
Eclipse KUKSA audit

Technical Report

Reference 23-11-1425-REP
Version 1.2

Date 2024/01/15

Quarkslab SAS
10 boulevard Haussmann

75009 Paris
France

Legal Notice

This report reflects the work and results obtained within the duration of the audit
on the specified scope (see Section 4.2) and as agreed between the OSTIF, Eclipse
Foundation, Eclipse KUKSA committers, and Quarkslab. Tests are not guaranteed
to be exhaustive and the report does not ensure the code is bug or vulnerability
free.

1. Project Information

Document history
Version Date Details Authors

1.2 2024/01/15 Minor fixes Pauline Sauder

1.1 2024/01/09 Minor fixes Laurent Laubin

1.0 2023/12/14 Initial Version Damien Aumaitre
Victor Houal
Laurent Laubin
Madigan Lebreton

Quarkslab
Contact Role Contact Address

Frédéric Raynal CEO fraynal@quarkslab.com

Ramtine Tofighi Shirazi Project Manager mrtofighishirazi@quarkslab.com

Pauline Sauder Project Manager psauder@quarkslab.com

Damien Aumaitre R&D Engineer daumaitre@quarkslab.com

Victor Houal R&D Engineer Appren-
tice

vhoual@quarkslab.com

Laurent Laubin R&D Engineer llaubin@quarkslab.com

Madigan Lebreton R&D Engineer mlebreton@quarkslab.com

OSTIF
Contact Role Contact Address

Amir Montazery Managing Director amir@ostif.org

Derek Zimmer Executive Director derek@ostif.org

Eclipse Foundation
Contact Role Contact Address

Mikaël Barbero Head of Security mikael.barbero@eclipse-
foundation.org

Marta Rybczynska Security Team marta.rybczynska@eclipse-
foundation.org

Ref.: 23-11-1425-REP 2 Quarkslab SAS

mailto:fraynal@quarkslab.com
mailto:mrtofighishirazi@quarkslab.com
mailto:psauder@quarkslab.com
mailto:daumaitre@quarkslab.com
mailto:vhoual@quarkslab.com
mailto:llaubin@quarkslab.com
mailto:mlebreton@quarkslab.com
mailto:amir@ostif.org
mailto:derek@ostif.org
mailto:mikael.barbero@eclipse-foundation.org
mailto:mikael.barbero@eclipse-foundation.org
mailto:marta.rybczynska@eclipse-foundation.org
mailto:marta.rybczynska@eclipse-foundation.org

Eclipse KUKSA committers
Contact Role Contact Address

Erik Jaegervall Senior Software Architect erik.jaegervall@se.bosch.com

Sven Erik Jeroschewski Software Developer svenerik.jeroschewski@bosch.com

Ref.: 23-11-1425-REP 3 Quarkslab SAS

mailto:Erik.Jaegervall@se.bosch.com
mailto:SvenErik.Jeroschewski@bosch.com

2. Executive summary
Quarkslab audited the Eclipse KUKSA project. The goal of the audit was to assist Eclipse
KUKSA committers to increase the security posture of the project. The project codebase was
assessed on a specific scope defined with the Eclipse Foundation and OSTIF. This assessment
was achieved during an allocated amount of time in order to find issues and vulnerabilities,
using automated tools, fuzzing and manual review.

2.1 Disclaimer

This report reflects the work and results obtained within the duration of the audit on the speci-
fied scope and as agreed between the OSTIF, Eclipse Foundation, Eclipse KUKSA committers,
and Quarkslab. Tests are not guaranteed to be exhaustive and the report does not ensure the
code is bug or vulnerability free.

2.2 Findings summary

ID Description Perimeter
HIGH-1 A feeder can crash the databroker. Databroker Register-

Datapoints endpoint
HIGH-2 Any user can crash the databroker Databroker subscrip-

tions
MED-1 Recent values can be overwritten with old values. Databroker entries
LOW-1 Databroker-specific entries can be modified remotely. Databroker version
LOW-2 Client can subscribe to unavailable scope and waits for data

that will never be sent.
Databroker subscrip-
tions

LOW-3 An expired token can leak information about entries update
timestamp.

Databroker subscrip-
tions

LOW-4 Entries metadata can be read by every client and feeder. Databroker entries
metadata

LOW-5 Malicious JWT access token can crash a thread of the
databroker

Databroker JWT han-
dling

LOW-6 A malicious Protobuf error message can trigger an unhan-
dled error

Python SDK - Protobuf
messages parsing

LOW-7 Datapoint.from_message() does not check if no value is pro-
vided.

Python SDK - Protobuf
messages parsing

LOW-8 DataEntry.From_message() and ValueRestriction. Python SDK - Protobuf
messages parsing

Ref.: 23-11-1425-REP 4 Quarkslab SAS

LOW-9 ValueRestriction without type field Python SDK - Protobuf
messages parsing

LOW-10 No check on timestamp uint value Python SDK - Protobuf
messages parsing

INFO-1 A vulnerability is known for the atty crate on Windows. Databroker dependen-
cies

INFO-2 Multiple databroker dependencies are out of date. Databroker dependen-
cies

INFO-3 Subscription channels remain open after token expiration Databroker subscrip-
tions

INFO-4 UpdateDatapoints request format is not unified with other
endpoints.

Databroker UpdateDat-
apoints endpoint

INFO-5 debug_assert in executor.rs Databroker subscrip-
tions

INFO-6 Slow input in glob::to_regex() Databroker

Severity: critical, high, medium, low, info

2.3 Recommendations and action plan

ID Recommendation Perimeter
HIGH-1 Set an upper-bound limit on the number of entries that the

databroker can handle.
Databroker Register-
Datapoints endpoint

HIGH-2 We think that having a full-fledged SQL parser as a core
dependency is not required given this use case. Maybe it
should be considered to move to a custom DSL tailored for
the task. It will reduce the attack surface.

Databroker subscrip-
tions

MED-1 A timestamp check must be done before updating an entry
value.

Databroker entries

LOW-1 Deny the write access on the three databroker-specific en-
tries.

Databroker version

LOW-2 Return the error to the subscriber and delete the TODO
comment in broker.rs#L835-L839.

Databroker subscrip-
tions

LOW-3 In brokers.rs#L805-L845, consider adding an expiration
check before notifying the client. If the token is expired,
consider closing the connection.

Databroker subscrip-
tions

LOW-4 Restrict the metadata access according to the JWT permis-
sions scope.

Databroker entries
metadata

Ref.: 23-11-1425-REP 5 Quarkslab SAS

https://github.com/eclipse/kuksa.val/blob/0.4.1/kuksa_databroker/databroker/src/broker.rs#L835-L839
https://github.com/eclipse/kuksa.val/blob/0.4.1/kuksa_databroker/databroker/src/broker.rs#L805-L845

LOW-5 Consider using a Rust-safe addition. Databroker JWT han-
dling

LOW-6 Check the presence of the attribute before using it. Python SDK - Protobuf
messages parsing

LOW-7 Check the field value is not None before using it Python SDK - Protobuf
messages parsing

LOW-8 Check the content type when dealing with Oneof Field Python SDK - Protobuf
messages parsing

LOW-9 Check the field value is not None before using it Python SDK - Protobuf
messages parsing

LOW-10 Catch exception on timestamp parsing Python SDK - Protobuf
messages parsing

INFO-1 To our knowledge, the databroker is not meant to be run on
Windows, moreover this dependency is only used for testing
purposes.

Databroker dependen-
cies

INFO-2 Consider upgrading to the last up-to-date version for each
dependency.

Databroker dependen-
cies

INFO-3 Close the communication channel when the token is ex-
pired.

Databroker subscrip-
tions

INFO-4 Consider unifying the gRPC endpoint request format to
retrieve databroker entries.

Databroker UpdateDat-
apoints endpoint

INFO-5 Remove the debug_assert and the todo statements. Databroker subscrip-
tions

INFO-6 As a rule of thumb, regular expressions should not be con-
trolled from the outside. We recommend to move to a cus-
tom parser to handle the parsing of the scope.

Databroker

Severity: critical, high, medium, low, info

Ref.: 23-11-1425-REP 6 Quarkslab SAS

3. Reading Guide
This reading guide describes the different sections present in this report and gives some insights
about the information contained in each of them and how to interpret it.

3.1 Executive summary

The executive summary presents the results of the assessment in a non-technical way, summa-
rizing all the findings and explaining the associated risks. For each vulnerability, a severity level
is provided as well as a description and one or more mitigations, as shown below.

ID Description Category
CRIT 1 Description of vulnerability #1 Injection
HIGH 4 Description of vulnerability #4 Remote code execution
MED 3 Description of vulnerability #3 Denial of Service
LOW 2 Description of vulnerability #2 Information leak

Severity: critical, high, medium, low, info

Each vulnerability is identified throughout this document by a unique identifier VULN-<ID> ,
where ID is a number. Every vulnerability identifier present in the vulnerabilities summary
table is a clickable link that leads to the corresponding technical analysis that details how it
was found (and exploited if it was the case). Severity levels are explained in section 3.4.

The executive summary also provides an action plan with a focus on the identified quick wins,
some specific mitigations that would drastically improve the security of the assessed system.

3.2 Introduction

The introduction recalls the context in which the assignment has been performed. It details the
objectives set by the customer, the target of evaluation and the expected deliverables.

It also recalls the agreed scope of work including the different assets that must be assessed, the
type of tests the auditors are allowed to perform as well as the type of tests or actions that are
forbidden regarding the context of the assessment.

Last, the final planning of the assignment is detailed in this section recalling when the assessment
started and ended as well as the different key steps and meetings dates.

3.3 Methodology

The introduction is followed by this section detailing the methodology followed by the evaluators
and the different steps of the assessment. This section also details the choices made by the
auditors during the execution of the assessment and the reasons why they made them.

Ref.: 23-11-1425-REP 7 Quarkslab SAS

3.4 Metrics definition

This report uses specific metrics to rate the severity, impact and exploitability of each identified
vulnerability.

3.4.1 Impact
The impact is assessed regarding the information an attacker can access by exploiting a vulnera-
bility but also the operational impact such an attack can have. The following table summarizes
the different levels of impact we are using in this report and their meanings in terms of infor-
mation access and availability.

Critical Allows a total compromise of the assessed system, allowing an attacker to read
or modify the data stored in the system as well as altering its behavior.

High Allows an attacker to impact significantly one or more components, giving
access to sensitive data or offering the attacker a possibility to pivot and attack
other connected assets.

Medium Allows an attacker to access some information, or to alter the behavior of the
assessed system with restricted permissions.

Low Allows an attacker to access non-sensitive information, or to alter the behavior
of the assessed system and impact a limited number of users.

3.4.2 Exploitability
The exploitability of a vulnerability is evaluated by taking the following criterias in considera-
tion:

• Access conditions: the vulnerability may require the attacker to have physical access
to the targeted asset or to be present in the same network for instance, or can be directly
exploited from the Internet.

• Required skills: an attacker may need specific skills to exploit the vulnerability.

• Known available exploit: when a vulnerability has been published and an exploit is
available, the probability a non-skilled attacker would find it and use it is pretty high.

The following table summarizes the different level of exploitability of a vulnerability:

Critical The vulnerability is easy to exploit even from an unskilled attacker and has no
specific access conditions.

High The vulnerability is easy to exploit but requires some specific conditions to be
met (specific skills or access).

Medium The vulnerability is not trivial to discover and exploit, requires very specific
knowledge or specific access (internal network, physical access to an asset).

Low The vulnerability is very difficult to discover and exploit, requires highly specific
knowledge or authorized access.

Ref.: 23-11-1425-REP 8 Quarkslab SAS

3.4.3 Severity
The severity of a vulnerability is defined by its impact and its exploitability, following the
following table:

Impact

Critical Critical High Medium

Critical High High Medium

High High Medium Low
Exploitability

Medium Medium Low Low

Ref.: 23-11-1425-REP 9 Quarkslab SAS

Contents

1 Project Information 2

2 Executive summary 4
2.1 Disclaimer . 4
2.2 Findings summary . 4
2.3 Recommendations and action plan . 5

3 Reading Guide 7
3.1 Executive summary . 7
3.2 Introduction . 7
3.3 Methodology . 7
3.4 Metrics definition . 8

3.4.1 Impact . 8
3.4.2 Exploitability . 8
3.4.3 Severity . 9

4 Introduction 12
4.1 Overview of Eclipse KUKSA . 12
4.2 Scope of the audit . 12

5 Methodology 13
5.1 Threat model . 13
5.2 Static analysis . 13

5.2.1 Automated static analysis . 13
5.2.2 Manual review . 13

5.3 Dynamic analysis . 13

6 Threat Model 14
6.1 Overview . 14
6.2 Scenario 1 . 15
6.3 Scenario 2 . 16
6.4 Scenario 3 . 16
6.5 Scenario 4 . 17
6.6 Hypothesis . 17

6.6.1 KUKSA.val misconfigurations . 17
6.6.2 JWT cryptographic keys . 18
6.6.3 TLS cryptographic keys . 18
6.6.4 VSS Parsing . 18
6.6.5 Supply chain attacks . 18

7 Static analysis 19
7.1 Automated static analysis . 19

7.1.1 Clippy . 19
7.1.2 cargo-audit . 20

Ref.: 23-11-1425-REP 10 Quarkslab SAS

7.1.3 cargo-outdated . 20
7.2 Manual review . 21

7.2.1 TLS implementation . 21
7.2.2 JWT and permission handling . 22
7.2.3 Databroker gRPC handling . 25
7.2.4 The KUKSA Python SDK . 35

8 Dynamic analysis 37
8.1 Fuzzing the databroker . 37

8.1.1 Why fuzzing? . 37
8.1.2 Structured inputs . 37
8.1.3 Automated testing strategies . 37
8.1.4 Methodology used for Kuksa . 38
8.1.5 Harnesses . 38
8.1.6 Methodology . 48
8.1.7 Fuzzing campaign . 48
8.1.8 Coverage . 49
8.1.9 Crashes triage . 50
8.1.10 Findings . 51
8.1.11 Integration to OSS Fuzz . 58

8.2 Fuzzing the KUKSA Python SDK . 59
8.2.1 Error response returned by the databroker 59
8.2.2 The DataEntry type . 61
8.2.3 The EntryUpdate.from_message() function 62
8.2.4 Coverage . 68

9 Conclusion 69

Bibliography 70

A Appendix 72
A.1 Databroker . 72
A.2 Manual review . 72

A.2.1 Fuzzing . 73
A.2.2 Triage . 75

Ref.: 23-11-1425-REP 11 Quarkslab SAS

4. Introduction

4.1 Overview of Eclipse KUKSA

The official KUKSA website [1] defines the project as the following:

The open Eclipse KUKSA project aims to provide shared building blocks for the
Software Defined Vehicles that can be shared across the industry. That millions of
lines of code should go into generating customer value and not reinvented wheels.
KUKSA tries to provide you with a solid set of wheels that can act a solid foundation
for a variety of competing products and services. In that sense KUKSA components
encourage cooperation on the plumbing, enabling competition and faster innovation
cycles on the customer-value creating procelain.

The KUKSA Vehicle Abstraction Layer named KUKSA.val is the main solution of the project.
It provides software components for working with in-vehicle signals. Those in-vehicle signals
are represented using the Vehicle Signal Specification [2] (VSS). KUKSA.val provides reading
and writing capabilities on vehicle data through a set of applications:

• KUKSA.val databroker;

• KUKSA.val Server;

• KUKSA.val Python client SDK;

• KUKSA.val Feeders and Providers.

4.2 Scope of the audit

The scope of the audit was focused on the KUKSA.val databroker and the Python client SDK.
Those two components are both distributed in the eclipse/kuksa.val GitHub repository. The
third party dependencies are out of the scope of the audit, but their proper usage is in scope.
More details on the audit scope will be given in the threat model.

The Table 1. shows the version on which the audit was conducted.

Project kuksa.val
Repository https://github.com/eclipse/kuksa.val

Commit hash 6690ca970a2f7dd8245bd00f6b10788eaad755b5
Commit date 2023/10/27

Tag 0.4.1

Table 1. Audit scope details

Ref.: 23-11-1425-REP 12 Quarkslab SAS

https://github.com/eclipse/kuksa.val/tree/0.4.1/kuksa_databroker
https://github.com/eclipse/kuksa.val/tree/0.4.1/kuksa-val-server
https://github.com/eclipse/kuksa.val/tree/0.4.1/kuksa-client
https://github.com/eclipse/kuksa.val.feeders/
https://github.com/eclipse/kuksa.val
https://github.com/eclipse/kuksa.val/tree/6690ca970a2f7dd8245bd00f6b10788eaad755b5
https://github.com/eclipse/kuksa.val/tree/0.4.1

5. Methodology

5.1 Threat model

The threat model is the initial step of the audit. It provides an overview of the project’s work.
More importantly, this step identifies the project’s purposes and critical functionalities.

Then, high-level attack scenarios can be extrapolated from these critical functionalities. The
resulting scenarios will guide the next steps of the audit.

