
Cloud Custodian Security Audit 2023

Security Audit Report

(Arthur) Sheung Chi Chan, Adam Korczynski, David Korczynski

17 apr 2024

Cloud Custodian Security Audit 2023 17 apr 2024

Contents

About Ada Logics 3

Project dashboard 4

Executive summary 5

Threat model 6
Main components in scope . 6

Core package . 7
Cloud service providers . 7
Supporting tools . 7
Third party components . 8

Cloud Custodian policies . 8
Policy validation . 9
Policy continuous integration . 9

Data flow for Cloud Custodian . 9
Entry through Cloud event triggering . 11

Trust Boundaries . 13
Threat actors . 13
Attack surface . 14
Attacker objectives . 17

Privilege escalation in the cloud . 17
Mess up with services and resources of the cloud . 17
Gain information from the cloud services and resources 17

Fuzzing 18
fuzz_actions_parser . 18
fuzz_actions_process . 18
fuzz_actions_validate . 19
fuzz_filters_parser . 19
fuzz_filters_process . 19
fuzz_filters_validate . 19
fuzz_gcp_actions_validate_process . 20
fuzz_gcp_filters_validate_process . 20
fuzz_gcp_resources_process . 20
fuzz_query_parser . 20
fuzz_resources_parser . 20

Cloud Custodian Security Audit 2023 1

Cloud Custodian Security Audit 2023 17 apr 2024

fuzz_resources_process . 21
fuzz_resources_validate . 21

SLSA review 22

Found issues 24

Use of a broken or weak cryptographic hashing algorithm for sensitive data 25
Mitagation . 26

Insecure temporary file creation 27
Vulnerable code location . 27
Mitigation . 28

Missing sanitisation in using Jinja2 library 29
Mitigation . 30

Using deprecated and insecure ssl.wrap_socket 31
Vulnerable code location . 31
Mitigation . 31
Remark . 32

Index out of range in ARN parser 33
Mitigation . 33

Improper URL substring validation can leak data 34
Mitigation . 35

Possible DoS from attacker-controller Github account 36
Mitigation . 38

Possible DoS from attacker-controller Github repository 39
Mitigation . 40

Possible zip bomb from large S3 object 41
Mitigation . 42

Privilege escalation through chained Lambda functions in AWS 43
Code for lambda function terminate_instance . 45
Proof of concept . 45
Impact . 47

Cloud Custodian Security Audit 2023 2

Cloud Custodian Security Audit 2023 17 apr 2024

About Ada Logics

Ada Logics is a software security company founded in Oxford, UK, 2018 and is now based in London.
We are a team of pragmatic security engineers and security researchers that work hands-on with code
auditing, security automation and security tool development.

We are committed open source contributors and we routinely contribute to state of the art security
tooling in the fuzzing domain such as advanced fuzzing tools like Fuzz Introspector and continuous
fuzzing with OSS-Fuzz. For example, we have contributed to fuzzing of hundreds of open source
projects by way of OSS-Fuzz. We regularly perform security audits of open source software and make
our reports publicly available with findings and fixes, and we have audited many of the most widely
used cloud native applications.

Ada Logics contributes to solving the challenge of securing the software supply-chain. To this end, we
develop the tooling and infrastructure needed for ensuring a secure software development lifecycle,
and we deploy these tools to critical software packages. On the tooling and infrastructure side, we
contribute to projects such as the OpenSSF Scorecard project as well as the Sigstore projects like SLSA
and Cosign.

Ada Logics helps some of the most exposed organisations secure their software, analyse their code
and increase security automation and assurance, and if you would like to consider working with us
please reach out to us via our website.

We write about our work on our blog and maintain a YouTube channel with educational videos. You
can also follow Ada Logics on Linkedin and X.

Ada Logics ltd
71-75 Shelton Street,
WC2H 9JQ London,
United Kingdom

Cloud Custodian Security Audit 2023 3

https://github.com/ossf/fuzz-introspector
https://adalogics.com/blog/fuzzing-100-open-source-projects-with-oss-fuzz
https://adalogics.com/blog/fuzzing-100-open-source-projects-with-oss-fuzz
https://adalogics.com/contact
https://adalogics.com/blog
%5BYoutube%5D(https://www.youtube.com/channel/UC9AiX8FOiOpK6mNggXSamBg)
https://www.linkedin.com/company/ada-logics
https://x.com/ADALogics

Cloud Custodian Security Audit 2023 17 apr 2024

Project dashboard

Contact Role Organisation Email

Adam
Korczynski

Auditor Ada Logics Ltd adam@adalogics.com

(Arthur)
Sheung Chi
Chan

Auditor Ada Logics Ltd arthur.chan@adalogics.com

David
Korczynski

Auditor Ada Logics Ltd david@adalogics.com

Kapil
Thangavelu

Cloud Custodian
Maintainer

Cloud Custodian kapil@stacklet.io

Amir
Montazery

Facilitator OSTIF amir@ostif.org

Derek Zimmer Facilitator OSTIF derek@ostif.org

Helen Woeste Facilitator OSTIF helen@ostif.org

Cloud Custodian Security Audit 2023 4

Cloud Custodian Security Audit 2023 17 apr 2024

Executive summary

In late 2023 Ada Logics conducted a security audit of Cloud Custodian. The audit was facilitated by
the Open Source Technology Improvement Fund (OSTIF) and funded by the Cloud Native Computing
Foundation. Cloud Custodian is a command line tool that allows users to manage cloud resources
across multiple cloud ecosystems by way of yaml policies. Cloud vendors require developers to define
policies by way of programming languages such as Python, and developers will often need to write
policies specifically for a particular cloud environment. With Cloud Custodian, users can write their
desired policies in a cloud-agnostic format - yaml - and depend on Cloud Custodian to translate this
into effective, cloud-specific policies.

Ada Logics began the engagement by formalizing a threat model for Cloud Custodian. The threat model
was helpful to us as we audited the source code. Once we had initiated the threat model, we continued
iterating over it throughout the entire audit as we learned more about the project. With the first version
of the threat model, we began the manual review. In this part of the audit, we looked at a range of
threats to Cloud Custodian. We also began work on setting up a fuzzing suite for Cloud Custodian,
which included writing fuzzers for Cloud Custodian and settig up the infrastructure for the fuzzers to
run continuously.

In summary, during the engagement, we:

• Formalized a threat model of Cloud Custodian
• Audited Cloud Custodians code base for security vulnerabilities.
• Integrated Cloud Custodian into OSS-Fuzz.
• Wrote a targeted fuzzing suite for Cloud Custodian.

Cloud Custodian Security Audit 2023 5

Cloud Custodian Security Audit 2023 17 apr 2024

Threat model

In this section we present the findings from threat modelling Cloud Custodian. We first enumerate
Cloud Custodians main components, tools and dependencies. We then proceed to an overview of a
crucial part of Cloud Custodian: policies. After that, we introduce the data flow of a Cloud Custodian
deployment at a high level. Here, we show how data and trust travels through Cloud Custodian and
where trust changes. Finally, we enumerate the threat actors that could impact the security of Cloud
Custodian.

Each aspect of the threat model gives a different perspective to Cloud Custodians security model; When
we later consider specific security issues found during the manual auditing goal, having enumerated
the threat actors allows us to consider potential security risks against an attacker. The threat actors
allow us to ask questions such as “who has privileges to trigger this issue?”. The data flow findings are
helpful for the process of auditing, ie. to identify particular exposed components of Cloud Custodian,
as well as when considering the threat from a particular finding. The trust flow analysis locates the
threat actors and attack vectors that a given vulnerability is reachable to.

The Cloud Custodian policies are a core component of Cloud Custodians security model. We therefore
go into deeper detail with these in the threat model and consider them from different perspectives.

The threat model is intended to assist multiple audiences. First and foremost, the threat model helps
the auditors of this particular security audit. At a higher level, that translates to be helpful to other
security researchers that wish to review Cloud Custodians security posture independently of this
security audit conducted by Ada Logics. For this community, the threat model gives an advanced entry
into the internals of Cloud Custodian as well as a high-level view of Cloud Custodians threat model.
Secondly, the threat model can be a perspective to the Cloud Custodian maintainers when assessing
community-based security disclosures; It helps consider the same angles of a vulnerability report as a
security researcher takes. Thirdly, the threat model can also be of interest for Cloud Custodian users
that notice unexpected behavior in their use cases. The root cause of such cases can be bugs or security
vulnerabilities, and becfore disclosing these publicly, users can assess them from Cloud Custodians
threat model.

Main components in scope

Cloud Custodians code base is roughly split into two high-level categories: 1) a list of core packages
with supporting tools and 2) providers for cloud services. The packages vary in maturity from sandbox
packages or components under development to mature, production-grade packages. The sandbox and
development packages were out of scope for the audit. The table below shows all the Cloud Custodian
components in scope for the audit.

Cloud Custodian Security Audit 2023 6

Cloud Custodian Security Audit 2023 17 apr 2024

Core package

Components Description

c7n Core package for the cloud custodian project. It contains the cli.py and
commands.py to accept command line calls to the cloud custodian and act as
the front end of the tools. It also has different supporting classes to handle
the parsing and execution of requests or queries with the supporting
schemas.

c7n/actions Part of the policy handler, handles the actions to be performed on the filtered
target services or components. It can be changed or simply queried.

c7n/filters Part of the policy handler, it handles the choice requirement to filter out the
target services or components to which this policy will apply.

c7n/reports Part of the policy handler, it displays the report showing the result of the
previous policy execution with the given policy.

c7n/resources Template schema and other configurations and controls classes for different
cloud services actions, queries, and requests

Cloud service providers

Components Description

tools/c7n_azure Custodian provider package to support Azure

tools/c7n_gcp Custodian provider package to support GCP

tools/c7n_kube Custodian provider package to support Kubernetes

tools/c7n_oci Custodian provider package to support OCI

tools/c7n_tencentcloud Custodian provider package to support Tencent cloud

tools/c7n_left Tool to evaluate policies with chosen cloud services without actually
executing them

Supporting tools

Cloud Custodian Security Audit 2023 7

Cloud Custodian Security Audit 2023 17 apr 2024

Components Description

tools/c7n_mailer Tool to handle message relay and mailing service across different cloud
accounts and services

tools/c7n_policystream Tool to manage and control policies changing history with version control

Third party components

Components Description

Python poetry Package and dependencies management library

Cloud service API Cloud platform service API for supporting cloud environment, like BOTO3 for
AWS.

