resulting password hash nondeterministic.‬

‭Recommendations‬
‭Short term, add a check to ensure that the requested output length from PBKDF1 is not‬
‭longer than the digest size.‬

‭Trail of Bits‬ ‭69‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/967f20144025e51d6bce5d115f5eaebea328394d/providers/implementations/kdfs/pbkdf1.c#L51-L89

‭Long term, ensure that MACs and KDFs are tested with invalid input parameters to ensure‬
‭that they behave as expected on invalid inputs.‬

‭Trail of Bits‬ ‭70‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭A. Vulnerability Categories‬

‭The following tables describe the vulnerability categories, severity levels, and difficulty‬
‭levels used in this document.‬

‭Vulnerability Categories‬

‭Category‬ ‭Description‬

‭Access Controls‬ ‭Insufficient authorization or assessment of rights‬

‭Auditing and Logging‬ ‭Insufficient auditing of actions or logging of problems‬

‭Authentication‬ ‭Improper identification of users‬

‭Configuration‬ ‭Misconfigured servers, devices, or software components‬

‭Cryptography‬ ‭A breach of system confidentiality or integrity‬

‭Data Exposure‬ ‭Exposure of sensitive information‬

‭Data Validation‬ ‭Improper reliance on the structure or values of data‬

‭Denial of Service‬ ‭A system failure with an availability impact‬

‭Error Reporting‬ ‭Insecure or insufficient reporting of error conditions‬

‭Patching‬ ‭Use of an outdated software package or library‬

‭Session Management‬ ‭Improper identification of authenticated users‬

‭Testing‬ ‭Insufficient test methodology or test coverage‬

‭Timing‬ ‭Race conditions or other order-of-operations flaws‬

‭Undefined Behavior‬ ‭Undefined behavior triggered within the system‬

‭Trail of Bits‬ ‭71‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭Severity Levels‬

‭Severity‬ ‭Description‬

‭Informational‬ ‭The issue does not pose an immediate risk but is relevant to security best‬
‭practices.‬

‭Undetermined‬ ‭The extent of the risk was not determined during this engagement.‬

‭Low‬ ‭The risk is small or is not one the client has indicated is important.‬

‭Medium‬ ‭User information is at risk; exploitation could pose reputational, legal, or‬
‭moderate financial risks.‬

‭High‬ ‭The flaw could affect numerous users and have serious reputational, legal,‬
‭or financial implications.‬

‭Difficulty Levels‬

‭Difficulty‬ ‭Description‬

‭Undetermined‬ ‭The difficulty of exploitation was not determined during this engagement.‬

‭Low‬ ‭The flaw is well known; public tools for its exploitation exist or can be‬
‭scripted.‬

‭Medium‬ ‭An attacker must write an exploit or will need in-depth knowledge of the‬
‭system.‬

‭High‬ ‭An attacker must have privileged access to the system, may need to know‬
‭complex technical details, or must discover other weaknesses to exploit this‬
‭issue.‬

‭Trail of Bits‬ ‭72‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭B. Code Maturity Categories‬

‭The following tables describe the code maturity categories and rating criteria used in this‬
‭document.‬

‭Code Maturity Categories‬

‭Category‬ ‭Description‬

‭Arithmetic‬ ‭The proper use of mathematical operations and semantics‬

‭Auditing‬ ‭The use of event auditing and logging to support monitoring‬

‭Authentication /‬
‭Access Controls‬

‭The use of robust access controls to handle identification and‬
‭authorization and to ensure safe interactions with the system‬

‭Complexity‬
‭Management‬

‭The presence of clear structures designed to manage system complexity,‬
‭including the separation of system logic into clearly defined functions‬

‭Configuration‬ ‭The configuration of system components in accordance with best‬
‭practices‬

‭Cryptography and‬
‭Key Management‬

‭The safe use of cryptographic primitives and functions, along with the‬
‭presence of robust mechanisms for key generation and distribution‬

‭Data Handling‬ ‭The safe handling of user inputs and data processed by the system‬

‭Documentation‬ ‭The presence of comprehensive and readable codebase documentation‬

‭Maintenance‬ ‭The timely maintenance of system components to mitigate risk‬

‭Memory Safety‬
‭and Error Handling‬

‭The presence of memory safety and robust error-handling mechanisms‬

‭Testing and‬
‭Verification‬

‭The presence of robust testing procedures (e.g., unit tests, integration‬
‭tests, and verification methods) and sufficient test coverage‬

‭Trail of Bits‬ ‭73‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭Rating Criteria‬

‭Rating‬ ‭Description‬

‭Strong‬ ‭No issues were found, and the system exceeds industry standards.‬

‭Satisfactory‬ ‭Minor issues were found, but the system is compliant with best practices.‬

‭Moderate‬ ‭Some issues that may affect system safety were found.‬

‭Weak‬ ‭Many issues that affect system safety were found.‬

‭Missing‬ ‭A required component is missing, significantly affecting system safety.‬

‭Not Applicable‬ ‭The category is not applicable to this review.‬

‭Not Considered‬ ‭The category was not considered in this review.‬

‭Further‬
‭Investigation‬
‭Required‬

‭Further investigation is required to reach a meaningful conclusion.‬

‭Trail of Bits‬ ‭74‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭C. Automated Testing‬

‭This section describes the setup of the automated analysis tools used during this audit.‬

‭Though static analysis tools frequently report false positives, there are certain categories of‬
‭issues that they detect with essentially perfect precision, such as undefined behavior,‬
‭misspecified format strings, and use of unsafe APIs. We recommend that the OpenSSL‬
‭team periodically run these static tools and review their findings.‬

‭C.1 Clang‬
‭We built the codebase using Clang with the following warnings enabled:‬

‭●‬ ‭-Walloca‬

‭●‬ ‭-Wassign-enum‬

‭●‬ ‭-Wbad-function-cast‬

‭●‬ ‭-Wcast-qual‬

‭●‬ ‭-Wcomma‬

‭●‬ ‭-Wfloat-equal‬

‭●‬ ‭-Wformat-nonliteral‬

‭●‬ ‭-Wimplicit-fallthrough‬

‭●‬ ‭-Wimplicit-int-conversion‬

‭●‬ ‭-Wshift-sign-overflow‬

‭●‬ ‭-Wshorten-64-to-32‬

‭●‬ ‭-Wsign-conversion‬

‭●‬ ‭-Wswitch-enum‬

‭●‬ ‭-Wunreachable-code-break‬

‭●‬ ‭-Wunreachable-code-return‬

‭●‬ ‭-Wunreachable-code‬

‭This produced a large number of warnings. In particular, warnings concerning implicit‬
‭integer conversions that may lead to sign or truncation issues should be investigated‬
‭further.‬

‭Trail of Bits‬ ‭75‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭C.2. CodeQL‬
‭We used CodeQL to detect any known vulnerabilities present in the codebase. This analysis‬
‭did not identify any issues in the library. To build the CodeQL database, we ran the‬
‭command‬‭codeql‬‭database‬‭create‬‭in the repository root‬‭directory.‬

‭codeql database create --language=cpp --command=‬‭"make‬‭-j4"‬‭openssl-3.1.2.codeql‬

‭Figure C.1: The command used to build a CodeQL database for the OpenSSL library‬