Identifying the audited code base critical features and assets permits the creation of realistic
scenarios. A world-like approach is important to identify the most relevant attack vectors and
vulnerabilities.

5.2 Static analysis

5.2.1 Automated static analysis
This part of the audit aims to run several automated security tools on the audited code base.

Most of these tools are open-source and could be integrated in a continuous integration workflow.

5.2.2 Manual review
The manual review is a complex process. It can be seen as multiple iterations of the following
workflow:

• understanding of the inner workings of part of the code base

• imagining an attack scenario based on the code base understanding and the threat model

• testing the scenario by static analysis or dynamic tests

• validating or denying the attack scenario

This process aims to identify technical and logical vulnerabilities.

5.3 Dynamic analysis

Dynamic analysis is mainly done through fuzzing. Further details on fuzzing are given in
Section 8.1.1.

This process aims to identify technical vulnerabilities. It complements the manual review by
automating vulnerability tests.

Ref.: 23-11-1425-REP 13 Quarkslab SAS

6. Threat Model

6.1 Overview

KUKSA.val allows clients to access data from their vehicles. A databroker is embedded and
centralizes the data. Then, clients can interface with the databroker to get and set, if possible,
those data. Figure 1. shows a general workflow about how clients access data from the KUKSA
databroker.

Figure 1. General workflow: client access data

Based on the previous workflow, we identified some critical parts of KUKSA databroker and
KUKSA Client SDK code. Once critical code was identified, we produced a threat model that
will guide our audit and provide priorities to assess during the allocated time frame. Figure 2.
shows an overview of the defined threat model.

Ref.: 23-11-1425-REP 14 Quarkslab SAS

Figure 2. Threat model: attack surface overview

Note: ”data access control” is set as ”JWT authenticated network access” because the JWT
signature is verified before parsing its values to get the permissions. The signature verification
acts as an authentication.

This threat model is divided into 4 main scenarios that will guide the audit. These scenarios
assess critical parts of the code identified in the attack surface.

6.2 Scenario 1

The first scenario aims to assess the TLS implementation. The client SDK and the databroker
exchange sensitive pieces of information such as the JWT that allows the client to access data.

For example, if the client SDK allows TLS communications with untrusted CA, then an attacker
could be able to use a Man-In-The-Middle attack to steal the client’s JWT.

Ensuring that TLS is correctly implemented both on the client and server side is mandatory.

Figure 3. Threat model: Scenario 1

Ref.: 23-11-1425-REP 15 Quarkslab SAS

6.3 Scenario 2

The second scenario aims to assess the JWT implementation and the permissions handling in
KUKSA.val databroker.

For example, a client allowed to access a single data point of the VSS tree with read-only
permissions should not be able to read/write other data. Writing the datapoint he has read
access to should not be possible either.

Regular expressions are used to parse the scope field of the JWT. If not set correctly, this regex
could lead to unexpected behaviors.

Figure 4. Threat model: Scenario 2

6.4 Scenario 3

The third scenario aims to find security issues in the KUKSA databroker.

Those security issues could be exploited remotely in case of a malicious client or a MITM attack.

Ref.: 23-11-1425-REP 16 Quarkslab SAS

Figure 5. Threat model: Scenario 3

6.5 Scenario 4

The fourth scenario aims to find security issues on the KUKSA client SDK written in Python.

Those security issues could be exploited remotely in the case of a malicious databroker or a
MITM attack.

Figure 6. Threat model: Scenario 4

6.6 Hypothesis

KUKSA.val provides in-vehicle software components. The configuration and use of these com-
ponents should follow the official documentation. Moreover, users of KUKSA.val must base a
threat and risk analysis to decide what is required and feasible for their specific use case.

There exist several attack vectors. But some of them are purely theoretical. They would not
be exploitable or exploited in real-world usage of the KUKSA.val components.

Hypotheses have been made and applied to the four defined scenarios. These hypotheses aims
to fit the scenarios with the real-world usage of KUKSA.val components.

6.6.1 KUKSA.val misconfigurations
Incorrect configurations of the KUKSA.val components can lead to unsecured architecture.

For example, the use of the --insecure flag on the databroker allows communications with-
out TLS. An attacker could easily use a Man-In-The-Middle attack to read and modify the
exchanged data.

Hypothesis: The KUKSA.val components are configured following the documented best prac-
tices.

Note: The databroker is configured to use TLS and JWT.

Ref.: 23-11-1425-REP 17 Quarkslab SAS

6.6.2 JWT cryptographic keys
Cryptographic keys are needed to sign the emitted JSON Web Tokens. These keys should be
managed securely. A leaked key would make the entire permission mechanism of the databroker
useless.

As the management of these keys is not under KUKSA.val’s control, they are considered man-
aged in a secure way and not compromised.

Hypothesis: Cryptographic keys used to generate the access tokens are not compromised.

6.6.3 TLS cryptographic keys
Cryptographic keys are needed to establish secure TLS communications. These keys should be
managed securely. A leaked key would make the databroker TLS communications unsecured.

As the management of these keys are not under KUKSA.val’s control, they are considered
managed securely and not compromised.

Hypothesis: Cryptographic keys used to secure communications with TLS are not compro-
mised.

6.6.4 VSS Parsing
At startup, a VSS structure is provided as a JSON file to the databroker. Then, this VSS
structure is parsed to create the databroker database.

Exploiting a vulnerability in this initial VSS parsing could be possible. It would require access
on the databroker machine to modify the JSON file passed as an argument. In the current
architecture of KUKSA.val, this attack vector seems highly unlikely to be used as it requires a
high level of access to the target and wouldn’t give further access to an attacker.

Hypothesis: VSS parsing vulnerabilities are not exploitable.

6.6.5 Supply chain attacks
Compromising Kuksa codebase by compromising one of its dependencies or by directly adding
malicious code (in a contribution for example) is considered out-of-scope of the audit.

Hypothesis: The future compromise of a dependency is not considered in the scope of this
audit.

Ref.: 23-11-1425-REP 18 Quarkslab SAS

7. Static analysis

7.1 Automated static analysis

Several linters and static checkers were selected and tested on KUKSA.val. These tools were
used to find issues but also to see if they could be integrated into the project workflows. The
following open-source tools have been selected:

• Clippy [3]: Clippy provides a collection of lints used to catch common mistakes and
improve Rust code.

• cargo-audit [4]: cargo-audit audits the project dependencies. It looks for crates with
vulnerabilities reported to the RustSec Advisory Database [5].

• cargo-outdated [6]: cargo-outdated displays dependencies that are out of date.

7.1.1 Clippy
Clippy has several options which are not executed by default. The default clippy command
cargo clippy did not return any result.

The following clippy command was used to allow several options:

$ cargo clippy --no-deps -A clippy::all -W clippy::integer_arithmetic -W
clippy::string_slice -W clippy::expect_used -W clippy::fallible_impl_from -W
clippy::get_unwrap -W clippy::index_refutable_slice -W
clippy::indexing_slicing -W clippy::match_on_vec_items -W
clippy::match_wild_err_arm -W clippy::missing_panics_doc -W clippy::panic -W
clippy::panic_in_result_fn -W clippy::unreachable -W clippy::unwrap_in_result
-W clippy::unwrap_used

↪→

↪→

↪→

↪→

↪→

↪→

Seven types of warning are triggered by Clippy in the databroker.

• arithmetic operation that can potentially result in unexpected side-effects :
jwt/decoder.rs#L134

• used `unwrap()` on a `Result` value : jwt/scope.rs#L34, lib.rs#L34

• used `expect()` on a `Result` value : glob.rs#L75, glob.rs#L109, lib.rs#L38, main.rs#L38,
main.rs#L39, main.rs#L41

• used `expect()` on an `Option` value : main.rs#L317, main.rs#L318

• indexing into a string may panic if the index is within a UTF-8 character :
grpc/server.rs#L52

• slicing may panic : grpc/server.rs#L52

• indexing may panic : grpc/sdv_databroker_v1/broker.rs#L154

Ref.: 23-11-1425-REP 19 Quarkslab SAS

https://github.com/eclipse/kuksa.val/blob/0.4.1/kuksa_databroker/databroker/src/authorization/jwt/decoder.rs#L134
https://github.com/eclipse/kuksa.val/blob/0.4.1/kuksa_databroker/databroker/src/authorization/jwt/scope.rs#L34
https://github.com/eclipse/kuksa.val/blob/0.4.1/kuksa_databroker/databroker/src/lib.rs#L34
https://github.com/eclipse/kuksa.val/blob/0.4.1/kuksa_databroker/databroker/src/glob.rs#L75
https://github.com/eclipse/kuksa.val/blob/0.4.1/kuksa_databroker/databroker/src/glob.rs#L109
https://github.com/eclipse/kuksa.val/blob/0.4.1/kuksa_databroker/databroker/src/lib.rs#L38
https://github.com/eclipse/kuksa.val/blob/0.4.1/kuksa_databroker/databroker/src/main.rs#L38
https://github.com/eclipse/kuksa.val/blob/0.4.1/kuksa_databroker/databroker/src/main.rs#L39
https://github.com/eclipse/kuksa.val/blob/0.4.1/kuksa_databroker/databroker/src/main.rs#L41
https://github.com/eclipse/kuksa.val/blob/0.4.1/kuksa_databroker/databroker/src/main.rs#L317
https://github.com/eclipse/kuksa.val/blob/0.4.1/kuksa_databroker/databroker/src/main.rs#L318
https://github.com/eclipse/kuksa.val/blob/0.4.1/kuksa_databroker/databroker/src/grpc/server.rs#L52
https://github.com/eclipse/kuksa.val/blob/0.4.1/kuksa_databroker/databroker/src/grpc/server.rs#L52
https://github.com/eclipse/kuksa.val/blob/0.4.1/kuksa_databroker/databroker/src/grpc/sdv_databroker_v1/broker.rs#L154

These warnings will be further investigated during the audit.

Clippy is already integrated in KUKSA.val databroker build workflow.

The options of Clippy presented previously could be added to this workflow to improve the
overall security of the project.

7.1.2 cargo-audit

In the audited scope, cargo-audit reported only one finding:

Crate: atty
Version: 0.2.14
Warning: unsound
Title: Potential unaligned read
Date: 2021-07-04
ID: RUSTSEC-2021-0145
URL: https://rustsec.org/advisories/RUSTSEC-2021-0145
Dependency tree:
atty 0.2.14
��� cucumber 0.19.1

��� databroker 0.4.1

INFO INFO-1 A vulnerability is known for the atty crate on Windows.

Exploitability Impact

Perimeter Databroker dependencies

Prerequisites

Description

A vulnerability in the atty dependency used by the databroker is known.
The RUSTSEC-2021-0145 [7] indicates that the issue only affects Windows operating system.

Recommendations

To our knowledge, the databroker is not meant to be run on Windows, moreover this depen-
dency is only used for testing purposes.

Cargo-audit is not integrated in KUKSA.val workflows. It can be integrated by using the
audit-check action [8].

7.1.3 cargo-outdated
Cargo-outdated found multiple dependencies that are not using the last major version.

$ cargo outdated --depth=1
databroker
================

Ref.: 23-11-1425-REP 20 Quarkslab SAS

https://github.com/eclipse/kuksa.val/blob/0.4.1/.github/workflows/kuksa_databroker_build.yml

Name Project Compat Latest Kind Platform
---- ------- ------ ------ ---- --------
axum 0.6.20 --- 0.7.2 Normal ---
cucumber 0.19.1 --- 0.20.2 Development ---
jsonwebtoken 8.3.0 --- 9.2.0 Normal ---
serde 1.0.190 --- 1.0.193 Normal ---
serde_json 1.0.107 --- 1.0.108 Normal ---
sqlparser 0.16.0 --- 0.40.0 Normal ---
tracing-subscriber 0.3.17 --- 0.3.18 Normal ---
uuid 1.5.0 --- 1.6.1 Normal ---
vergen 8.2.5 --- 8.2.6 Build ---

INFO INFO-2 Multiple databroker dependencies are out of date.

Exploitability Impact

Perimeter Databroker dependencies

Prerequisites

Description

The databroker does not use the most up-to-date version of several dependencies.

Recommendations

Consider upgrading to the last up-to-date version for each dependency.

7.2 Manual review

7.2.1 TLS implementation
According to the KUKSA.val documentation, the databroker and the Python client SDK should
support both insecure and secure via TLS connections. As mentioned in the threat model, TLS
cryptographic keys are out of the audit scope and are considered secure.

In KUKSA.val current architecture, mutual authentication is not supported. Clients authen-
ticate the server using its TLS certificate, but the server does not use TLS to authenticate
clients.

TLS Server

rustls crate
The workspace Cargo.lock indicates that the version 0.9.2 of the tonic crate is used as
the databroker gRPC implementation. This crate has a tls feature, which is enabled in the
databroker Cargo.toml . The feature provides TLS capabilities to the gRPC implementation
based on the rustls [9] crate.

The rustls crate is defined as:

Rustls is a TLS library that aims to provide a good level of cryptographic security,
requires no configuration to achieve that security, and provides no unsafe features

Ref.: 23-11-1425-REP 21 Quarkslab SAS

https://github.com/eclipse/kuksa.val/blob/0.4.1/doc/tls.md

or obsolete cryptography.

The reputation of rustls matches its description. An audit [10] of rustls was conducted
in 2020 and can be retrieved from the official GitHub repository. No outdated or unsecured
features are embedded in the library. Moreover, no security issue has been discovered in the
0.21.8 version used by the databroker.

The rustls crate provides mutual authentication capabilities. These capabilities are not
exploited by the databroker in its current state.

TLS configuration

When starting the databroker, the TLS server certificate and the associated keypair should be
passed as command-line arguments. The following command-line is a valid example:

$./target/release/databroker --tls-cert ./tls-srv.crt --tls-private-key
./tls-srv.key↪→

TLS client

The Python kuksa-client uses the grpc library. This library provides TLS functionalities
through the use of the BoringSSL library.

Testing the TLS client showed that the server certificate must be issued by the trusted certificate
authorities. If not, connections to the TLS server are not possible. As such, an attacker cannot
read or write the intercepted TLS traffic without compromising the client or the server.

7.2.2 JWT and permission handling

The databroker handles permissions through the use of access tokens. Json Web Tokens (JWT)
are used as OAuth 2.0 Bearer Tokens to encode the relevant parts of the access tokens. JWT
are emitted and signed by an external authorization infrastructure which is out-of-scope of this
audit.

The KUKSA.val JWT access tokens are structured with a header and a data structure. This
format is defined in the RFC 9068 [11]. An access token encodes several pieces of information
such as the issuer of the token, its expiration date, and its scope. Permissions are encoded
into the scope field, following the scope format defined in the OAuth 2.0 RFC 6749 [12]. The
following lines show a valid data structure for a KUKSA.val access token:

{
"sub": "local dev",
"iss": "createToken.py",
"aud": [

"kuksa.val"
],
"iat": 1516239022,
"exp": 1767225599,

Ref.: 23-11-1425-REP 22 Quarkslab SAS

"scope": "actuate provide read create"
}

In the current implementation of KUKSA.val access tokens, only the RS256 algorithm is
supported. RSASSA-PKCS1-v1_5 SHA-256 signatures are supported to authenticate access
tokens. As the library jsonwebtoken used by the databroker supports other algorithms, this
limit is specific to the databroker. Hardcoding the supported algorithm to RS256 makes the
known JWT authentication bypass via algorithm confusion attack unexploitable.

JWT in gRPC requests

When requesting the databroker, clients should attach their access token to the HTTP/gRPC
request by adding an authorization header. This header should respect the following format,
with TOKEN being the access token encoded in Base64 format:

Authorization: Bearer TOKEN

The authorization first character should correspond to Bearer , otherwise, an error is
returned to the client with the message Invalid auth token . If those first character are set,
then the JWT content is decoded with the jsonwebtoken crate. This decoding will verify
that the JWT is correctly signed. If it is not, an error is returned to the client with the message
Invalid auth token: DecodeError("InvalidToken") .

The databroker correctly handles the authorization field and the JWT decoding. Errors are
returned to the gRPC client if the decoding fails.

Permissions

Permissions on the databroker data are encoded in the scope field of the access tokens. In
the current state of KUKSA.val databroker, four permissions are available:

• Read: This permission allows reading values from specific entries of the databroker.

• Actuate: This permission allows reading and writing the actuator_target value of
specific entries.

• Provide: This permission allows reading and writing the datapoint value of specific
entries.

• Create: This permission allows reading and creating specific entries.

VSS paths are attached to these permissions. A path corresponds to a part of the VSS tree.
These paths are decoded from the scope field of the JWT to be translated into regular expres-
sions in the databroker. Resulting regexps are used to match the requested datapoints. Access
is granted if the requested datapoint matches the permission regexps, otherwise, a permission
error is returned.