Cloud Custodian policies

The core functionality of Cloud Custodian is translation of into YAML commands applicable for different
cloud enviroments. Users pass their YAML policies to Cloud Custodian, and Cloud Custodian deploys
the policy using a scripting language suited for the users cloud environment.

Policies are declarative using YAML files that follow a predefined schema predefined and performs some
actions on resources on the cloud servers that match certain criteria. The action can be immediate
actions, scheduled activity or policy rules to be enforced. Different actions require different levels of
permissions and roles depending on the users cloud environment.

Each cloud provider uses different mechanisms for deploying this type of functionality into their
platforms. Learning these mechanisms takes time and effort, and users will have to learn these
mechanisms for each cloud provider they use. Cloud Custodian abstracts these mechanisms into a
unified approach supporting different cloud platforms, allowing Cloud Custodian users to use the
same declarative approach for all support cloud platforms.

The main purpose of Cloud Custodian is to use a unified language to perform policy enforcement and
actions on the cloud services without the need to develop specific scripts and execution requests
through different cloud service APIs of different cloud providers. In general, Cloud Custodian provides
an abstraction and abstracts basic syntax of resources, filters, actions, API calls, business logic, and
other cloud features into declarative YAML-based policies.

Cloud Custodian Security Audit 2023 8

Cloud Custodian Security Audit 2023 17 apr 2024

Policy validation

An important part of Cloud Custodian is to parse policies according to schema to different resource fil-
ters and actions to the cloud service. The correctness and security of policy parameters and definitions
are important factors in maintaining functional and security-relevant expectations on Cloud Custodian
to properly and securely translate YAML-based policies into cloud scripts. The major interpretation
and translation of Cloud Custodian are located in the PolicyLoader class. It takes care of the policy
interpretation according to the schema. It also complies with the policies to the permissions and
roles of the CLI user pushing the policies. In addition, it also has a validation process to ensure the
policies are fulfilling the needed settings of the schema and that they do not contain illegal injections
or characters in the provided settings.

Policy continuous integration

Cloud Custodian provides webhood for continuous integration from version control like git repository.
It can be added to the Cloud Custodian CLI in the cloud services to activate webhook monitoring to a
git repository. Whenever there are new or updated policies being merged. It will trigger the webhook
and upload the policies to the policies storage in the cloud after validating the policies. It will then
apply to the cloud service if the permissions and roles are allowed. The security responsibility may
pass partly to the git repository management to only allow certain people to merge the policies and
also requires checking of possible injections or unwanted actions in those policies. Besides, there are
also additional uses of webhooks. Webhook. Periodic policies with webhook action type could be
added to Cloud Custodian to point to some URL or repository location. HTTP requests are initialised to
retrieve resources or filtering information from the URL or repository when the policies are processed.
No new policies need to be deployed if the resource status or filtering criteria are changed. This could
be applied to cloud servers with frequent policies, resources or configuration changes.

Data flow for Cloud Custodian

In this section we present the dataflow of Cloud Custodian.

A high-level overview of dataflow and trustflow in Cloud Custodian looks as such:

Policy developers develop Cloud Custodian policies according to existing schemas in the Cloud Cus-
todian service. CLI users retrieve those policies and apply them through Cloud Custodian CLI for
immediate or periodic plans, rules or actions on filtered resources. The CLI users need to have enough
permissions and roles on the target resources in order to apply those policies in the cloud servers.
In addition to using existing schemas, Cloud Custodian allows custom schemas for uncovered cloud

Cloud Custodian Security Audit 2023 9

https://github.com/cloud-custodian/cloud-custodian/blob/e425311da975e9d03e69f4d33bfeec7ebe65f932/c7n/loader.py

Cloud Custodian Security Audit 2023 17 apr 2024

Figure 1: Data flow for Cloud Custodian from CLI entry point

Cloud Custodian Security Audit 2023 10

Cloud Custodian Security Audit 2023 17 apr 2024

services API combinations, that is, if Cloud Custodian adopters have a specific use case to their need,
they can write their own schemas.

When a user or an automated service (“Github Repository” in the diagram) deploy policies, the Policy
Validator validates them for correctness of the policies and that the CLI users permissions correspond
to the permissions in the schemas. After the Policy Validator has validated a policy, Cloud Custodian
policy handlers translate the valid policies to different types of cloud service requests, target filters
or lambda functions and push them to the cloud services storage and register triggering events or
execute them immediately. Depending on the actions from the policies, the cloud server may store
policies as periodic events, or perform immediate actions. Sometimes it will also enable continuous
logging or returning the current snapshot data of the cloud servers on request or storing them in the
Cloud bucket. The cloud admin can control the stored policies and also the IAM roles for both the
policies and the CLI users that could deploy policies. Lastly, If need be, auditors can audit the logs and
some long term triggering events of policies to ensure it complies with the consumers internal or legal
regulations.

Entry through Cloud event triggering

In this section we cover Cloud Custodians event-based triggering of policies.

At a high level, Cloud Custodian supports three types on invocations besides directly invoking a
policy:

1. Event-triggered policies When an event-triggered policy runs through Cloud Custodian CLI, it
will register event filterings in the given cloud service with certain patterns on the CloudWatch event
bus. When a change happens on resources or services, the CloudWatch bus will stream a System
event to registered Lambda services, if the patterns filter is matching, the lambda functions will be
invoked. This kind of policy deployment allows Cloud Custodian to deploy translated actions into
lambda functions and store them in the cloud service. The functions are then registered to be invoked
when a certain CloudWatch Events API has been called. This is done by pattern filtering in the Cloud
Custodian policies and is translated to lambda functions that determine if the streamed system event
matches the invocation requirements of the functions.

2. Periodic-triggered policies Periodic-triggered policies are similar to event-triggered policies in
which the lambda functions invocation is also triggered by CloudWatch Event API. But instead of trig-
gering based on certain resources or service changes status, Cloud Custodian registers a periodic event
in the CloudTrail to periodically send triggering requests to CloudWatch Event API and trigger a new

Cloud Custodian Security Audit 2023 11

Cloud Custodian Security Audit 2023 17 apr 2024

system event. This kind of periodic registration could also be filtered by patterns and resources/services
targets, which could be configured by the Cloud Custodian policies.

3. Config rules triggered policies Besides the above two types of event triggering lambda function
invocation, there is an additional config rules triggered policies. These types of policies trigger the
invocation of stored lambda functions when a certain service or resource configuration has been made
on the cloud services. The policies register a certain config rules monitoring in the cloud services,
wherever there is a configuration change, it will match the changes with the rules registered and invoke
the target lambda functions if the rules match.

Figure 2: Data flow for Cloud Custodian to register triggering criteria for policies

Once a policy has been translated into a lambda function on a cloud platform, the Cloud Custodian
user can set up their environment in such a manner that the lambda function gets invoked when an
event takes place. In the case of AWS, users can for example use the AWS CloudTrail, CloudWatch and
config rules services to deploy event-triggered lambda functions in their cloud. The translated lambda
functions are stored in the AWS Lambda Services with roles and permission enforced on the invocation

Cloud Custodian Security Audit 2023 12

Cloud Custodian Security Audit 2023 17 apr 2024

of those stored lambda functions. There are 3 types of ways supported by Cloud Custodian to trigger
the events. But it is also important to remark that once the lambda functions have been created and
deployed to the AWS lambda services, any IAM roles of users or triggered events match the one enforced
on those lambda functions, the lambda functions would be invoked. That opens a possibility that a
lambda function deployed through this setting through Cloud Custodian may trigger an unexpected
event if it matches some of the events or configuration rules. Users can perform additional monitoring
of the execution and triggering of these stored lambda functions can be done by specifying monitoring
and reporting options to the CloudTrails through Cloud Custodian policies, then log or other metrics
are stored in S3 Bucket and could be audited or viewed in a later stage.

Trust Boundaries

As the Cloud Custodian is installed in the management services of the cloud servers, the CLI users
certainly need to connect to the target cloud servers to execute the policies. Thus the policies are
surely going through the network boundary from the local environment of the CLI users to the remote
cloud management servers with Cloud Custodian installed. The other possible network boundary
is the boundary between the Cloud Custodian and the target cloud services. Although they should
be located in the same cloud network which could be manageable by the same cloud management
console, the management server and the target cloud services may be located in different subnetworks.
That creates another possible network boundary.

Threat actors

Cloud custodian is assumed to be run in a cloud console where all the actors should be either trusted
or controlled by the Cloud IAM service.

Threat Actor Description
Level of
trust

CLI Users Users that push policies to cloud services to perform actions on the filtered
target resources with their own IAM roles

High

Cloud
Admins

Users that monitor and manage the cloud server where Cloud Custodian is
running.

Full

Policy
Developers

Users that create Cloud Custodian policies to be deployed to the cloud
server.

High

Schema
Developers

Users that create schema or plugins to extend the functionality of Cloud
Custodian.

Low

Cloud Custodian Security Audit 2023 13

Cloud Custodian Security Audit 2023 17 apr 2024

Threat Actor Description
Level of
trust

Auditor Users to monitor and audit logs, policy status, periodic events and rules to
ensure overall security and accuracy of the policy enforcement.

