
LLVM Fuzzing Audit

Fuzzing Audit Report

Adam Korczynski, David Korczynski

2024-01-11

LLVM Fuzzing Audit 2024-01-11

About Ada Logics

Ada Logics is a software security company founded in Oxford, UK, 2018 and is now based in London.
We are a team of pragmatic security engineers and security researchers that work hands-on with code
auditing, security automation and security tool development.

We are committed open source contributors and we routinely contribute to state of the art security
tooling in the fuzzing domain such as advanced fuzzing tools like Fuzz Introspector and continuous
fuzzing with OSS-Fuzz. For example, we have contributed to fuzzing of hundreds of open source
projects by way of OSS-Fuzz. We regularly perform security audits of open source software and make
our reports publicly available with findings and fixes, and we have audited many of the most widely
used cloud native applications.

Ada Logics contributes to solving the challenge of securing the software supply-chain. To this end, we
develop the tooling and infrastructure needed for ensuring a secure software development lifecycle,
and we deploy these tools to critical software packages. On the tooling and infrastructure side, we
contribute to projects such as the OpenSSF Scorecard project as well as the Sigstore projects like SLSA
and Cosign.

Ada Logics helps some of the most exposed organisations secure their software, analyse their code
and increase security automation and assurance, and if you would like to consider working with us
please reach out to us via our website.

We write about our work on our blog and maintain a Youtube channel with educational videos. You
can also follow Ada Logics on Linkedin, X.

Ada Logics ltd
71-75 Shelton Street,
WC2H 9JQ London,
United Kingdom

LLVM Fuzzing Audit 1

https://github.com/ossf/fuzz-introspector
https://adalogics.com/blog/fuzzing-100-open-source-projects-with-oss-fuzz
https://adalogics.com/blog/fuzzing-100-open-source-projects-with-oss-fuzz
https://adalogics.com
https://adalogics.com/blog
https://www.youtube.com/channel/UC9AiX8FOiOpK6mNggXSamBg
https://www.linkedin.com/company/ada-logics
https://x.com/ADALogics

LLVM Fuzzing Audit 2024-01-11

Contents

About Ada Logics 1

1 Project dashboard 3

2 Executive Summary 4

3 LLVM Fuzzing Audit 5
3.1 Engagement overview . 5
3.2 LLVM OSS-Fuzz setup and repair . 6
3.3 Fixing issues reported by OSS-Fuzz. 8
3.4 Expanding fuzzing coverage . 10
3.5 Identifying areas of improvement and future work . 12

4 Issues found and fixed 16
4.1 Heap-buffer-overflow in llvm::xxh3_64bits . 17
4.2 Out of bounds write in llvm::DWARFUnitIndex::paseImpl 18
4.3 Heap-buffer-overflow in llvm::object::WasmObjectFile::parseCodeSection 20
4.4 Null-dereference READ in llvm::object::WasmObjectFile::parseLinkingSectionSymtab . 23
4.5 Heap-use-after-free in clang::Parser::isCXXDeclarationSpecifier 25
4.6 Heap-use-after-free in clang::Sema::GetNameFromUnqualifiedId 27
4.7 Global-buffer-overflow in llvm::hashing::detail::hash_short 29
4.8 Heap-buffer-overflow in llvm_regcomp . 32
4.9 Heap-buffer-overflow in WasmObjectFile::parseLinkingSectionSymtab 34
4.10 [llvm-special-case-list-fuzzer] fix off-by-one read . 35
4.11 NULL-dereference READ in processTypeAttrs . 37
4.12 NULL-dereference READ in GetFullTypeForDeclarator 39

LLVM Fuzzing Audit 2

LLVM Fuzzing Audit 2024-01-11

1 Project dashboard

Contact Role Organisation Email

Adam Korczynski Auditor Ada Logics Ltd adam@adalogics.com

David Korczynski Auditor Ada Logics Ltd david@adalogics.com

Amir Montazery Facilitator OSTIF amir@ostif.org

Derek Zimmer Facilitator OSTIF derek@ostif.org

Helen Woeste Facilitator OSTIF helen@ostif.org

LLVM Fuzzing Audit 3

LLVM Fuzzing Audit 2024-01-11

2 Executive Summary

Ada Logics conducted a fuzzing audit of LLVM at the end of November and December 2023. The goal of
the audit was to generally improve the fuzzing set up of LLVM with a particular focus on its continuous
fuzzing by way of OSS-Fuzz. The audit was facilitated by the Open Source Technology Improvement
Fund (OSTIF) and funded by the Sovereign Tech Fund.

Ada Logics has extensive experience in fuzzing and throughout the initial assessment of LLVM’s fuzzing
set up we identified and prioritised the tasks needed to have impact on the fuzzing of LLVM. To this
end, throughout the engagement we fixed the existing OSS-Fuzz LLVM fuzzing set up, extended existing
fuzzers as well as added new fuzzers, patched issues found by fuzzers as well and developed a strategy
on how to move the LLVM fuzzing set up forward.

The LLVM project has extensive fuzzing, however, it lacks efficiency in certain areas that means the
existing set up does not reach its full potential in terms of memory corruption issues. In order to
improve the chance of the fuzzers finding memory corruption issues in LLVM we recommend addressing
efficiency issues in the fuzzing set up, and estimate once this has been done a significant amount of
the LLVM codebase will be covered by fuzzing.

In summary, during the engagement we:

• Fixed the OSS-Fuzz set up of LLVM that had been broken for more than a year.
• Expanded coverage from 1.1 million to 2.4 million LoC, making it the project on OSS-Fuzz with

most lines of code covered by fuzzing.
• Extended existing fuzzing suite on OSS-Fuzz and developed 3 new fuzzers, increasing the fuzzers

on OSS-Fuzz with 15 fuzzers.
• Fixed 11 issues reported by OSS-Fuzz, including 8 memory corruption issues.
• Developed strategy for next steps of fuzzing LLVM, with a focus on improving fuzzing efficiency

LLVM Fuzzing Audit 4

https://adalogics.com
https://github.com/google/oss-fuzz
https://ostif.org
https://ostif.org
https://sovereigntechfund.de

LLVM Fuzzing Audit 2024-01-11

3 LLVM Fuzzing Audit

3.1 Engagement overview

The goal of this engagement was to improve the fuzzing set up of LLVM and to this end we performed
several different tasks all aimed at improving the LLVM fuzzing set up. In this section we detail the
various high-level tasks performed and the results of them. We summarise the engagement in the
following tasks:

1. LLVM OSS-Fuzz setup analysis and repair
2. Fixing issues reported by OSS-Fuzz
3. Expanding fuzzing coverage
4. Identifying areas for improvement and future work

In the following sections we go through each of these tasks.

LLVM Fuzzing Audit 5

LLVM Fuzzing Audit 2024-01-11

3.2 LLVM OSS-Fuzz setup and repair

LLVM has been integrated into OSS-Fuzz since August 2017. At this point in time there were around 90
projects in OSS-Fuzz (in contrast to more than 1200 now), which makes it one of the projects that has
been in OSS-Fuzz for the longest period of time.

In total, OSS-Fuzz has reported more than 2770 issues in LLVM and there are around 400 open issues at
the moment. The LLVM OSS-Fuzz project is public by having no view restrictions which means that
anyone can (1) view the issues reported by the OSS-Fuzz setup, and (2) download the reproducer test
cases to reproduce any of the reported findings. As such, anyone can monitor and reproduce the issues
discovered without any limitations on deadlines, i.e. issues are made public when they are found and
do not have any embargo on them.

For example, the following steps reproduce the following issue llvm/clang-fuzzer: Null-dereference
READ in clang::Lexer::Lex:

1 #!/bin/bash
2
3 mkdir workdir
4 cd workdir
5
6 # Download the "Reproducer Testcase" (https://oss-fuzz.com/download?

testcase_id=5665748027965440)
7 # and storeit in ./clusterfuzz-testcase-minimized-clang-fuzzer

-5665748027965440 (name of the file)
8
9

10 git clone https://github.com/google/oss-fuzz
11 cd oss-fuzz
12 python3 infra/helper.py build_fuzzers llvm
13 python3 infra/helper.py reproduce \
14 llvm \
15 clang-fuzzer \
16 ./../clusterfuzz-testcase-minimized-clang-

fuzzer-5665748027965440

The above assumes the issue has not been fixed and that the build is working, which is the case as of
the release of this report.