The following lines show a valid data structure for a JWT access token with read-only access
on 2 VSS paths:

Ref.: 23-11-1425-REP 23 Quarkslab SAS

{
"sub": "local dev",
"iss": "createToken.py",
"aud": [

"kuksa.val"
],
"iat": 1516239022,
"exp": 1767225599,
"scope": "read:Vehicle.Speed read:Vehicle.ADAS.*"

}

In the databroker, the following structure is derived from the previous JWT access token:

Permissions {
expires_at: Some(SystemTime { tv_sec: 1767225599, tv_nsec: 0 }),
read: Regexps(RegexSet(["^Vehicle\\.Speed(?:\\..+)?$",

"^Vehicle\\.ADAS\\.[^.\\s\\:]+$"])),↪→

actuate: Nothing,
provide: Nothing,
create: Nothing

}

No special characters can be passed through the scope field to modify the behavior of the
resulting regular expressions. The JWT scope field elements are checked to ensure that they
are only composed of the * character or a set of letters and numbers. The decoding of the
scope elements are well handled by the databroker.

When trying to access a path of the VSS tree on which the JWT has no permission, the
databroker returns this type of error:

{
"error": null,
"errors": [

{
"error": {

"code": 403,
"message": "Access was denied for Vehicle.ADAS.ABS.IsEnabled",
"reason": "forbidden"

},
"path": "Vehicle.ADAS.ABS.IsEnabled"
}

]
}

The databroker handles correctly the permissions attached to the JWT access token. Clients
trying to access unauthorized scope receive a gRPC response indicating that the access was
denied.

Ref.: 23-11-1425-REP 24 Quarkslab SAS

7.2.3 Databroker gRPC handling
The KUKSA.val databroker supports 3 gRPC services:

• kuksa.val.v1:VAL: This interface provides 4 endpoints.

• sdv.databroker.v1:Broker: This interface provides 4 endpoints, mainly used by clients.

• sdv.databroker.v1:Collector: This interface provides 3 endpoints, mainly used by feed-
ers and providers.

Some of the endpoints of the 3 gRPC services can provide the same functionality. For ex-
ample, reading the current value from a VSS path can be done with the VAL:Get and the
Broker:GetDatapoints endpoints. The structure of the databroker source code shows that
the same logic will be used in both endpoints. This means that a vulnerability found on one of
the endpoints could impact other endpoints.

Tools

In this chapter, the gRPC endpoints of the databroker are investigated. To test the databroker,
we used a gRPC client that allows crafting custom inputs based on protobuf files. The tool
used is an open-source project named Evans [13] and is available on GitHub.

In the following sections, we will provide examples of requests with Evans and the resulting
responses from the databroker. The commands executed will be given so that it is possible to
replay the requests.

The initial setup of Evans is the following:

Start Evans from a shell
$./evans --path ./kuksa_databroker/databroker-proto/proto/ --proto

kuksa/val/v1/val.proto --host localhost --port 55555 repl↪→

In Evans, set the authorization header with a JWT token
$ header authorization="Bearer eyJhb...Crmb71Y"

kuksa.val.v1:VAL service

The kuksa.val.v1:VAL service provides 4 endpoints that will be investigated in the following
paragraphs.

Get
This gRPC endpoint provides the capability to read VSS tree entries. An entry is a structure
that contains the current value, the target value (for actuators only), and the metadata.

The following shows the Evans request to get the entry values.

$ kuksa.val.v1.VAL@localhost:55555> call --add-repeated-manually --emit-defaults
--dig-manually --enrich Get↪→

yes
dig down

Ref.: 23-11-1425-REP 25 Quarkslab SAS

<repeated> entries::path (TYPE_STRING) => Vehicle.Speed
VIEW_ALL
no
no

The following shows the databroker response content with the requested entries.

{
"entries": [
{

"actuatorTarget": null,
"metadata": {
"dataType": "DATA_TYPE_FLOAT",
"description": "Vehicle speed.",
"entryType": "ENTRY_TYPE_SENSOR",
"valueRestriction": null
},
"path": "Vehicle.Speed",
"value": {
"float": 12,
"timestamp": "2023-12-06T13:46:23.806837137Z"
}

}
],
"error": null,
"errors": []

}

Set
This gRPC endpoint provides the capability to write the values of existing VSS tree entries.

The protobuf format offers the capability to modify the values of the current value, the target
value, and the metadata. Forging a request to modify the metadata of a VSS entry can be done
with Evans. But modifying metadata is not supported by the databroker. The databroker will
return an OK code without error, but the metadata of the entry will not be modified.

The current value of an entry can be modified through this endpoint. The following example
shows the modification request of the Vehicle.Speed current value.

$ call --add-repeated-manually --emit-defaults --dig-manually --enrich Set
yes
dig down
dig down

<repeated> updates::entry::path (TYPE_STRING) => Vehicle.Speed
dig down
dig down

<repeated> updates::entry::value::timestamp::seconds (TYPE_INT64) => 1701871499
<repeated> updates::entry::value::timestamp::nanos (TYPE_INT32) => 0
float

<repeated> updates::entry::value::float (TYPE_FLOAT) => 123.456

Ref.: 23-11-1425-REP 26 Quarkslab SAS

skip
skip
yes
FIELD_VALUE
no
no

The databroker returns a JSON structure indicating that no errors were met.

{
"error": null,
"errors": []

}

The current value can then be read from the Python kuksa-client.

$ Test Client> getValue Vehicle.Speed
{

"path": "Vehicle.Speed",
"value": {

"value": 123.45600128173828,
"timestamp": "2023-12-06T14:04:49+00:00"

}
}

The timestamp attached to the value corresponds to the one set in the Set request. It appears
that the databroker does not check this field before storing the current value. This behavior
can be disruptive as old values could overwrite recent values, especially in overloaded networks.

The following example shows how to overwrite our previous value from 2023 with a value from
1970.

$ call --add-repeated-manually --emit-defaults --dig-manually --enrich Set
yes
dig down
dig down

<repeated> updates::entry::path (TYPE_STRING) => Vehicle.Speed
dig down
dig down

<repeated> updates::entry::value::timestamp::seconds (TYPE_INT64) => 123456
<repeated> updates::entry::value::timestamp::nanos (TYPE_INT32) => 0
float

<repeated> updates::entry::value::float (TYPE_FLOAT) => 234.567
skip
skip
yes
FIELD_VALUE
no
no

Ref.: 23-11-1425-REP 27 Quarkslab SAS

{
"error": null,
"errors": []

}

Reading the Vehicle.Speed values from the python client return the following. Notice that
the date is from 1970.

$ Test Client> getValue Vehicle.Speed
{

"path": "Vehicle.Speed",
"value": {

"value": 234.56700134277344,
"timestamp": "1970-01-02T10:17:36+00:00"

}
}

This vulnerability concerns several endpoints:

• Set endpoint from the kuksa.val.v1:VAL service

• SetDatapoints endpoint from the sdv.databroker.v1:Broker service

• UpdateDatapoints endpoint from the sdv.databroker.v1:Collector service

• StreamDatapoints endpoint from the sdv.databroker.v1:Collector service

MEDIUM MED-1 Recent values can be overwritten with old values.

Exploitability Impact

Perimeter Databroker entries

Prerequisites Provide or Actuate permissions

Description

The protobuf structure provides a timestamp when an entry value is updated. As the provided
timestamp is not checked against the timestamp of the previous entry value, the databroker
can overwrite a recent value with an old one. Network latency can heavily impact the value
updated in the databroker.

Recommendations

A timestamp check must be done before updating an entry value.

Subscribe

This gRPC endpoint allows clients to subscribe to a VSS entry path. When a field of this entry
is modified, the new values will be automatically sent to the subscribers. This endpoint offers
only subscribing capabilities without conditions.

Ref.: 23-11-1425-REP 28 Quarkslab SAS

The JWT expiration is correctly handled for this endpoint. A user can subscribe before the
expiration of its token. He will receive the updates of the subscribed entry until his token
expires. Once his token has expired, no more data will be sent to the user. However, the
communication channel remains active even if the token is expired.

INFO INFO-3 Subscription channels remain open after token expiration

Exploitability Impact

Perimeter Databroker subscriptions

Prerequisites Read permission

Description

When a client subscribes to an entry, he receives a gRPC response when this entry is updated.
If he subscribes before his token expiration, he will not receive updates after expiration but
the communication channel will remain open.

Recommendations

Close the communication channel when the token is expired.

GetServerInfo

This gRPC endpoint is used to identify the version of the databroker.

At the start of the databroker, 3 entries are registered. These entries are Kuksa.Databroker.GitVersion ,
Kuksa.Databroker.CargoVersion and Kuksa.Databroker.CommitSha . They allow a client
to identify the version of the databroker.

A user allowed to write on the Kuksa scope can modify the values of these three entries, by
using one of the writing gRPC endpoints such as Set . As they are specific entries set by the
databroker, these 3 entries should be read-only. The following example shows the modification
of this value from the Python client.

$ Test Client> getValue Kuksa.Databroker.CommitSha
{

"path": "Kuksa.Databroker.CommitSha",
"value": {

"value": "6690ca970a2f7dd8245bd00f6b10788eaad755b5",
"timestamp": "2023-12-05T15:10:46.005114+00:00"

}
}

$ Test Client> setValue Kuksa.Databroker.CommitSha 000000000000
OK

$ Test Client> getValue Kuksa.Databroker.CommitSha
{

"path": "Kuksa.Databroker.CommitSha",

Ref.: 23-11-1425-REP 29 Quarkslab SAS

"value": {
"value": "000000000000",
"timestamp": "2023-12-06T15:24:36.243281+00:00"

}
}

LOW LOW-1 Databroker-specific entries can be modified remotely.

Exploitability Impact

Perimeter Databroker version

Prerequisites Provide permission on Kuksa

Description

A user with write permissions on Kuksa VSS path can modify the values of the databroker
version. The version by the databroker will then be incorrect and could lead to incompatibility
issues with other clients.

Recommendations

Deny the write access on the three databroker-specific entries.

sdv.databroker.v1:Broker service

The sdv.databroker.v1:Broker service provides 4 endpoints that will be investigated in the
following paragraphs. This service is mostly used by clients.

GetDatapoints

This gRPC endpoint only provides reading capabilities on the current value of an entry. The
metadata and target value of an entry cannot be read with this endpoint.

The source code used by this endpoint is pretty similar to the one used by the Get of the VAL
service. No issues related to this endpoint were found.

SetDatapoints

This gRPC endpoint only provides writing capabilities on the target value of an entry. The
metadata and current value of an entry can’t be written with this endpoint.

This endpoint fits with the Actuate permission. Clients will use this duo to request a modi-
fication of the vehicle state through the databroker and the corresponding provider.

The vulnerability MED-1 affects this gRPC endpoint.

Permission segregation between actuating and providing actions are correctly handled on the
databroker. An attempt to modify the current value of an entry through this gRPC endpoint
will return the following error to the client.

Ref.: 23-11-1425-REP 30 Quarkslab SAS

{
"errors": {
"Vehicle.Speed": "ACCESS_DENIED"
}

}

Subscribe
This gRPC provides subscription capabilities to clients. SQL syntax can be used by the client
to subscribe to an entry with custom conditions.

A user can try to use SQL requests to bypass the permission mechanism. The subscription
mechanism seems to trigger an internal error with this type of request. For example, the
following SQL request tries to access Vehicle.Speed on which the user has no read access.

SELECT Vehicle.ADAS.ABS.IsEngaged WHERE Vehicle.Speed < 12

The databroker triggers an internal error when Vehicle.Speed is accessed and the user has no
access right on it. But, the returned error is then ignored and an Ok() statement is returned.
This led to opening a communication channel with the client with no databroker subscriptions.
The vulnerability scope is located at broker.rs#L835-L839.

LOW LOW-2 Client can subscribe to unavailable scope and waits for data
that will never be sent.

Exploitability Impact

Perimeter Databroker subscriptions

Prerequisites Read permission

Description

Subscriptions with SQL comparison conditions that try to access out-of-permissions scope
data are failing, but no error is sent to the client and the communication channel is still open.
This leads clients to await data from the open channel, but the relevant subscriptions are not
registered server-side. A TODO comment in the source indicates that the error must be sent
to the subscriber.

Recommendations

Return the error to the subscriber and delete the TODO comment in broker.rs#L835-L839.

The INFO-3 issue also affects this gRPC endpoint. It appears that on this endpoint, the
expiration of a token has a different impact. The communication channel remains open, but
the SQL queries are executed every time an update happens. If a client subscribed to an SQL
query before the expiration of his JWT, the query will still be executed after expiration and
a response will be sent to the client. As the token is expired, the values will not be readable.
However, the client will be able to know the time at which an entry has been modified.

The issue is due to a lack of timestamp checks before notifying clients. This check could be
added to the notify function at broker.rs#L805-L845.

Ref.: 23-11-1425-REP 31 Quarkslab SAS

https://github.com/eclipse/kuksa.val/blob/0.4.1/kuksa_databroker/databroker/src/broker.rs#L835-L839
https://github.com/eclipse/kuksa.val/blob/0.4.1/kuksa_databroker/databroker/src/broker.rs#L835-L839
https://github.com/eclipse/kuksa.val/blob/0.4.1/kuksa_databroker/databroker/src/broker.rs#L805-L845

The following logs show the result of an expired subscription. The entry is updated every
second, and the client with an expired token still receives the subscription callbacks.

{
"fields": {
"Vehicle.Speed": {

"floatValue": 8,
"timestamp": "2023-11-20T09:23:18.460571145Z"

}
}

}

{
"fields": {
"Vehicle.Speed": {

"floatValue": 9,
"timestamp": "2023-11-20T09:23:19.475708680Z"

}
}

}
// HERE EXPIRATION OF THE JWT TOKEN
{

"fields": {
"Vehicle.Speed": {

"failureValue": "NOT_AVAILABLE",
"timestamp": "2023-11-20T09:23:20.490804601Z"

}
}

}

{
"fields": {
"Vehicle.Speed": {

"failureValue": "NOT_AVAILABLE",
"timestamp": "2023-11-20T09:23:21.505369154Z"

}
}

}

Ref.: 23-11-1425-REP 32 Quarkslab SAS

LOW LOW-3 An expired token can leak information about entries update
timestamp.

Exploitability Impact

Perimeter Databroker subscriptions

Prerequisites Read permission

Description

By subscribing to a datapoint before the token expiration, a user can be informed when this
datapoint is written once its token expires. This is possible because token expiration is not
checked before calling back the subscriber.

Recommendations

In brokers.rs#L805-L845, consider adding an expiration check before notifying the client. If
the token is expired, consider closing the connection.

GetMetadata
This gRPC endpoint returns the metadata attached to an entry. The client must provide the
VSS path of the entry.

The metadata of every entry is accessible by clients. Reading metadata is always allowed, even
if the scope field of the client JWT excludes the entry path.

LOW LOW-4 Entries metadata can be read by every client and feeder.

Exploitability Impact

Perimeter Databroker entries metadata

Prerequisites Valid JWT

Description

Entries metadata access is not restricted. A user with restricted access rights can read the
metadata of all the entries stored in the databroker.
An attacker could use this leak of information to gain further knowledge of the target, for
example by discovering entries that are specific to a vehicle model.

Recommendations

Restrict the metadata access according to the JWT permissions scope.

sdv.databroker.v1:Collector service

The sdv.databroker.v1:Collector service provides 3 endpoints that will be investigated in
the following paragraphs. This service is mainly used by the providers and the feeders embedded
in the vehicle.

UpdateDatapoints

Ref.: 23-11-1425-REP 33 Quarkslab SAS

https://github.com/eclipse/kuksa.val/blob/0.4.1/kuksa_databroker/databroker/src/broker.rs#L805-L845

This gRPC endpoint allows to modify the current value of an entry.

The vulnerability MED-1 affects this gRPC endpoint.

The request format of this endpoint is different from the others. To select an entry, the VSS
path is commonly used. But this gRPC message format requires the id number at which the
entry is registered in the databroker. To retrieve this number from the VSS path, the client
should first send a request to the sdv.databroker.v1:Broker:GetMetadata endpoint.

INFO INFO-4 UpdateDatapoints request format is not unified with other
endpoints.

Exploitability Impact

Perimeter Databroker UpdateDatapoints endpoint

Prerequisites

Description

UpdateDatapoints endpoint use the id to identify entries. This is not unified with
other gRPC endpoints which use the VSS path. UpdateDatapoints requires a call to
GetMetadata or RegisterDatapoints to retrieve the id field which is unstable.

Recommendations

Consider unifying the gRPC endpoint request format to retrieve databroker entries.

StreamDatapoints

This gRPC endpoint is used by providers and feeders to open a communication channel with
the databroker. The channel allows to continuously feed new values into the databroker.

The JWT expiration is handled such that providing a new value after expiration returns the
ACCESS_DENIED error. However, the communication channel remains open even if the token
has expired. This can be tested with an access token that has an upcoming expiration date.

The vulnerability MED-1 affects this gRPC endpoint.

RegisterDatapoints

This gRPC endpoint allows providers and feeders to register new entries in the VSS tree. When
a new entry is registered, its id used by the databroker is returned.

If a provider tries to register a new entry to an existing path, the id of the entry located at the
path is returned. The new entry data are discarded. The id field is a 32-bit integer managed
with the atomic crate.