‭We ran the query suite‬‭cpp-lgtm-full.qls‬‭included‬‭with CodeQL, as well as a number of‬
‭internal queries, on the library. To run the query suite‬‭cpp-lgtm-full.qls‬‭, we used the‬
‭following command.‬

‭codeql database analyze‬
‭--format=sarif-latest‬
‭--output=cpp-lgtm-full.sarif‬
‭-- openssl-3.1.2.codeql cpp-lgtm-full.qls‬

‭Figure C.2: The command used to run the query suite‬‭cpp-lgtm-all.qls‬‭on the library‬

‭C.3. Cppcheck‬
‭To install Cppcheck, we followed the instructions on‬‭the official website‬‭. We ran the tool‬
‭with a few analyses disabled to remove false positives:‬

‭cppcheck --suppress=unusedFunction‬ ‭\‬
‭--suppress=missingInclude‬ ‭\‬
‭--suppress=missingIncludeSystem‬‭\‬
‭providers‬‭2‬‭> cppcheck.txt‬

‭Figure C.3: The command used to run Cppcheck on the‬‭providers‬‭directory‬

‭C.4. Semgrep‬
‭We ran the static analyzer‬‭Semgrep‬‭with the rule sets‬‭shown in figure C.4 to identify‬
‭low-complexity weaknesses in the source code repositories. These runs did not identify any‬
‭issues or code quality findings.‬

‭semgrep --config‬‭"p/c"‬
‭semgrep --config "p/security-code-scan"‬

‭Figure C.4: These Semgrep rule sets did not identify any issues in the codebase.‬

‭Trail of Bits‬ ‭76‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://cppcheck.sourceforge.io/
https://semgrep.dev/

‭D. Fuzzing‬

‭Fuzzing is an essential software testing method. It typically increases test coverage and‬
‭covers code paths that are difficult to cover completely using conventional unit testing. For‬
‭example, the unit tests of OpenSSL do not test‬‭this‬‭branch‬‭, so finding‬‭TOP-OSSL-14‬‭was not‬
‭detected. The following are all of the findings that we discovered using fuzzing:‬
‭TOP-OSSL-1‬‭,‬‭TOP-OSSL-12‬‭,‬‭TOP-OSSL-14‬‭,‬‭TOP-OSSL-15‬‭,‬‭TOP-OSSL-16‬‭, and‬‭TOP-OSSL-17‬‭.‬

‭OpenSSL runs several libFuzzer-based fuzzers through OSS-Fuzz. They are located in the‬
‭fuzz‬‭directory. We used the‬‭official OpenSSL build‬‭configuration‬‭to compile and run the‬
‭fuzzers. Each fuzzer implements the following functions:‬

‭●‬ ‭int‬‭FuzzerInitialize(int‬‭*argc,‬‭char‬‭***argv)‬

‭○‬ ‭This function runs once when the fuzzer is started.‬

‭●‬ ‭void‬‭FuzzerCleanup()‬

‭○‬ ‭This function runs once when the fuzzer is stopped.‬

‭●‬ ‭int‬‭FuzzerTestOneInput(const‬‭uint8_t‬‭*buf,‬‭size_t‬‭len)‬

‭○‬ ‭This is the main fuzzing function, which runs the fuzzer once on the given‬
‭byte buffer.‬

‭In order to increase the test coverage, we developed three new fuzzers and added support‬
‭for OpenSSL 3.1.2 to the tlspuffin fuzzer, which does not use the above harnessing.‬

‭D.1. Property List Fuzzer‬
‭This fuzzer does not require initialization or cleanup. It tests the‬‭ossl_parse_property‬
‭function.‬

‭#include‬‭"internal/property.h"‬

‭int‬‭FuzzerTestOneInput‬‭(‬‭const‬‭uint8_t‬‭*buf,‬‭size_t‬‭len)‬
‭{‬

‭char‬‭*b;‬
‭b‬‭=‬‭OPENSSL_malloc(len‬‭+‬‭1‬‭);‬
‭if‬‭(b‬‭!=‬‭NULL‬‭)‬‭{‬

‭memcpy(b,‬‭buf,‬‭len);‬
‭b[len]‬‭=‬‭'\0'‬‭;‬
‭OSSL_PROPERTY_LIST‬‭*red‬ ‭=‬‭ossl_parse_property(‬‭NULL‬‭,‬‭(‬‭const‬‭char‬‭*)b);‬
‭if‬‭(red)‬‭{‬

‭ossl_property_free(red);‬
‭}‬
‭OPENSSL_free(b);‬

‭Trail of Bits‬ ‭77‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://coveralls.io/builds/62798592/source?filename=providers%2Fimplementations%2Fkdfs%2Fscrypt.c#L165
https://github.com/openssl/openssl/blob/master/fuzz/README.md

‭}‬
‭return‬‭0‬‭;‬

‭}‬

‭Figure D.1: The fuzzer for‬‭ossl_parse_property‬

‭Several signed integer overflows were discovered with the use of UBSan.‬

‭D.2. Extended Configuration Fuzzer‬
‭This fuzzer builds on top of the existing configuration fuzzer in‬‭fuzz/conf.c‬‭. The main‬
‭difference is that it calls the‬‭CONF_modules_load‬‭function after loading the configuration.‬
‭This uncovered several bugs in the interpretation of configurations, whereas the original‬
‭fuzzer tests only configuration parsing.‬

‭int‬‭FuzzerInitialize‬‭(‬‭int‬‭*argc,‬‭char‬‭***argv)‬‭{‬
‭OPENSSL_load_builtin_modules();‬
‭return‬‭1‬‭;‬

‭}‬

‭int‬‭FuzzerTestOneInput‬‭(‬‭const‬‭uint8_t‬‭*buf,‬‭size_t‬‭len)‬
‭{‬

‭long‬‭errorline‬‭=‬‭-1‬‭;‬
‭int‬‭r‬‭=‬‭0‬‭;‬
‭OSSL_LIB_CTX‬‭*libctx‬‭=‬‭NULL‬‭;‬
‭BIO‬‭*mem_bio‬‭=‬‭NULL‬‭;‬
‭CONF‬‭*conf‬‭=‬‭NULL‬‭;‬

‭if‬‭((libctx‬‭=‬‭OSSL_LIB_CTX_new())‬‭==‬‭NULL‬‭)‬
‭goto‬‭end;‬

‭if‬‭((mem_bio‬‭=‬‭BIO_new(BIO_s_mem()))‬ ‭==‬‭NULL‬‭)‬
‭goto‬‭end;‬

‭BIO_write(mem_bio,‬‭buf,‬‭len);‬

‭if‬‭((conf‬‭=‬‭NCONF_new_ex(libctx,‬‭NULL‬‭))‬‭==‬‭NULL‬‭)‬
‭goto‬‭end;‬

‭if‬‭(NCONF_load_bio(conf,‬‭mem_bio,‬‭&errorline)‬‭<=‬‭0‬‭)‬
‭goto‬‭end;‬

‭if‬‭(CONF_modules_load(conf,‬‭NULL‬‭,‬‭0‬‭)‬‭<=‬‭0‬‭)‬
‭goto‬‭end;‬

‭r‬‭=‬‭1‬‭;‬

‭end‬‭:‬
‭CONF_modules_finish();‬
‭NCONF_free(conf);‬
‭BIO_free(mem_bio);‬
‭OSSL_LIB_CTX_free(libctx);‬