LLVM Build status

LLVM is one of the projects in OSS-Fuzz that has been there for the longest time, however, the health of
the LLVM OSS-Fuzz set up has not been ideal in recent years. Looking at the monorail bug tracker, we
can find the following fuzzing-build issues for LLVM, which shows the project has been failing to build
throughout:

• Dec 15 2019 : Dec 19 2019

LLVM Fuzzing Audit 6

https://github.com/google/oss-fuzz/pull/788
https://bugs.chromium.org/p/oss-fuzz/issues/list?sort=-reported&q=Proj%3Dllvm&can=1
https://bugs.chromium.org/p/oss-fuzz/issues/list?sort=-reported&q=Proj%3Dllvm&can=2
https://bugs.chromium.org/p/oss-fuzz/issues/list?sort=-reported&q=Proj%3Dllvm&can=2
https://github.com/google/oss-fuzz/blob/1dcc6c535e9d2255ac53bb2119c1bacd02e7cbcc/projects/llvm/project.yaml#L29-L30
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=14542
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=14542
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=19512

LLVM Fuzzing Audit 2024-01-11

• Aug 19, 2020 : Aug 21, 2020
• Nov 6, 2020 : Nov 7, 2020
• Nov 20, 2020 : Jan 25, 2022
• May 13, 2022 : Aug 13, 2022
• Oct 7, 2022 : Dec 2, 2023

In this sense there had been long failing builds for LLVM between the periods Nov 20, 2020 to late 2023,
and when we started the engagement the project had been failing to build for more than a year. As the
build was broken, LLVM had not been fuzzing the latest up-to-date code, and had not generated any
code coverage reports as well.

The build issue was, however, that one of the issues triggered an issue in the first run of the fuzzer, and
OSS-Fuzz then considers the build broken since the fuzzer will not do any form of exploration. This
was initially fixed by removing the fuzzer from the OSS-Fuzz build while simultaneously submitting a
fix for the fuzzer 4.10.

Getting coverage working

The LLVM coverage build failed to pass in the OSS-Fuzz infrastructure even after fixing the fuzzing build.
The difference in this case is that the “fuzzing” build refers to building and running the fuzzers using
bug-finding sanitizers (e.g. ASAN) whereas the coverage build refers to building LLVM with lcov and
generating html reports showing the code coverage of the source of LLVM.

The main problem is that coverage builds take up more memory when building the fuzzers, and this
was exhausting the resources on the OSS-Fuzz cloud machines causing the build to be aborted.

To solve this issue the first step was to reduce the amount of parallelism during the LLVM build process
for coverage builds. However, even when no parallelism is used (i.e. compiling with a single job), the
memory would be exhausted. The issue is that when building certain files in the LLVM codebase, the
build will simply exhaust the memory available. To overcome this, we added a minor tool for the LLVM
build that patches the build set up of LLVM for two files to not include coverage instrumentation.

The following PRs on OSS-Fuzz are focused on getting the code coverage working again:

• llvm: limit resources for build
• llvm: fix coverage build
• llvm: limit coverage builds to 2 processes
• llvm: reorder fuzzer builds
• llvm: try getting coverage to work
• llvm: fix coverage build
• llvm: fix coverage build

LLVM Fuzzing Audit 7

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=25033
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=27248
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=27686
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=47424
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=52203
https://github.com/google/oss-fuzz/pull/11302
https://github.com/google/oss-fuzz/pull/11305
https://github.com/google/oss-fuzz/pull/11308
https://github.com/google/oss-fuzz/pull/11315
https://github.com/google/oss-fuzz/pull/11331
https://github.com/google/oss-fuzz/pull/11340
https://github.com/google/oss-fuzz/pull/11403

LLVM Fuzzing Audit 2024-01-11

3.3 Fixing issues reported by OSS-Fuzz.

Following the initial analysis and the build fixing, the next step was to start fixing the issues reported
by OSS-Fuzz. The most important in this context are the issues labelled as security relevant, and at
the beginning of the engagement there were several open issues reported by OSS-Fuzz and labelled
“Security-issue”. For reference, in general issues are labelled security issues by OSS-Fuzz if they are
memory corruption issues, such as buffer overflows, use-after-frees and alike. Throughout the report
we will refer to these as security issues for this reason, although the specific security relevance is
dependent on the individual LLVM component’s threat model. This engagement focused on fuzzing
and we consider it out of scope for this audit to develop such threat models. The list of open such
issues can be found using the following query on Monorail: open security issues on LLVM OSS-Fuzz’s
monorail. In addition to the security-relevant issues there are several open issues for e.g. memory
leaks and NULL-pointer dereferences. We also consider these important to fix.

The issues themselves vary in nature in terms of complexity, furthermore, some of these issues are
not triggered in a single iteration of a fuzzer, but need 2 iterations. We considered issues that were
triggerable in a single iteration as the most important because these correspond more to the use case
of LLVM/Clang where the operations the fuzzers perform are usually performed in an ethemeral manner,
e.g. you use an individual process of clang for each run of the compiler.

The issues vary significantly in complexity, and for some of the issues it can be tricky to understand the
root-cause as well as the fix. Ideally, fixing the issues should be delegated to those who know the code,
although this is logistically difficult in LLVM’s case since many of the maintainers are not familiar with
the OSS-Fuzz set up.

The issues that we proposed fixes for are in the list of issues below, and in this category of issue type
the following are relevant:

• Heap-use-after-free in clang::Parser::isCXXDeclarationSpecifier
• Heap-use-after-free in clang::Sema::GetNameFromUnqualifiedId
• Heap-buffer-overflow in llvm::object::WasmObjectFile::parseCodeSection
• Out of bounds write in llvm::DWARFUnitIndex::paseImpl
• Null-dereference READ in llvm::object::WasmObjectFile::parseLinkingSectionSymtab
• Global-buffer-overflow in llvm::hashing::detail::hash_short
• Heap-buffer-overflow in llvm_regcomp
• Heap-buffer-overflow in WasmObjectFile::parseLinkingSectionSymtab
• NULL-dereference READ in processTypeAttrs
• NULL-dereference READ in GetFullTypeForDeclarator

In addition to the security-labelled issues, OSS-Fuzz has also reported more than 180 issues that are
related to false asserts (list here). These are less relevant from a code security perspective and more

LLVM Fuzzing Audit 8

https://bugs.chromium.org/p/oss-fuzz/issues/list?sort=-reported&q=Proj%3Dllvm%20Type%3DBug-Security&can=2
https://bugs.chromium.org/p/oss-fuzz/issues/list?sort=-reported&q=Proj%3Dllvm%20Type%3DBug-Security&can=2
https://bugs.chromium.org/p/oss-fuzz/issues/list?sort=-reported&q=Proj%3Dllvm%20assert&can=2

LLVM Fuzzing Audit 2024-01-11

relevant from a fuzzing-health perspective, since these issues create a significant hurdle for the fuzzing
of LLVM. We will discuss more about this in later sections.

Several of these issues were present prior to the engagement, and some were discovered following the
fixing of the build as well as new fuzzers occuring during the audit.

LLVM Fuzzing Audit 9

LLVM Fuzzing Audit 2024-01-11

3.4 Expanding fuzzing coverage

The next step of the engagement that was relevant was expanding the fuzzing performed by OSS-Fuzz.
The code coverage of LLVM had been broken for a while at the beginning of the engagement, and the
most recent coverage report that we could find from before the engagement was from 10th May, 2022.
At that point in time LLVM had around 100K LoC analysed. However, this is not a perfect example of
correct code coverage since some fuzzers on OSS-Fuzz were disabled. For example, the report from
two years earlier shows 1.1 million LoC covered by the fuzzers LLVM Code coverage report May 10th,
2020.

To expand the fuzzing coverage of LLVM we did two primary tasks:

1. Expand on existing fuzzers to cover additional code
2. Develop new fuzzers that target unexplored code
3. Fix issues/fuzz blockers that break fuzzers

1. Expand on existing fuzzers to cover additional code

There are two fuzzers in LLVM that are written in a way where they can easily be adjusted to cover
certain parts of the code: llvm-isel-fuzzer and llvm-opt-fuzzer.

llvm-isel-fuzzer generates LLVM IR modules and will run the LLVM (legacy) pass manager on the modules
and will also emit these modules. In order to emit the modules several steps need to be handled by
LLVM, e.g. code generation steps. The idea behind this fuzzer is to emit files of various architectures
in order to trigger code generation steps for the various architectures. To this end we extended the
architectures that OSS-Fuzz would analyse with hexagon, riscv64, mips64, arm, ppc64, nvptx,
ve, bpf. This is in addition to the existing architectures: aarch64, x86_64, wasm32, aarch64-
gisel.

The llvm-opt-fuzzer is similar in nature to llvm-isel-fuzzer in that it relies on creating LLVM modules
seeded with fuzz-data and run the LLVM processing on these modules. The llvm-opt-fuzzer, however,
is not focused on code generation but rather on running the LLVM pass pipeline on the generated
modules. To this end, the focus is to analyse various different LLVM passes and we extended with 6 new
passes: dse, loop_idiom, reassociate, lower_matrix_intrinsics, memcpyopt, sroa.
This is in addition to around 15 existing LLVM passes being analysed.