On the databroker side, entries are stored in a memory HashMap<i32, Entry> . Every entry
is stored in memory and the RegisterDatapoints gRPC endpoint allows creating new en-
tries remotely. From an attacker view, RegisterDatapoints provides a direct impact on the
memory size of the databroker process. We developed a custom Rust client which goal was to

Ref.: 23-11-1425-REP 34 Quarkslab SAS

create as many entries as possible. In our test with a 32GB memory machine, 29 million entries
were created before the databroker gets killed by the operating system.

Our custom Rust client is available as part of the delivered archive.

HIGH HIGH-1 A feeder can crash the databroker.

Exploitability Impact

Perimeter Databroker RegisterDatapoints endpoint

Prerequisites Create permission

Description

The number of entries in the databroker is not upper bounded. Entries are stored in a
hashmap kept in the databroker memory.
A malicious client can register new datapoints to grow the databroker memory consumption.
Modern operating systems have protection and will kill the databroker process when its
memory consumption becomes too high.

Recommendations

Set an upper-bound limit on the number of entries that the databroker can handle.

7.2.4 The KUKSA Python SDK
As an introduction, the KUKSA Python SDK is part of the KUKSA.val repository, which
also contains the databroker. Mixing the server and client components of a same project in a
single repository, especially when they are not developed in the same language and therefore
do not contain common code, is not a good software engineering practice. We noted during our
audit and the release of version 0.4.2 that the client had been moved to a dedicated repository,
which is definitely a good point.

The SDK contains the Python code required to communicate with either KUKSA Server or
KUKSA Databroker, handling gRPC and WebSocket protocols, TLS, authorization, etc. The
various services exposed by the broker, like getting or setting values for example, are available
through a Python class (KuksaClientThread) easy to use, handling the backend communica-
tion in a dedicated thread. The entire package is a pure Python implementation, and depends
on well-known libraries like grpcio and websockets, which are regularly audited. Available on
PyPI, it can be easily used in a personal project, via a simple pip install kuksa-client
or by cloning the official repository.

The code is easy to read, and uses good practices, for example typing [14], or docstring
with well-explained information when necessary. Some linters are executed on the code, and
are under discussion to be added to the CI (see this discussion 1). Various unit tests are also
present.

The SDK also contains a command-line interface. This CLI enables us to interact with the
broker, to query, update, or subscribe to values. This is a useful tool, which uses the cmd2 [15]

1https://github.com/eclipse/kuksa.val/pull/597#discussion_r1269023945

Ref.: 23-11-1425-REP 35 Quarkslab SAS

https://github.com/eclipse/kuksa.val/pull/597#discussion_r1269023945

python package as the CLI backend, natively providing commands to run script or enter a host
shell :

Test Client> help
...
Uncategorized
=============
alias help macro quit run_script shell
edit history py run_pyscript set shortcuts

All these commands are not required in a classic usage of the kuksa-library, and it adds some
content the end user would not expect. In the foreground, the kuksa-client command in the
path allowing you to bounce on a shell. It also adds various Python dependencies, and potential
security issues in those dependencies.

We would suggest to split the Python client in two packages, one for the kuksa-library, and one
for the kuksa-client.

Ref.: 23-11-1425-REP 36 Quarkslab SAS

8. Dynamic analysis

8.1 Fuzzing the databroker

8.1.1 Why fuzzing?
Both fuzzing and property testing are ways of automatically testing code. Where unit tests typ-
ically test some expected set of behavior, automated tests can be more rigorous and exhaustive
- making them far more likely to weed out bugs - especially those you didn’t even conceive of.
Fuzzing and property testing have a lot in common with each other. Where they tend to differ
is how tests are driven.

With fuzzing you typically use some external agent to test your program. Fuzzers usually can
instrument the code under test, and make use of tools such as sanitizers to check whether
invariants are violated. Fuzzers will also keep track of which input leads to which branches
being hit in code, and tailor their input to cover as many branches as possible. This process can
take time and is why it often pays off to run fuzzers for extended periods or even continuously.

Property testing typically works the other way around: property testing is typically done by
including a library in your test code which allows you to drive the tests yourself. Rather than
looking for crashes or sanitizer failures, the emphasis is more on checking your implementation
using a strategy.

While fuzzing tends to be more thorough, property testing tends to be faster to execute [16].

8.1.2 Structured inputs
It’s possible to combine fuzzing with structured inputs using arbitrary crate. The way a fuzzer
typically works is that it generates random data which is passed to a program over some channel.
But with arbitrary this randomness can be more clearly channeled: it can take the arbitrary
stream of data, and use it to create structured types.

8.1.3 Automated testing strategies
These are some common testing strategies:

• roundtrip testing: generate a message, pass it to the encoder, then pass the encoder’s
output to the decoder. The decoder’s output should be the same as the original message.

• differential testing: test the program against a ”known good” implementation of a
similar program (also known as an ”oracle”).

• invariant testing: test that a certain property always holds. This can be a universal
property like: ”my program didn’t crash”. But invariants can be specific too.

Ref.: 23-11-1425-REP 37 Quarkslab SAS

8.1.4 Methodology used for Kuksa

For the audit we chose to only do fuzzing, using proptest [17] or other verification methods like
kani [18] requires a deep knowledge of the code we didn’t have during the audit.

Since we didn’t have a clear model to use as an oracle, the strategy we used was to maximize
our coverage. Given the safe nature of Rust and the absence of unsafe code in the code base,
the failures we expected were mostly panic leading to DOS (Denial Of Service).

We decided to use cargo fuzz [19] which is a cargo subcommand for fuzzing with libFuzzer
[20]. libFuzzer is an in-process, coverage-guided, evolutionary fuzzing engine.

libFuzzer is linked with the library under test, and feeds fuzzed inputs to the library via a
specific fuzzing entrypoint (a.k.a. target function); the fuzzer then tracks which areas of the
code are reached, and generates mutations on the corpus of input data to maximize the code
coverage.

Since some functions are typed, we decided to go with a structured approach. The raw bytes
generated by the fuzzer are interpreted using the arbitrary crate [21] to generate an instance
of the input.

The arbitrary crate provides an Arbitrary trait to produce well-typed, structured values,
from raw bytes buffers.

A fuzzing harness is developed to bridge the gap between how the fuzzer expects input to occur
and how input happens in the application.

Writing a harness with cargo fuzz is quite easy: you need to provide a closure to the
fuzz_target macro. This macro can take parameters that implement the Arbitrary trait.

Since libfuzzer is in maintenance mode, our harnesses have a feature that can be used to
use the shim provided by libafl [22].

8.1.5 Harnesses
We developed 12 harnesses targeting various parts of the application. We were interested in all
the functions that can take parameters provided by a potential attacker.

During the cartography of the application, we determined 3 objects that can be of interest:

• the JWT token

• the VSS that can be provided

• the gRPC endpoints

Attacking the JWT token requires the ability to sign an arbitrary token. Since the deployment
of infrastructure required to sign the token is not provided by Kuksa, we wanted to check if the
handling of token was robust enough.

To do that we targeted 3 functions:

• glob::to_regex

• authorization::jwt::scope::parse_whitespace_separated

Ref.: 23-11-1425-REP 38 Quarkslab SAS

• authorization::jwt::decoder::Permissions::try_from

For the VSS, it is only provided during the startup of the databroker. To maximize the coverage
we developed 2 harnesses both of them targeting the vss::parse_vss_from_str functions.

Regarding the gRPC endpoints, 2 GRPC servers are available: BrokerServer and CollectorServer .

BrokerServer has 4 endpoints:

• get_datapoints

• set_datapoints

• subscribe

• get_metadata

CollectorServer has 3 endpoints:

• update_datapoints

• stream_datapoints

• register_datapoints

We used the arbitrary crate to call directly the server implementation with a gRPC request.

We didn’t find a way to fuzz the stream_datapoints endpoint without spawning a full gRPC
server which will make the fuzzing highly inefficient. So this harness was not used during the
fuzzing campaign.

We also decided to target the query::compiler::compile function since this function parses
arbitrary SQL strings.

To have better coverage we also designed a harness to target specifically the databroker API.

We’ll now explain how these harnesses work.

glob::to_regex

This harness is really simple since the target function takes a string as input.

fuzz_target!(|data: &str| {
_ = glob::to_regex(data);

});

authorization::jwt::scope::parse_whitespace_separated

This harness is really simple since the target function takes a string as input.

fuzz_target!(|data: &str| {
let _ = parse_whitespace_separated(data);

});

Ref.: 23-11-1425-REP 39 Quarkslab SAS

authorization::jwt::decoder::Permissions::try_from

This harness is a bit more complex because we leverage the Arbitrary trait to generate valid
claims. We wrap the jwt::Claims as a new type to keep the implementation of Arbitrary
inside the harness. It’s not mandatory and it’ll be best to have that in the databroker crate
with a configuration selector.

#[derive(Debug)]
struct Claims(jwt::Claims);

impl<'a> arbitrary::Arbitrary<'a> for Claims {
fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {

let claims = jwt::Claims {
sub: String::arbitrary(u)?,
iss: String::arbitrary(u)?,
aud: Vec::arbitrary(u)?,
iat: u64::arbitrary(u)?,
exp: u64::arbitrary(u)?,
scope: String::arbitrary(u)?,

};
Ok(Self(claims))

}
}

fuzz_target!(|data: Claims| {
_ = Permissions::try_from(data.0);

});

vss::parse_vss_from_str

We have 2 harnesses for this function. The first one is quite standard.

fuzz_target!(|data: &str| {
_ = parse_vss_from_str(data);

});

The second leverages Arbitrary trait to craft a json-like string.

fuzz_target!(|data: JsonString| {
_ = parse_vss_from_str(data.0.as_str());

});

query::compiler::compile

This harness is also quite standard. If the fuzzer manages to craft a valid query, we try to
execute it.

Ref.: 23-11-1425-REP 40 Quarkslab SAS

fuzz_target!(|data: &str| {
let test_compilation_input = TestCompilationInput {};
if let Ok(compiled_query) = compile(data, &test_compilation_input) {

let execution_input1 = TestExecutionInput {
};
_ = compiled_query.execute(&execution_input1);

}
});

grpc_get_datapoints

All gRPC endpoints are asynchronous, so we need to start a runtime to call the future. It is
not very efficient and it’s something that clearly can be improved. The gRPC request is also
wrapped in a new type to craft arbitrary requests. We also need to inject into gRPC extensions
the corresponding permissions.

#[derive(Debug)]
struct Request(GetDatapointsRequest);

impl<'a> arbitrary::Arbitrary<'a> for Request {
fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {

let request = GetDatapointsRequest {
datapoints: Vec::arbitrary(u)?,

};
Ok(Self(request))

}
}

fuzz_target!(|data: Request| {
let _runtime = tokio::runtime::Builder::new_current_thread()

.enable_all()

.build()

.unwrap()

.block_on(async {
let broker = DataBroker::default();
let mut request = tonic::Request::new(data.0);
request

.extensions_mut()

.insert(permissions::ALLOW_ALL.clone());
let _ = broker.get_datapoints(request).await;

});
});

grpc_set_datapoints

This harness is quite similar to the previous ones.

#[derive(Debug)]
struct Request(SetDatapointsRequest);

Ref.: 23-11-1425-REP 41 Quarkslab SAS

impl<'a> arbitrary::Arbitrary<'a> for Request {
fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {

let datapoints: HashMap<String, Point> = HashMap::arbitrary(u)?;
let datapoints: HashMap<String, Datapoint> =

HashMap::from_iter(datapoints.into_iter().map(|(i, p)| (i, p.0)));

let request = SetDatapointsRequest { datapoints };
Ok(Self(request))

}
}

fuzz_target!(|data: Request| {
let _runtime = tokio::runtime::Builder::new_current_thread()

.enable_all()

.build()

.unwrap()

.block_on(async {
let broker = DataBroker::default();
let mut request = tonic::Request::new(data.0);
request

.extensions_mut()

.insert(permissions::ALLOW_ALL.clone());
let _ = broker.set_datapoints(request).await;

});
});

grpc_subscribe

This harness is quite similar to the previous ones.

#[derive(Debug)]
struct Request(SubscribeRequest);

impl<'a> arbitrary::Arbitrary<'a> for Request {
fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {

let request = SubscribeRequest {
query: String::arbitrary(u)?,

};
Ok(Self(request))

}
}

fuzz_target!(|data: Request| {
let _runtime = tokio::runtime::Builder::new_current_thread()

.enable_all()

.build()

.unwrap()

.block_on(async {
let broker = DataBroker::default();
let mut request = tonic::Request::new(data.0);
request

.extensions_mut()

Ref.: 23-11-1425-REP 42 Quarkslab SAS

.insert(permissions::ALLOW_ALL.clone());
let _ = Broker::subscribe(&broker, request).await;

});
});

grpc_get_metadata

This harness is quite similar to the previous ones.

fuzz_target!(|data: Request| {
let _runtime = tokio::runtime::Builder::new_current_thread()

.enable_all()

.build()

.unwrap()

.block_on(async {
let broker = DataBroker::default();
let mut request = tonic::Request::new(data.0);
request

.extensions_mut()

.insert(permissions::ALLOW_ALL.clone());
let _ = broker.get_metadata(request).await;

});
});

grpc_update_datapoints

This harness is quite similar to the previous ones.

#[derive(Debug)]
struct Request(UpdateDatapointsRequest);

impl<'a> arbitrary::Arbitrary<'a> for Request {
fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {

let datapoints: HashMap<i32, Point> = HashMap::arbitrary(u)?;
let datapoints: HashMap<i32, Datapoint> =

HashMap::from_iter(datapoints.into_iter().map(|(i, p)| (i, p.0)));

let request = UpdateDatapointsRequest { datapoints };
Ok(Self(request))

}
}

fuzz_target!(|data: Request| {
let _runtime = tokio::runtime::Builder::new_current_thread()

.enable_all()

.build()

.unwrap()

.block_on(async {
let broker = DataBroker::default();
let mut request = tonic::Request::new(data.0);
request

Ref.: 23-11-1425-REP 43 Quarkslab SAS

.extensions_mut()

.insert(permissions::ALLOW_ALL.clone());
let _ = broker.update_datapoints(request).await;

});
});

grpc_register_datapoints

This harness is quite similar to the previous ones.

#[derive(Debug)]
struct Request(RegisterDatapointsRequest);

impl<'a> arbitrary::Arbitrary<'a> for Request {
fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {

let list: Vec<Point> = Vec::arbitrary(u)?;
let list: Vec<RegistrationMetadata> =

Vec::from_iter(list.into_iter().map(|p| p.0));↪→

let request = RegisterDatapointsRequest { list };

Ok(Self(request))
}

}

fuzz_target!(|data: Request| {
let _runtime = tokio::runtime::Builder::new_current_thread()

.enable_all()

.build()

.unwrap()

.block_on(async {
let broker = DataBroker::default();
let mut request = tonic::Request::new(data.0);
request

.extensions_mut()

.insert(permissions::ALLOW_ALL.clone());
let _ = broker.register_datapoints(request).await;

});
});

Databroker API

This harness is more complex. We use the fuzzer to generate a sequence of functions to call
inside the databroker .

Our goal is to target the following functions:

• add_entry

• get_entry_by_id

• get_entry_by_path

Ref.: 23-11-1425-REP 44 Quarkslab SAS

• get_datapoint

• update_entries

• subscribe

• subscribe_query

• get_id_by_path

• get_datapoint_by_path

• get_metadata

• get_metadata_by_path

To do so, we leverage once again the Arbitrary trait to generate a Context used as input
for the fuzzer.

This Context will have a list of entries we want to initially add to the database and a list of
operations we want to apply to the database.