Low

Other cloud
users

Some Cloud Custodian policies may depending on other cloud services or
events. Thus other cloud users with different IAM roles that control some
cloud services or events could trigger some stored Cloud Custodian policies.

Low

Attack surface

In this section we present Cloud Custodians attack surface.

The attack surface represents the entrypoints into a system that an attacker could utilize to compro-
mise the system. The attack surface describes both the known and expected entrypoints as well as
unexpected or unintended entrypoints. Delineating the attack surface is helpful in understanding the
types of threats and threat actors that could negatively impact the system. In this section we present
the attack surface of Cloud Custodian; Later in the audit, we use the findings from the threat modelling
detailing the attack surface in the manual auditing goal of the audit.

A fundamental property of Cloud Custodians security model is that it is deployed in a cloud environment
such as AWS, Azure, Google Cloud and Kubernetes. Cloud Custodian inherits substantial parts of the
security model of these platforms. As such, these platforms also represent an attack surface for Cloud
Custodian; If there are vulnerabilities in the underlying platform, Cloud Custodian can be vulnerable
to these as well. In other words, if an attacker can compromise the underlying cloud platform, Cloud
Custodian has no or few defense mechanisms between itself and the cloud platform. During our
analysis of Cloud Custodian, we found several indicators that Cloud Custodian accepts this inherited
attack surface. For example, Cloud Custodian decompresses the user data of EC2 instances without
checking its size or buffering the output (Line 817-818 below):

https://github.com/cloud-custodian/cloud-custodian/blob/
50d9f139de4a78aa32766f86f64e438cf7a8158a/c7n/resources/ec2.py#L803-L821

803 def process_instance_set(self, client, resources):
804 results = []
805 for r in resources:
806 if self.annotation not in r:
807 try:
808 result = client.describe_instance_attribute(
809 Attribute='userData',
810 InstanceId=r['InstanceId'])
811 except ClientError as e:

Cloud Custodian Security Audit 2023 14

https://github.com/cloud-custodian/cloud-custodian/blob/50d9f139de4a78aa32766f86f64e438cf7a8158a/c7n/resources/ec2.py#L803-L821
https://github.com/cloud-custodian/cloud-custodian/blob/50d9f139de4a78aa32766f86f64e438cf7a8158a/c7n/resources/ec2.py#L803-L821

Cloud Custodian Security Audit 2023 17 apr 2024

812 if e.response['Error']['Code'] == '
InvalidInstanceId.NotFound':

813 continue
814 if 'Value' not in result['UserData']:
815 r[self.annotation] = None
816 else:
817 r[self.annotation] = deserialize_user_data(
818 result['UserData']['Value'])
819 if self.match(r):
820 results.append(r)
821 return results

Cluster users with lower privileges can control EC2 instances and craft a malicious EC2 instance with
user data that decompresses into a large blob size would cause denial of service of Cloud Custodian,
since it would read the decompressed blob into memory. Cloud Custodian does not guard against
this attack but is also not vulnerable to it, because the limit of the user data of EC2 instances on the
underlying platform - AWS - is 16KB. As such, to cause a denial of service, an attacker needs to find a
way to circumvent the restriction on AWS’s max allowed size on EC2 user data.

This is an example of how Cloud Custodian integrates into the underlying platform to use their hard-
ening in its own security posture. There are pros and cons to this. On the pros side, Cloud Custodian
benefits from the security work made on the cloud platforms. Leaving out hardening mechanisms and
relying on the hardening made by the cloud platforms avoids bloat of the Cloud Custodian code base.
Furthermore, Cloud Custodian avoids hardening on an attack vector that is expensive for attackers to
compromise through. On the cons side, if an attacker can compromise the underlying cloud platform,
they have a large attack surface available and can cause a lot of havoc for Cloud Custodian users. In
addition, Cloud Custodian is susceptible to issues arising from unexpected or unnoticed changes in
the resource limits and sanitization for cloud resources.

Another attack vector is by way of cluster resources, ie. by creating or modifying cluster resources in such
a way that when Cloud Custodian queries them, Cloud Custodian will behave unexpectedly - possibly in
an insecure way. This attack vector requires cluster privileges for the attacker, albeit minimum create or
edit-privileges are sufficient. Cloud Custodian can handle resources insecurely when running policies
once or periodically, and a cluster user can craft a resource that causes unexpected behavior in Cloud
Custodian and triggers security vulnerabilities. This type of attack requires a CLI user to write and/or
deploy policies, and the attacker would need to know which Cloud Custodian policies are deployed.
Cloud Custodian users with multiple users of varying vertical permission levels are prone to this attack
vector. An sample attack would progress as such:

1. Cluster admin creates a cluster user without create privileges but with edit privileges.
2. Cluser admin deploys a policy that periodically queries all EC2 instances in the cluster.
3. The cluster user created in step 1 knows that the policy created in step 2 mishandles an EC2

instance with a particular name, and instead of reading the name, it creates 100 new EC2 instances

Cloud Custodian Security Audit 2023 15

Cloud Custodian Security Audit 2023 17 apr 2024

that are not restricted by any limitations from policies in the cluster. The cluster user creates the
EC2 instance with the malicious name.

4. The cluster user has managed to create 100 EC2 instances with their own specifications and has
thereby succesfully escalated privileges.

From the perspective of a standard Cloud Custodian use case, this is an exposed attack surface, since it
originates from an intended way of using Cloud Custodian. Cloud Custodian should be able to handle
a user base with different permission levels without exposing itself to privilege escalations. We note
that this attack surface also relies on authorization mechanisms of the underlying cloud platform,
however, this attack surface is exposed to cluster users even when the authorization mechanisms work
as intended; If the user has permissions to create EC2 instances, they do no need to escalate privileges
and be able to delete EC2 instances or create S3 buckets in order to exploit a vulnerability in cluster
resource handling.

Cloud Custodian allows deploying policies that have no immediate effect and are only triggered by
certain cloud events, these policies are translated and stored in the cloud as stored actions (lambda
function in AWS) or stored policies in the policy bucket. For example, Cloud Custodian can register
event monitoring and trigger in AWS through AWS Cloud Trail surface. If the registered cloud event has
happened, the AWS Cloud Trail invokes the stored actions (Lambda functions in AWS) with the details
of the cloud events. If the stored actions translated from Cloud Custodian policies use some of the
information from the cloud events without proper validation or sanitization, they are vulnerable to
attacks like injections or Denial-of-service. The actions could also cause unexpected behaviours or
privilege escalation if the stored actions are invoked with IAM roles with higher privileges. An attacker
could observe or guess the stored and cloud event registered Cloud Custodian policy actions and
specifically trigger a cloud event with malicious data. In this situation, the attacker only requires IAM
roles that have permission to trigger that cloud event and still invoke the stored Cloud Custodian policy
actions even if those policy actions are executing in different IAM roles.

Attack surface Description

Cloud
Custodian CLI

Cloud Custodian CLI is one of the entry points for accepting policies and performing
actions on the cloud with the user’s IAM roles. Privilege escalation or injection
targeting the cloud could go passed an insecure or over-privileged CLI.

Cloud
Custodian
Policy

Cloud Custodian defines what actions are performed on what resources are in the
cloud. Attackers could target to trick legitimate users into creating a policy to
complete some unexpected actions in the cloud.

Cloud Custodian Security Audit 2023 16

Cloud Custodian Security Audit 2023 17 apr 2024

Attack surface Description

Cloud
Custodian
schema

Cloud Custodian schema translates a YAML policy into actions in the Cloud
environment. Adopting third-party or custom schema to Cloud Custodian could
open up unexpected translations and perform unexpected actions in the cloud.

Cloud
triggering
events

Cloud Custodian allows deploying policies that have no immediate effect and are
only triggered by certain cloud events. Changes in the existing cloud events could
cause unexpected policies to be triggered.

Cloud IAM
services

Cloud Custodian policies are running with the IAM roles of the user deploying the
policies. Over-privileged IAM roles for Cloud Custodian could allow privilege
escalation on the cloud.

Attacker objectives

Privilege escalation in the cloud

Most of the privilege management in the cloud is done by IAM services. Attackers may make use of the
Cloud Custodian to escalate its privilege in the cloud if the IAM roles for the Cloud Custodian are not
correctly configured or over-privileged.

Mess up with services and resources of the cloud

With enough privilege, the Cloud Custodian could perform almost any action in the cloud. Attackers
may make use of the high-privilege IAM role of Cloud Custodian to perform some unexpected actions
in all other cloud services.

Gain information from the cloud services and resources

With enough privilege, the Cloud Custodian could perform almost any action in the cloud. Attackers
may make use of the high-privilege IAM role of Cloud Custodian to retrieve information or data in some
protected resources.

Cloud Custodian Security Audit 2023 17

Cloud Custodian Security Audit 2023 17 apr 2024

Fuzzing

As part of the audit, Ada Logics wrote a fuzzing suite for Cloud Custodian consisting of 11 fuzzers
targetting primarily resource handling and validation methods for resources from multiple cloud
providers that Cloud Custodian supports. In addition, Ada Logics built the infrastructure to suppor
continuous fuzzing; We did that by integrating Cloud Custodian into OSS-Fuzz which is an open-source
project created and run by Google that offers automation of different aspects of a healhty fuzzing
workflow. This includes running the fuzzers periodically, reporting of found bugs by the fuzzers, testing
for bug fixes and more - all done in an automated manner with technical details available for bugs such
as stack traces and reproducer testcases. A continuous fuzzing setup is an important part of software
security and upon completion of this audit, Cloud Custodian is fuzzed continuously, even after the
audit has concluded.