2. Develop new fuzzers that target unexplored code

Next, we developed a set of new fuzzers that target new parts of the LLVM codebase. In total, we added
three new fuzzers:

• llvm-parse-assembly-fuzzer
• llvm-object-yaml-fuzzer

LLVM Fuzzing Audit 10

https://storage.googleapis.com/oss-fuzz-coverage/llvm/reports/20220510/linux/report.html
https://storage.googleapis.com/oss-fuzz-coverage/llvm/reports/20220510/linux/report.html
https://storage.googleapis.com/oss-fuzz-coverage/llvm/reports/20220510/linux/report.html
https://github.com/llvm/llvm-project/tree/main/llvm/tools/llvm-isel-fuzzer
https://github.com/llvm/llvm-project/tree/main/llvm/tools/llvm-opt-fuzzer
https://github.com/llvm/llvm-project/tree/main/llvm/tools/llvm-isel-fuzzer
https://github.com/llvm/llvm-project/tree/main/llvm/tools/llvm-opt-fuzzer
https://github.com/llvm/llvm-project/pull/77751
https://github.com/llvm/llvm-project/pull/77749

LLVM Fuzzing Audit 2024-01-11

• llvm-symbol-reader-fuzzer

Following the fixing of the OSS-Fuzz set up the LLVM build and coverage build, the total lines of code
coverage was slightly more than 1.1 million LoC. The extensions described in this section increased
the lines oc code analysed to around 2.6 million lines of code, and, interestingly the LLVM is now the
project with most lines of code covered on OSS-Fuzz as shown in Figure 1.

Figure 1: Coverage overview of OSS-Fuzz projects, showing LLVM has highest amount of lines covered
https://introspector.oss-fuzz.com/projects-overview

Additionally the fuzz count number on OSS-Fuzz increased from 30 to 48, and the correlation between
fuzz count increasing and code coverage increasing is shown in Figure 2.

Figure 2: LLVM historical progression since build was fixed
https://introspector.oss-fuzz.com/project-profile?project=llvm

LLVM Fuzzing Audit 11

https://github.com/llvm/llvm-project/pull/77752
https://introspector.oss-fuzz.com/projects-overview
https://introspector.oss-fuzz.com/project-profile?project=llvm

LLVM Fuzzing Audit 2024-01-11

3.5 Identifying areas of improvement and future work

As the final objective of our engagement we focused on identifying directions for where LLVM should
focus on fuzzing efforts. There are several areas of improvement and tasks that can be done for future
work, and we consider the three primary tasks to be:

1. Ensure that fuzzers are running correctly
2. Fix issues to ensure fuzzers run
3. Limit the use of abort and hard exits

There are other possible tasks, although we consider these secondary to the above listed ones. These
include

• Expand with new fuzzers
• Ensure proper seeds for the fuzzers

We consider these secondary because the three first items are likely to cover a lot of the code in the LLVM
codebase, but are currently blocked for progress. In total, at 9th December 2023 when the coverage
build was fixed, the lines of code coverage by fuzzers was 1,111,412 and at the end of this engagement
a total of 2.588.921.

It is very likely that once the first batch of issues are found then further blockers of the same kind will
occur. As such, the primary issues listed above are likely time-consuming and long-term tasks.

Once the three issues listed below have been solved, we estimate that the LLVM fuzzing setup will (1)
have found and discovered a fair number of new memory corruption issues and (2) that the fuzzing set
up will cover a significant part of the LLVM codebase.

In the following we will go into more details with the three primary areas suggested above. The three
areas are all related to each other, in that they revolve around the fuzzers running without being
crashed by existing issues regularly. We have split this overall topic into three issues, by and large due
to the possible solutions at hand.

1. Ensure that fuzzers are running correctly:

The fuzzers of LLVM are facing issues in terms of encountering code points that cause the fuzzers to be
stopped. This makes the fuzzing inefficient, and currently our estimate is that the LLVM fuzzers have a
significant potential in terms of exploring many more parts of the LLVM codebase, but are currently
blocked from doing this by the early exits.

In this case, we would like to reference the OSS-Fuzz “Fuzzer Statistics” page, which is accessible to the
emails listed in the LLVM project.yaml by way of oss-fuzz.com. This page shows various metrics for
the performance of the fuzzers, and Figure 3 shows a screenshot as of early Jan, 2024 of the page with
fuzzers sorted by the column “fuzzing_time_percent”. This column shows the “Percent of expected

LLVM Fuzzing Audit 12

https://storage.googleapis.com/oss-fuzz-coverage/llvm/reports/20231209/linux/report.html
https://storage.googleapis.com/oss-fuzz-coverage/llvm/reports/20240110/linux/report.html
https://github.com/google/oss-fuzz/blob/master/projects/llvm/project.yaml
https://oss-fuzz.com

LLVM Fuzzing Audit 2024-01-11

fuzzing time actually spent fuzzing”. Several of the fuzzers have less than 1% efficiency and many of the
fuzzers have less than 25% fuzzing time. Ideally, this should be closer to 100% from the perspective of
ensuring fuzzers spend time exploring new code.

In general, our guidance in this next step is to focus on using the “Fuzzer Statistics” page to ensure
fuzzers run efficiently, and in particular by way of the “fuzzing_time_percent” column.

Figure 3: Fuzzing statistics for LLVM on OSS-Fuzz

The next to suggestions for future work are related to this task as well, in that the following two
suggestions are pragmatic ways to improve the fuzzing efficiency, and likely those that will have most
impact.

2. Fix issues to ensure fuzzers run

In general, the key way to ensure fuzzers run efficiently is ensuring there are no open issues on OSS-Fuzz.
This means that the list of open issues should be 0, and currently it has more than 380. However, we
suggest prioritising the issues in the following order:

1. Fix the issues that are labelled security-relevant: list.
2. Fix the NULL-derefence issues: list.
3. Fix the issues that are related to failed asserts: list.
4. Fix issues related to leaks and OOMs
5. Fix the remainder issues.

The above list is a rough-guideline and not a hard prioritisation based on which code issues are likely

LLVM Fuzzing Audit 13

https://bugs.chromium.org/p/oss-fuzz/issues/list?q=Proj%3Dllvm%20label%3AReproducible&can=2&sort=-summary
https://bugs.chromium.org/p/oss-fuzz/issues/list?sort=-summary&q=Proj%3Dllvm%20label%3AReproducible%20Type%3DBug-Security&can=2
https://bugs.chromium.org/p/oss-fuzz/issues/list?sort=-summary&q=Proj%3Dllvm%20label%3AReproducible%20Null-dereference&can=2
https://bugs.chromium.org/p/oss-fuzz/issues/list?sort=-summary&q=Proj%3Dllvm%20label%3AReproducible%20assert&can=2
https://bugs.chromium.org/p/oss-fuzz/issues/list?sort=-summary&q=Proj%3Dllvm%20label%3AReproducible%20Direct-leak&can=2
https://bugs.chromium.org/p/oss-fuzz/issues/list?sort=-summary&q=Proj%3Dllvm%20label%3AReproducible%20out%20of%20memory&can=2

LLVM Fuzzing Audit 2024-01-11

most relevant to the security of LLVM. Another important metric for prioritising which issues to fix
is how fast the fuzzers run into the given issue. For example the fuzzers with less than 1 percent
fuzzing efficiency are running into specific issues instantly in the execution, and fixing these should be
prioritised as well.

3. Limit the use of abort and hard exits

The group of issues with the biggest number of issues is the failedasserts. Failedasserts are used
across LLVM to catch error states and a failed assert does not mean that a bug exists in the LLVM code.
This use of asserts makes it difficult for the fuzzers to explore code, as the fuzzers will consistently
run into failed asserts during execution.

In the llvm/lib/ folder, there are more than 1100 calls to report_fatal_errorwhich causes
hard exits once a fuzzer triggers a call to this function:

1 $ git clone https://github.com/llvm/llvm-project --depth=1
2 $ cd llvm-project/llvm/lib
3 $ grep -rn "report_fatal_error" ./ | wc -l
4 1146

A general recommendation to maximise fuzzing efficiency is to limit the use of fatal errors. LLVM already
has extensive use of passing non-fatal errors, which can be handled by the calling code. From a fuzzing
perspective, soft errors that can be caught or handled by the fuzzers will maximise the efficiency of the
fuzzers and, consequently, optimize the chance of finding security vulnerabilities.

An example of this is the llvm-dwarfdump-fuzzer which exercises a lot of code in the llvm/
lib/Object/WasmObjectFile.cppmodule. This module, however, uses various functions that
reads numerical values from data provided by the fuzzer, and if the numerical value does not match
certain criteria a hard exit is performed. Some of these criteria are difficult for the fuzzer to get right
when it’s aborted all the time. For example readVaruint1 reads a numerical value from the fuzz
data, and unless the numerical value is above 1 or below 0, a fatal exit will happen:

143 static uint8_t readVaruint1(WasmObjectFile::ReadContext &Ctx) {
144 int64_t Result = readLEB128(Ctx);
145 if (Result > VARUINT1_MAX || Result < 0)
146 report_fatal_error("LEB is outside Varuint1 range");
147 return Result;
148 }

Another example from the llvm-dwarfdump-fuzzer is issue20708. This issue was discovered on 15th
Febuary 2020, and on June 18th, 2020 OSS-Fuzz added a note that the crash occurs frequently, limiting
the potential progress of the fuzzer. The issue shows a stacktrace with a call into readLimits causes
an abort:

250 static wasm::WasmLimits readLimits(WasmObjectFile::ReadContext &Ctx) {

LLVM Fuzzing Audit 14

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=20708
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=20708#c2
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=20708#c2

LLVM Fuzzing Audit 2024-01-11

251 wasm::WasmLimits Result;
252 Result.Flags = readVaruint32(Ctx);
253 Result.Minimum = readVaruint64(Ctx);
254 if (Result.Flags & wasm::WASM_LIMITS_FLAG_HAS_MAX)
255 Result.Maximum = readVaruint64(Ctx);
256 return Result;
257 }

This function uses two utility functions for reading numerical values out of data provided by the fuzzer:
readVaruint32 and readVaruint64. readVaruint32 is defined as follows:

157 static uint32_t readVaruint32(WasmObjectFile::ReadContext &Ctx) {
158 uint64_t Result = readULEB128(Ctx);
159 if (Result > UINT32_MAX)
160 report_fatal_error("LEB is outside Varuint32 range");
161 return Result;
162 }

Furthermore, there readULEB128 is defined as follows:

113 static uint64_t readULEB128(WasmObjectFile::ReadContext &Ctx) {
114 unsigned Count;
115 const char *Error = nullptr;
116 uint64_t Result = decodeULEB128(Ctx.Ptr, &Count, Ctx.End, &Error);
117 if (Error)
118 report_fatal_error(Error);
119 Ctx.Ptr += Count;
120 return Result;
121 }

The problem is that both readVaruint32 and decodeULEB128 has a chance of calling
report_fatal_error in the event the integer read from the fuzzer-provided data is not within a
certain range or corresponds to a certain format.