‭Trail of Bits‬ ‭78‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/e5d4233fbd07eac52227c7ec5f479a46f15914bf/fuzz/conf.c

‭return‬‭r;‬
‭}‬

‭Figure D.2: The fuzzer for configuration parsing and interpretation‬

‭D.3. Provider Implementations Fuzzer‬
‭During this audit, we were looking for a way to fuzz the new provider API, and we found‬
‭that the execution of algorithm implementations with random‬‭OSSL_PARAM‬‭arrays was a‬
‭good fit for fuzzing. The high-level implementation of the fuzzing harness is summarized as‬
‭follows:‬

‭1.‬ ‭First, the fuzzer initializes an‬‭OSSL_LIB_CTX‬‭with‬‭default options. For each‬
‭operation‬‭, it collects all algorithms and stores them‬‭in a global variable. This results‬
‭in several stacks, such as‬‭STACK_OF(EVP_MD)‬‭,‬‭STACK_OF(EVP_KDF)‬‭,‬‭and‬
‭STACK_OF(EVP_CIPHER)‬‭.‬

‭2.‬ ‭For each random input buffer generated by the fuzzer (starting with an empty‬
‭corpus), the fuzzer does the following:‬

‭a.‬ ‭It selects a random operation and algorithm based on the first two integers‬
‭of the input buffer.‬

‭b.‬ ‭It gets all settable parameters for the algorithm from‬
‭EVP_MD_settable_ctx_params‬‭.‬

‭c.‬ ‭For each parameter, the fuzzer reads a random value from the random input‬
‭buffer and honors its type. For example, for an‬‭OSSL_PARAM_INTEGER‬‭,‬‭it‬
‭reads an‬‭int64_t‬‭and creates an‬‭OSSL_PARAM‬‭from it.‬

‭d.‬ ‭Depending on the operation, the fuzzer executes a test case. For example,‬
‭for digests, it calls‬‭EVP_DigestInit_ex2‬‭,‬‭EVP_DigestUpdate‬‭,‬‭and‬
‭EVP_DigestFinal_ex‬‭. It executes similar code for processes‬‭such as‬
‭symmetric encryption and key derivation.‬

‭3.‬ ‭Finally, the fuzzer frees all data allocated during step 1.‬

‭The fuzzer reads data from the input buffer and interprets it. Here, it is essential to use‬
‭magic values to separate several inputs, rather than a‬‭type-length-value‬‭(TLV) encoding. We‬
‭want the fuzzer to still be able to progress after flipping bytes, and operations like making a‬
‭string longer usually require two mutations when using a TLV encoding (one for increasing‬
‭the string length and one for inserting new bytes). When using magic values to separate‬
‭input strings from other inputs, a single mutation (inserting new bytes) is enough. This is‬
‭also described in the‬‭libFuzzer documentation‬‭.‬

‭Trail of Bits‬ ‭79‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://www.openssl.org/docs/man3.1/man7/provider.html#Operations
https://en.wikipedia.org/wiki/Type-length-value
https://github.com/google/fuzzing/blob/master/docs/split-inputs.md

‭There are also several parameters types, like‬‭OSSL_KDF_PARAM_SCRYPT_N‬‭and‬
‭OSSL_KDF_PARAM_ITER‬‭, that we hard code to‬‭1‬‭, because fuzzing the value of these‬
‭parameters would stop the fuzzer from progressing due to the high execution time.‬

‭To improve parameter name generation, we also used a dictionary generated from‬
‭core-names.h‬‭. We extracted all strings using grep‬‭(‬‭grep‬‭-o‬‭'".*"'‬
‭include/openssl/core_names.h‬‭>‬‭dictionary.txt‬‭) and‬‭provided the resulting text‬
‭file as a‬‭dictionary‬‭to libFuzzer.‬

‭We did not implement provider fuzzing for all primitives supported by the OpenSSL library.‬
‭We currently support digests, symmetric encryption, KDFs, MACs, and RNGs. Support for‬
‭KEMs, key management functions, key exchanges, asymmetric encryption, and‬
‭signing/signature verification is not yet implemented due to the time constraints imposed‬
‭by the audit. In order to support these, several stub methods have to be implemented.‬

‭The source code for the fuzzer is delivered alongside this report.‬

‭D.4. Dolev-Yao TLS Fuzzing Using tlspuffin‬
‭Since 2022, Trail of Bits has been researching stateful fuzzing of cryptographic protocols.‬
‭The project started in 2021 as a research project at Inria Nancy (LORIA) in France. This‬
‭research culminated in a‬‭paper‬‭on the Dolev-Yao (DY)‬‭fuzzing approach, which will be‬
‭published at 2024 IEEE S&P. The corresponding fuzzer is called‬‭tlspuffin‬‭.‬

‭The current TLS fuzzer in the OpenSSL project essentially fuzzes only the Client/Server‬
‭Hello messages, as they are the only messages in TLS 1.3 that are not encrypted. It is‬
‭unlikely that the fuzzer triggers interesting states beyond the first message. This is where‬
‭the idea of DY fuzzing comes into play. In the 1980s, the formal methods community‬
‭identified and mathematically defined the DY model. It allows us to reason about‬
‭cryptographic protocols on a logical and structural level. To fuzz a protocol specifically on a‬
‭structural level, a DY fuzzer injects, omits, and modifies encrypted TLS messages. The‬
‭fuzzer is capable of decrypting TLS messages and modifying individual fields. Using this‬
‭approach, the tlspuffin fuzzer has discovered‬‭several‬‭CVEs of medium severity in wolfSSL‬‭.‬

‭The tlspuffin fuzzer is also capable of detecting logical security flaws. This class of bug‬
‭usually does not result in a crash or memory corruption that would be detectable by‬
‭AddressSanitzer. The current version of tlspuffin is capable of detecting issues like‬
‭authentication bypasses, where a server or client can impersonate another one.‬

‭As part of the engagement, we ran tlspuffin on OpenSSL 3.1.2 for 72 hours. No issues were‬
‭detected during this time.‬

‭The tlspuffin fuzzer is continuously improved, and development is ongoing. For example, a‬
‭new feature promises to add classical bit-level fuzzing capabilities to tlspuffin. As already‬
‭mentioned, tlspuffin works on a more structural level and does not flip single bits in its‬

‭Trail of Bits‬ ‭80‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/mirrorer/afl/blob/master/dictionaries/README.dictionaries
https://eprint.iacr.org/2023/057
https://github.com/tlspuffin/tlspuffin
https://blog.trailofbits.com/2023/01/12/wolfssl-vulnerabilities-tlspuffin-fuzzing-ssh/

‭current version. However, it makes perfect sense to combine both approaches. This feature‬
‭is expected to be released later this year.‬

‭D.5. Recommendations for Future Fuzzing‬
‭Based on the results of this audit, we recommend continuing to invest efforts into fuzzing.‬
‭Here, we summarize some potential directions for future work.‬

‭●‬ ‭Implement missing operations for the provider fuzzer.‬‭Even though we fuzzed‬
‭only a selection of operations, we discovered several bugs in the APIs in this way. It‬
‭makes sense to expand this effort to cover all primitives supported by the‬
‭architecture. Also, additional execution flows for each operation could help identify‬
‭more bugs. For instance,‬‭TOB-OSSL-18‬‭would be detectable‬‭by adding an assertion‬
‭to the fuzzing harness to ensure that executing an operation twice gives identical‬
‭results.‬