In this audit we took the high level approach of adding coverage to validation, processing and parsing
routines to resource types, actions and filters. This resulted in multiple alike fuzzers organized by
provider or subdirectories. The goal was to add coverage to class methods that processing input, which
for some classes has higher complexity than others. Some of the calls in the fuzzers are to methods in
Cloud Custodian that are not complex compared to other classes. Nonetheless, we added coverage
to those methods to add as much coverage to validation, processing and parsing as time permitted
in this audit. The fuzzing work done by Ada Logics in this audit was Cloud Custodians first step into
adding fuzzing its codebase, and adding coverage was the main priority of our fuzzing work.

All fuzzers can be found in Cloud Custodians OSS-Fuzz project folder: https://github.com/google/oss-
fuzz/tree/master/projects/cloud-custodian. OSS-Fuzz builds builds the fuzzers using its Dockerfile and
build script. The Dockerfilemoves the fuzzers to the Docker environment at build time, and the
build script builds the fuzzers.

These are the fuzzers, we have written during the audit:

fuzz_actions_parser

This fuzzers adds coverage for the parsemethod of the ActionRegistry class.

fuzz_actions_process

This fuzzer tests the processmethods of multiple actions classes: 1) AutoTagUser, 2) Notify,
3) LambdaInvoke, 4) Webhook, 5) AutoScalingBase and 6) PutMetric. In each fuzz iteration,
the fuzzer will choose the class to test, create an object of the class using the data from the fuzzer and
invoke the objects processmethod. For AutoTagUser and Notify, the fuzzer will first validate
the object before invoking their process method.

Cloud Custodian Security Audit 2023 18

https://github.com/google/oss-fuzz/blob/2827f7a/projects/cloud-custodian/Dockerfile

Cloud Custodian Security Audit 2023 17 apr 2024

fuzz_actions_validate

This fuzzer targets the validate methods of 3 classes of the c7n/actions sub directory: 1)
AutoTagUser, 2) ModifyVpcSecurityGroupsAction and 3) Notify. The fuzzer chooses
which class to create an object from in each iteration and creates and object using the fuzz testcase.
Finally, the fuzzer invokes the objects validate method.

fuzz_filters_parser

Tests the parsing routines of the c7n/filters subdirectory. This includes the parsemethods of
the FilterRegistry class, as well as multiple parsers from the offhours filter. The fuzzer decides
whether to fuzz either the FilterRegistry parsemethod or two parsemethods of the offhours
filter in each fuzz iteration.

fuzz_filters_process

Tests the process methods of the core filters (the c7n/filters subdirectory). The fuzzer tests
in total 12 classes, and picks one to test in each iteration. The fuzzer creates an object of the
picked class using the fuzz testcase. When invoking the process method, the fuzzer will pass a
dictionary The 12 classes that the fuzzer tests the process methods of are: 1) MultiAttrFilter,
2) Missing, 3) OnHour, 4) OffHour, 5) SubnetFilter, 6) NetworkLocation, 7) Diff, 8)
ConsecutiveAwsBackupsFilter, 9) HealthEventFilter, 10) HasStatementFilter,
11) CrossAccountAccessFilter and 12) AccessAnalyzer. The fuzzer passes a series of
resources to the process method of each object. This tests for edge cases in resources that could
impact Cloud Custodian in a negative way concerning both its security and reliability. For selected
classes, the fuzzer will validate the object before invoking its processmethod which mimicks Cloud
Custodian production use case.

fuzz_filters_validate

Tests the validate methods of 10 filters classes located in the c7n/filters subdirectory of
the Cloud Custodian source tree. These are the same classes that invoke their validate method
before theirprocessmethod in thefuzz_filters_process, however this fuzzer is more focused
on validation.

Cloud Custodian Security Audit 2023 19

Cloud Custodian Security Audit 2023 17 apr 2024

fuzz_gcp_actions_validate_process

Tests validation and processing routines of four classes from the c7n_gcp tool. c7n_gcp enables
GCP support in Cloud Custodian, and in this fuzzer we implement similar testing logic to the fuzzers
testing the validation and processing of the core Cloud Custodian classes.

fuzz_gcp_filters_validate_process

Tests the validation and processing of GCP resources. The fuzzer instantiates a resource using
the testcase of each iteration and invokes its process method. It validates four of the re-
source types before invoking their process method. The fuzzer tests the following resource
types: 1) LabelActionFilter, 2) RecommenderFilter, 3) GCPMetricsFilter, 4)
SecurityComandCenterFindingsFilter, 5) TimeRangeFilter, 6) IamPolicyFilter
and 7) AlertsFilter. The fuzzer instantiates a resource manager and add an ActionRegistry
and a FilterRegitry to it.

fuzz_gcp_resources_process

Tests the processing of GCP-specific classes, specifically 1) ServerConfig, 2) SQLInstance,
3) KmsLocationKmsKeyringFilter, 4) EffectiveFirewall, 5) HierarchyAction
and 6) AccessApprovalFilter. In each fuzz iteration, the fuzzer creates one object of either
of the 6 classes using the fuzzers testcase to instantiate the object. Next, the fuzzer sets up a
ResourceManager and adds an ActionRegistry and a FilterRegistry. Finally, the fuzzer
invokes the objects processmethod catching exceptions that the fuzzer should not report.

fuzz_query_parser

This fuzzer tests two parsers: 1) QueryParser and 2) C7NJMESPathParser - both from the util
module. The fuzzer passes a unicode string of maximum 1024 in length.

fuzz_resources_parser

This fuzzer tests 5 parsing routines: 1) Cloud Custodians aws Arn parser, 2) the ec2 QueryFilter parser, 3)
the healthQueryFilterparser, 4) thesagemakerQueryFilter and 5) theemrQueryFilter.
The fuzzer invokes one of the parsing routines in each fuzz iteration with a unicode string.

Cloud Custodian Security Audit 2023 20

Cloud Custodian Security Audit 2023 17 apr 2024

fuzz_resources_process

Tests the process methods of almost 60 core resource types. The fuzzer first selects a resource type,
then creates an object of that type using the fuzzers input test case to generate a pseudo-random
object. Finally the fuzzer invokes the objects processmethod.

fuzz_resources_validate

Tests the validate methods of almost 60 core resource types. The fuzzer first selects a resource
type, then creates an object of that type using the fuzzers input test case to generate a pseudo-random
object. Finally the fuzzer invokes the objects validatemethod.

Cloud Custodian Security Audit 2023 21

Cloud Custodian Security Audit 2023 17 apr 2024

SLSA review

ADA Logics carried out a SLSA review of Cloud Custodian. SLSA (https://github.com/slsa.dev) is a
framework for assessing the security practices of a given software-project with a focus on mitigating
supply-chain risk. SLSA emphasises tamper resistance of artifacts as well as ephemerality of the build
and release cycle.

SLSA mitigates a series of attack vectors in the software development life cycle (SDLC) all of which
have seen real-world examples of succesful attacks against open-source and proprietary software.

Below we see a diagram made by the SLSA illustrating the attack surface of the SDLC.

Figure 3: Data flow for Cloud Custodian to register triggering criteria for policies

Each of the red markers should different areas of possible compromise that could allow attackers to
tamper with the artifact that the consumer invokes at the end of the SDLC.

SLSA splits its assessment criteria into 4, increasingly demanding levels. At a high level, the higher the
level of compliance, the higher tamper-resistance the project ensures its consumers.

Cloud Custodian releases its binaries on Github Actions using .github/workflows/release.yml. Github
Actions fulfills a number of criteria of SLSA. Github Actions provisions a fresh build environment for
every build thereby fulfilling SLSAs requirement of isolation and hermeticity. These are great, and
important features of a hardened build platform. The current version of SLSA emphasises these features
of the build platform, but projects must have a provenance available to conform to SLSA Level 1. Cloud
Custodian does not currently include a provenance statement with releases, and as such is currently at
SLSA L0.

Cloud Custodians most important task in terms of SLSA compliance is to add a provenance statement
to releases and gradually improve compliance of that provenance statement to higher levels of SLSA,

Cloud Custodian Security Audit 2023 22

https://slsa.dev/
https://github.com/cloud-custodian/cloud-custodian/blob/main/.github/workflows/release.yml

Cloud Custodian Security Audit 2023 17 apr 2024

such as making it verifiable. We recommend adding this using SLSAs slsa-github-generator (https:
//github.com/slsa-framework/slsa-github-generator).

Cloud Custodian Security Audit 2023 23

https://github.com/slsa-framework/slsa-github-generator
https://github.com/slsa-framework/slsa-github-generator

Cloud Custodian Security Audit 2023 17 apr 2024

Found issues

Here we present the issues that we identified during the audit.