It is very likely that the fuzzer will not produce accurate numerical values in the majority of fuzz
iterations, and causing a crash here significantly blocks the fuzzer from doing further analysis as the
fuzzer relies on in-process fuzzing.

Instead of aborting with a fatal issue, it would be much better for the fuzzing if the error on line 116 is
propagated further up the stack so it can be softly handled and the fuzzer can continue running without
the process being crashed. However, in this case, the problem is that a refactoring of this requires
significant adjustments as there are e.g. more than 70 use cases of readVaruint32 and there are
several other similar uses across WasmObjectFile.cpp that are non-trivial to adjust. In this sense,
the right approach would be to refactor the WasmObjectFile.cpp so that fatal errors are not used,
and in particular in places where some input data does not correspond to some expected structure.

LLVM Fuzzing Audit 15

LLVM Fuzzing Audit 2024-01-11

4 Issues found and fixed

In this section we will go through the issues found and fixed throughout the audit.

LLVM Fuzzing Audit 16

LLVM Fuzzing Audit 2024-01-11

4.1 Heap-buffer-overflow in llvm::xxh3_64bits

id ADA-2023-LLVM-1

Monorail ID and URL 65114

Date reported by OSS-Fuzz 2023-12-16

Fix PR [llvm-dwarfdump-fuzzer] fix out of bounds po-
tential

A heap overflow was reported to exist within llvm::xxh3_64bits. However, after fixing the llvm
-dwarfdump-fuzzer by ensuring the input data is properly wrapped this issue is fixed.

The original fuzzer is as follows:

122 extern "C" int LLVMFuzzerTestOneInput(uint8_t *data, size_t size) {
123 std::unique_ptr<MemoryBuffer> Buff = MemoryBuffer::getMemBuffer(
124 StringRef((const char *)data, size), "", false);

The fixed fuzzer is as follows:

122 extern "C" int LLVMFuzzerTestOneInput(uint8_t *data, size_t size) {
123 std::string Payload(reinterpret_cast<const char *>(data), size);
124 std::unique_ptr<llvm::MemoryBuffer> Buff = llvm::MemoryBuffer::

getMemBuffer(Payload);

The problem is that the current fuzzer relies on MemoryBuffer to hold the fuzz data. However, the
fuzzer runs into an OOB instantly because the MemoryBuffer interface guarantees that “In addition to
basic access to the characters in the file, this interface guarantees you can read one character past the
end of the file, and that this character will read as ‘\0’.”, which the fuzzer fails to satisfy.

LLVM Fuzzing Audit 17

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65114
https://github.com/llvm/llvm-project/pull/76408
https://github.com/llvm/llvm-project/pull/76408

LLVM Fuzzing Audit 2024-01-11

4.2 Out of bounds write in llvm::DWARFUnitIndex::paseImpl

id ADA-2023-LLVM-2

Monorail ID and URL 30308

Date reported by OSS-Fuzz 2021-02-05

Fix PR [DWARFLibrary] Add bounds check to Contrib in-
dex

An out of bounds write exists in the llvm::DWARFUnitIndex::parseImpl at the following
lines:

146 auto Contribs =
147 std::make_unique<Entry::SectionContribution *[]>(Header.NumUnits)

;
148 ColumnKinds = std::make_unique<DWARFSectionKind[]>(Header.NumColumns)

;
149 RawSectionIds = std::make_unique<uint32_t[]>(Header.NumColumns);
150
151 // Read Hash Table of Signatures
152 for (unsigned i = 0; i != Header.NumBuckets; ++i)
153 Rows[i].Signature = IndexData.getU64(&Offset);
154
155 // Read Parallel Table of Indexes
156 for (unsigned i = 0; i != Header.NumBuckets; ++i) {
157 auto Index = IndexData.getU32(&Offset);
158 if (!Index)
159 continue;
160 Rows[i].Index = this;
161 Rows[i].Contributions =
162 std::make_unique<Entry::SectionContribution[]>(Header.

NumColumns);
163 Contribs[Index - 1] = Rows[i].Contributions.get();

The problem is that the write on line 163 depends on Index, which is read on line 157 from arbitrary
data, and there is no bounds checking on the value.

The proposed fix is to add bounds checking when reading Index:

157 auto Index = IndexData.getU32(&Offset);
158 if (!Index)
159 continue;
160 // Fix: ensure proper bounds
161 if (Index > Header.NumColumns)

LLVM Fuzzing Audit 18

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=30308
https://github.com/llvm/llvm-project/pull/76405
https://github.com/llvm/llvm-project/pull/76405

LLVM Fuzzing Audit 2024-01-11

162 return false;
163 Rows[i].Index = this;
164 Rows[i].Contributions =
165 std::make_unique<Entry::SectionContribution[]>(Header.

NumColumns);
166 Contribs[Index - 1] = Rows[i].Contributions.get();

LLVM Fuzzing Audit 19

LLVM Fuzzing Audit 2024-01-11

4.3 Heap-buffer-overflow in llvm::object::WasmObjectFile::parseCodeSection

id ADA-2023-LLVM-3

Monorail ID and URL 28856

Date reported by OSS-Fuzz 2020-12-21

Fix PR [WebAssembly] Add bounds check in parseCode-
Section

An overflow was reported to exist in decodeULEB128with the following stacktrace:

1 ===
2 ==6507==ERROR: AddressSanitizer: heap-buffer-overflow on address 0

x6070000000fc at pc 0x0000009061c4 bp 0x7fff87432890 sp 0
x7fff87432888

3 READ of size 1 at 0x6070000000fc thread T0
4 #0 0x9061c3 in decodeULEB128 llvm-project/llvm/include/llvm/Support

/LEB128.h:144:22
5 #1 0x9061c3 in readULEB128 llvm-project/llvm/lib/Object/

WasmObjectFile.cpp:116:21
6 #2 0x9061c3 in readVaruint32 llvm-project/llvm/lib/Object/

WasmObjectFile.cpp:158:21
7 #3 0x9061c3 in llvm::object::WasmObjectFile::parseCodeSection(llvm

::object::WasmObjectFile::ReadContext&) llvm-project/llvm/lib/
Object/WasmObjectFile.cpp:1469:21

8 #4 0x8f85c1 in llvm::object::WasmObjectFile::parseSection(llvm::
object::WasmSection&) llvm-project/llvm/lib/Object/
WasmObjectFile.cpp:376:12

9 #5 0x8f767d in llvm::object::WasmObjectFile::WasmObjectFile(llvm::
MemoryBufferRef, llvm::Error&) llvm-project/llvm/lib/Object/
WasmObjectFile.cpp:340:16

10 #6 0x8f5c01 in make_unique<llvm::object::WasmObjectFile, llvm::
MemoryBufferRef &, llvm::Error &> /usr/local/include/c++/v1/
__memory/unique_ptr.h:724:32

11 #7 0x8f5c01 in llvm::object::ObjectFile::createWasmObjectFile(llvm
::MemoryBufferRef) llvm-project/llvm/lib/Object/WasmObjectFile.
cpp:69:21

12 #8 0x8d47c6 in llvm::object::ObjectFile::createObjectFile(llvm::
MemoryBufferRef, llvm::file_magic, bool) llvm-project/llvm/lib/
Object/ObjectFile.cpp:195:12

13 #9 0x5775aa in createObjectFile llvm-project/llvm/include/llvm/
Object/ObjectFile.h:375:12

14 #10 0x5775aa in LLVMFuzzerTestOneInput llvm-project/llvm/tools/llvm
-dwarfdump/fuzzer/llvm-dwarfdump-fuzzer.cpp:27:7

LLVM Fuzzing Audit 20

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=28856
https://github.com/llvm/llvm-project/pull/76407
https://github.com/llvm/llvm-project/pull/76407

LLVM Fuzzing Audit 2024-01-11

After further analysis, the error was deemed to exist higher in the stacktrace, specificcally inside of
llvm::object::WasmObjectFile::parseCodeSection:

1458 Error WasmObjectFile::parseCodeSection(ReadContext &Ctx) {
1459 CodeSection = Sections.size();
1460 uint32_t FunctionCount = readVaruint32(Ctx);
1461 if (FunctionCount != Functions.size()) {
1462 return make_error<GenericBinaryError>("invalid function count",
1463 object_error::parse_failed);
1464 }
1465
1466 for (uint32_t i = 0; i < FunctionCount; i++) {
1467 wasm::WasmFunction& Function = Functions[i];
1468 const uint8_t *FunctionStart = Ctx.Ptr;
1469 uint32_t Size = readVaruint32(Ctx);
1470 const uint8_t *FunctionEnd = Ctx.Ptr + Size;
1471
1472 Function.CodeOffset = Ctx.Ptr - FunctionStart;
1473 Function.Index = NumImportedFunctions + i;
1474 Function.CodeSectionOffset = FunctionStart - Ctx.Start;
1475 Function.Size = FunctionEnd - FunctionStart;
1476
1477 uint32_t NumLocalDecls = readVaruint32(Ctx);
1478 Function.Locals.reserve(NumLocalDecls);
1479 while (NumLocalDecls--) {
1480 wasm::WasmLocalDecl Decl;
1481 Decl.Count = readVaruint32(Ctx);
1482 Decl.Type = readUint8(Ctx);
1483 Function.Locals.push_back(Decl);
1484 }
1485
1486 uint32_t BodySize = FunctionEnd - Ctx.Ptr;
1487 Function.Body = ArrayRef<uint8_t>(Ctx.Ptr, BodySize);
1488 // This will be set later when reading in the linking metadata

section.
1489 Function.Comdat = UINT32_MAX;
1490 Ctx.Ptr += BodySize;
1491 assert(Ctx.Ptr == FunctionEnd);

The problem is thatSize read on line 1469 is read from data and denotes the size ofFunction inside
of the memory owned by Ctx. However, there is no checking on whether the Size (of the function)
extends beyond buffer owned by Ctx. Adding a check on the size fixes the issue:

1469 uint32_t Size = readVaruint32(Ctx);
1470 const uint8_t *FunctionEnd = Ctx.Ptr + Size;
1471
1472 Function.CodeOffset = Ctx.Ptr - FunctionStart;
1473 Function.Index = NumImportedFunctions + i;
1474 Function.CodeSectionOffset = FunctionStart - Ctx.Start;
1475 Function.Size = FunctionEnd - FunctionStart;

LLVM Fuzzing Audit 21

LLVM Fuzzing Audit 2024-01-11

1476
1477 uint32_t NumLocalDecls = readVaruint32(Ctx);
1478 Function.Locals.reserve(NumLocalDecls);
1479 while (NumLocalDecls--) {
1480 wasm::WasmLocalDecl Decl;
1481 Decl.Count = readVaruint32(Ctx);
1482 Decl.Type = readUint8(Ctx);
1483 Function.Locals.push_back(Decl);
1484 }
1485
1486 uint32_t BodySize = FunctionEnd - Ctx.Ptr;
1487 Function.Body = ArrayRef<uint8_t>(Ctx.Ptr, BodySize);
1488 // This will be set later when reading in the linking metadata

section.
1489 Function.Comdat = UINT32_MAX;
1490
1491 // Fix: Check that Function start + size is within Ctx's buffer

bounds.
1492 if (Ctx.Ptr + BodySize > Ctx.End) {
1493 return make_error<GenericBinaryError>("Function points beyond

buffer",
1494 object_error::

parse_failed);
1495 }
1496 Ctx.Ptr += BodySize;
1497 assert(Ctx.Ptr == FunctionEnd);

LLVM Fuzzing Audit 22

LLVM Fuzzing Audit 2024-01-11

4.4 Null-dereference READ in
llvm::object::WasmObjectFile::parseLinkingSectionSymtab

id ADA-2023-LLVM-4

Monorail ID and URL 30789

Date reported by OSS-Fuzz 2021-02-01

Fix PR [WasmObjectFile] fix NULL-dereference

A NULL-dereference was found with the following stack trace:

1 ==24837==ERROR: AddressSanitizer: SEGV on unknown address 0
x000000000558 (pc 0x000000550ae0 bp 0x7ffc829e7af0 sp 0x7ffc829e72b0
T0)

2 ==24837==The signal is caused by a READ memory access.
3 ==24837==Hint: address points to the zero page.
4 SCARINESS: 10 (null-deref)
5 #0 0x550ae0 in __sanitizer::internal_memmove(void*, void const*,

unsigned long) llvm-project/compiler-rt/lib/sanitizer_common/
sanitizer_libc.cpp:68:16

6 #1 0x5397b5 in __asan_memmove llvm-project/compiler-rt/lib/asan/
asan_interceptors_memintrinsics.cpp:30:3

7 #2 0x9145dc in llvm::object::WasmObjectFile::
parseLinkingSectionSymtab(llvm::object::WasmObjectFile::
ReadContext&) llvm-project/llvm/lib/Object/WasmObjectFile.cpp
:758:17

8 #3 0x90f042 in llvm::object::WasmObjectFile::parseLinkingSection(
llvm::object::WasmObjectFile::ReadContext&) llvm-project/llvm/
lib/Object/WasmObjectFile.cpp:552:23

9 #4 0x8f90fe in llvm::object::WasmObjectFile::parseCustomSection(
llvm::object::WasmSection&, llvm::object::WasmObjectFile::
ReadContext&) llvm-project/llvm/lib/Object/WasmObjectFile.cpp
:1091:21

10 #5 0x8f861c in llvm::object::WasmObjectFile::parseSection(llvm::
object::WasmSection&) llvm-project/llvm/lib/Object/
WasmObjectFile.cpp:354:12

The root-cause was determined to be inllvm::object::WasmObjectFile::parseLinkingSectionSymtab
at the following lines:

755 Info.ElementIndex = readVaruint32(Ctx);
756 // Use somewhat unique section name as symbol name.
757 StringRef SectionName = Sections[Info.ElementIndex].Name;
758 Info.Name = SectionName;

LLVM Fuzzing Audit 23

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=30789
https://github.com/llvm/llvm-project/pull/77708

LLVM Fuzzing Audit 2024-01-11

759 break;
760 }

The problem is that Info.ElementIndex is read from untrusted data and is then used as an index
into the array. There is no bounds checking as to whether it’s a valid index.

The proposed fix:

755 Info.ElementIndex = readVaruint32(Ctx);
756 if (Info.ElementIndex >= Sections.size()) {
757 return make_error<GenericBinaryError>("invalid section index

index",
758 object_error::

parse_failed);
759 }
760 // Use somewhat unique section name as symbol name.
761 StringRef SectionName = Sections[Info.ElementIndex].Name;
762 Info.Name = SectionName;
763 break;
764 }

LLVM Fuzzing Audit 24

LLVM Fuzzing Audit 2024-01-11

4.5 Heap-use-after-free in clang::Parser::isCXXDeclarationSpecifier

id ADA-2023-LLVM-5

Monorail ID and URL 23204

Date reported by OSS-Fuzz 2020-06-08

Fix PR [clang][parse] Fix UAF in MaybeDestroyTem-
plates

Heap-use-after-free was discovered with the following stack trace:

1 ==41917==ERROR: AddressSanitizer: heap-use-after-free on address 0
x60600000b380 at pc 0x0000055596fe bp 0x7ffe882edcb0 sp 0
x7ffe882edca8

2 READ of size 4 at 0x60600000b380 thread T0
3 #0 0x55596fd in hasInvalidName llvm-project/clang/include/clang/

Sema/ParsedTemplate.h:230:42
4 #1 0x55596fd in clang::Parser::isCXXDeclarationSpecifier(clang::

ImplicitTypenameContext, clang::Parser::TPResult, bool*) llvm-
project/clang/lib/Parse/ParseTentative.cpp:1592:22

5 #2 0x555659f in clang::Parser::isCXXSimpleDeclaration(bool) llvm-
project/clang/lib/Parse/ParseTentative.cpp:162:18

6 #3 0x5555dbc in clang::Parser::isCXXDeclarationStatement(bool) llvm
-project/clang/lib/Parse/ParseTentative.cpp:112:12

7 #4 0x54dd954 in isDeclarationStatement llvm-project/clang/include/
clang/Parse/Parser.h:2497:14

8 #5 0x54dd954 in clang::Parser::
ParseStatementOrDeclarationAfterAttributes(llvm::SmallVector<
clang::Stmt*, 32u>&, clang::Parser::ParsedStmtContext, clang::
SourceLocation*, clang::ParsedAttributes&, clang::
ParsedAttributes&) llvm-project/clang/lib/Parse/ParseStmt.cpp
:239:10

where the memory was freed by at:

1 0x60600000b380 is located 32 bytes inside of 56-byte region [0
x60600000b360,0x60600000b398)

2 freed by thread T0 here:
3 #0 0x5d9472 in __interceptor_free llvm-project/compiler-rt/lib/asan

/asan_malloc_linux.cpp:52:3
4 #1 0x511126d in Destroy llvm-project/clang/include/clang/Sema/

ParsedTemplate.h:219:7
5 #2 0x511126d in clang::Parser::DestroyTemplateIds() llvm-project/

clang/lib/Parse/Parser.cpp:581:9

LLVM Fuzzing Audit 25

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=23204
https://github.com/llvm/llvm-project/pull/77698
https://github.com/llvm/llvm-project/pull/77698

LLVM Fuzzing Audit 2024-01-11

6 #3 0x54dbdfd in MaybeDestroyTemplateIds llvm-project/clang/include/
clang/Parse/Parser.h:296:7

7 #4 0x54dbdfd in clang::Parser::ParseStatementOrDeclaration(llvm::
SmallVector<clang::Stmt*, 32u>&, clang::Parser::
ParsedStmtContext, clang::SourceLocation*) llvm-project/clang/
lib/Parse/ParseStmt.cpp:120:3

The root-cause was found to be that clang::Parser::MaybeDestroyTemplateIds is too
permissive with the following code:

1 void MaybeDestroyTemplateIds() {
2 if (!TemplateIds.empty() &&
3 (Tok.is(tok::eof) || !PP.mightHavePendingAnnotationTokens()))
4 DestroyTemplateIds();
5 }

Specifically, the issue found was discovered to trigger a condition whereTok.is(tok::eof) is true
by !PP.mightHavePendingAnnotationTokens()) is false.