#[derive(arbitrary::Arbitrary, Debug)]
struct Context {

initial: Vec<AddEntry>,
ops: Vec<Ops>,

}

#[derive(arbitrary::Arbitrary, Debug)]
enum Ops {

AddEntry(AddEntry),
GetEntryById(GetEntryById),
GetEntryByPath(GetEntryByPath),
GetDatapoint(GetDatapoint),
UpdateEntries(UpdateEntries),
Subscribe(Subscribe),
SubscribeQuery(SubscribeQuery),
GetIdByPath(GetIdByPath),
GetDatapointByPath(GetDatapointByPath),
GetMetadata(GetMetadata),
GetMetadataByPath(GetMetadataByPath),

}

The structure of the fuzzer is then quite standard. We still need to set up a runtime to run our
function.

fuzz_target!(|data: Context| {
let _runtime = tokio::runtime::Builder::new_current_thread()

.enable_all()

.build()

.unwrap()

Ref.: 23-11-1425-REP 45 Quarkslab SAS

.block_on(fuzz(data));
});

async fn fuzz(data: Context) {
let broker = DataBroker::default();
let broker = broker.authorized_access(&permissions::ALLOW_ALL);

let Context { initial, ops } = data;

We add the initial values to the database.

let mut ids = Vec::new();
for i in initial {

...
if let Ok(id) = broker

.add_entry(
name,
data_type,
change_type,
entry_type,
description,
allowed,

)
.await

{
ids.push(id);

}
}

if ids.is_empty() {
return;

}

And then we call the functions with the arguments generated by the fuzzer.

for op in ops {
match op {

Ops::AddEntry(i) => {
...
if let Ok(id) = broker

.add_entry(
name,
data_type,
change_type,
entry_type,
description,
allowed,

)
.await

{

Ref.: 23-11-1425-REP 46 Quarkslab SAS

ids.push(id);
}

}
Ops::GetEntryById(i) => {

_ = broker.get_entry_by_id(i.id.id).await;
}
Ops::GetEntryByPath(i) => {

_ = broker.get_entry_by_path(&i.path).await;
}
Ops::GetDatapoint(i) => {

_ = broker.get_datapoint(i.id.id).await;
}
Ops::UpdateEntries(i) => {

let updates: HashMap<i32, EntryUpdate> = i
.entries
.into_iter()
.map(|(k, v)| (k.id, v.into()))
.collect();

_ = broker.update_entries(updates).await;
}
Ops::Subscribe(i) => {

let valid_entries: HashMap<i32,
HashSet<databroker::broker::Field>> = i↪→

.entries

.into_iter()

.map(|(k, v)| {
(

k.id,
v.into_iter()

.map(|v| <Field as
Into<databroker::broker::Field>>::into(v))↪→

.collect(),
)

})
.collect();

_ = broker.subscribe(valid_entries).await;
}
Ops::SubscribeQuery(i) => {

_ = broker.subscribe_query(&i.query).await;
}
Ops::GetIdByPath(i) => {

_ = broker.get_id_by_path(&i.path).await;
}
Ops::GetDatapointByPath(i) => {

_ = broker.get_datapoint_by_path(&i.path).await;
}
Ops::GetMetadata(i) => {

_ = broker.get_metadata(i.id.id).await;
}
Ops::GetMetadataByPath(i) => {

_ = broker.get_metadata_by_path(&i.path).await;
}

Ref.: 23-11-1425-REP 47 Quarkslab SAS

}
}

}

This way we are able to have a very good coverage of the databroker API.

8.1.6 Methodology
We developed each harness by following these steps:

• Run harness for some time

• Stop fuzzing

• Mimimize corpus

• Check coverage to see if enough code is covered

• Improve fuzzer

• Rinse and repeat

8.1.7 Fuzzing campaign
Once we were quite confident with our harnesses, we ran them on a dedicated server for a 24h
period. We set up the fuzzing campaign to stop the harnesses if no coverage were discovered
after 1h and if more than 250 crashes were found.

The following table summarizes the results. The corpus for each harness is also minimized.

harness corpus crashes coverage features
databroker 7413 272 11281 39538

glob_to_regex 6547 10 11885 65288
grpc_get_datapoints 149 0 1252 3333
grpc_get_metadata 57 0 1041 1408

grpc_register_datapoints 205 0 4862 7082
grpc_set_datapoints 873 0 2014 6668

grpc_subscribe 5675 283 5903 20124
grpc_update_datapoints 767 0 2146 6985
parse_vss_from_json 2909 0 3860 22213
parse_vss_from_str 3924 0 3615 14210
permissions_try_from 1173 0 6878 27812

query_compiler_compile 3083 369 4574 17987
scope_parse_whitespace_separated 229 0 4093 5691

The following harnesses were stopped because no new coverage was found after 1h:

• scope_parse_whitespace_separated

• permissions_try_from

• parse_vss_from_str

• grpc_get_datapoints

Ref.: 23-11-1425-REP 48 Quarkslab SAS

• grpc_set_datapoints

• grpc_get_metadata

• grpc_update_datapoints

• grpc_register_datapoints

The following harnesses were still finding coverage after 24h of fuzzing:

• glob_to_regex

The following harnesses produced crashes:

• query_compiler_compile

• grpc_subscribe

• databroker

The following harness produced slow inputs:

• glob_to_regex

8.1.8 Coverage
To obtain the global coverage from all the fuzzers we need to merge each coverage into a
global one. Since the coverage is gathered by LLVM, it is quite easy to merge it by using
cargo profdata and cargo cov .

$ cargo +nightly profdata -- merge -sparse \
coverage/scope_parse_whitespace_separated/coverage.profdata \
coverage/permissions_try_from/coverage.profdata \
coverage/query_compiler_compile/coverage.profdata \
coverage/databroker/coverage.profdata \
coverage/glob_to_regex/coverage.profdata \
coverage/parse_vss_from_str/coverage.profdata \
coverage/parse_vss_from_json/coverage.profdata \
coverage/grpc_get_datapoints/coverage.profdata \
coverage/grpc_set_datapoints/coverage.profdata \
coverage/grpc_subscribe/coverage.profdata \
coverage/grpc_get_metadata/coverage.profdata \
coverage/grpc_update_datapoints/coverage.profdata \
coverage/grpc_register_datapoints/coverage.profdata \
-o merged.profdata

$ cargo +nightly cov -- show \
-object={{binaries_coverage_path}}/scope_parse_whitespace_separated \
-object={{binaries_coverage_path}}/permissions_try_from \
-object={{binaries_coverage_path}}/query_compiler_compile \
-object={{binaries_coverage_path}}/databroker \
-object={{binaries_coverage_path}}/glob_to_regex \
-object={{binaries_coverage_path}}/parse_vss_from_str \
-object={{binaries_coverage_path}}/parse_vss_from_json \
-object={{binaries_coverage_path}}/grpc_get_datapoints \

Ref.: 23-11-1425-REP 49 Quarkslab SAS

-object={{binaries_coverage_path}}/grpc_set_datapoints \
-object={{binaries_coverage_path}}/grpc_subscribe \
-object={{binaries_coverage_path}}/grpc_get_metadata \
-object={{binaries_coverage_path}}/grpc_register_datapoints \
-object={{binaries_coverage_path}}/grpc_update_datapoints \
-instr-profile merged.profdata \
-ignore-filename-regex="rustc/.*" \
-ignore-filename-regex=".cargo/registry/.*" \
-ignore-filename-regex="databroker-proto/.*" \
-ignore-filename-regex="databroker/fuzz/.*" \
-output-dir merged -format html

We obtain the following coverage. It is quite good since the fuzzers manage to trigger a good
part of the application. The majority of what is missing is either implementation not covered
by the fuzzers (like the Debug implementation) or code we couldn’t trigger because crashes
happened before (like the SQL executor).

Figure 1. Fuzzing global coverage

8.1.9 Crashes triage

Since the fuzzing campaign produced a lot of crashes (even if we reduced their amount), we
used casr (CASR: Crash Analysis and Severity Report) [23] to reduce them. This tool will
try to reproduce the crashes and triage them in buckets sharing the same root cause.

In our case, several harnesses produced crashes or failing inputs.

• permissions_try_from

• query_compiler_compile

Ref.: 23-11-1425-REP 50 Quarkslab SAS

• grpc_subscribe

• databroker

• glob_to_regex

For the databroker harness, 245 crashes were sorted in 8 clusters. All clusters are various
stack exhaustion in the sqlparser crate.

For the grpc_subscribe harness, 244 crashes were sorted in 27 clusters. All clusters are also
various stack exhaustion in the sqlparser crate.

Details are available in the appendix A.

8.1.10 Findings

Overflow when adding duration to instant in Permissions::try_from

The first crash found by the fuzzer lies in the implementation of Permissions::try_from
function.

thread '<unnamed>' panicked at library/std/src/time.rs:601:31:
overflow when adding duration to instant

Failing input:

artifacts/permissions_try_from/crash-d6ad6ccef535c90f

Output of `std::fmt::Debug`:

Claims(
Claims {

sub: "Z",
iss: "",
aud: [

"",
],
iat: 13301911657259272913,
exp: 14344505347206954180,
scope: "",

},
)

The root cause is hinted at in the Rust documentation: mathematical operations like add may
panic if the underlying structure cannot represent the new point in time.

impl TryFrom<Claims> for Permissions {
type Error = Error;

fn try_from(claims: Claims) -> Result<Self, Self::Error> {

Ref.: 23-11-1425-REP 51 Quarkslab SAS

let scopes =
scope::parse_whitespace_separated(&claims.scope).map_err(|err| match
err {

↪→

↪→

scope::Error::ParseError => Error::ClaimsError,
})?;

...

permissions = permissions
.expires_at(std::time::UNIX_EPOCH +

std::time::Duration::from_secs(claims.exp));↪→

permissions.build().map_err(|err| match err {
PermissionsBuildError::BuildError => Error::ClaimsError,

})
}

}

Our recommendation is to use the checked_add function to do the addition.

LOW LOW-5 Malicious JWT access token can crash a thread of the
databroker

Exploitability Impact

Perimeter Databroker JWT handling

Prerequisites JWT crafting capability

Description

Timestamp addition doesn’t support numbers that are too big and will panic on the databro-
ker side at jwt/scope.rs#L134.

Recommendations

Consider using a Rust-safe addition.

Stack exhaustion in query::compiler::compile
$ cargo fuzz run query_compiler_compile

artifacts/query_compiler_compile/crash-7b38f34b0d58a1526fa09cc20ea3169df633e33c
��

↪→

↪→

...
INFO: Running with entropic power schedule (0xFF, 100).
INFO: Seed: 547689466
INFO: Loaded 1 modules (1408673 inline 8-bit counters): 1408673 [0x555b64034630,

0x555b6418c4d1),↪→

INFO: Loaded 1 PC tables (1408673 PCs): 1408673 [0x555b6418c4d8,0x555b6570aee8),
target/x86_64-unknown-linux-gnu/release/query_compiler_compile: Running 1 inputs 1

time(s) each.↪→

Running:
artifacts/query_compiler_compile/crash-7b38f34b0d58a1526fa09cc20ea3169df633e33c↪→

Ref.: 23-11-1425-REP 52 Quarkslab SAS

https://github.com/eclipse/kuksa.val/blob/0.4.1/kuksa_databroker/databroker/src/authorization/jwt/decoder.rs#L134

AddressSanitizer:DEADLYSIGNAL
===
==655278==ERROR: AddressSanitizer: stack-overflow on address 0x7ffec09cef20 (pc

0x555b5feb28b8 bp 0x7ffec09d0af0 sp 0x7ffec09cef20 T0)↪→

#0 0x555b5feb28b8
(kuksa.val/kuksa_databroker/databroker/fuzz/target/x86_64-unknown-linux-gnu/release/query_compiler_compile+0x34868b8)
(BuildId: 15994ef7afeb661301822cc00f3dae293c3aa4df)

↪→

↪→

#1 0x555b5feb8a1e
(kuksa.val/kuksa_databroker/databroker/fuzz/target/x86_64-unknown-linux-gnu/release/query_compiler_compile+0x348ca1e)
(BuildId: 15994ef7afeb661301822cc00f3dae293c3aa4df)

↪→

↪→

...
SUMMARY: AddressSanitizer: stack-overflow

(kuksa.val/kuksa_databroker/databroker/fuzz/target/x86_64-unknown-linux-gnu/release/query_compiler_compile+0x34868b8)
(BuildId: 15994ef7afeb661301822cc00f3dae293c3aa4df)

↪→

↪→

==655278==ABORTING

The root cause is the parsing of the SQL expression, the sqlparser crate crashes because it
exceeds the number of stacks (256 by default).

match sqlparser::parser::Parser::parse_sql(&dialect, sql)

This issue is well-known and patched in the sqlparser repository [24]. We decided to update
the sqlparser crate to the latest version available (0.40.0 at the time of the writing). This
specific crash was fixed but the fuzzer continues to find issues even on the latest version (See
the appendix for more details). All issues are stack exhaustions in various parts of the crate.

Here is an example of another input producing the stack exhaustion.

Figure 1. Failing SQL query

Some users also reported crashes due to stack exhaustion [25].

Ref.: 23-11-1425-REP 53 Quarkslab SAS

HIGH HIGH-2 Any user can crash the databroker

Exploitability Impact

Perimeter Databroker subscriptions

Prerequisites Read permissions

Description

A crafted SQL request sent through the Subscribe gRPC endpoint can lead to a
stack exhaustion error resulting in a crash in the databroker.
This vulnerability is still present (at the date of the writing) in the sqlparser library.

Recommendations

We think that having a full-fledged SQL parser as a core dependency is not required given
this use case. Maybe it should be considered to move to a custom DSL tailored for the task.
It will reduce the attack surface.

Unresolved literal should result in compilation error in query::executor::Expr
INFO: Running with entropic power schedule (0xFF, 100).
INFO: Seed: 1032748402
INFO: Loaded 1 modules (1403216 inline 8-bit counters): 1403216 [0x55a4d2596b90,

0x55a4d26ed4e0),↪→

INFO: Loaded 1 PC tables (1403216 PCs): 1403216 [0x55a4d26ed4e0,0x55a4d3c569e0),
target/x86_64-unknown-linux-gnu/release/grpc_subscribe: Running 1 inputs 1 time(s)

each.↪→

Running: artifacts/grpc_subscribe/crash-6f4f1b03ce518e6baa48b2292fe6cc5fde226774
thread '<unnamed>' panicked at

kuksa.val/kuksa_databroker/databroker/src/query/executor.rs:106:17:↪→

Unresolved literal should result in compilation error
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
==126395== ERROR: libFuzzer: deadly signal

#0 0x55a4cd5d0de1
(kuksa.val/kuksa_databroker/databroker/fuzz/target/x86_64-unknown-linux-gnu/release/grpc_subscribe+0x25d3de1)
(BuildId: 350cd0b3d9fd0ead431c16ece2834bdc1619bf43)

↪→

↪→

#1 0x55a4cd6ad0dd
(kuksa.val/kuksa_databroker/databroker/fuzz/target/x86_64-unknown-linux-gnu/release/grpc_subscribe+0x26b00dd)
(BuildId: 350cd0b3d9fd0ead431c16ece2834bdc1619bf43)

↪→

↪→

#2 0x55a4cd6c49d9
(kuksa.val/kuksa_databroker/databroker/fuzz/target/x86_64-unknown-linux-gnu/release/grpc_subscribe+0x26c79d9)
(BuildId: 350cd0b3d9fd0ead431c16ece2834bdc1619bf43)

↪→

↪→

...
NOTE: libFuzzer has rudimentary signal handlers.

Combine libFuzzer with AddressSanitizer or similar for better crash reports.
SUMMARY: libFuzzer: deadly signal
��

Error: Fuzz target exited with exit status: 77

Request(

Ref.: 23-11-1425-REP 54 Quarkslab SAS

SubscribeRequest {
query: "\nSELECT\n\n0WITUES\n",

},
)

The root cause is in the query::executor::Expr::execute function. A debug_assert is
still present. Also, there is a todo!() which will cause a panic when called.

impl Expr {
pub fn execute(&self, input: &impl ExecutionInput) -> Result<DataValue,

ExecutionError> {↪→

match &self {
Expr::Datapoint { name, data_type: _ } => Ok(input.lookup(name)),
Expr::Alias { expr, .. } => expr.execute(input),
...
Expr::Cast {

expr: _,
data_type: _,

} => todo!(),
Expr::UnresolvedLiteral { raw: _ } => {

debug_assert!(
false,
"Unresolved literal should result in compilation error"

);
Err(ExecutionError::TypeError(

"Unresolved literal found while executing query".to_string(),
))

}
}

}
}

INFO INFO-5 debug_assert in executor.rs

Exploitability Impact

Perimeter Databroker subscriptions

Prerequisites

Description

A debug_assert statement is executed at line 106 of executor.rs .

Recommendations

Remove the debug_assert and the todo statements.

Several slow inputs in glob::to_regex

glob_to_regex didn’t produce any crashes but rather very slow inputs. For example, some
input takes 50s to execute.

Ref.: 23-11-1425-REP 55 Quarkslab SAS

$ cargo fuzz run glob_to_regex
artifacts/glob_to_regex/slow-unit-2641e328ba32e8c122cc584497f9a8d1565ab211↪→

Finished release [optimized + debuginfo] target(s) in 0.19s
Finished release [optimized + debuginfo] target(s) in 0.20s
Running `target/x86_64-unknown-linux-gnu/release/glob_to_regex

-artifact_prefix=kuksa.val/kuksa_databroker/databroker/fuzz/artifacts/glob_to_regex/
artifacts/glob_to_regex/slow-unit-2641e328ba32e8c122cc584497f9a8d1565ab211`

↪→

↪→

INFO: Running with entropic power schedule (0xFF, 100).
INFO: Seed: 2306060899
INFO: Loaded 1 modules (1394821 inline 8-bit counters): 1394821 [0x560e72492730,

0x560e725e6fb5),↪→

INFO: Loaded 1 PC tables (1394821 PCs): 1394821 [0x560e725e6fb8,0x560e73b2f808),
target/x86_64-unknown-linux-gnu/release/glob_to_regex: Running 1 inputs 1 time(s)

each.↪→

Running:
artifacts/glob_to_regex/slow-unit-2641e328ba32e8c122cc584497f9a8d1565ab211↪→

Executed
artifacts/glob_to_regex/slow-unit-2641e328ba32e8c122cc584497f9a8d1565ab211 in
49256 ms

↪→

↪→

*** NOTE: fuzzing was not performed, you have only
*** executed the target code on a fixed set of inputs.

Here is the input file.