‭●‬ ‭Implement differential fuzzing using the results from the provider fuzzer.‬
‭During our fuzzing efforts for this audit, we ignored the results from the‬
‭cryptographic computations from the provider fuzzer. However, the results could be‬
‭used to perform differential fuzzing between different architectures (ARM64, x86-64,‬
‭MIPS, etc.). This can be achieved by storing the cryptographic output of the test‬
‭cases in the corpus after a long fuzzing campaign. The corpus could be reexecuted‬
‭on different architectures, and the results could be compared with the previously‬
‭stored output. The same could be done between different versions of OpenSSL to‬
‭prevent regressions, or between OpenSSL and other cryptographic libraries. This is‬
‭essentially the aim of‬‭cryptofuzz‬‭.‬

‭●‬ ‭Benchmark the project’s fuzzers.‬‭The fuzzers implemented‬‭during this‬
‭engagement have not yet been benchmarked for coverage. Investigating their‬
‭coverage and investing in improvements could uncover more bugs.‬

‭●‬ ‭Support different fuzzing engines.‬‭The OpenSSL project‬‭uses only libFuzzer to‬
‭drive its fuzzers. The integration of fuzzers like AFL++ or the novel LibAFL could yield‬
‭improvements in terms of test case executions per second.‬

‭●‬ ‭Implement OpenSSL TLS fuzzing modes.‬‭The BoringSSL‬‭library features a‬
‭compilation mode‬‭that disables several checks. A mode‬‭like this could improve the‬
‭coverage of existing fuzzers in the OpenSSL projects.‬

‭Trail of Bits‬ ‭81‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/guidovranken/cryptofuzz
https://boringssl.googlesource.com/boringssl/+/HEAD/FUZZING.md#fuzzer-mode

‭E. Code Quality Recommendations‬

‭The following section contains code quality recommendations that do not have any‬
‭immediate security implications.‬

‭1. Remove the reference to the‬‭HAVE_ATOMICS‬‭macro‬‭in the‬‭provider_new‬‭function.‬
‭In‬‭provider_new‬‭, the provider reference count lock‬‭is initialized if‬‭HAVE_ATOMICS‬‭is not‬
‭defined.‬

‭if‬‭((prov = OPENSSL_zalloc(‬‭sizeof‬‭(*prov))) ==‬‭NULL‬
‭#ifndef HAVE_ATOMICS‬

‭|| (prov->refcnt_lock = CRYPTO_THREAD_lock_new())‬‭==‬‭NULL‬
‭#endif‬

‭) {‬
‭OPENSSL_free(prov);‬
‭ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE);‬
‭return‬‭NULL‬‭;‬

‭}‬

‭Figure E.1: The reference count lock is initialized if‬‭HAVE_ATOMICS‬‭is not defined.‬
‭(‬‭crypto/provider_core.c‬‭)‬

‭However, the implementations of‬‭CRYPTO_UP_REF‬‭and‬‭CRYPTO_DOWN_REF‬‭both assume‬
‭that atomics are available and do not check whether‬‭HAVE_ATOMICS‬‭is defined.‬

‭2. Fix the spelling of the‬‭s390x_keccakc_final‬‭function.‬‭The name of the S390X‬
‭finalization function for Keccak is misspelled and should be corrected.‬

‭static‬‭int‬‭s390x_keccakc_final‬‭(‬‭unsigned‬‭char‬‭*md,‬‭void‬‭*vctx,‬‭int‬‭padding)‬

‭Figure E.2: The function name‬‭s390x_keccakc_final‬‭is misspelled.‬
‭(‬‭providers/implementations/digests/sha3_prov.c‬‭)‬

‭3. Have the engine initialization conditionally compiled in the‬
‭ossl_prov_set_macctx‬‭function.‬‭The following lines‬‭could be wrapped in‬‭#if‬
‭!defined(OPENSSL_NO_ENGINE)‬‭&&‬‭!defined(FIPS_MODULE)‬‭...‬‭#endif‬‭because the‬
‭engine variable is never used if either‬‭OPENSSL_NO_ENGINE‬‭or‬‭FIPS_MODULE‬‭are defined.‬

‭Trail of Bits‬ ‭82‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/8436ef8bdb96c0a977a15ec707d28404d97c3a6c/crypto/provider_core.c#L451-L459
https://github.com/openssl/openssl/blob/cb224f4e27b0f0e8d0a88193aa92eb8bfd17ef15/providers/implementations/digests/sha3_prov.c#L180

‭if‬‭(engine ==‬‭NULL‬‭) {‬
‭if‬‭((p = OSSL_PARAM_locate_const(params, OSSL_ALG_PARAM_ENGINE))‬

‭!=‬‭NULL‬‭) {‬
‭if‬‭(p->data_type != OSSL_PARAM_UTF8_STRING)‬

‭return‬‭0‬‭;‬
‭engine = p->data;‬

‭}‬
‭}‬

‭Figure E.3: This part of‬‭ossl_prov_set_macctx‬‭could‬‭be conditionally compiled.‬
‭(‬‭providers/common/provider_util.c‬‭)‬

‭4. Move the null check in the‬‭hmac_setkey‬‭function.‬‭The‬‭hmac_setkey‬‭function‬
‭dereferences the‬‭key‬‭argument as part of a call to‬‭memcpy‬‭and then later checks whether‬
‭the‬‭key‬‭is null before the call to‬‭HMAC_Init_ex‬‭. If‬‭the‬‭key‬‭should be checked, this check‬
‭should occur before the call to‬‭memcpy‬‭.‬

‭5. Update NIST standard references in the‬‭kbkdf‬‭implementation.‬‭The‬‭kbkdf‬
‭implementation currently references‬‭NIST standard‬‭SP 800-108‬‭, which was withdrawn in‬
‭August of 2022. That standard was replaced with‬‭NIST‬‭standard SP 800-108 revision 1‬‭,‬
‭which is now the most up to date. The comments in the‬‭kbkdf‬‭implementation should be‬
‭updated to reflect this. In addition to updating the link to the standard, the comments‬
‭referring to specific sections of the standard need to be updated. In particular, references‬
‭to sections 5.1, 5.2, and 5.3 need to be changed to sections 4.1, 4.2, and 4.3, respectively.‬

‭7. Prefer iteration to recursion when iterating through encoding/decoding steps.‬‭The‬
‭implementation of encoding and decoding is currently based on recursion (refer to‬
‭examples‬‭here‬‭and‬‭here‬‭). For long encoding and decoding‬‭chains, this implementation‬
‭could overflow the stack, as demonstrated by the example below. We recommend using an‬
‭iterative approach that allocates memory on the heap instead of the stack, as this would be‬
‭more robust.‬

‭OSSL_ENCODER_CTX‬‭*ctx‬‭=‬‭NULL‬‭;‬

‭if‬‭((ctx‬‭=‬‭OSSL_ENCODER_CTX_new())‬‭==‬‭NULL‬‭)‬‭{‬
‭ERR_raise(ERR_LIB_OSSL_ENCODER,‬‭ERR_R_MALLOC_FAILURE);‬
‭return‬‭0‬‭;‬