ID Title Severity Fixed

1 ADA-CC-2023-1 Use of a broken or weak
cryptographic hashing algorithm for
sensitive data

Low No

2 ADA-CC-2023-2 Insecure temporary file creation Informational Yes

3 ADA-CC-2023-3 Missing sanitisation in using Jinja2
library

Low No

4 ADA-CC-2023-4 Using deprecated and insecure
ssl.wrap_socket

Low No

5 ADA-CC-2023-5 Index out of range in ARN parser Informational Yes

6 ADA-CC-2023-6 Improper URL substring validation
can leak data

Low Yes

7 ADA-CC-2023-7 Possible DoS from
attacker-controller Github account

Low Yes

8 ADA-CC-2023-8 Possible DoS from
attacker-controller Github
repository

Low Yes

9 ADA-CC-2023-9 Possible zip bomb from large S3
object

Moderate No

10 ADA-CC-2023-10 Privilege escalation through chained
Lambda functions in AWS

Moderate No

Cloud Custodian Security Audit 2023 24

Cloud Custodian Security Audit 2023 17 apr 2024

Use of a broken or weak cryptographic hashing algorithm for sensitive
data

Severity Low

Status Reported

id ADA-CC-2023-1

Component c7n resources

get_finding function and get_item_template function uses some weak cryptographic hashing algo-
rithms like MD5 or SHA-1. Some of these usages are used for non-sensivite data, however, they might
still have a minor impact of a potential attack vector. The get_item_template function uses MD5 to
calculate a debup token for retrieving an item template for local storage or codebase for further pro-
cessing. The weak MD5 hash allows a 2nd preimage attack which could make an attacker create another
input that can produce the same hash and replace the original item template (or replace what item
template is to be returned) for further processing, which may cause unexpected execution results.

get_finding function uses MD5 on policies to determine a finding_id in post finding operations of
AWS security hubs function. Cloud Custodian can generate a policy to provision a lambda function
that will process findings from AWS resources and act on them when certain criteria are matched. For
example, it could process findings from AWS guard duty on all IAM users to remove their access keys if
the key exists when not allowed. These policies generate a data set called findings to record the
details of the target that needs to perform actions (or further monitored) on IAM resources. The code
below uses the MD5 hashes of the policies data for the finding generation operation as itsfinding_id.
This setting is vulnerable because an attacker could create different policies with the same hash in
order to pretend it is the designated policy and thus result in incorrect finding target to be processed
by future actions or periodic triggers.

https://github.com/cloud-custodian/cloud-custodian/blob/d458f0a/c7n/resources/securityhub.py#L525-
L530

525 def get_finding(self, resources, existing_finding_id, created_at,
updated_at):

526 ...
527
528 if existing_finding_id:
529 finding_id = existing_finding_id
530 else:

Cloud Custodian Security Audit 2023 25

https://github.com/cloud-custodian/cloud-custodian/blob/d458f0a/c7n/resources/securityhub.py#L525-L530
https://github.com/cloud-custodian/cloud-custodian/blob/d458f0a/c7n/resources/ssm.py#L553
https://github.com/cloud-custodian/cloud-custodian/blob/d458f0a/c7n/resources/ssm.py#L553
https://github.com/cloud-custodian/cloud-custodian/blob/d458f0a/c7n/resources/securityhub.py#L525-L530

Cloud Custodian Security Audit 2023 17 apr 2024

531 ...
532 finding_id = '{}/{}/{}/{}'.format(
533 self.manager.config.region,
534 self.manager.config.account_id,
535 # we use md5 for id, equiv to using crc32
536 hashlib.md5(# nosec nosemgrep
537 json.dumps(policy.data).encode('utf8'),
538 **params).hexdigest(),
539 hashlib.md5(# nosec nosemgrep
540 json.dumps(list(sorted([r[model.id] for r in

resources]))).encode('utf8'),
541 **params).hexdigest()
542)
543 finding = {
544 ...
545 'Id': finding_id,
546 ...
547 }
548 ...
549 return filter_empty(finding).

https://github.com/cloud-custodian/cloud-custodian/blob/d458f0a/c7n/resources/ssm.py#L553

553 def get_item_template(self):
554 ...
555 dedup = hashlib.md5(dedup).hexdigest()[:20] # nosec nosemgrep
556 ...

Mitagation

Change the use of hashlib.md5 for the more secure hashing algorithms, like sha3 or shake based
algorithm.

Cloud Custodian Security Audit 2023 26

Cloud Custodian Security Audit 2023 17 apr 2024

Insecure temporary file creation

Severity Informational

Status Fixed

id ADA-CC-2023-2

Component ops/azure/container-host-chart

The deploy chart operation of Azure uses using deprecated code tempfile.mktemp() method
which creates possible race condition attacks. The tempfile.mktemp() method is deprecated
because it could create a race condition vulnerability, as mentioned by the official python tempfile
library documentation. Thetempfile.mktemp()method is divided into two steps. It first generates
a random temporary filename and then creates the file with the newly generated temporary filename.
Some other process could create a file in between the two steps of the mktemp() function with
the same name generated by the first step of the mktemp() function. This creates a race condition
situation and could result in unexpected results when later code accesses the created temp files.
Attackers are able to make the chart write to a symbolic link with the same path that points to some
sensitive files in the local storage with the privilege of the Cloud Custodian tool. In addition, attackers
could also deny chart writing by changing the permissions of the temp files or inject malicious content
into the temp files if they successfully generate a file with their own privilege beforemktemp() function
does.

Vulnerable code location

The write_values_to_file in deploy_chart.py of Azure provider uses a deprecated python functions
tempfile.mktemp() which make the code vulnerable to race condition attack.

97 @staticmethod
98 def write_values_to_file(values):
99 values_file_path = tempfile.mktemp(suffix='.yaml')

100 with open(values_file_path, 'w') as values_file:
101 yaml.dump(values, stream=values_file)
102 return values_file_path

Cloud Custodian Security Audit 2023 27

https://docs.python.org/3/library/tempfile.html#deprecated-functions-and-variables
https://docs.python.org/3/library/tempfile.html#deprecated-functions-and-variables
https://github.com/cloud-custodian/cloud-custodian/blob/d458f0a/tools/ops/azure/container-host/chart/deploy_chart.py#L97

Cloud Custodian Security Audit 2023 17 apr 2024

Mitigation

The race condition vulnerability exists because the tempfile.mktemp() function divides the ran-
dom temporary filename generation and the creation of the temporary file into two steps. To solve this
vulnerability, just combine the two steps together by generating the file immediately. This could be
done by custom logic or replacing tempfile.mktemp() with the newer tempfile.mkstemp()
function which uses the steps combining approach.

Cloud Custodian Security Audit 2023 28

Cloud Custodian Security Audit 2023 17 apr 2024

Missing sanitisation in using Jinja2 library

Severity Low

Status Reported

id ADA-CC-2023-3

Component c7n mailer

In the utils.py of the c7n_mailer tool, the logics use the Jinja2 library to render an HTML email template.
The functions get_message_subject and get_jinja_env take in email message parameters
and path for the email template directory as input and use the Jinja2 library to create and render
the HTML email template and email subject. The functions are triggered when a policy-registered
event has happened and notify actions are required. The parameters passing to the functions are
configurable by the policy owner and other cloud users who have access to either the environment
or the resources linked to the registered event. Thus it could contain untrusted data and result in
possible HTML injection and lead to possible cross-site scripting (XSS) when malicious data is being
attached to the template or environment variables. According to the documentation of Jinja2, the
default configuration for their Template designer does not have automatic HTML escaping because it
may be a huge performance hit if it needs to escape all variables, including some variables that are not
HTML. In addition, the logic in the utils.py of the c7n_mailer tool does not enable HTML escaping
by default when using the Jinja2 package nor manually escaping the variable from the Jinja2. Thus it
results in possible HTML injection.

The get_message_subject function in utils.py of the c7n_mailer tool uses jinja2 library without
HTML escaping.

134 def get_message_subject(sqs_message):
135 ...
136 jinja_template = jinja2.Template(subject)
137 subject = jinja_template.render(
138 account=sqs_message.get("account", ""),
139 account_id=sqs_message.get("account_id", ""),
140 partition=sqs_message.get("partition", ""),
141 event=sqs_message.get("event", None),
142 action=sqs_message["action"],
143 policy=sqs_message["policy"],
144 region=sqs_message.get("region", ""),
145)
146 return subject

Cloud Custodian Security Audit 2023 29

https://github.com/cloud-custodian/cloud-custodian/blob/d458f0a/tools/c7n_mailer/c7n_mailer/utils.py
https://tedboy.github.io/jinja2/templ10.html
https://github.com/cloud-custodian/cloud-custodian/blob/d458f0a/tools/c7n_mailer/c7n_mailer/utils.py#L134

Cloud Custodian Security Audit 2023 17 apr 2024

The get_jinja_env function in utils.py of the c7n_mailer tool uses jinja2 library without HTML
escaping.

64 def get_jinja_env(template_folders):
65 env = jinja2.Environment(trim_blocks=True, autoescape=False)
66 ...
67 env.loader = jinja2.FileSystemLoader(template_folders)
68 return env

Mitigation

The main problem of this vulnerability is the missing HTML escaping and validation before using the
rendered result. One possible solution is to turn on the automatic HTML escaping when using the
jinja2 library but it could create a large overhead if the template is large. The other way is adding logic
before the use of the Jinja2 library to escape all HTML-related parameters before passing them to the
Jinja2 library to ensure all of them are correctly sanitized before using them for HTML rendering.

Cloud Custodian Security Audit 2023 30

https://github.com/cloud-custodian/cloud-custodian/blob/d458f0a/tools/c7n_mailer/c7n_mailer/utils.py#L64

Cloud Custodian Security Audit 2023 17 apr 2024

Using deprecated and insecure ssl.wrap_socket

Severity Low

Status Reported

id ADA-CC-2023-4

Component c7n kube

SSL versions 2 and 3 are considered insecure and completely broken. Therefore it is dangerous to
use. Because of that, the ssl.wrap_socket() function is deprecated as it defaults to an insecure
version of SSL/TLS and does not specify a minimum supporting SSL/TLS protocol version. It also does
not have support for server name indication (SNI) and hostname matching. An attacker could force it
to create an SSL/TLS session with broken SSL protocol versions by a downgrade attack, claiming that
only an insecure version of SSL is supported during the handshake process. Besides, attackers can
spoof the hostname/server name and cause the later communication and connection vulnerable to
attacks. This makes the use of ssl.wrap_socket() for creating SSL socket connection insecure
and vulnerable to different kinds of attacks on insecure and broken SSL/TLS protocol versions.

Vulnerable code location

The get_finding function in server.py of Cloud Custodian Kubernetes provider uses the deprecate
function ssl.wrap_socket().