Ref.: 23-11-1425-REP 56 Quarkslab SAS

Figure 1. Slow input

We didn’t manage to trigger these code paths but it is known that the ability to craft user-
controlled regular expressions can lead to complex state machines which will result in a long
evaluation time.

Ref.: 23-11-1425-REP 57 Quarkslab SAS

INFO INFO-6 Slow input in glob::to_regex()

Exploitability Impact

Perimeter Databroker

Prerequisites

Description

A crafted input sent to glob::to_regex() seems to slow down the function execution.
We were not able to exploit it remotely.

Recommendations

As a rule of thumb, regular expressions should not be controlled from the outside. We
recommend to move to a custom parser to handle the parsing of the scope.

8.1.11 Integration to OSS Fuzz

Since all the fuzzers are based on cargo fuzz , integration in OSS Fuzz is straightforward.
The required steps are described in the OSS-Fuzz documentation [26].

Ref.: 23-11-1425-REP 58 Quarkslab SAS

8.2 Fuzzing the KUKSA Python SDK

The fourth scenario of the thread model suggested an attacker able to hijack the gRPC com-
munication sent to the client, either by setting up a man in the middle attack, or by taking
control of the databroker.

The Python client is using the following services exposed by the Databroker:

service VAL {
rpc Get(GetRequest) returns (GetResponse);
rpc Set(SetRequest) returns (SetResponse);
rpc Subscribe(SubscribeRequest) returns (stream SubscribeResponse);
rpc GetServerInfo(GetServerInfoRequest) returns (GetServerInfoResponse);

}

Each of these services will result in a Protobuf response which will be parsed by a dedicated func-
tion. For example, the GetServerInfo will result in a call to the ServerInfo.from_message
defined by:

@dataclasses.dataclass
class ServerInfo:
name: str
version: str

@classmethod
def from_message(cls, message: val_pb2.GetServerInfoResponse):

return cls(name=message.name, version=message.version)

We can easily write some Python code to see how the parser behaves:

In [1]: from kuksa_client.grpc import *
...: from kuksa.val.v1 import val_pb2
...:
...: resp = val_pb2.GetServerInfoResponse(name="fakesrv",version=None)
...: ServerInfo.from_message(resp)

Out[1]: ServerInfo(name='fakesrv', version='')

An interesting point to note in the previous snippet is that a field not marked as optional in the
protobuf message definition, version in this example, can still be missing from the Protobuf
message. One notes that in the context of the ServerInfo parser, there is no side effect.

8.2.1 Error response returned by the databroker

The Get and Set RPC will both start by checking if the broker replies with an error code.
Indeed, the client could ask to read or modify an unknown VSS entry, or require special autho-
rizations unsatisfied by the current client context.

Error messages are defined by the following proto definition:

Ref.: 23-11-1425-REP 59 Quarkslab SAS

message Error {
uint32 code = 1;
string reason = 2;
string message = 3;

}

In the meantime, the Python function checking if a response contains an error from the databro-
ker, whether responding to an RPC Get or Set calls, does not verify if the code field is present
in the error message:

def _raise_if_invalid(self, response):
if response.HasField('error'):

error = json_format.MessageToDict(
response.error, preserving_proto_field_name=True)

else:
error = {}

...
if (error and error['code'] is not http.HTTPStatus.OK) # <-- error['code'] ?

So by crafting a response message containing an error without code field:

def Get(self, request, context):
resp = val_pb2.GetResponse.FromString(b'\x1a\r\x12\x06reason\x1a\x03msg')
return resp

We can raise a Python exception not handled by the framework:

$ kuksa-client
Connecting to VSS server at 127.0.0.1 port 55555 using KUKSA GRPC protocol.
...
gRPC channel connected.
Test Client> getValue Vehicle.Speed
Exception in thread Thread-1:
Traceback (most recent call last):
File "/usr/lib/python3.11/threading.py", line 1038, in _bootstrap_inner
self.run()

File "/.../kuksa_client/__init__.py", line 103, in run
self.loop.run_until_complete(self.backend.mainLoop())

...
File "/.../kuksa_client/grpc/__init__.py", line 578, in _process_get_response
self._raise_if_invalid(response)