‭}‬

‭OSSL_ENCODER_CTX_set_construct(ctx,‬‭test_construct1);‬

‭OSSL_ENCODER‬‭*encoder‬‭=‬‭OSSL_ENCODER_fetch(‬‭NULL‬‭,‬‭"ASDF"‬‭,‬
‭"output=asdf,structure=type-specific"‬‭);‬
‭for‬‭(‬‭int‬‭i‬‭=‬‭0‬‭;‬‭i‬‭<‬‭2500‬‭;‬‭++i)‬‭{‬

‭OSSL_ENCODER_CTX_add_encoder(ctx,‬‭encoder);‬
‭}‬

‭OSSL_ENCODER_CTX_set_cleanup(ctx,‬‭cleanup);‬

‭Trail of Bits‬ ‭83‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/blob/967f20144025e51d6bce5d115f5eaebea328394d/providers/common/provider_util.c#L252-L260
https://csrc.nist.gov/pubs/sp/800/108/upd1/final
https://csrc.nist.gov/pubs/sp/800/108/r1/upd1/final
https://github.com/openssl/openssl/blob/0aaa71b90a9460e0e57c8e45163d1b2ba16e2d64/crypto/encode_decode/encoder_lib.c#L503
https://github.com/openssl/openssl/blob/4a1108eb5906cd3cf47a3f70bd58722dbe2023a4/crypto/encode_decode/decoder_lib.c#L82

‭OSSL_ENCODER_to_bio(ctx,‬‭mem);‬

‭Figure E.4: The unit test that crashes if an encoder that converts from‬‭ASDF‬‭to‬‭ASDF‬‭is present‬

‭Note that for this example, we added an encoder that converts from the format‬‭ASDF‬‭to‬
‭itself to‬‭providers/encoders.inc‬‭.‬

‭8. Update the comment for the‬‭dh_builtin_genparams‬‭function.‬‭The code comment‬
‭for‬‭dh_builtin_genparams‬‭states that the function‬‭assumes that the generator‬
‭argument is not‬‭0‬‭,‬‭1‬‭, or‬‭-1‬‭. However, the function‬‭actually checks the generator argument‬
‭and returns an error if it is less than or equal to‬‭1‬‭.‬

‭9. Avoid using XOR as a logical operator in conditions.‬‭The function‬
‭common_check_sm2‬‭(in‬‭providers/implementations/keymgmt/ec_kmgmt.c‬‭)‬‭uses‬
‭XOR to define an‬‭if‬‭statement condition. This should‬‭be avoided, as it makes the code‬
‭harder to read.‬

‭10. Update the comment for the‬‭common_import‬‭function.‬‭The comment for‬
‭common_import‬‭(in‬‭providers/implementations/keymgmt/ec_kmgmt.c‬‭)‬‭claims that‬
‭the function can import private keys and, optionally, the corresponding public key;‬
‭however, the‬‭ossl_ec_key_fromdata‬‭function, which‬‭implements the import code, will‬
‭always import the public key if it is available. Thus, in practice, importing only the private‬
‭key is impossible.‬

‭11. Remove the superfluous length check in the‬‭gcm_tls_iv_set_fixed‬‭function.‬
‭The length check in‬‭gcm_tls_iv_set_fixed‬‭against‬‭0‬‭is redundant because the length is‬
‭known to be greater than‬‭EVP_GCM_TLS_FIXED_IV_LEN‬‭,‬‭which is 4.‬

‭12. Remove the duplication of the functionality in the‬‭scrypt_set_membuf‬‭function.‬
‭The‬‭scrypt_set_membuf‬‭function is duplicated (with‬‭different names) across a number of‬
‭KDF implementations (KRB5 KDF, PBKDF1, PBKDF2, PKCS12 KDF, Scrypt, and SSH KDF). This‬
‭function should be moved to a common location like‬‭provider_util.c‬‭, and each KDF‬
‭should be updated to reference this common implementation.‬

‭Trail of Bits‬ ‭84‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭F. Driver Code for a Malicious HTTP Server‬

‭This section contains code that implements a malicious HTTP server, which never stops‬
‭sending HTTP headers.‬

‭#include‬‭<stdio.h>‬
‭#include‬‭<netdb.h>‬
‭#include‬‭<netinet/in.h>‬
‭#include‬‭<stdlib.h>‬
‭#include‬‭<string.h>‬
‭#include‬‭<sys/socket.h>‬
‭#include‬‭<sys/types.h>‬
‭#include‬‭<unistd.h>‬

‭#define PORT 8080‬
‭#ifndef MSG_MORE‬
‭# define MSG_MORE 0‬
‭#endif‬

‭char‬‭validreq[]‬‭=‬‭"HTTP/1.1 200 OK\x0D\x0A"‬
‭"Content-Type: application/ocsp-response\x0D\x0A"‬‭;‬

‭void‬‭send_payload‬‭(‬‭int‬‭fd)‬‭{‬
‭send(fd,‬‭validreq,‬‭sizeof‬‭(validreq)‬‭-‬‭1‬‭,‬‭MSG_MORE);‬
‭while‬‭(‬‭1‬‭)‬‭{‬

‭send(fd,‬‭"a:b\x0d\x0a"‬‭,‬‭5‬‭,‬‭MSG_MORE);‬
‭}‬

‭}‬

‭int‬‭main‬‭()‬‭{‬
‭int‬‭sock,‬‭fd,‬‭len;‬
‭struct‬‭sockaddr_in‬‭servaddr,‬‭cli;‬
‭sock‬‭=‬‭socket(AF_INET,‬‭SOCK_STREAM,‬‭0‬‭);‬
‭if‬‭(sock‬‭==‬‭-1‬‭)‬‭{‬

‭exit(‬‭0‬‭);‬
‭}‬
‭bzero(&servaddr,‬‭sizeof‬‭(servaddr));‬
‭servaddr.sin_family‬‭=‬‭AF_INET;‬
‭servaddr.sin_addr.s_addr‬‭=‬‭htonl(INADDR_ANY);‬
‭servaddr.sin_addr.s_addr‬‭=‬‭INADDR_ANY;‬
‭servaddr.sin_port‬‭=‬‭htons(PORT);‬
‭if‬‭((bind(sock,‬‭(‬‭struct‬‭sockaddr‬‭*)‬‭&servaddr,‬‭sizeof‬‭(servaddr)))‬‭!=‬‭0‬‭)‬‭{‬

‭exit(‬‭0‬‭);‬
‭}‬
‭if‬‭((listen(sock,‬‭5‬‭))‬‭!=‬‭0‬‭)‬‭{‬

‭exit(‬‭0‬‭);‬
‭}‬‭else‬‭{‬

‭printf(‬‭"Server listening..\n"‬‭);‬
‭}‬
‭len‬‭=‬‭sizeof‬‭(cli);‬
‭fd‬‭=‬‭accept(sock,‬‭(‬‭struct‬‭sockaddr‬‭*)‬‭&‬‭cli,‬‭&len);‬

‭Trail of Bits‬ ‭85‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭if‬‭(fd‬‭<‬‭0‬‭)‬‭{‬
‭exit(‬‭0‬‭);‬

‭}‬
‭send_payload(fd);‬
‭close(sock);‬

‭}‬

‭Figure F.1: The code that implements a malicious HTTP server‬

‭Trail of Bits‬ ‭86‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭G. Integer Type Recommendations‬