The fix is to adjust clang::Parser::MaybeDestroyTemplateIds to narrow the check to:

1 void MaybeDestroyTemplateIds() {
2 if (!TemplateIds.empty() &&
3 (!PP.mightHavePendingAnnotationTokens()))
4 DestroyTemplateIds();
5 }

LLVM Fuzzing Audit 26

LLVM Fuzzing Audit 2024-01-11

4.6 Heap-use-after-free in clang::Sema::GetNameFromUnqualifiedId

id ADA-2023-LLVM-6

Monorail ID and URL 52018

Date reported by OSS-Fuzz 2022-10-01

Fix PR [clang][parse] Fix UAF in MaybeDestroyTem-
plates

Heap-use-after-free was discovered with the following stack trace:

1 ==7843==ERROR: AddressSanitizer: heap-use-after-free on address 0
x60600000b498 at pc 0x0000062eb0fe bp 0x7ffefb4c9f90 sp 0
x7ffefb4c9f88

2 READ of size 8 at 0x60600000b498 thread T0
3 SCARINESS: 51 (8-byte-read-heap-use-after-free)
4 #0 0x62eb0fd in get llvm-project/clang/include/clang/Sema/Ownership

.h:81:41
5 #1 0x62eb0fd in clang::Sema::GetNameFromUnqualifiedId(clang::

UnqualifiedId const&) llvm-project/clang/lib/Sema/SemaDecl.cpp
:6049:52

6 #2 0x62ebdde in GetNameForDeclarator llvm-project/clang/lib/Sema/
SemaDecl.cpp:5937:10

7 #3 0x62ebdde in clang::Sema::HandleDeclarator(clang::Scope*, clang
::Declarator&, llvm::MutableArrayRef<clang::
TemplateParameterList*>) llvm-project/clang/lib/Sema/SemaDecl.
cpp:6360:34

8 #4 0x62eb816 in clang::Sema::ActOnDeclarator(clang::Scope*, clang::
Declarator&) llvm-project/clang/lib/Sema/SemaDecl.cpp:6216:15

9 #5 0x51c85c0 in clang::Parser::
ParseDeclarationAfterDeclaratorAndAttributes(clang::Declarator&,
clang::Parser::ParsedTemplateInfo const&, clang::Parser::

ForRangeInit*) llvm-project/clang/lib/Parse/ParseDecl.cpp
:2517:24

10 #6 0x51c13ec in clang::Parser::ParseDeclGroup(clang::
ParsingDeclSpec&, clang::DeclaratorContext, clang::
ParsedAttributes&, clang::SourceLocation*, clang::Parser::
ForRangeInit*) llvm-project/clang/lib/Parse/ParseDecl.cpp
:2337:21

11 #7 0x51bca40 in clang::Parser::ParseSimpleDeclaration(clang::
DeclaratorContext, clang::SourceLocation&, clang::
ParsedAttributes&, clang::ParsedAttributes&, bool, clang::Parser
::ForRangeInit*, clang::SourceLocation*) llvm-project/clang/lib/
Parse/ParseDecl.cpp:2030:10

LLVM Fuzzing Audit 27

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=52018
https://github.com/llvm/llvm-project/pull/77698
https://github.com/llvm/llvm-project/pull/77698

LLVM Fuzzing Audit 2024-01-11

where the memory was freed by at:

1 0x60600000b498 is located 24 bytes inside of 56-byte region [0
x60600000b480,0x60600000b4b8)

2 freed by thread T0 here:
3 #0 0x5d9472 in __interceptor_free llvm-project/compiler-rt/lib/asan

/asan_malloc_linux.cpp:52:3
4 #1 0x5112d2d in Destroy llvm-project/clang/include/clang/Sema/

ParsedTemplate.h:219:7
5 #2 0x5112d2d in clang::Parser::DestroyTemplateIds() llvm-project/

clang/lib/Parse/Parser.cpp:581:9
6 #3 0x54dd8bd in MaybeDestroyTemplateIds llvm-project/clang/include/

clang/Parse/Parser.h:296:7
7 #4 0x54dd8bd in clang::Parser::ParseStatementOrDeclaration(llvm::

SmallVector<clang::Stmt*, 32u>&, clang::Parser::
ParsedStmtContext, clang::SourceLocation*) llvm-project/clang/
lib/Parse/ParseStmt.cpp:120:3

8 #5 0x550a607 in clang::Parser::ParseCompoundStatementBody(bool)
llvm-project/clang/lib/Parse/ParseStmt.cpp:1236:11

9 #6 0x52f954b in clang::Parser::ParseBlockLiteralExpression() llvm-
project/clang/lib/Parse/ParseExpr.cpp:3748:19

10 #7 0x52d7567 in clang::Parser::ParseCastExpression(clang::Parser::
CastParseKind, bool, bool&, clang::Parser::TypeCastState, bool,
bool*) llvm-project/clang/lib/Parse/ParseExpr.cpp:1782:11

The root-cause was found to be that clang::Parser::MaybeDestroyTemplateIds is too
permissive with the following code:

1 void MaybeDestroyTemplateIds() {
2 if (!TemplateIds.empty() &&
3 (Tok.is(tok::eof) || !PP.mightHavePendingAnnotationTokens()))
4 DestroyTemplateIds();
5 }

Specifically, the issue found was discovered to trigger a condition whereTok.is(tok::eof) is true
by !PP.mightHavePendingAnnotationTokens()) is false.

The fix is to adjust clang::Parser::MaybeDestroyTemplateIds to narrow the check to:

1 void MaybeDestroyTemplateIds() {
2 if (!TemplateIds.empty() &&
3 (!PP.mightHavePendingAnnotationTokens()))
4 DestroyTemplateIds();
5 }

LLVM Fuzzing Audit 28

LLVM Fuzzing Audit 2024-01-11

4.7 Global-buffer-overflow in llvm::hashing::detail::hash_short

id ADA-2023-LLVM-7

Monorail ID and URL 65283

Date reported by OSS-Fuzz 2023-12-22

Fix PR: [BitcodeReader] Add bounds checking on Strtab

A global buffer overflow was reported with the following stacktrace:

1 ==47690==ERROR: AddressSanitizer: SEGV on unknown address 0
x00000001fff2 (pc 0x000000720be4 bp 0x7fffc3c056f0 sp 0x7fffc3c056c0
T0)

2 ==47690==The signal is caused by a READ memory access.
3 SCARINESS: 20 (wild-addr-read)
4 #0 0x720be4 in hash_1to3_bytes llvm-project/llvm/include/llvm/ADT/

Hashing.h:198:15
5 #1 0x720be4 in llvm::hashing::detail::hash_short(char const*,

unsigned long, unsigned long) llvm-project/llvm/include/llvm/ADT
/Hashing.h:260:12

6 #2 0xb92be2 in getHashValue llvm-project/llvm/include/llvm/ADT/
DenseMap.h:472:12

7 #3 0xb92be2 in bool llvm::DenseMapBase<llvm::DenseMap<llvm::
StringRef, llvm::detail::DenseSetEmpty, llvm::DenseMapInfo<llvm
::StringRef, void>, llvm::detail::DenseSetPair<llvm::StringRef>
>, llvm::StringRef, llvm::detail::DenseSetEmpty, llvm::
DenseMapInfo<llvm::StringRef, void>, llvm::detail::DenseSetPair<
llvm::StringRef> >::LookupBucketFor<llvm::StringRef>(llvm::
StringRef const&, llvm::detail::DenseSetPair<llvm::StringRef>
const*&) const llvm-project/llvm/include/llvm/ADT/DenseMap.h
:653:25

8 #4 0xb931cb in LookupBucketFor<llvm::StringRef> llvm-project/llvm/
include/llvm/ADT/DenseMap.h:689:9