196 def get_finding(self, resources, existing_finding_id, created_at,
updated_at):

197 ...
198 server.socket = ssl.wrap_socket(
199 server.socket,
200 server_side=True,
201 certfile=cert_path,
202 keyfile=cert_key_path,
203 ca_certs=ca_cert_path,
204)

Mitigation

The deprecated ssl.wrap_socket() function should be replaced by the newer ssl.
SSLContext.wrap_socket() function. This new function returns an SSLContext object,

Cloud Custodian Security Audit 2023 31

https://www.cisa.gov/news-events/alerts/2014/10/17/ssl-30-protocol-vulnerability-and-poodle-attack
https://github.com/cloud-custodian/cloud-custodian/blob/d458f0a/tools/c7n_kube/c7n_kube/server.py#L196

Cloud Custodian Security Audit 2023 17 apr 2024

encapsulating the settings and enforcing SNI and hostname matching with default disabling of inse-
cure SSL/TLS version. That could deny possible downgrade attacks or hostname/server name spoofing.
If no specific security policies or requirements are needed, ssl.create_default_context()
function could be used to create a default SSLContext object without the need to specify the security
configurations.

Remark

As the new ssl.SSLContext.wrap_socket() only supports Stream type socket, thus transfer-
ring the use of ssl.wrap_socket()may not be a trivial task to do so.

Cloud Custodian Security Audit 2023 32

Cloud Custodian Security Audit 2023 17 apr 2024

Index out of range in ARN parser

Severity Informational

Status Fixed

id ADA-CC-2023-5

Component arn parser

Cloud Custodians ARN is susceptible to an index out of range issue from a string split and an assumed
array-length. This is a cosmetic issue, since ARNs are never user supplied. Nevertheless, fixing the issue
avoids issues in the future in case the use case of the code containing the issue changes. In addition,
fixing the issue also allows the fuzzer to reason about the code without getting blocked by a cosmetic
bug.

The issue exists on the following lines:

https://github.com/cloud-custodian/cloud-custodian/blob/
e20591d4203257652e2de29e237479e81e958ab4/c7n/resources/aws.py#L298-L305

298 def parse(cls, arn):
299 if isinstance(arn, Arn):
300 return arn
301 parts = arn.split(':', 5)
302 # a few resources use qualifiers without specifying type
303 if parts[2] in ('s3', 'apigateway', 'execute-api', 'emr-

serverless'):
304 parts.append(None)
305 parts.append(None)

On line 303, the parser reads the third index of the array, however, there can be fewer than three
elements in the array.

This issue was found by the ARN parser fuzzer.

Mitigation

We recommend checking that there is a third element in the array before reading it.

Cloud Custodian Security Audit 2023 33

https://github.com/cloud-custodian/cloud-custodian/blob/%20e20591d4203257652e2de29e237479e81e958ab4/c7n/resources/aws.py#L298-L305
https://github.com/cloud-custodian/cloud-custodian/blob/%20e20591d4203257652e2de29e237479e81e958ab4/c7n/resources/aws.py#L298-L305

Cloud Custodian Security Audit 2023 17 apr 2024

Improper URL substring validation can leak data

Severity Low

Status Fixed

id ADA-CC-2023-6

Component c7n

Cloud Custodians base notifier is susceptible to an improper URL string validation which may allow an
attacker to trick Cloud Custodian into leaking data by sending messages to URLs under the attackers
control. The issue allows an attacker who can add items to the transport queue to control the URL
that the base notifier sends payloads to. Besides the potential for leaking data, an attacker could also
manipulate subsequent workflow by crafting a malicious response to Cloud Custodian.

The issue requires high privileges to exploit: Permissions to deploy policies are necessary.

The issue exists in send_sqs() of BaseNotifier:

https://github.com/cloud-custodian/cloud-custodian/blob/
d458f0a24629b5f01160568ef96e728744dc9bbc/c7n/actions/notify.py#L383-L419

383 def send_sqs(self, message, payload):
384 queue = self.data['transport']['queue'].format(**message)
385 if queue.startswith('https://queue.amazonaws.com'):
386 region = 'us-east-1'
387 queue_url = queue
388 elif 'queue.amazonaws.com' in queue:
389 region = queue[len('https://'):].split('.', 1)[0]
390 queue_url = queue
391 elif queue.startswith('https://sqs.'):
392 region = queue.split('.', 2)[1]
393 queue_url = queue
394 elif queue.startswith('arn:'):
395 queue_arn_split = queue.split(':', 5)
396 region = queue_arn_split[3]
397 owner_id = queue_arn_split[4]
398 queue_name = queue_arn_split[5]
399 queue_url = "https://sqs.%s.amazonaws.com/%s/%s" % (
400 region, owner_id, queue_name)
401 else:
402 region = self.manager.config.region
403 owner_id = self.manager.config.account_id
404 queue_name = queue

Cloud Custodian Security Audit 2023 34

https://github.com/cloud-custodian/cloud-custodian/blob/d458f0a24629b5f01160568ef96e728744dc9bbc/c7n/actions/notify.py#L383-L419
https://github.com/cloud-custodian/cloud-custodian/blob/d458f0a24629b5f01160568ef96e728744dc9bbc/c7n/actions/notify.py#L383-L419

Cloud Custodian Security Audit 2023 17 apr 2024

405 queue_url = "https://sqs.%s.amazonaws.com/%s/%s" % (
406 region, owner_id, queue_name)
407 client = self.manager.session_factory(
408 region=region, assume=self.assume_role).client('sqs')
409 attrs = {
410 'mtype': {
411 'DataType': 'String',
412 'StringValue': self.C7N_DATA_MESSAGE,
413 },
414 }
415 result = client.send_message(
416 QueueUrl=queue_url,
417 MessageBody=payload,
418 MessageAttributes=attrs)
419 return result['MessageId']

The issue lies in the two first branches ofsend_sqs. Assuming that an attacker can control thequeue
variable defined on line 384, they can get past the first conditional check on line 385-387 if queue
does not start with the string https://queue.amazonaws.com. The second conditional checks
whether queue.amazonaws.com is a substring of queue. An attacker can bypass that in a number
of ways, either by crafting a subdomain of their own domain, for example queue.amazonaws.
com.malicious-url.cc, or by including a URL parameter, for example: malicious-url.cc?
queue.amazonaws.com. The conditional check on line 388 will return true and queue_urlwill
be assigned the attackers URL.send_sqswill proceed to line 407, and the client will sent the message
to the attacker-controlled URL on line 416.

Mitigation

Improve URL sanitization of the queue value. For example, remove the labeling part of the URL to
ensure that only the needed domain is included in send_sqs. Splitting the string into domain and
path before checking could also help.

Cloud Custodian Security Audit 2023 35

Cloud Custodian Security Audit 2023 17 apr 2024

Possible DoS from attacker-controller Github account

Severity Low

Status Fixed

id ADA-CC-2023-7

Component c7n policystream

Cloud Custodians PolicyStream tool is vulnerable to an infinity loop from an attacker-controlled limit
in a for loop. The root cause is that the Policy Stream tool loops through all repositories belonging to
an organization without setting a limit to the number of iterations. The repositories are remote and an
potential attacker has numerous ways to control the list of repositories returned to Cloud Custodian. If
they can achieve a position where they control the list of repositories returned to Cloud Custodian,
they could cause Cloud Custodian to go into an infinity loop and thereby cause a denial of service.

The root cause of the issue is in the org_checkout CLI call. This API loops through all repositories of
an organization and applies filtering in each iteration:

https://github.com/cloud-custodian/cloud-custodian/blob/e425311da975e9d03e69f4d33bfeec7ebe65f932/
tools/c7n_policystream/policystream.py#L743-L786

743 def org_checkout(organization, github_url, github_token, clone_dir,
744 verbose, filter, exclude):
745 """Checkout repositories from a GitHub organization."""
746 logging.basicConfig(
747 format="%(asctime)s: %(name)s:%(levelname)s %(message)s",
748 level=(verbose and logging.DEBUG or logging.INFO))
749
750 callbacks = pygit2.RemoteCallbacks(
751 pygit2.UserPass(github_token, 'x-oauth-basic'))
752
753 repos = []
754 for r in github_repos(organization, github_url, github_token):
755 if filter:
756 found = False
757 for f in filter:
758 if fnmatch(r['name'], f):
759 found = True
760 break
761 if not found:
762 continue
763

Cloud Custodian Security Audit 2023 36

https://github.com/cloud-custodian/cloud-custodian/blob/e425311da975e9d03e69f4d33bfeec7ebe65f932/tools/c7n_policystream/policystream.py#L743-L786
https://github.com/cloud-custodian/cloud-custodian/blob/e425311da975e9d03e69f4d33bfeec7ebe65f932/tools/c7n_policystream/policystream.py#L743-L786

Cloud Custodian Security Audit 2023 17 apr 2024

764 if exclude:
765 found = False
766 for e in exclude:
767 if fnmatch(r['name'], e):
768 found = True
769 break
770 if found:
771 continue
772
773 repo_path = os.path.join(clone_dir, r['name'])
774 repos.append(repo_path)
775 if not os.path.exists(repo_path):
776 log.debug("Cloning repo: %s/%s" % (organization, r['name'])

)
777 repo = pygit2.clone_repository(
778 r['url'], repo_path, callbacks=callbacks)
779 else:
780 repo = pygit2.Repository(repo_path)
781 if repo.status():
782 log.warning('repo %s not clean skipping update', r['

name'])
783 continue
784 log.debug("Syncing repo: %s/%s" % (organization, r['name'])

)
785 pull(repo, callbacks)
786 return repos

An attacker could obtain control over the Github organization in a number of ways; For example, the
owner of the github organization may not be using proper configuration such as 2FA and permission
levels, and an attacker could compromise the Github organization and launch the attack. Alternatively,
an attacker pretend to be a legitimate contributor over a longer time, make legitimate contributions,
review pull requests etc to build up credibility. The attacker could then choose to launch the attack
at a the most lucrative time. The attack could be against a competitor with the goal of achieving a
time-advantage in certain operations such as research, business, trading or military operations. These
are examples that illustrate the Cloud Custodian does not control the data coming from the remote
github repository, whereas fully untrusted users may be able to control it. As such, the data from the
remote repositories can be fully untrusted.