‭Issues related to implicit integer truncation, sign conversion, and integer overflows are‬
‭often the root cause of more serious vulnerabilities in low-level languages like C and C++.‬
‭These types of issues are often hard to detect during manual code review, but they can‬
‭easily be detected statically by the compiler or other static analysis tools like UBSan.‬

‭There are a number of best practices that developers can implement to decrease the risk‬
‭of vulnerabilities due to implicit integer conversions.‬

‭G.1. Recommendations‬
‭Prefer fixed-width integer types.‬‭Using fixed-width‬‭integer types like‬‭int8_t‬‭,‬‭uint8_t‬‭,‬
‭int32_t‬‭,‬‭uint32_t‬‭,‬‭int64_t‬‭, and‬‭uint64_t‬‭ensures that‬‭the variable size remains‬
‭consistent across platforms and helps to make developers’ expectations around size and‬
‭sign clear from the choice of type. This is particularly important when implementing‬
‭cryptographic primitives where the state is expected to have a fixed, platform-independent‬
‭size.‬

‭Avoid using signed types to represent unsigned quantities.‬‭Avoiding this practice‬
‭makes expectations around variable use clear to the reader and reduces the risk of‬
‭undefined behavior due to signed shifts or signed overflows.‬

‭The following figure shows the use of a signed variable to determine an array length. This‬
‭might be problematic if the user controls the‬‭len‬‭variable and can set it to negative values.‬

‭int‬‭len =‬‭0‬‭;‬

‭// Here len is computed from user-controlled values.‬

‭if‬‭(len > MAX_COPY_LEN) {‬
‭return‬‭-1‬‭;‬

‭}‬
‭memcpy(&dest, &src, len *‬‭sizeof‬‭(type));‬

‭Figure G.1: If the user can cause‬‭len‬‭to be negative,‬‭the check will fail and the buffer at‬‭dest‬
‭could overflow when the data is copied.‬

‭Some care must be taken to prevent the introduction of new vulnerabilities when a signed‬
‭variable is replaced by an unsigned one. For example, if a loop condition checks whether‬
‭i--‬‭>=‬‭0‬‭, replacing the loop variable‬‭i‬‭with an unsigned‬‭variable would cause an infinite‬
‭loop because the loop condition would always be true.‬

‭Avoid mixing signed and unsigned integer types in arithmetic expressions.‬‭Mixing‬
‭different integers types introduces implicit integer promotions, which could lead to‬
‭hard-to-diagnose issues and vulnerabilities. In particular, the overflow behavior of signed‬

‭Trail of Bits‬ ‭87‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭and unsigned integers is different. Unsigned integers will wrap on overflow, while signed‬
‭overflow is undefined behavior in C. If signed and unsigned types are used in the same‬
‭expression, it is always better to make type conversions explicit.‬

‭Avoid implicit integer narrowing.‬‭Narrowing an integer‬‭value (e.g., when passing a 64-bit‬
‭integer to a function that takes a 32-bit argument) may truncate the value and in the worst‬
‭case can lead to memory-safety issues like out-of-bounds reads and writes. An example of‬
‭when this can be an issue is given in figure G.2.‬

‭unsigned char‬‭* data =‬‭NULL‬‭;‬
‭unsigned‬‭long‬‭long‬‭data_size =‬‭0‬‭;‬

‭// Here data_size is computed from user-controlled values.‬

‭data = malloc(data_size);‬

‭Figure G.2: If‬‭data_size‬‭is greater than 2‬‭32‬‭, the‬‭input to‬‭malloc‬‭is silently truncated on 32-bit‬
‭platforms. Writing to the allocated buffer may cause an out-of-bounds write.‬

‭Ensure that defined constants have the correct type.‬‭Defined integer literals default to‬
‭either‬‭int‬‭,‬‭long‬‭, or‬‭long‬‭long‬‭in C. To ensure that‬‭they are typed correctly, defined‬
‭literals should include the correct suffix and/or the corresponding type.‬

‭// MAX_SIZE will be interpreted as an int value in expressions.‬
‭#define MIN_SIZE 1024‬
‭// MAX_SIZE will be interpreted as an uint64_t value in expressions.‬
‭#define MAX_SIZE ((uint64_t)2048ULL)‬

‭Figure G.3: Ensure that defined literals are typed correctly by including the type in the definition.‬

‭Avoid casting pointers to and from integers.‬‭Casting‬‭between integers and pointers‬
‭should be avoided. Casting from integers to pointers is implementation-specific behavior in‬
‭C. The result may not be properly aligned or may not point to data of the correct type.‬
‭Casting from pointers to integers is also implementation-specific behavior. If the integer‬
‭type is not large enough to represent the value, it is undefined behavior.‬

‭Enable compiler flags that detect implicit conversions.‬‭Both GCC and Clang support‬
‭compiler flags that detect implicit integer conversions and integer truncation. Enabling‬
‭these flags allows developers to find problematic integer conversions and truncations‬
‭quickly. For Clang, the following compiler flags are helpful in detecting issues related to‬
‭implicit integer conversions.‬

‭●‬ ‭-Wimplicit-int-conversion‬‭: Signals an implicit integer‬‭conversion‬

‭●‬ ‭-Wshift-sign-overflow‬‭: Signals that a signed shift‬‭sets the sign bit of the result‬

‭●‬ ‭-Wshorten-64-to-32‬‭: Signals an implicit conversion‬‭that loses integer precision‬

‭Trail of Bits‬ ‭88‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

‭●‬ ‭-Wsign-conversion‬‭: Signals an implicit conversion that changes signedness‬

‭●‬ ‭-Wsign-compare‬‭: Signals a comparison of integers of‬‭different signs‬

‭For a list of all Clang compiler flags and their interpretations, refer to‬‭the Clang reference‬
‭page for diagnostic flags‬‭.‬

‭Use UBSan during testing to detect undefined behavior due to integer arithmetic.‬
‭Enabling‬‭UBSan‬‭during unit testing ensures that undefined‬‭behavior due to issues like‬
‭signed integer overflows or out-of-bounds shifts is detected early in the development‬
‭process.‬

‭G.2. References‬
‭●‬ ‭The SEI CERT C Coding Standard‬

‭●‬ ‭Core C++ guidelines on signed/unsigned usage‬

‭●‬ ‭Vulnerabilities in C : When integers go bad!‬

‭Trail of Bits‬ ‭89‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://clang.llvm.org/docs/DiagnosticsReference.html
https://clang.llvm.org/docs/DiagnosticsReference.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152052
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#arithmetic
https://blog.feabhas.com/2014/10/vulnerabilities-in-c-when-integers-go-bad/

‭H. Fix Review Results‬

‭When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues‬
‭identified in the original report. This work involves a review of specific areas of the source‬
‭code and system configuration, not comprehensive analysis of the system.‬

‭From April 8 to April 9, 2024, Trail of Bits reviewed the fixes and mitigations implemented‬
‭by the OpenSSL team for the issues identified in this report. We reviewed each fix to‬
‭determine its effectiveness in resolving the associated issue.‬

‭The OpenSSL team provided us with a list of pull requests (PRs) that we matched to the‬
‭findings. The PRs were easy to follow, allowing us to focus on reviewing the fixes.‬

‭While reviewing the PRs, we also observed that the codebase’s testing could be improved.‬
‭We recommend including the fuzzer we provided through‬‭PR #22964‬‭.‬