9 #5 0xb931cb in llvm::detail::DenseSetPair<llvm::StringRef>* llvm::
DenseMapBase<llvm::DenseMap<llvm::StringRef, llvm::detail::
DenseSetEmpty, llvm::DenseMapInfo<llvm::StringRef, void>, llvm::
detail::DenseSetPair<llvm::StringRef> >, llvm::StringRef, llvm::
detail::DenseSetEmpty, llvm::DenseMapInfo<llvm::StringRef, void
>, llvm::detail::DenseSetPair<llvm::StringRef> >::
InsertIntoBucketImpl<llvm::StringRef>(llvm::StringRef const&,
llvm::StringRef const&, llvm::detail::DenseSetPair<llvm::
StringRef>*) llvm-project/llvm/include/llvm/ADT/DenseMap.h:609:7

10 #6 0x122f198 in InsertIntoBucket<const llvm::StringRef &, llvm::
detail::DenseSetEmpty &> llvm-project/llvm/include/llvm/ADT/
DenseMap.h:574:17

LLVM Fuzzing Audit 29

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65283
https://github.com/llvm/llvm-project/pull/76403

LLVM Fuzzing Audit 2024-01-11

11 #7 0x122f198 in try_emplace<llvm::detail::DenseSetEmpty &> llvm-
project/llvm/include/llvm/ADT/DenseMap.h:271:17

12 #8 0x122f198 in insert llvm-project/llvm/include/llvm/ADT/DenseSet.
h:208:19

13 #9 0x122f198 in llvm::UniqueStringSaver::save(llvm::StringRef) llvm
-project/llvm/lib/Support/StringSaver.cpp:29:19

14 #10 0xa00afe in llvm::GlobalValue::setPartition(llvm::StringRef)
llvm-project/llvm/lib/IR/Globals.cpp:220:35

15 #11 0x64a60a in parseGlobalIndirectSymbolRecord llvm-project/llvm/
lib/Bitcode/Reader/BitcodeReader.cpp:4221:12

16 #12 0x64a60a in (anonymous namespace)::BitcodeReader::parseModule(
unsigned long, bool, llvm::ParserCallbacks) llvm-project/llvm/
lib/Bitcode/Reader/BitcodeReader.cpp:4511:23

17 #13 0x58a4f7 in parseBitcodeInto llvm-project/llvm/lib/Bitcode/
Reader/BitcodeReader.cpp:4548:10

18 #14 0x58a4f7 in llvm::BitcodeModule::getModuleImpl(llvm::
LLVMContext&, bool, bool, bool, llvm::ParserCallbacks) llvm-
project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp:8014:22

19 #15 0x5a10ce in llvm::BitcodeModule::parseModule(llvm::LLVMContext
&, llvm::ParserCallbacks) llvm-project/llvm/lib/Bitcode/Reader/
BitcodeReader.cpp:8215:10

The problem was assessed to be within theBitcodeReader::parseGlobalIndirectSymbolRecord
function where a StringRef is constructed to point to a buffer that extends beyond allocated

memory:

4219 // Check whether we have enough values to read a partition name.
4220 if (OpNum + 1 < Record.size()) {
4221 NewGA->setPartition(
4222 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4223 OpNum += 2;
4224 }

The problem is that the generated is meant to point inside of the Strtab buffer. However, there is no
bounds checking on whether Record[OpNum + Record[OpNum+1] extends beyond the buffer of
Strtab, which means that a Stringrefmay be created that extends beyond the allocated data of
‘Strtab.

Interestingly, in other parts of the same module there are boundary checkings in place:

4124 // Check whether we have enough values to read a partition name. Also
make

4125 // sure Strtab has enough values.
4126 if (Record.size() > 18 && Strtab.data() &&
4127 Record[17] + Record[18] <= Strtab.size()) {
4128 Func->setPartition(StringRef(Strtab.data() + Record[17], Record

[18]));
4129 }

LLVM Fuzzing Audit 30

LLVM Fuzzing Audit 2024-01-11

The proposed fix for the issue:

4219 // Check whether we have enough values to read a partition name.
4220 if (OpNum + 1 < Record.size()) {
4221 if (Record[OpNum] + Record[OpNum + 1] > Strtab.size()) {
4222 return ze{6}{8}error("Malformed partition, too large.");
4223 }
4224 NewGA->setPartition(
4225 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4226 OpNum += 2;
4227 }

LLVM Fuzzing Audit 31

LLVM Fuzzing Audit 2024-01-11

4.8 Heap-buffer-overflow in llvm_regcomp

id ADA-2023-LLVM-8

Monorail ID and URL 65423

Date reported by OSS-Fuzz 2023-12-30

Fix PR [Support] Fix buffer overflow in regcomp

OQUEST_ and OCH_ causes the scan pointer to skip elements in g’s strip buffer. However, the
terminating character of g->stripmay be within the skipped elements, and there is currently no
checking of that. This adds a check on the skipped elements to ensure no overflow happens.

The findmust function has the following code:

1609 /* find the longest OCHAR sequence in strip */
1610 newlen = 0;
1611 scan = g->strip + 1;
1612 do {
1613 s = *scan++;
1614 switch (OP(s)) {
1615 case OCHAR: /* sequence member */
1616 if (newlen == 0) /* new sequence */
1617 newstart = scan - 1;
1618 newlen++;
1619 break;
1620 case OPLUS_: /* things that don't break one */
1621 case OLPAREN:
1622 case ORPAREN:
1623 break;
1624 case OQUEST_: /* things that must be skipped */
1625 case OCH_:
1626 scan--;
1627 do {
1628 scan += OPND(s);
1629 s = *scan;
1630 /* assert() interferes w debug printouts */
1631 if (OP(s) != O_QUEST && OP(s) != O_CH &&
1632 OP(s) != OOR2) {
1633 g->iflags |= REGEX_BAD;
1634 return;
1635 }
1636 } while (OP(s) != O_QUEST && OP(s) != O_CH);
1637 LLVM_FALLTHROUGH;
1638 default: /* things that break a sequence */

LLVM Fuzzing Audit 32

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65423
https://github.com/llvm/llvm-project/pull/76681

LLVM Fuzzing Audit 2024-01-11

1639 if (newlen > g->mlen) { /* ends one */
1640 start = newstart;
1641 g->mlen = newlen;
1642 }
1643 newlen = 0;
1644 break;
1645 }
1646 } while (OP(s) != OEND);
1647 ~

The do-while loop terminates whenever OP(s)== OEND). However, in the switch statement
within the do body, in the event OP(s) is either OCQUEST_ or OCH_the scan pointer will increase
by a given amount, and it may be that the elements within the skipped amount contains the OEND
element. This must be checked, as otherwise future dereferences, such as the dereference on line 1629,
will lead to buffer overflows on g->strip.

The fix proposed is to add a loop that checks if any of the skipped elements contain theOENDelement.

LLVM Fuzzing Audit 33

LLVM Fuzzing Audit 2024-01-11

4.9 Heap-buffer-overflow in WasmObjectFile::parseLinkingSectionSymtab

id ADA-2023-LLVM-9

Monorail ID and URL 65432

Date reported by OSS-Fuzz 2023-12-16

Fix PR [WebAssembly] Limit increase of Ctx.End

The following code in WasmObjectFile.cpp leads to possible buffer overflows:

531 Error WasmObjectFile::parseLinkingSection(ReadContext &Ctx) {
532 HasLinkingSection = true;
533
534 LinkingData.Version = readVaruint32(Ctx);
535 if (LinkingData.Version != wasm::WasmMetadataVersion) {
536 return make_error<GenericBinaryError>(
537 "unexpected metadata version: " + Twine(LinkingData.Version) +
538 " (Expected: " + Twine(wasm::WasmMetadataVersion) + ")",
539 object_error::parse_failed);
540 }
541
542 const uint8_t *OrigEnd = Ctx.End;
543 while (Ctx.Ptr < OrigEnd) {
544 Ctx.End = OrigEnd;
545 uint8_t Type = readUint8(Ctx);
546 uint32_t Size = readVaruint32(Ctx);
547 LLVM_DEBUG(dbgs() << "readSubsection type=" << int(Type) << " size=

" << Size
548 << "\n");
549 Ctx.End = Ctx.Ptr + Size;

The problem is that Ctx.End is potentially increased beyond the OrigEnd on line 549. Since Ctx.
End represents the end of a heap-allocated buffer, this can cause memory buffer overflows later on, as
the Ctx.End is used as the limit of the Ctx’s memory buffer.