The attack is also possible without creating the repositories, if the attacker can intercept communica-
tion and control the response returned to Cloud Custodian on these lines: https://github.com/cloud-
custodian/cloud-custodian/blob/e425311da975e9d03e69f4d33bfeec7ebe65f932/
tools/c7n_policystream/policystream.py#L665C9-L666

In the attacker can control these lines, they can control the JSON that Cloud Custodian uses to create
the repos variable. Cloud Custodian does not validate whether the repo belongs to the organization
when invoking the loop:

Cloud Custodian Security Audit 2023 37

https://github.com/cloud-custodian/cloud-custodian/blob/e425311da975e9d03e69f4d33bfeec7ebe65f932/tools/c7n_policystream/policystream.py#L665C9-L666
https://github.com/cloud-custodian/cloud-custodian/blob/e425311da975e9d03e69f4d33bfeec7ebe65f932/tools/c7n_policystream/policystream.py#L665C9-L666
https://github.com/cloud-custodian/cloud-custodian/blob/e425311da975e9d03e69f4d33bfeec7ebe65f932/tools/c7n_policystream/policystream.py#L665C9-L666

Cloud Custodian Security Audit 2023 17 apr 2024

https://github.com/cloud-custodian/cloud-custodian/blob/
e425311da975e9d03e69f4d33bfeec7ebe65f932/tools/c7n_policystream/policystream.py#L754-
L771

754 for r in github_repos(organization, github_url, github_token):
755 if filter:
756 found = False
757 for f in filter:
758 if fnmatch(r['name'], f):
759 found = True
760 break
761 if not found:
762 continue
763
764 if exclude:
765 found = False
766 for e in exclude:
767 if fnmatch(r['name'], e):
768 found = True
769 break
770 if found:
771 continue

An attacker could therefore return a JSON response pointing to repositories from other Github accounts
and achieve the same goal.

Mitigation

We recommend resolving all of the below: 1. Either add a counter to each loop iteration and stop after
a maxAllowed limit or check the number of repositories before starting the loop. 2. Validate in the
beginning of the loop whether each repository belongs to the organization.

Cloud Custodian Security Audit 2023 38

https://github.com/cloud-custodian/cloud-custodian/blob/e425311da975e9d03e69f4d33bfeec7ebe65f932/tools/c7n_policystream/policystream.py#L754-L771
https://github.com/cloud-custodian/cloud-custodian/blob/e425311da975e9d03e69f4d33bfeec7ebe65f932/tools/c7n_policystream/policystream.py#L754-L771
https://github.com/cloud-custodian/cloud-custodian/blob/e425311da975e9d03e69f4d33bfeec7ebe65f932/tools/c7n_policystream/policystream.py#L754-L771

Cloud Custodian Security Audit 2023 17 apr 2024

Possible DoS from attacker-controller Github repository

Severity Low

Status Fixed

id ADA-CC-2023-8

Component c7n policystream

Cloud Custodians PolicyStream tool is vulnerable to an infinity loop from an attacker-controlled limit in
a loop. The root cause is that the Policy Stream tool loops through all commits in a repository without
setting a limit to the number of iterations. The repository is cloned from remote and a potential attacker
has numerous ways of controlling it and thereby the number of commits it has. If they can achieve a
position where they control the repository and create a high number of commits, they could cause
Cloud Custodian to go into an infinity loop and thereby cause a denial of service, since Cloud Custodian
would not terminate its operation and would not be able to process subsequent operations.

The root cause of the issue is in the delta_stream CLI call. This API loops through all commits of a
branch of a repository:

https://github.com/cloud-custodian/cloud-custodian/blob/e425311da975e9d03e69f4d33bfeec7ebe65f932/
tools/c7n_policystream/policystream.py#L316-L345

316 def delta_stream(self, target='HEAD', limit=None,
317 sort=pygit2.GIT_SORT_TIME | pygit2.

GIT_SORT_REVERSE,
318 after=None, before=None):
319 """Return an iterator of policy changes along a commit lineage

in a repo.
320 """
321 if target == 'HEAD':
322 target = self.repo.head.target
323
324 commits = []
325 for commit in self.repo.walk(target, sort):
326 cdate = commit_date(commit)
327 log.debug(
328 "processing commit id:%s date:%s parents:%d msg:%s",
329 str(commit.id)[:6], cdate.isoformat(),
330 len(commit.parents), commit.message)
331 if after and cdate > after:
332 continue
333 if before and cdate < before:

Cloud Custodian Security Audit 2023 39

https://github.com/cloud-custodian/cloud-custodian/blob/e425311da975e9d03e69f4d33bfeec7ebe65f932/tools/c7n_policystream/policystream.py#L316-L345
https://github.com/cloud-custodian/cloud-custodian/blob/e425311da975e9d03e69f4d33bfeec7ebe65f932/tools/c7n_policystream/policystream.py#L316-L345

Cloud Custodian Security Audit 2023 17 apr 2024

334 continue
335 commits.append(commit)
336 if limit and len(commits) > limit:
337 break
338
339 if limit:
340 self.initialize_tree(commits[limit].tree)
341 commits.pop(-1)
342
343 for commit in commits:
344 for policy_change in self._process_stream_commit(commit):
345 yield policy_change

An attacker could obtain control over the Github repository in a number of ways; For example, the
owner of the github repository may not be using proper configuration such as 2FA, and an attacker
could compromise the owners account and launch the attack. Alternatively, an attacker can pretend to
be a legitimate contributor over a longer time, make legitimate contributions, review pull requests
etc to build up credibility. The attacker could then choose to launch the attack at a the most lucrative
time. The attack could be against a competitor with the goal of achieving a time-advantage in certain
operations such as research, business, trading or military operations. These are examples that illustrate
the Cloud Custodian does not control the data coming from the remote github repository, whereas
fully untrusted users may be able to control it. As such, the data from the remote repositories can be
fully untrusted.

delta_stream has an option to limit the number of iterations, however, this is off per default.

Mitigation

We recommend resolving all of the below: 1. Change the defaultlimit parameter to a number instead
of None

Cloud Custodian Security Audit 2023 40

Cloud Custodian Security Audit 2023 17 apr 2024

Possible zip bomb from large S3 object

Severity Moderate

Status Reported

id ADA-FASTIFY-2023-9

Component c7n

Cloud Custodian is susceptible to a possible Denial-of-Service from a maliciously crafted S3 object.
The attack would allow an attacker to exhaust memory of the machine and prevent Cloud Custodian
from performing subsequent operations after the vulnerable code part has been invoked. The root
cause is that Cloud Custodian decompresses compressesd S3 objects without hardening against large
objects. As such, an attacker with permissions to create S3 objects can create a malicious S3 object
that will cause Cloud Custodian to exhaust memory when Cloud Custodian resolves it.

The issue exists in two places in the Cloud Custodian URIResolver:

https://github.com/cloud-custodian/cloud-custodian/blob/
61ad56cc748e19230cf5794db1dfd3364bc3e66b/c7n/resolver.py#L44-L50

44 def handle_response_encoding(self, response):
45 if response.info().get('Content-Encoding') != 'gzip':
46 return response.read().decode('utf-8')
47
48 data = zlib.decompress(response.read(),
49 ZIP_OR_GZIP_HEADER_DETECT).decode('utf8'

)
50 return data

https://github.com/cloud-custodian/cloud-custodian/blob/
61ad56cc748e19230cf5794db1dfd3364bc3e66b/c7n/resolver.py#L52-L68

52 ```python
53 def get_s3_uri(self, uri):
54 parsed = urlparse(uri)
55 params = dict(
56 Bucket=parsed.netloc,
57 Key=parsed.path[1:])
58 if parsed.query:
59 params.update(dict(parse_qsl(parsed.query)))
60 region = params.pop('region', None)
61 client = self.session_factory().client('s3', region_name=region

)

Cloud Custodian Security Audit 2023 41

https://github.com/cloud-custodian/cloud-custodian/blob/61ad56cc748e19230cf5794db1dfd3364bc3e66b/c7n/resolver.py#L44-L50
https://github.com/cloud-custodian/cloud-custodian/blob/61ad56cc748e19230cf5794db1dfd3364bc3e66b/c7n/resolver.py#L44-L50
https://github.com/cloud-custodian/cloud-custodian/blob/61ad56cc748e19230cf5794db1dfd3364bc3e66b/c7n/resolver.py#L52-L68
https://github.com/cloud-custodian/cloud-custodian/blob/61ad56cc748e19230cf5794db1dfd3364bc3e66b/c7n/resolver.py#L52-L68

Cloud Custodian Security Audit 2023 17 apr 2024

62 result = client.get_object(**params)
63 body = result['Body'].read()
64 if params['Key'].lower().endswith(('.gz', '.zip', '.gzip')):
65 return zlib.decompress(body, ZIP_OR_GZIP_HEADER_DETECT).

decode('utf-8')
66 elif isinstance(body, str):
67 return body
68 else:
69 return body.decode('utf-8')

A denial-of-service scenario can arise purposefully or accidentally; An attacker can specifically craft a
malicious S3 object that allocates a lot of memory when Cloud Custodian decompresses it, or the AWS
admin can accidentally set no limit to the object, and a large one will accidentally be created during
normal business operations and exhaust memory. At the time of this audit, an S3 object can be up to
5TB in size which will be enough to exhaust memory in the majority of use cases.