File "/.../kuksa_client/grpc/__init__.py", line 638, in _raise_if_invalid
if (error and error['code'] is not http.HTTPStatus.OK) or any

~~~~~^^^^^^^^
KeyError: 'code'
{"error": "Timeout"}

Please note that once a non-expected error, like the previous one, is thrown, any other query

Ref.: 23-11-1425-REP 60 Quarkslab SAS



from the client will result in a timeout error message, even if the databroker is restored to its
normal state.

LOW LOW-6 A malicious Protobuf error message can trigger an unhandled
error

Exploitability Impact

Perimeter Python SDK - Protobuf messages parsing

Prerequisites A protobuf message embedding an error without code field

Description

Sending this message will result in an error and block further queries to the broker.

Recommendations

Check the presence of the attribute before using it.

8.2.2 The DataEntry type

If the Set RPC does nothing more than checking there is no error code in the response,
obviously, the Get RPC expects some content. We can ask the databroker for a list of values,
so the response should contain a list of answers. Indeed, the GetResponse message is defined
by:

message GetResponse {
repeated DataEntry entries = 1;
repeated DataEntryError errors = 2;
Error error = 3;

}

In the meantime, the Subscribe RPC will return a SubscribeResponse message, which
basically is just a list of EntryUpdate :

message EntryUpdate {
DataEntry entry = 1;
repeated Field fields = 2;

}
...
message SubscribeResponse {

repeated EntryUpdate updates = 1;
}

So in the end, whether we call Set or Subscribe , this will result in a DataEntry type
parsing, which basically describes a VSS entry. This protobuf type is quite complex, containing
other complex subtypes like Datapoint and Metadata , the latter also having quite complex
definitions.

Ref.: 23-11-1425-REP 61 Quarkslab SAS



8.2.3 The EntryUpdate.from_message() function

The EntryUpdate type is the “highest” object exposing a from_message function which
takes as input a raw protobuf message. Indeed, the GetResponse message is parsed by
BaseVSSClient._process_get_response , just by checking if there is an error in the response,
and then parsing the DataEntry entries. Concerning an EntryUpdate , the parsing is done
by the following code :

def from_message(cls, message: val_pb2.EntryUpdate):
return cls(

entry=DataEntry.from_message(message.entry),
fields=[Field(field) for field in message.fields],

)

In the end, this makes the DataEntry.from_message function an interesting candidate for
fuzzing, in order to obtain the best code coverage, and to avoid all the requirements of creating
an instance of BaseVSSClient .

We decided to use Atheris[27] as the fuzzing engine. First, because this is a coverage-guided
Python based off of libFuzzer [20], but also because it is the recommended solution to integrate
a Python project on OSS-Fuzz [28].

Using Atheris is as easy as installing the pip package and running a small snippet of Python
code like :

import sys
import atheris

with atheris.instrument_imports():
from kuksa.val.v1 import val_pb2,types_pb2
from kuksa_client.grpc import *

def TestOneInput(data):
de = types_pb2.DataEntry.FromString(data)
DataEntry.from_message(de)

atheris.Setup(sys.argv, TestOneInput)
atheris.Fuzz()

However, this code will crash on the first test case in the types_pb2.DataEntry.FromString
function. Indeed, the protobuf generated code expects a structured content. Sending a buffer
of null bytes is enough to crash the protobuf DataEntry initialization :

=== Uncaught Python exception: ===
DecodeError: Error parsing message
Traceback (most recent call last):
File "/fuzzme.py", line 13, in TestOneInput
de = types_pb2.DataEntry.FromString(data)

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Ref.: 23-11-1425-REP 62 Quarkslab SAS



DecodeError: Error parsing message

==24554== ERROR: libFuzzer: fuzz target exited
SUMMARY: libFuzzer: fuzz target exited
MS: 0 ; base unit: 0000000000000000000000000000000000000000

Here comes another good point for Atheris, being based off of libFuzzer, it supports libprotobuf-
mutator [29]. The overall idea is to use the protobuf definition to mutate the fields with
type-valid value.

Using atheris_libprotobuf_mutator, we just have to slightly modify the previous code to
provide to the fuzzer engine the proto definition we want to mutate :

import sys
import atheris
import atheris_libprotobuf_mutator

from kuksa.val.v1 import val_pb2,types_pb2
from kuksa_client.grpc import *

@atheris.instrument_func
def TestOneProtoInput(msg):

# msg will be a valid types_pb2.DataEntry
# we just try to parse it ...
d = DataEntry.from_message(msg)

if __name__ == '__main__':
atheris_libprotobuf_mutator.Setup(sys.argv,

TestOneProtoInput, proto=types_pb2.DataEntry)
atheris.Fuzz()

Few seconds after being started, the fuzzer identified 4 distinct test cases triggering uncaught
Python Exception, which are presented in the following parts. We then let the fuzzer run for
half a day, reaching half a billion testcases, without discovering new issues :

root@1b5679b00512:/src/kuksa.val/kuksa-client# python3 fuzzme.py
...
INFO: Running with entropic power schedule (0xFF, 100).
INFO: Seed: 495542489
...
#32768 pulse cov: 54 ft: 73 corp: 14/999b lim: 4096 exec/s: 16384 rss: 54Mb
...
#536870912 pulse cov: 54 ft: 73 corp: 14/999b lim: 4096 exec/s: 11698 rss:

55Mb↪→

The following sections describe those four issues.

Datapoint without value

Ref.: 23-11-1425-REP 63 Quarkslab SAS



=== Uncaught Python exception: ===
TypeError: getattr(): attribute name must be string
Traceback (most recent call last):
File

"/usr/local/lib/python3.8/site-packages/atheris_libprotobuf_mutator/helpers.py",
line 69, in TestOneProtoInputImpl

↪→

↪→

test_one_proto_input(msg)
File "fuzz-from_message.py", line 12, in TestOneProtoInput
d = DataEntry.from_message(msg)

File "/usr/local/lib/python3.8/site-packages/kuksa_client/grpc/__init__.py",
line 449, in from_message↪→

entry_kwargs['value'] = Datapoint.from_message(message.value)
File "/usr/local/lib/python3.8/site-packages/kuksa_client/grpc/__init__.py",

line 312, in from_message↪→

value=getattr(message, message.WhichOneof('value')),
TypeError: getattr(): attribute name must be string

==84== ERROR: libFuzzer: fuzz target exited
SUMMARY: libFuzzer: fuzz target exited
MS: 1 CustomCrossOver-; base unit: adc83b19e793491b1c6ea0fd8b46cd9f32e592fc
...
value {\012}\012

LOW LOW-7 Datapoint.from_message() does not check if no value is pro-
vided.

Exploitability Impact

Perimeter Python SDK - Protobuf messages parsing

Prerequisites Forging a Datapoint

Description

getattr(message, message.WhichOneof('value')) will throw an Error if no value is
provided in types_pb2.Datapoint .

Recommendations

Check the field value is not None before using it

Crafted ValueRestrictions field

ValueRestriction contains only oneof specific value restriction ( Int , UInt , String ).
If for example the type is ValueRestrictionString , it will not contain a min or max field.
Checking the protobuf object field will result in an error, HasField throws an error if you check
for an attribute not defined in the proto definition.

=== Uncaught Python exception: ===
ValueError: Protocol message ValueRestrictionString has no "min" field.
Traceback (most recent call last):

Ref.: 23-11-1425-REP 64 Quarkslab SAS



File
"/usr/local/lib/python3.8/site-packages/atheris_libprotobuf_mutator/helpers.py",
line 69, in TestOneProtoInputImpl

↪→

↪→

test_one_proto_input(msg)
File "fuzz-from_message.py", line 12, in TestOneProtoInput
d = DataEntry.from_message(msg)

File "/usr/local/lib/python3.8/site-packages/kuksa_client/grpc/__init__.py",
line 460, in from_message↪→

entry_kwargs['metadata'] = Metadata.from_message(message.metadata)
File "/usr/local/lib/python3.8/site-packages/kuksa_client/grpc/__init__.py",

line 171, in from_message↪→

if value_restriction.HasField(field):
ValueError: Protocol message ValueRestrictionString has no "min" field.

==698== ERROR: libFuzzer: fuzz target exited
SUMMARY: libFuzzer: fuzz target exited
MS: 2 InsertByte-Custom-; base unit: adc83b19e793491b1c6ea0fd8b46cd9f32e592fc
...
metadata {\012 value_restriction {\012 string {\012 allowed_values:

\",\"\012 }\012 }\012}\012↪→

LOW LOW-8 DataEntry.From_message() and ValueRestriction.

Exploitability Impact

Perimeter Python SDK - Protobuf messages parsing

Prerequisites Forging invalid ValueRestriction in DataEntry

Description

ValueRestrictionString and ValueRestrictionInt/Uint/Float shares some parsing code leading
to issues with min and max fields

Recommendations

Check the content type when dealing with Oneof Field

ValueRestriction without type field

=== Uncaught Python exception: ===
TypeError: getattr(): attribute name must be string
Traceback (most recent call last):
File

"/usr/local/lib/python3.8/site-packages/atheris_libprotobuf_mutator/helpers.py",
line 69, in TestOneProtoInputImpl

↪→

↪→

test_one_proto_input(msg)
File "fuzz-from_message.py", line 12, in TestOneProtoInput
d = DataEntry.from_message(msg)

File "/usr/local/lib/python3.8/site-packages/kuksa_client/grpc/__init__.py",
line 460, in from_message↪→

entry_kwargs['metadata'] = Metadata.from_message(message.metadata)

Ref.: 23-11-1425-REP 65 Quarkslab SAS



File "/usr/local/lib/python3.8/site-packages/kuksa_client/grpc/__init__.py",
line 167, in from_message↪→

value_restriction = getattr(
TypeError: getattr(): attribute name must be string

==746== ERROR: libFuzzer: fuzz target exited
SUMMARY: libFuzzer: fuzz target exited
MS: 6

ChangeByte-Custom-CustomCrossOver-CustomCrossOver-CustomCrossOver-CustomCrossOver-;
base unit: adc83b19e793491b1c6ea0fd8b46cd9f32e592fc

↪→

↪→

...
actuator_target {\012 uint32: 0\012}\012metadata {\012 deprecation: \"\"\012

value_restriction {\012 }\012}\012↪→

LOW LOW-9 ValueRestriction without type field

Exploitability Impact

Perimeter Python SDK - Protobuf messages parsing

Prerequisites Forging invalid ValueRestriction in DataEntry

Description

ValueRestriction parsing supposes there is a Oneof type field

Recommendations

Check the field value is not None before using it

Converting Uint64 to timestamp can result in invalid date

=== Uncaught Python exception: ===
OverflowError: Python int too large to convert to C int
Traceback (most recent call last):
File

"/usr/local/lib/python3.8/site-packages/atheris_libprotobuf_mutator/helpers.py",
line 69, in TestOneProtoInputImpl

↪→

↪→

test_one_proto_input(msg)
File "/data/kuksa.val/kuksa-client/fuzzme/fuzzme-pb2.py", line 13, in

TestOneProtoInput↪→

d = Datapoint.from_message(msg)
File "/usr/local/lib/python3.8/site-packages/kuksa_client/grpc/__init__.py",

line 315, in from_message↪→

timestamp=message.timestamp.ToDatetime(
File

"/usr/local/lib/python3.8/site-packages/google/protobuf/internal/well_known_types.py",
line 232, in ToDatetime

↪→

↪→

delta = datetime.timedelta(
OverflowError: Python int too large to convert to C int

==1971== ERROR: libFuzzer: fuzz target exited
SUMMARY: libFuzzer: fuzz target exited

Ref.: 23-11-1425-REP 66 Quarkslab SAS



MS: 6 CrossOver-Custom-CustomCrossOver-CustomCrossOver-ChangeBit-Custom-; base
unit: adc83b19e793491b1c6ea0fd8b46cd9f32e592fc↪→

...
timestamp {\012 seconds: -9223372036854775808\012}\012uint32_array {\012}\012

LOW LOW-10 No check on timestamp uint value

Exploitability Impact

Perimeter Python SDK - Protobuf messages parsing

Prerequisites Forging invalid ValueRestriction in DataEntry

Description

Timestamp field conversion of values greater than 2**38 triggers an error

Recommendations

Catch exception on timestamp parsing

Depending on the value, we can trigger different kind of error with an invalid timestamp value.
If the value is between 238 and 248, this triggers the following error :

File ~/.../site-packages/google/protobuf/internal/well_known_types.py:232, in
Timestamp.ToDatetime(self, tzinfo)↪→

215 """Converts Timestamp to a datetime.
...
--> 232 delta = datetime.timedelta(

233 seconds=self.seconds,
234 microseconds=_RoundTowardZero(self.nanos, _NANOS_PER_MICROSECOND),
235 )

OverflowError: days=1628906115; must have magnitude <= 999999999}

Ref.: 23-11-1425-REP 67 Quarkslab SAS



8.2.4 Coverage
The following table summarizes the coverage.

Name Stmts Miss Cover
/src/kuksa.val/kuksa_certificates/__init__.py 3 0 100%
fuzz-from_message.py 13 0 100%
kuksa/__init__.py 0 0 100%
kuksa/val/__init__.py 0 0 100%
kuksa/val/v1/__init__.py 0 0 100%
kuksa/val/v1/types_pb2.py 64 52 19%
kuksa/val/v1/val_pb2.py 38 26 32%
kuksa/val/v1/val_pb2_grpc.py 43 23 47%
kuksa_client/__init__.py 46 21 54%
kuksa_client/_metadata.py 25 5 80%
kuksa_client/cli_backend/__init__.py 25 19 24%
kuksa_client/grpc/__init__.py 547 276 50%

TOTAL 804 422 48%

If these results may suggest that only half of the code was covered, one must keep in mind that
we focused on a malicious broker sending fake responses to the gRPC queries. This means that
all the code preparing queries and sending data to the broker was not covered, in particular all
the to_message() functions from the various dataclasses. By looking at the coverage report
provided with the deliverables, we can note that the entire code dealing with protobuf messages
parsing has been covered.

To be complete, we considered adding conversion functions to protobuf messages to the harness,
which could be easily done by calling to_message() on the result of the parsing of the samples
sent by the fuzzer :

@atheris.instrument_func
def TestOneProtoInput(msg):
d = DataEntry.from_message(msg)
res = d.to_message()

Trying this harness triggered a lot of errors, the code was not intended to handle VSS Python
DataEntry not well defined. And from a security point of view, this makes no sense. Indeed, an
attacker who could generate a fake Python DataClass would already control the Python client.

Ref.: 23-11-1425-REP 68 Quarkslab SAS



9. Conclusion
To conclude, Quarkslab found several vulnerabilities in the KUKSA.val codebase, thanks to
automated tools and manual investigations. Some of these issues can be exploited in real-world
use cases to impact the databroker availability.

Moreover, Quarkslab provided leads and strategies on how to implement static and dynamic
security analysis of the KUKSA.val databroker. Once implemented, these strategies will enhance
the overall security level of the KUKSA project.

Ref.: 23-11-1425-REP 69 Quarkslab SAS



9. Bibliography
[1] Kuksa - About. url: https://eclipse- kuksa.github.io/kuksa- website/about/

(visited on 12/07/2023).
[2] Vehicle Signal Specification. url: https : / / covesa . github . io / vehicle _ signal _

specification/ (visited on 12/07/2023).
[3] GitHub - rust-lang/rust-clippy: Clippy. url: https://github.com/rust-lang/rust-

clippy (visited on 12/07/2023).
[4] RustSec: cargo audit. url: https : / / crates . io / crates / cargo - audit (visited on

12/07/2023).
[5] GitHub - rustsec/advisory-db: repository of security advisories filed against Rust crates.

url: https://github.com/RustSec/advisory-db/ (visited on 12/07/2023).
[6] RustSec: cargo outdated. url: https://crates.io/crates/cargo-outdated (visited on

12/07/2023).
[7] RUSTSEC-2021-0145 - atty: Potential unaligned read. url: https://rustsec.org/

advisories/RUSTSEC-2021-0145 (visited on 12/07/2023).
[8] GitHub - rustsec/audit-check: Rust audit-check Action. url: https://github.com/

rustsec/audit-check (visited on 12/07/2023).
[9] GitHub - rustls/rustls: Rustls is a modern TLS library written in Rust. url: https:

//github.com/rustls/rustls (visited on 12/07/2023).
[10] GitHub - rustls/rustls: Security review. url: https://github.com/rustls/rustls/

blob/main/audit/TLS-01-report.pdf (visited on 12/07/2023).
[11] RFC 9068 - JSON Web Token (JWT) Profile for OAuth 2.0 Access Tokens. url: https:

//datatracker.ietf.org/doc/html/rfc9068 (visited on 12/07/2023).
[12] RFC 6749 - The OAuth 2.0 Authorization Framework. url: https://datatracker.

ietf.org/doc/html/rfc6749 (visited on 12/07/2023).
[13] GitHub - ktr0731/evans: more expressive universal gRPC client. url: https://github.

com/ktr0731/evans (visited on 12/07/2023).
[14] typing — Support for type hints. url: https://docs.python.org/3/library/typing.

html (visited on 12/07/2023).
[15] cmd2 - immersive interactive command line applications. url: https://github.com/

python-cmd2/cmd2 (visited on 12/07/2023).
[16] bridging fuzzing and property testing. url: https://blog.yoshuawuyts.com/bridging-

fuzzing-and-property-testing/ (visited on 12/05/2023).
[17] GitHub - proptest-rs/proptest: Hypothesis-like property testing for Rust. url: https :

//github.com/proptest-rs/proptest (visited on 12/06/2023).

Ref.: 23-11-1425-REP 70 Quarkslab SAS

https://eclipse-kuksa.github.io/kuksa-website/about/
https://covesa.github.io/vehicle_signal_specification/
https://covesa.github.io/vehicle_signal_specification/
https://github.com/rust-lang/rust-clippy
https://github.com/rust-lang/rust-clippy
https://crates.io/crates/cargo-audit
https://github.com/RustSec/advisory-db/
https://crates.io/crates/cargo-outdated
https://rustsec.org/advisories/RUSTSEC-2021-0145
https://rustsec.org/advisories/RUSTSEC-2021-0145
https://github.com/rustsec/audit-check
https://github.com/rustsec/audit-check
https://github.com/rustls/rustls
https://github.com/rustls/rustls
https://github.com/rustls/rustls/blob/main/audit/TLS-01-report.pdf
https://github.com/rustls/rustls/blob/main/audit/TLS-01-report.pdf
https://datatracker.ietf.org/doc/html/rfc9068
https://datatracker.ietf.org/doc/html/rfc9068
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://github.com/ktr0731/evans
https://github.com/ktr0731/evans
https://docs.python.org/3/library/typing.html
https://docs.python.org/3/library/typing.html
https://github.com/python-cmd2/cmd2
https://github.com/python-cmd2/cmd2
https://blog.yoshuawuyts.com/bridging-fuzzing-and-property-testing/
https://blog.yoshuawuyts.com/bridging-fuzzing-and-property-testing/
https://github.com/proptest-rs/proptest
https://github.com/proptest-rs/proptest


[18] GitHub - model-checking/kani: Kani Rust Verifier. url: https://github.com/model-
checking/kani (visited on 12/05/2023).

[19] GitHub - rust-fuzz/cargo-fuzz: Command line helpers for fuzzing. url: https://github.
com/rust-fuzz/cargo-fuzz (visited on 12/05/2023).

[20] libFuzzer - a library for coverage-guided fuzz testing. — LLVM 18.0.0git documentation.
url: https://llvm.org/docs/LibFuzzer.html (visited on 12/05/2023).

[21] GitHub - rust-fuzz/arbitrary: Generating structured data from arbitrary, unstructured in-
put. url: https://github.com/rust-fuzz/arbitrary/ (visited on 12/05/2023).

[22] N/A. url: https://github.com/AFLplusplus/LibAFL/tree/main/libafl_libfuzzer
(visited on 12/05/2023).

[23] GitHub - ispras/casr: Collect crash (or UndefinedBehaviorSanitizer error) reports, triage,
and estimate severity. url: https://github.com/ispras/casr (visited on 12/11/2023).

[24] Prevent stack overflows by limiting recursion by 46bit - Pull Request 501 - sqlparser-
rs/sqlparser-rs - GitHub. url: https://github.com/sqlparser-rs/sqlparser-rs/
pull/501 (visited on 12/05/2023).

[25] Stack overflow in Statement::to_string for deeply nested expresions - Issue 984 -
sqlparser-rs/sqlparser-rs - GitHub. url: https://github.com/sqlparser-rs/sqlparser-
rs/issues/984 (visited on 12/05/2023).

[26] OSS-Fuzz - Integrating a Rust project. url: https://google.github.io/oss-fuzz/
getting-started/new-project-guide/rust-lang/ (visited on 12/07/2023).

[27] Atheris: A Coverage-Guided, Native Python Fuzzer. url: https://github.com/google/
atheris (visited on 12/07/2023).

[28] Integrating a Python project in OSS-Fuzz. url: https://google.github.io/oss-
fuzz/getting-started/new-project-guide/python-lang/ (visited on 12/07/2023).

[29] libprotobuf-mutator, a library to randomly mutate protobuffers. url: https://github.
com/google/libprotobuf-mutator (visited on 12/07/2023).

[30] GitHub - rust-embedded/cargo-binutils: Cargo subcommands to invoke the LLVM tools
shipped with the Rust toolchain. url: https://github.com/rust-embedded/cargo-
binutils (visited on 12/05/2023).

Ref.: 23-11-1425-REP 71 Quarkslab SAS

https://github.com/model-checking/kani
https://github.com/model-checking/kani
https://github.com/rust-fuzz/cargo-fuzz
https://github.com/rust-fuzz/cargo-fuzz
https://llvm.org/docs/LibFuzzer.html
https://github.com/rust-fuzz/arbitrary/
https://github.com/AFLplusplus/LibAFL/tree/main/libafl_libfuzzer
https://github.com/ispras/casr
https://github.com/sqlparser-rs/sqlparser-rs/pull/501
https://github.com/sqlparser-rs/sqlparser-rs/pull/501
https://github.com/sqlparser-rs/sqlparser-rs/issues/984