‭In summary, of the 23 issues described in this report, OpenSSL has resolved 16 issues, has‬
‭partially resolved 2 issues, has accepted the risk of 3 issues, and has yet not resolved the‬
‭remaining 2 issues. For additional information, please see the Detailed Fix Review Results‬
‭below.‬

‭ID‬ ‭Title‬ ‭Status‬

‭1‬ ‭Risk of signed integer overflows when parsing property queries‬ ‭Resolved‬

‭2‬ ‭The provider configuration format is prone to misuse‬ ‭Resolved‬

‭3‬ ‭The default provider supports insecure algorithms‬ ‭Partially‬
‭Resolved‬

‭4‬ ‭Provider configuration section can cause a stack overflow‬ ‭Resolved‬

‭5‬ ‭Risk of heap buffer overflow during parsing of OIDs‬ ‭Resolved‬

‭6‬ ‭Risk of segmentation fault when loading property list in “stable”‬
‭configuration section‬

‭Resolved‬

‭7‬ ‭The ossl_prov_memdup function does not update dst_len if the call fails‬ ‭Risk Accepted‬

‭8‬ ‭API misuse may lead to unexpected segmentation fault‬ ‭Partially‬
‭Resolved‬

‭Trail of Bits‬ ‭90‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/pull/22964

‭9‬ ‭Insufficient validation in dh_gen_common_set_params‬ ‭Resolved‬

‭10‬ ‭HTTP client redirects to local host instead of remote one‬ ‭Risk Accepted‬

‭11‬ ‭OCSP requests might hang if the server responds with infinite headers‬ ‭Resolved‬

‭12‬ ‭Calling EVP_KDF_CTX_reset causes a double free when the context is‬
‭freed‬

‭Unresolved‬

‭13‬ ‭The aesni_cbc_hmac_sha256_cipher function depends on‬
‭compiler-specific behavior‬

‭Risk Accepted‬

‭14‬ ‭Use after free when setting invalid properties on the Scrypt algorithm‬
‭or if SHA-256 is missing‬

‭Unresolved‬

‭15‬ ‭Setting OSSL_MAC_PARAM_DIGEST_NOINIT for HMAC causes‬
‭segmentation fault‬

‭Resolved‬

‭16‬ ‭Functions of EVP_CIPHER_CTX are missing null checks‬ ‭Resolved‬

‭17‬ ‭Assertion could be hit when fetching algorithms by name‬ ‭Resolved‬

‭18‬ ‭Reinitialization of EVP_MAC for GMAC fails if parameters are not‬
‭provided‬

‭Resolved‬

‭19‬ ‭Creation of X.509 extensions can lead to undefined behavior‬ ‭Resolved‬

‭20‬ ‭Missing null checks in OSSL_PARAM getters‬ ‭Resolved‬

‭21‬ ‭The ossl_blake2b_final function fails to zeroize sensitive data‬ ‭Resolved‬

‭22‬ ‭The kdf_pbkdf1_do_derive function fails to zeroize sensitive data‬ ‭Resolved‬

‭23‬ ‭Out-of-bounds read in kdf_pbkdf1_do_derive‬ ‭Resolved‬

‭Detailed Fix Review Results‬
‭TOB-OSSL-1: Risk of signed integer overflows when parsing property queries‬
‭Resolved in‬‭PR #22874‬‭. The affected functions now‬‭check whether the parsed number‬
‭exceeds a 64-bit signed integer, preventing overflows. Additionally, this PR fixes a bug‬
‭causing the hexadecimal string‬‭0xa‬‭to be interpreted‬‭as‬‭0‬‭instead of‬‭10‬‭. Tests were added.‬

‭Trail of Bits‬ ‭91‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/pull/22874

‭TOB-OSSL-2: The provider configuration format is prone to misuse‬
‭Resolved in‬‭PR #22906‬‭. Enabling a provider now requires‬‭a configuration value for the‬
‭activate‬‭key to be explicitly set. The same is true‬‭for disabling a provider. An error results‬
‭if a value is not provided. The following values are valid:‬

‭●‬ ‭1/0‬

‭●‬ ‭yes/no‬

‭●‬ ‭YES/NO‬

‭●‬ ‭true/false‬

‭●‬ ‭TRUE/FALSE‬

‭●‬ ‭on/off‬

‭●‬ ‭ON/OFF‬

‭The same changes were applied to the‬‭soft_load‬‭option.‬‭Tests were added.‬

‭TOB-OSSL-3: The default provider supports insecure algorithms‬
‭Partially resolved. The OpenSSL team is currently working on designing a policy for phasing‬
‭out insecure algorithms. The team plans to move affected algorithms to the legacy provider‬
‭in OpenSSL 4.0, which is not yet scheduled for release.‬

‭TOB-OSSL-4: Provider configuration section can cause a stack overflow‬
‭Resolved in‬‭PR #22898‬‭. The affected area of the code‬‭now prevents stack overflows caused‬
‭by recursion; it requires that visited configuration sections in recursive call sequences are‬
‭unique and returns an error if they are not. This means that referencing a section twice is‬
‭valid, but recursively referencing a section twice is not. Tests were added.‬

‭TOB-OSSL-5: Risk of heap buffer overflow during parsing of OIDs‬
‭Resolved in‬‭PR #22957‬‭. The‬‭do_create‬‭function now‬‭checks whether the OID string starts‬
‭with a comma. If it does, the function skips the character. This prevents an edge case in‬
‭which an out-of-bounds read happens. Additionally, the‬‭genstr‬‭and‬‭genconf‬‭options‬
‭were fixed, which previously hung unexpectedly. Tests were added.‬

‭TOB-OSSL-6: Risk of segmentation fault when loading property list in “stable”‬
‭configuration section‬
‭Resolved in‬‭PR #22988‬‭. A null check for values in‬‭property lists was added to prevent‬
‭segmentation faults. Tests were added.‬

‭Trail of Bits‬ ‭92‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/pull/22906
https://github.com/openssl/openssl/pull/22898
https://github.com/openssl/openssl/pull/22957
https://github.com/openssl/openssl/pull/22988

‭TOB-OSSL-7: The ossl_prov_memdup function does not update dst_len if the call fails‬
‭Risk accepted. The OpenSSL team elected not to change the behavior of the‬
‭ossl_prov_memdup‬‭function because the return value‬‭of‬‭0‬‭and the fact that‬‭*dest‬‭is set‬
‭to‬‭NULL‬‭are enough to inform the caller that‬‭*dest_len‬‭remains uninitialized.‬

‭TOB-OSSL-8: API misuse may lead to unexpected segmentation fault‬
‭Partially resolved in‬‭PR #23069‬‭. Null checks for the‬‭cleanup function were added, which‬
‭fixes the first part of the finding. However, checks for null dispatch array entries have not‬
‭yet been added. According to a‬‭discussion in the PR‬‭,‬‭there are two concerns with adding‬
‭these checks:‬

‭1.‬ ‭Dispatch arrays might contain unexpected null values due to bugs in how functions‬
‭are counted (see the finding description for more information).‬

‭2.‬ ‭There are functions that should be mandatory when initializing a provider. However,‬
‭the ones that should be mandatory differ between provider types.‬

‭We recommend at least addressing the first concern by adding checks for null function‬
‭pointers (e.g., in‬‭/crypto/evp/kdf_meth.c‬‭).‬