Mitigation

• Decompress in chunks.

Cloud Custodian Security Audit 2023 42

https://aws.amazon.com/s3/faqs/#:~:text=The%20total%20volume%20of%20data,a%20maximum%20of%205%20TB.
https://aws.amazon.com/s3/faqs/#:~:text=The%20total%20volume%20of%20data,a%20maximum%20of%205%20TB.

Cloud Custodian Security Audit 2023 17 apr 2024

Privilege escalation through chained Lambda functions in AWS

Severity Moderate

Status Reported

id ADA-CC-2023-10

Component c7n

Cloud Custodian is susceptible to a privilege escalation issue on AWS from an underlying prioritization
of privileges in AWS between user privileges and Lambda privileges. This is an issue in AWS that Cloud
Custodian inherits. We consider the impact of the issue to be High, however, Cloud Custodian may
opinionatedly reject the root cause of this issue to exist in Cloud Custodian. The reason for this is that
AWS users are exposed to the same issue.

The issue exists because users in AWS inherit the privileges of the Lambda functions that the users
have privileges to invoke, even if the user does not have privileges to carry the actions against the
resources that the Lambda functions have privileges to. For example, consider a scenario where a user
has privileges to read resources of type “A”, and invoke Lambda function “B”, and Lambda function “B”
has privileges to create resources of type “A”. In this case, the user will also have privileges to create
resources of type “A”, even if the cluster admin has not excplicitly assigned those privileges.

Below we exmplify the issue with a user that has read-only privileges against EC2 instances, access to
the cloud shell, read-only access to Lambda functions and read-only access to IAM. In addition, the
user has permissions to invoke Lambda functions. The same example Cloud Custodian deployment
has a function called Invoker()which has permissions to invoke another Lambda function called
terminate_instance. terminate_instance has privileges to terminate EC2 instances - a
privilege that the user does not have.

In this case, the user has permissions to terminate EC2 instances, even though the cluster admin has
not assigned these to the user.

Cluster assets and permissions

User Permissions

• AWS managed permissions:

Cloud Custodian Security Audit 2023 43

Cloud Custodian Security Audit 2023 17 apr 2024

Figure 4: Privilege escalation illustration

– AmazonEC2ReadOnlyAccess
– AWSCloudShellFullAccess
– AWSLambda_ReadOnlyAccess
– IAMReadOnlyAccess

• Custom permissions:

– lambda:InvokeFunction
– lambda:InvokeAsync ##### Lambda Function Invoker ###### Permissions

• Custom permissions:

– lambda:InvokeFunction
– lambda:InvokeAsync ##### Lambda Function “terminate_instance” ###### permissions

• Custom permissions:

– ec2:terminate_instance

Code for lambda function Invoker If the users attempts to run a Cloud Custodian policy directly to
terminate an EC2 instance, they are denied with the following error:

1 botocore.exceptions.ClientError: An error occurred (
UnauthorizedOperation) when calling the TerminateInstances operation
: You are not authorised to perform this operation.

Cloud Custodian Security Audit 2023 44

Cloud Custodian Security Audit 2023 17 apr 2024

However, by invoking the chain of the two Lambda functions, the user can still terminate EC2 instances.
The user can invoke the Lambda function Invokerwhich invokes terminate_instancewhich
terminates an EC2 instance. Consider the following proof concept:

Code for lambda function Invoker

1 import json
2 import boto3
3
4 client = boto3.client('lambda')
5
6 def lambda_handler(event, context):
7 response = client.invoke(
8 FunctionName='arn:aws:lambda:eu-north-1:[ACCOUNTID]:function:

terminate_instance',
9 InvocationType='RequestResponse',

10 Payload=json.dumps(inputForInvoker)
11)
12
13 print(json.load(response['Payload']))

Code for lambda function terminate_instance

1 import json
2 import boto3
3
4 def lambda_handler(event, context):
5 ec2 = boto3.client('ec2', region_name='eu-north-1')
6 ec2.terminate_instances(InstanceIds=['[INSTANCEID]'])

Proof of concept

Assume there is one EC2 instance in the cloud account. Withtag:Name = t1 and instance id =i-0080
a65c233f313fd.

Figure 5: Instance List

In this situation, the user “Test” has a limited set of permissions as stated above. He/she cannot execute
a Cloud Custodian policy directly to EC2 in order to terminate an instance, because he/she only has
read-only access to the EC2 resources. The following Cloud Custodian policy will fail.

Cloud Custodian Security Audit 2023 45

Cloud Custodian Security Audit 2023 17 apr 2024

1 policies:
2 - name: ec2-delete-marked
3 resource: ec2
4 filters:
5 - "tag:Name": "t1"
6 actions:
7 - type: terminate
8 force: true

The error message from the above Cloud Custodian policy execution is as follows.

1 botocore.exceptions.ClientError: An error occurred (
UnauthorizedOperation) when calling the TerminateInstances operation
: You are not authorised to perform this operation.

However it is found that the user Test could still be able to terminate an instance with a detour path.
The user Test can run a Cloud Custodian policy that invokes a lambda function “Invoker”, where
“Invoker” has permission and logic to invoke another lambda function “terminate_instance”. If “termi-
nate_instance” does have the EC2 instance termination permission. The policy to invoke “Invoker”
could end up terminating an instance in EC2, given that neither the user “Test” nor the lambda function
“Invoker” has the EC2 instance termination right. Cloud Custodian did not mitigate this kind of attack.
The following is a policy for invoking the lambda function “Invoker”

Cloud custodian policy that user Test could deploy and terminate an instance

1 policies:
2 - name: invoke
3 resource: ec2
4 filters:
5 - "tag:Name": "t1"
6 actions:
7 - type: invoke-lambda
8 function: Invoker

The following result shows that the policies has run successfully.

1 2023-10-09 18:08:22,470: custodian.commands:DEBUG Loaded file invoke.
yml. Contains 1 policies

2 2023-10-09 18:08:22,486: custodian.aws:DEBUG using default region:eu-
north-1 from boto

3 2023-10-09 18:08:23,089: custodian.output:DEBUG Storing output with <
LogFile file://./invoke/custodian-run.log>

4 2023-10-09 18:08:23,100: custodian.policy:DEBUG Running policy:invoke
resource:ec2 region:eu-north-1 c7n:0.9.29

5 2023-10-09 18:08:23,100: custodian.cache:DEBUG expiring stale cache
entries

6 2023-10-09 18:08:23,101: custodian.resources.ec2:DEBUG Using cached c7n
.resources.ec2.EC2: 1

Cloud Custodian Security Audit 2023 46

Cloud Custodian Security Audit 2023 17 apr 2024

7 2023-10-09 18:08:23,101: custodian.resources.ec2:DEBUG Filtered from 1
to 1 ec2

8 2023-10-09 18:08:23,101: custodian.policy:INFO policy:invoke resource:
ec2 region:eu-north-1 count:1 time:0.00

9 2023-10-09 18:08:23,706: custodian.policy:INFO policy:invoke action:
lambdainvoke resources:1 execution_time:0.60

10 2023-10-09 18:08:23,708: custodian.output:DEBUG metric:ResourceCount
Count:1 policy:invoke restype:ec2 scope:policy

11 2023-10-09 18:08:23,708: custodian.output:DEBUG metric:ApiCalls Count:2
policy:invoke restype:ec2

The instance is being terminated.

Figure 6: Terminated Instance

Impact

All Cloud Custodian can be impacted by this, but will not be by default when using Cloud Custodian.
Users need will need to configure their Cloud Custodian deployment in a similar manner exemplified
above. Users will not easily accidentally configure their deployments in such a manner, however, the
more complex the deployment regardingnumber of users users, permissions and Lambda functions,
the more likely a mistake can happen that allows for this privilege escalation. As such, users must
enable a configuration that allows this privilege escalation.

The issue can result in escalation to the highest level of privileges that the cluster admin has enabled,
however, this is highly dependent on a particular Cloud Custodian deployment. As such, users should
consider this on a case-by-case basis.

Cloud Custodian Security Audit 2023 47

	About Ada Logics
	Project dashboard
	Executive summary
	Threat model
	Main components in scope
	Core package
	Cloud service providers
	Supporting tools
	Third party components

	Cloud Custodian policies
	Policy validation
	Policy continuous integration

	Data flow for Cloud Custodian
	Entry through Cloud event triggering

	Trust Boundaries
	Threat actors
	Attack surface
	Attacker objectives
	Privilege escalation in the cloud
	Mess up with services and resources of the cloud
	Gain information from the cloud services and resources

	Fuzzing
	fuzz_actions_parser
	fuzz_actions_process
	fuzz_actions_validate
	fuzz_filters_parser
	fuzz_filters_process
	fuzz_filters_validate
	fuzz_gcp_actions_validate_process
	fuzz_gcp_filters_validate_process
	fuzz_gcp_resources_process
	fuzz_query_parser
	fuzz_resources_parser
	fuzz_resources_process
	fuzz_resources_validate

	SLSA review
	Found issues
	Use of a broken or weak cryptographic hashing algorithm for sensitive data
	Mitagation

	Insecure temporary file creation
	Vulnerable code location
	Mitigation

	Missing sanitisation in using Jinja2 library
	Mitigation

	Using deprecated and insecure ssl.wrap_socket
	Vulnerable code location
	Mitigation
	Remark

	Index out of range in ARN parser
	Mitigation

	Improper URL substring validation can leak data
	Mitigation

	Possible DoS from attacker-controller Github account
	Mitigation

	Possible DoS from attacker-controller Github repository
	Mitigation

	Possible zip bomb from large S3 object
	Mitigation

	Privilege escalation through chained Lambda functions in AWS
	Code for lambda function terminate_instance
	Proof of concept
	Impact