https://github.com/sqlparser-rs/sqlparser-rs/issues/984
https://google.github.io/oss-fuzz/getting-started/new-project-guide/rust-lang/
https://google.github.io/oss-fuzz/getting-started/new-project-guide/rust-lang/
https://github.com/google/atheris
https://github.com/google/atheris
https://google.github.io/oss-fuzz/getting-started/new-project-guide/python-lang/
https://google.github.io/oss-fuzz/getting-started/new-project-guide/python-lang/
https://github.com/google/libprotobuf-mutator
https://github.com/google/libprotobuf-mutator
https://github.com/rust-embedded/cargo-binutils
https://github.com/rust-embedded/cargo-binutils


A. Appendix

A.1 Databroker

A.2 Manual review

Rust client to register an infinite number of datapoints

We created a custom client that tries to register 1 billion entries to the databroker. To reproduce
this client, you must:

• initialize a cargo project

• import proto/

• copy the following code

Import the following lines in Cargo.toml :

[package]
name = "client"
version = "0.1.0"
edition = "2021"

# See more keys and their definitions at
https://doc.rust-lang.org/cargo/reference/manifest.html↪→

[dependencies]
prost = "0.12.3"
prost-types = "0.12.3"
tokio = { version = "1.34.0", features = ["full"] }
tonic = "0.10.2"

[build-dependencies]
tonic-build = "0.10.2"
protobuf-src = "1.1.0"

Import the following lines in lib.rs :

#![allow(unknown_lints)]
#![allow(clippy::derive_partial_eq_without_eq)]
pub mod sdv {

pub mod databroker {
pub mod v1 {

tonic::include_proto!("sdv.databroker.v1");
}

}
}

Ref.: 23-11-1425-REP 72 Quarkslab SAS



Import the following lines in main.rs :

use client::sdv::databroker::v1::collector_client::CollectorClient;
use client::sdv::databroker::v1::RegisterDatapointsRequest;
use client::sdv::databroker::v1::RegistrationMetadata;
use client::sdv::databroker::v1::DataType;
use client::sdv::databroker::v1::ChangeType;
use tonic;
use tokio;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {

// connection to server
let channel = tonic::transport::Channel::from_static("http://127.0.0.1:55555")
.connect()
.await?;
// creating gRPC client from channel
let mut client = CollectorClient::new(channel);
let mut i: u64 = 0;
let limit: u64 = 1000000000; // 1_000_000_000 entries

while i < limit {
let mut registrations: Vec<RegistrationMetadata> = Vec::new();
for _ in 0..10000 {

i += 1;
registrations.push(

RegistrationMetadata {
name: String::from("Vehicle.test")+&(i.to_string()),
data_type: DataType::Bool.into(),
description: String::from("Description here"),
change_type: ChangeType::Static.into(),

}
);

}
let request = tonic::Request::new(

RegisterDatapointsRequest {
list: registrations,
},

);
// sending request and waiting for response

let response = client.register_datapoints(request).await?.into_inner();
println!("RESPONSE={:?}", response);

}

Ok(())
}

A.2.1 Fuzzing

Ref.: 23-11-1425-REP 73 Quarkslab SAS



Prerequisites

$ apt install llvm-dev # to have symbols in stack traces
$ rustup component add llvm-tools-preview rust-src
$ cargo install cargo-fuzz
$ cargo install cargo-binutils
# not mandatory unless a fuzzing campaign is planned
$ cargo install just
$ cargo install zellij
$ cargo install pueue
$ cargo install casr

Setup

Apply patches to 0.4.1 tree

$ git clone https://github.com/eclipse/kuksa.val.git
$ cd kuksa.val
$ git checkout v0.4.1
$ git apply [patch_dir]/*
$ cd kuksa_databroker/databroker/fuzz

Usage

Run cargo fuzz run to start a fuzzing session for a given harness

$ cargo +nightly fuzz run [harness]
...

cargo fuzz provides a command to display the coverage of the fuzzer. First you need to
gather the coverage for all the files in corpus:

$ cargo +nightly fuzz coverage [harness]

Then you can view covered lines with cargo cov (installed with cargo-binutils [30]).

$ cargo +nightly cov -- show
target/x86_64-unknown-linux-gnu/coverage/x86_64-unknown-linux-gnu/release/{{harness}}
-instr-profile fuzz/coverage/{{harness}}/coverage.profdata
-ignore-filename-regex="rustc/.*" -ignore-filename-regex=".cargo/registry/.*"
-output-dir {{outdir}} -format html

↪→

↪→

↪→

↪→

Since we are using the arbitrary crate, reproduction can be a bit tricky. cargo fuzz stores
in the corpus (and in the crashes directory) the raw inputs generated by the fuzzer.

We can’t use these inputs directly, we first need to convert them to be able to use them.
cargo fuzz provides a fmt command to output a debug representation of an input.

A Justfile is provided with the common commands used during a fuzzing campaign.

Ref.: 23-11-1425-REP 74 Quarkslab SAS



A.2.2 Triage
$ just triage databroker
rm -rf triage/databroker
casr-libfuzzer -i artifacts/databroker -o triage/databroker --

target/x86_64-unknown-linux-gnu/release/databroker↪→

10:16:23 [INFO] Analyzing 272 files...
10:16:23 [INFO] Generating CASR reports...
10:16:23 [INFO] Using 6 threads
...
10:16:55 [INFO] Deduplicating CASR reports...
10:16:59 [INFO] Number of reports before deduplication: 245. Number of reports

after deduplication: 38↪→

10:16:59 [INFO] Clustering CASR reports...
10:16:59 [INFO] Number of clusters: 8
==> <cl1>
Crash: fuzz/triage/databroker/cl1/crash-018829fee875c2ec0a02ba6f6eca588100caa521
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 9

Cluster summary -> StackOverflow: 9
==> <cl2>
Crash: fuzz/triage/databroker/cl2/crash-03e2661bdc07d243e7f9d6e28532456aafe49c60
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 2

Cluster summary -> StackOverflow: 2
==> <cl3>
Crash: fuzz/triage/databroker/cl3/crash-15334043a92e935b72ecdde2c8794ef4e1a2aff9
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/tokenize
Similar crashes: 2

Crash: fuzz/triage/databroker/cl3/crash-1c65d4f685b9bc32e263d29e838512e172c148a5
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/tokenize
Similar crashes: 2

Cluster summary -> StackOverflow: 4
==> <cl4>
Crash: fuzz/triage/databroker/cl4/crash-1ee085bba64a256c19a081bedaf36763b5984bfe
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 2

Cluster summary -> StackOverflow: 2
==> <cl5>
Crash: fuzz/triage/databroker/cl5/crash-01c347cfb4c4238f752c827f2be4ce4906b83644
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/mod.rs
Similar crashes: 11

Cluster summary -> StackOverflow: 11
==> <cl6>
Crash: fuzz/triage/databroker/cl6/crash-37e8705ccf15a7093d85a04ede4fa6ad5c99f1cd
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/tokenizer.rs:296:5
Similar crashes: 2

Cluster summary -> StackOverflow: 2
==> <cl7>
Crash: fuzz/triage/databroker/cl7/crash-00c89c1a738ecf6ab812069e0dc616b7bd377270
casrep: NOT_EXPLOITABLE: StackOverflow:

sqlparser-0.40.0/src/parser/mod.rs:2595:28↪→

Ref.: 23-11-1425-REP 75 Quarkslab SAS



Similar crashes: 5
Crash: fuzz/triage/databroker/cl7/crash-e494da5a277fe5fb13e83b604c3128c81613d143
casrep: NOT_EXPLOITABLE: StackOverflow:

sqlparser-0.40.0/src/parser/mod.rs:2630:13↪→

Similar crashes: 1
Crash: fuzz/triage/databroker/cl7/crash-fa120f8cad156e5f42f6c82acaeabd507a17dc22
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/tokenizer.rs:366:9
Similar crashes: 1

Cluster summary -> StackOverflow: 7
==> <cl8>
Crash: fuzz/triage/databroker/cl8/crash-ce41173d24dc36dcb6c5599000f4ee7b52db5bf8
casrep: NOT_EXPLOITABLE: StackOverflow:

sqlparser-0.40.0/src/parser/mod.rs:2572:32↪→

Similar crashes: 1
Cluster summary -> StackOverflow: 1
SUMMARY -> StackOverflow: 38

$ cargo fuzz fmt databroker
triage/databroker/cl1/crash-018829fee875c2ec0a02ba6f6eca588100caa521↪→

Output of `std::fmt::Debug`:

Context {
initial: [

AddEntry {
name: "g",
data_type: Int8Array,
change_type: Static,
entry_type: Actuator,
description: "\u{8}",
allowed: None,

},
],
ops: [

SubscribeQuery(
SubscribeQuery {

query: "MERGE\tDUT(f+++++++++++++�X+++++++DEC++++++++
++++++++++-+DEC++++++++++++++++++++++++++++++++++++++
++++DEC++++++++++++++++++-+DEC(f+++++++++++++++++++++
+++++++DEC++++++++++++++++++-+DEC(f+++++++++++++�X++M
ERGE++++++++++-+DEC(fC++++++++++++++++++-+DEC++++++++
++++++++++++++++++++++++++++++++++DEC++++++++++++++++
++-+DEC(f+++++++++++++�X+++++++++++++++++-+DEC(f+++++
+++T(f+++++++++++++�X+++++++DEC++++++++++DEC+++++++++
+++++++++-+DEC(f+++++++++++++�X+++++++++++++++++-+DEC
(f+++++++++++++++++++++++++++++++++++++++++DEC+++++++
+++++++++++-+DEC(f+++++++++++++�X+++++++++++++++++-+D
EC(f++++++++T(f+++++++++++++�X+++++++DEC++++++++++DEC
++++++++++++++++++-+DEC(f+++++++++++++�X+++++++++++++
++++-+DEC(f++++++++++++++++++++++++++++++++++++++++++

Ref.: 23-11-1425-REP 76 Quarkslab SAS



+++++++++DE+++++++++++++++++++T(f+++++++++++++�X+++++
++DEC++++++++++DEC++++++++++++++++++-+DEC(f++++++++++
+++�X+++++++++++++++++-+DEC(f++++++DO++++++++++++++++
+++++++++++++++++++++++++++DE+++++++++++++++�X+++++++
++++++++++-+DEC(fC++++++++++++++++++-+DEC++++++++++++
++++++++++++++++++++++++++++++DEC++++++++++++++++++-+
DEC(f+++++++++++++�X+++++++++++++++++-+DEC(f++++++++T
(f+++++++++++++�X+++++++DEC++++++++++DEC+++++++++++++
++++++++++++++++++++++DEC++++++++++++++++++-+DEC(f+++
+++++++++++++++++++++++++DEC++++++++++++++++++-+DEC(f
+++++++++++++�X++MERGE++++++++++-+DEC(fC+++++++++++++
++++++++++++++++++++++++++++++DE+++++++++++++++++++T(
f+++++++++++++�X+++++++DEC++++++++++DEC++++++++++++++
++++-+DEC(f+++++++++++++�X+++++++++++++++++-+DEC(f+++
+++DO+++++++++++++++++++++++++++++++++++++++++++DE+++
++++++++++++�X+++++++++++++++++-+DEC(fC++++++++++++++
++++-+DEC++++++++++++++++++++++++++++++++++++++++++DE
C++++++++++++++++++-+DEC(f+++++++++++++�X++++++++++++
+++++-+DEC(f++++++++T(f+++++++++++++�X+++++++DEC+++++
+++++DEC+++++++++++++++++++++++++++++++++++DEC+++++++
+++++++++++-+DEC(f++++++++++++++++++++++++++++DEC++++
++++++++++++++-+DEC(f+++++++++++++�X++MERGE++++++++++
-+DEC(fC++++++++++++++++++-+DEC++++++++++++++++++++++
++++++++++++++++++++DEC++++++++++++++++++-+DEC(f+++++
++++++++�X+++++++++++++++++-+DEC(f++++++++T(f++++++++
+++++�X+++++++DEC++++++++++DEC++++++++++++++++++-+DEC
(f+++++++++++++�X+++++++++++++++++-+DEC(f++++++++++++
+++++++++++++++++++++++++++++++++++++++DE++++++++++++
+++++++T(f+++++++++++++�X+++++++DEC++++++++++DEC+++++
+++++++++++++-+DEC(f+++++++++++++�X+++++++++++++++++-
+DEC(f++++++DO+++++++++++++++++++++++++++++++++++++++
++++DE+++++++++++++++�X++++++++++++",

},
),
GetMetadataByPath(

GetMetadataByPath {
path: "\u{12}",

},
),
GetEntryByPath(

GetEntryByPath {
path: "",

},
),

],
}

just triage grpc_subscribe
rm -rf triage/grpc_subscribe

Ref.: 23-11-1425-REP 77 Quarkslab SAS



casr-libfuzzer -i artifacts/grpc_subscribe -o triage/grpc_subscribe --
target/x86_64-unknown-linux-gnu/release/grpc_subscribe↪→

10:20:55 [INFO] Analyzing 275 files...
10:20:55 [INFO] Generating CASR reports...
10:20:55 [INFO] Using 6 threads
...
10:21:26 [INFO] Number of reports before deduplication: 244. Number of reports

after deduplication: 120↪→

10:21:26 [INFO] Clustering CASR reports...
10:21:27 [INFO] Number of clusters: 27
==> <cl1>
Crash: fuzz/triage/grpc_subscribe/cl1/crash-040ece4bda39820ab6988d6d1037dbc7e1f2
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 10

Cluster summary -> StackOverflow: 10
==> <cl2>
Crash: fuzz/triage/grpc_subscribe/cl2/crash-7cbf9bd1523318796261214376a923659927
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 4

Cluster summary -> StackOverflow: 4
==> <cl3>
Crash: fuzz/triage/grpc_subscribe/cl3/crash-2233c5d0c17ecfaa24fe260fdc8fc595d1a0
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 4

Cluster summary -> StackOverflow: 4
==> <cl4>
Crash: fuzz/triage/grpc_subscribe/cl4/crash-159426f639b500f3d60c595b7161ec320d57
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/tokenize
Similar crashes: 1

Cluster summary -> StackOverflow: 1
==> <cl5>
Crash: fuzz/triage/grpc_subscribe/cl5/crash-2fbe10031130fde34ed573bbff84699931ab
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 5

Cluster summary -> StackOverflow: 5
==> <cl6>
Crash: fuzz/triage/grpc_subscribe/cl6/crash-a9445486e411c75fd6f1d1869c956c73e3b6
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 2

Cluster summary -> StackOverflow: 2
==> <cl7>
Crash: fuzz/triage/grpc_subscribe/cl7/crash-26ab345be362be20e803fa20bb5012727839
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 2

Cluster summary -> StackOverflow: 2
==> <cl8>
Crash: fuzz/triage/grpc_subscribe/cl8/crash-aacf74e86eaa15d4da8f60df39a1874eac32
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 1

Cluster summary -> StackOverflow: 1
==> <cl9>
Crash: fuzz/triage/grpc_subscribe/cl9/crash-463c248c850e18981b5c240f8bb08f43cd6b

Ref.: 23-11-1425-REP 78 Quarkslab SAS



casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 5

Cluster summary -> StackOverflow: 5
==> <cl10>
Crash: fuzz/triage/grpc_subscribe/cl10/crash-cd6985eaba3005cd7482aa26eba187ec73d
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 1

Cluster summary -> StackOverflow: 1
==> <cl11>
Crash: fuzz/triage/grpc_subscribe/cl11/crash-28ea048b0b1baa6a01628e7dc673bbafee8
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 6

Cluster summary -> StackOverflow: 6
==> <cl12>
Crash: fuzz/triage/grpc_subscribe/cl12/crash-888768198b19ee069140084ef63e66f69a6
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 1

Cluster summary -> StackOverflow: 1
==> <cl13>
Crash: fuzz/triage/grpc_subscribe/cl13/crash-6e6d745ad501dd39a4360e8800920f88ab3
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/tokenize
Similar crashes: 1

Cluster summary -> StackOverflow: 1
==> <cl14>
Crash: fuzz/triage/grpc_subscribe/cl14/crash-07a2702744dbe8edd3948f8fe901bf41487
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 5

Cluster summary -> StackOverflow: 5
==> <cl15>
Crash: fuzz/triage/grpc_subscribe/cl15/crash-00cfd0b866400b5f485ed3e6eb6eee40a50
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 16

Cluster summary -> StackOverflow: 16
==> <cl16>
Crash: fuzz/triage/grpc_subscribe/cl16/crash-a251d03010390cea3b5d21c1920ea2194b1
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 1

Crash: fuzz/triage/grpc_subscribe/cl16/crash-64e4c97790726f673b6fc41d7e38561da3d
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 1

Cluster summary -> StackOverflow: 2
==> <cl17>
Crash: fuzz/triage/grpc_subscribe/cl17/crash-85f10c6c00eb56b41146950c4a5621a53bf
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 5

Cluster summary -> StackOverflow: 5
==> <cl18>
Crash: fuzz/triage/grpc_subscribe/cl18/crash-0b085987354a4f6eb61ac413499ed10354a
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 4

Cluster summary -> StackOverflow: 4
==> <cl19>

Ref.: 23-11-1425-REP 79 Quarkslab SAS



Crash: fuzz/triage/grpc_subscribe/cl19/crash-5d6138ca14779f326241b9c97ad7a52a3bd
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 2

Crash: fuzz/triage/grpc_subscribe/cl19/crash-575b40b70ac694fe6f9662f1db7e709c048
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 1

Crash: fuzz/triage/grpc_subscribe/cl19/crash-01aaec6fac2baa2ecbc22e6ded751933fcf
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 5

Cluster summary -> StackOverflow: 8
==> <cl20>
Crash: fuzz/triage/grpc_subscribe/cl20/crash-786c03bc309a1f033902e4326351c314a0f
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/tokenize
Similar crashes: 3

Cluster summary -> StackOverflow: 3
==> <cl21>
Crash: fuzz/triage/grpc_subscribe/cl21/crash-8622ccdcbe7ad6f17ecde2aa4a9f789e343
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/tokenize
Similar crashes: 1

Cluster summary -> StackOverflow: 1
==> <cl22>
Crash: fuzz/triage/grpc_subscribe/cl22/crash-62bf553303ceaa8486f78e7acca2b336bdc
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/dialect/
Similar crashes: 1

Crash: fuzz/triage/grpc_subscribe/cl22/crash-00673ef0318299c0f75952d4366ec2e512c
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 17

Cluster summary -> StackOverflow: 18
==> <cl23>
Crash: fuzz/triage/grpc_subscribe/cl23/crash-9375e6ff5922fa98714ac5ffe1149a470ce
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 1

Cluster summary -> StackOverflow: 1
==> <cl24>
Crash: fuzz/triage/grpc_subscribe/cl24/crash-c2e8be7d4554df575d430d826b17b1aaef0
casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/parser/m
Similar crashes: 1

Cluster summary -> StackOverflow: 1
==> <cl25>
Crash:

fuzz/triage/grpc_subscribe/cl25/crash-65820996ea0e8ef5d4593b6557feb5f7fd4a5aa0↪→

casrep: NOT_EXPLOITABLE: StackOverflow:
sqlparser-0.40.0/src/parser/mod.rs:2572:32↪→

Similar crashes: 1
Cluster summary -> StackOverflow: 1
==> <cl26>
Crash:

fuzz/triage/grpc_subscribe/cl26/crash-0349194f82cf17f2c792ee6e6aa113afc3290e72↪→

casrep: NOT_EXPLOITABLE: StackOverflow:
sqlparser-0.40.0/src/parser/mod.rs:2629:9↪→

Similar crashes: 1

Ref.: 23-11-1425-REP 80 Quarkslab SAS



Crash:
fuzz/triage/grpc_subscribe/cl26/crash-a83275d214570214cd2f9c9cd1eff911499cebf0↪→

casrep: NOT_EXPLOITABLE: StackOverflow: sqlparser-0.40.0/src/tokenizer.rs
Similar crashes: 1

Crash:
fuzz/triage/grpc_subscribe/cl26/crash-166e9dfa6d0d03f93cbe6185efc82494d118c6fe↪→

casrep: NOT_EXPLOITABLE: StackOverflow: /sqlparser-0.40.0/src/tokenizer.rs:366:9
Similar crashes: 2

Cluster summary -> StackOverflow: 4
==> <cl27>
Crash:

fuzz/triage/grpc_subscribe/cl27/crash-1d8453bf5acb86b1100ff50a7ce822f75adb0466↪→

casrep: NOT_EXPLOITABLE: StackOverflow:
sqlparser-0.40.0/src/parser/mod.rs:2572:32↪→

Similar crashes: 8
Cluster summary -> StackOverflow: 8
SUMMARY -> StackOverflow: 120

cargo fuzz fmt grpc_subscribe
triage/grpc_subscribe/cl1/crash-040ece4bda39820ab6988d6d1037dbc7e1f2709f↪→

Output of `std::fmt::Debug`:

Request(
SubscribeRequest {

query:
"ASSERT((-\"\"(((((SF++++++++++++++++++++++++++++++++++++++xxx(xxx(+++++↪→

+++++++++++++++++++++++++++++++++++++++++++++++++++++
(+++++++++++++++++++++++++++++++++++++xxx(xxxxxxxxxxxxxxZ(((((++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++[+++++++++++++++++++
++++++++++++++++++xxx(xxx(+++NA++++++++++++++++++++++++++++++++++++++++++++++++xxx(x
xx(+++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++(+++++++++++++++++++++++++++++++++++++xxx(xxxxxxxxxxxxxxZ(((((+++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++[++++++++++++++
++++++++++++++++++++++xxx(xxx(++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++xxx(xx|\nW\n||+++++++++++++++T((-\"\"(((((
SF++++++++++++++++++++++++++++++++++++++xxx(xxx(++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++(+++++++++++++++++++++++++++++++++++++xxx(xxxxxxxxxxxxxxZ(((((
+++++++++++",

},
)

just triage query_compiler_compile
rm -rf triage/query_compiler_compile
casr-libfuzzer -i artifacts/query_compiler_compile -o

triage/query_compiler_compile --
target/x86_64-unknown-linux-gnu/release/query_compiler_compile

↪→

↪→

10:30:49 [INFO] Analyzing 369 files...
10:30:49 [INFO] Generating CASR reports...
10:30:49 [INFO] Using 6 threads

Ref.: 23-11-1425-REP 81 Quarkslab SAS



10:31:16 [INFO] Deduplicating CASR reports...
10:31:18 [INFO] Number of reports before deduplication: 361. Number of reports

after deduplication: 1↪→

10:31:18 [INFO] There are less than 2 CASR reports, nothing to cluster.
==> <query_compiler_compile>
Crash:

fuzz/triage/query_compiler_compile/crash-00af9ec26b9dbceaf0bc742f6857dda96220e4f2↪→

casrep: NOT_EXPLOITABLE: RustPanic: databroker/src/query/executor.rs:106:17
Similar crashes: 1

Cluster summary -> RustPanic: 1
SUMMARY -> RustPanic: 1

cargo fuzz fmt query_compiler_compile
triage/query_compiler_compile/crash-00af9ec26b9dbceaf0bc742f6857dda96220e4f2↪→

Output of `std::fmt::Debug`:

"SELECT\t1ooomJ"

Ref.: 23-11-1425-REP 82 Quarkslab SAS


	Project Information
	Executive summary
	Disclaimer
	Findings summary
	Recommendations and action plan

	Reading Guide
	Executive summary
	Introduction
	Methodology
	Metrics definition
	Impact
	Exploitability
	Severity


	Introduction
	Overview of Eclipse KUKSA
	Scope of the audit

	Methodology
	Threat model
	Static analysis
	Automated static analysis
	Manual review

	Dynamic analysis

	Threat Model
	Overview
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4
	Hypothesis
	KUKSA.val misconfigurations
	JWT cryptographic keys
	TLS cryptographic keys
	VSS Parsing
	Supply chain attacks


	Static analysis
	Automated static analysis
	Clippy
	cargo-audit
	cargo-outdated

	Manual review
	TLS implementation
	JWT and permission handling
	Databroker gRPC handling
	The KUKSA Python SDK


	Dynamic analysis
	Fuzzing the databroker
	Why fuzzing?
	Structured inputs
	Automated testing strategies
	Methodology used for Kuksa
	Harnesses
	Methodology
	Fuzzing campaign
	Coverage
	Crashes triage
	Findings
	Integration to OSS Fuzz

	Fuzzing the KUKSA Python SDK
	Error response returned by the databroker
	The DataEntry type
	The EntryUpdate.from_message() function
	Coverage


	Conclusion
	Bibliography
	Appendix
	Databroker
	Manual review
	Fuzzing
	Triage