‭TOB-OSSL-9: Insufficient validation in dh_gen_common_set_params‬
‭Resolved in‬‭PR #22991‬‭. The generation type used in‬‭Diffie-Hellman (DH) key management‬
‭is no longer written to the context if it is invalid. Additionally, whenever the generation type‬
‭is used, its value is now checked for validity. No tests were added.‬

‭TOB-OSSL-10: HTTP client redirects to local host instead of remote one‬
‭Risk accepted. The OpenSSL team does not consider this finding a security issue and has‬
‭not fixed it. We still recommend using an external HTTP implementation, as explained in‬
‭the finding.‬

‭TOB-OSSL-11: OCSP requests might hang if the server responds with infinite headers‬
‭Resolved in‬‭PR #23781‬‭. The maximum count of HTTP headers‬‭accepted is now set by‬
‭default to 256. It can be configured using the introduced‬
‭OSSL_HTTP_REQ_CTX_set_max_response_hdr_lines‬‭function.‬‭Tests were added.‬

‭TOB-OSSL-12: Calling EVP_KDF_CTX_reset causes a double free when the context is‬
‭freed‬
‭Unresolved. The OpenSSL team has not yet fixed this finding, but plans to.‬

‭TOB-OSSL-13: The aesni_cbc_hmac_sha256_cipher function depends on‬
‭compiler-specific behavior‬
‭Risk accepted. The OpenSSL team accepts the risk of potential future implementation‬
‭differences for‬‭signed integer right-shifts, which‬‭can be implemented either as arithmetic‬
‭or logical right-shifts. According to the team, no supported platforms perform logical shifts.‬

‭Trail of Bits‬ ‭93‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/pull/23069
https://github.com/openssl/openssl/pull/23069#discussion_r1461572628
https://github.com/openssl/openssl/blob/496bc128fdc994388c8ec956c4b5ebcb90459ae0/crypto/evp/kdf_meth.c
https://github.com/openssl/openssl/pull/22991
https://github.com/openssl/openssl/pull/23781

‭To catch this issue in case support for new architectures that perform logical shifts is‬
‭added, we recommend adding a unit test that asserts the presence of arithmetic shifts:‬

‭assert‬‭(‬‭-1‬‭>>‬‭1‬‭==‬‭-1‬‭,‬‭"Arithmetic shift is unsupported"‬‭);‬

‭Figure H.1: Proposed addition to OpenSSL‬

‭The alternative solution to use a preprocessor macro might be inadequate as the‬
‭arithmetic during runtime and while preprocessing might differ.‬

‭TOB-OSSL-14: Use after free when setting invalid properties on the Scrypt algorithm‬
‭or if SHA-256 is missing‬
‭Unresolved. The issue has not yet been addressed. We revalidated the use-after-free bug‬
‭by reexecuting the test case in figure 14.1 on the master branch (commit‬‭4514e02‬‭).‬

‭TOB-OSSL-15: Setting OSSL_MAC_PARAM_DIGEST_NOINIT for HMAC causes‬
‭segmentation fault‬
‭Resolved in‬‭PR #23054‬‭. The‬‭OSSL_MAC_PARAM_DIGEST_NOINIT‬‭flag was deprecated, and‬
‭functionality related to it was removed.‬

‭TOB-OSSL-16: Functions of EVP_CIPHER_CTX are missing null checks‬
‭Resolved in‬‭PR #22995‬‭. Checks for null ciphers were‬‭added to the affected functions. Tests‬
‭were added for the‬‭EVP_CIPHER_CTX_get_block_size‬‭and‬
‭EVP_CIPHER_CTX_get_iv_length‬‭functions, which now‬‭return‬‭0‬‭instead of‬
‭dereferencing the pointer if it is null. The return values of the two functions are checked‬
‭throughout the codebase. The documentation was updated to reflect the new behavior.‬

‭TOB-OSSL-17: Assertion could be hit when fetching algorithms by name‬
‭Resolved in‬‭PR #23110‬‭. If a colon-separated alternative‬‭name is used when fetching‬
‭algorithms like‬‭EVP_CIPHER_fetch(NULL,‬‭"AES256:something",‬‭0)‬‭, the code returns‬
‭an error instead of hitting an assertion. A unit test was added to check for this condition.‬

‭TOB-OSSL-18: Reinitialization of EVP_MAC for GMAC fails if parameters are not‬
‭provided‬
‭Resolved in‬‭PR #23235‬‭. The‬‭MAC‬‭documentation was updated‬‭to indicate that the behavior‬
‭of the API can differ depending on the used algorithm.‬

‭TOB-OSSL-19: Creation of X.509 extensions can lead to undefined behavior‬
‭Resolved in‬‭PR #23183‬‭. Checks for null values in X.509‬‭creation configurations, as well as‬
‭unit tests, were added.‬

‭TOB-OSSL-20: Missing null checks in OSSL_PARAM getters‬
‭Resolved in‬‭PR #23083‬‭. Checks for null values for‬‭numeric types in‬‭OSSL_PARAM‬‭were‬
‭added. Tests were added.‬

‭Trail of Bits‬ ‭94‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/pull/23054
https://github.com/openssl/openssl/pull/22995/
https://github.com/openssl/openssl/pull/23110
https://github.com/openssl/openssl/pull/23235
https://www.openssl.org/docs/manmaster/man3/EVP_MAC_init.html
https://github.com/openssl/openssl/pull/23183
https://github.com/openssl/openssl/pull/23083

‭TOB-OSSL-21: The ossl_blake2b_final function fails to zeroize sensitive data‬
‭Resolved in‬‭PR #23173‬‭. The temporary stack buffers‬‭are now cleared after they are no‬
‭longer used.‬

‭TOB-OSSL-22: The kdf_pbkdf1_do_derive function fails to zeroize sensitive data‬
‭Resolved in‬‭PR #23194‬‭. The temporary stack buffer‬‭is now cleared before the‬
‭kdf_pbkdf1_do_derive‬‭function finishes. Tests were‬‭not added, as there is no simple‬
‭way to check for remnant data on the stack.‬

‭TOB-OSSL-23: Out-of-bounds read in kdf_pbkdf1_do_derive‬
‭Resolved in‬‭PR #23174‬‭. A check for whether the key‬‭length is longer than the digest output‬
‭size was added to the‬‭kdf_pbkdf1_derive‬‭function,‬‭preventing out-of-bounds reads. A‬
‭unit test was added.‬

‭Trail of Bits‬ ‭95‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

https://github.com/openssl/openssl/pull/23173
https://github.com/openssl/openssl/pull/23194
https://github.com/openssl/openssl/pull/23174

‭I. Fix Review Status Categories‬

‭The following table describes the statuses used to indicate whether an issue has been‬
‭sufficiently addressed.‬

‭Fix Status‬

‭Status‬ ‭Description‬

‭Undetermined‬ ‭The status of the issue was not determined during this engagement.‬

‭Risk Accepted‬ ‭The issue persists and is not planned to be resolved.‬

‭Unresolved‬ ‭The issue persists and has not been resolved.‬

‭Partially Resolved‬ ‭The issue persists but has been partially resolved.‬

‭Resolved‬ ‭The issue has been sufficiently resolved.‬

‭Trail of Bits‬ ‭96‬ ‭OpenSSL Security Assessment‬
‭PUBLIC‬