LLVM Fuzzing Audit 34

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65432
https://github.com/llvm/llvm-project/pull/76676

LLVM Fuzzing Audit 2024-01-11

4.10 [llvm-special-case-list-fuzzer] fix off-by-one read

id ADA-2023-LLVM-10

Date reported by OSS-Fuzz 2023-08-01

Fix PR [llvm-special-case-list-fuzzer] fix off-by-one read

The LLVM build had been failing to build and this was due to a broken fuzzer. Reading the build logs,
such as this one, we can see the llvm-special-case-list-fuzzer runs into an ASAN issue in
the first fuzz run:

1 00\n0xa,\n\\012\nartifact_prefix=
'./'; Test unit written to ./crash-
adc83b19e793491b1c6ea0fd8b46cd9f32e592fc\nBase64: Cg==\n", stderr=b
''))

2 Step #13 - "build-check-libfuzzer-address-x86_64": BAD BUILD: /tmp/not-
out/tmptsh8iy49/llvm-special-case-list-fuzzer seems to have either
startup crash or exit:

3 Step #13 - "build-check-libfuzzer-address-x86_64": /tmp/not-out/
tmptsh8iy49/llvm-special-case-list-fuzzer -rss_limit_mb=2560 -
timeout=25 -seed=1337 -runs=4 < /dev/null

4 Step #13 - "build-check-libfuzzer-address-x86_64": INFO: Running with
entropic power schedule (0xFF, 100).

5 Step #13 - "build-check-libfuzzer-address-x86_64": INFO: Seed: 1337
6 Step #13 - "build-check-libfuzzer-address-x86_64": INFO: Loaded 1

modules (37010 inline 8-bit counters): 37010 [0xa8b098, 0xa9412a),
7 Step #13 - "build-check-libfuzzer-address-x86_64": INFO: Loaded 1 PC

tables (37010 PCs): 37010 [0xa94130,0xb24a50),
8 Step #13 - "build-check-libfuzzer-address-x86_64": INFO: -max_len is

not provided; libFuzzer will not generate inputs larger than 4096
bytes

9 Step #13 - "build-check-libfuzzer-address-x86_64": INFO: A corpus is
not provided, starting from an empty corpus

10 Step #13 - "build-check-libfuzzer-address-x86_64":
===

11 Step #13 - "build-check-libfuzzer-address-x86_64": ==408==ERROR:
AddressSanitizer: heap-buffer-overflow on address 0x602000000111 at
pc 0x0000007ebd7b bp 0x7ffdff69d590 sp 0x7ffdff69d588

12 Step #13 - "build-check-libfuzzer-address-x86_64": READ of size 1 at 0
x602000000111 thread T0

13 Step #13 - "build-check-libfuzzer-address-x86_64": SCARINESS: 12 (1-
byte-read-heap-buffer-overflow)

14 Step #13 - "build-check-libfuzzer-address-x86_64": #0 0x7ebd7a in
line_iterator /src/llvm-project/llvm/lib/Support/LineIterator.cpp
:48:5

LLVM Fuzzing Audit 35

https://github.com/llvm/llvm-project/pull/73888
https://oss-fuzz-build-logs.storage.googleapis.com/log-aecaad16-9581-48fe-af4a-a7be4dd947db.txt

LLVM Fuzzing Audit 2024-01-11

15 Step #13 - "build-check-libfuzzer-address-x86_64": #1 0x7ebd7a in
llvm::line_iterator::line_iterator(llvm::MemoryBuffer const&, bool,
char) /src/llvm-project/llvm/lib/Support/LineIterator.cpp:36:7

16 Step #13 - "build-check-libfuzzer-address-x86_64": #2 0x580722 in
llvm::SpecialCaseList::parse(llvm::MemoryBuffer const*, std::__1::
basic_string<char, std::__1::char_traits<char>, std::__1::allocator<
char> >&) /src/llvm-project/llvm/lib/Support/SpecialCaseList.cpp
:161:22

17 Step #13 - "build-check-libfuzzer-address-x86_64": #3 0x57faa3 in
createInternal /src/llvm-project/llvm/lib/Support/SpecialCaseList.
cpp:127:8

18 Step #13 - "build-check-libfuzzer-address-x86_64": #4 0x57faa3 in
llvm::SpecialCaseList::create(llvm::MemoryBuffer const*, std::__1::
basic_string<char, std::__1::char_traits<char>, std::__1::allocator<
char> >&) /src/llvm-project/llvm/lib/Support/SpecialCaseList.cpp
:93:12

19 Step #13 - "build-check-libfuzzer-address-x86_64": #5 0x56da34 in
LLVMFuzzerTestOneInput /src/llvm-project/llvm/tools/llvm-special-
case-list-fuzzer/special-case-list-fuzzer.cpp:22:3

The root-cause was determined to be due to the fuzzer relying on MemoryBuffer to hold the fuzz data.
However, the fuzzer runs into an OOB instantly because the MemoryBuffer interface guarantees that
“In addition to basic access to the characters in the file, this interface guarantees you can read one
character past the end of the file, and that this character will read as ‘\0’.” (see this documentation),
which the fuzzer fails to satisfy. As such, it runs into an OOB on line 48 in llvm/lib/Support/
LineIterator.cpp:

45 // Ensure that if we are constructed on a non-empty memory buffer
that it is

46 // a null terminated buffer.
47 if (Buffer.getBufferSize()) {
48 assert(Buffer.getBufferEnd()[0] == '\0');
49 // Make sure we don't skip a leading newline if we're keeping

blanks

LLVM Fuzzing Audit 36

https://llvm.org/doxygen/classllvm_1_1MemoryBuffer.html#details

LLVM Fuzzing Audit 2024-01-11

4.11 NULL-dereference READ in processTypeAttrs

id ADA-2023-LLVM-11

Monorail ID and URL 20938

Date reported by OSS-Fuzz 2020-02-28

Fix PR [Clang][Sema] Fix NULL dereferences for invalid
references

A NULL-dereference was found with the following stacktrace:

1 ==21077==ERROR: MemorySanitizer: SEGV on unknown address 0
x000000000008 (pc 0x00000d0c4f21 bp 0x7ffce9374ae0 sp 0
x7ffce9374720 T21077)

2 ==21077==The signal is caused by a READ memory access.
3 ==21077==Hint: address points to the zero page.
4 #0 0xd0c4f21 in getKind llvm-project/clang/include/clang/Sema/

ParsedAttr.h:608:43
5 #1 0xd0c4f21 in processTypeAttrs((anonymous namespace)::

TypeProcessingState&, clang::QualType&, TypeAttrLocation, clang
::ParsedAttributesView const&, clang::Sema::CUDAFunctionTarget)
llvm-project/clang/lib/Sema/SemaType.cpp:8743:18

6 #2 0xd08af0b in GetFullTypeForDeclarator((anonymous namespace)::
TypeProcessingState&, clang::QualType, clang::TypeSourceInfo*)
llvm-project/clang/lib/Sema/SemaType.cpp:5788:5

7 #3 0xd0690f8 in clang::Sema::GetTypeForDeclarator(clang::Declarator
&, clang::Scope*) llvm-project/clang/lib/Sema/SemaType.cpp
:6082:10

8 #4 0x9e246cf in clang::Sema::HandleDeclarator(clang::Scope*, clang
::Declarator&, llvm::MutableArrayRef<clang::
TemplateParameterList*>) llvm-project/clang/lib/Sema/SemaDecl.
cpp:6436:27

9 #5 0x9e234ef in clang::Sema::ActOnDeclarator(clang::Scope*, clang::
Declarator&) llvm-project/clang/lib/Sema/SemaDecl.cpp:6216:15

10 #6 0x83eb185 in clang::Parser::
ParseDeclarationAfterDeclaratorAndAttributes(clang::Declarator&,
clang::Parser::ParsedTemplateInfo const&, clang::Parser::

ForRangeInit*) llvm-project/clang/lib/Parse/ParseDecl.cpp
:2517:24

The proposed fix is to adjust isInvalid in clang/include/clang/Sema/ParsedAttr.h:

345 bool isInvalid() const {
346 if (&Info == NULL) {
347 Invalid = true;

LLVM Fuzzing Audit 37

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=20938
https://github.com/llvm/llvm-project/pull/77703
https://github.com/llvm/llvm-project/pull/77703

LLVM Fuzzing Audit 2024-01-11

348 }
349 return Invalid;
350 }

The problem is that Info may end up referencing a NULL pointer, so a check for this should be in
place. Ideally the reference should never reference a NULL pointer, however, due to timing constraints
we were unable to identify the fix that makes this possible.

LLVM Fuzzing Audit 38

LLVM Fuzzing Audit 2024-01-11

4.12 NULL-dereference READ in GetFullTypeForDeclarator

id ADA-2023-LLVM-12

Monorail ID and URL 20946

Date reported by OSS-Fuzz 2020-02-28

Fix PR [Clang][Sema] Fix NULL dereferences for invalid
references

A NULL-dereference was found with the following stacktrace:

1 ==38279==ERROR: MemorySanitizer: SEGV on unknown address 0x000000000008
(pc 0x00000d0789ae bp 0x7ffdba4dc350 sp 0x7ffdba4db490 T38279)

2 ==38279==The signal is caused by a READ memory access.
3 ==38279==Hint: address points to the zero page.
4 #0 0xd0789ae in getKind llvm-project/clang/include/clang/Sema/

ParsedAttr.h:608:43
5 #1 0xd0789ae in hasNullabilityAttr llvm-project/clang/lib/Sema/

SemaType.cpp:4243:12
6 #2 0xd0789ae in GetFullTypeForDeclarator((anonymous namespace)::

TypeProcessingState&, clang::QualType, clang::TypeSourceInfo*)
llvm-project/clang/lib/Sema/SemaType.cpp:5229:12

7 #3 0xd0690f8 in clang::Sema::GetTypeForDeclarator(clang::Declarator
&, clang::Scope*) llvm-project/clang/lib/Sema/SemaType.cpp
:6082:10

8 #4 0x9e246cf in clang::Sema::HandleDeclarator(clang::Scope*, clang
::Declarator&, llvm::MutableArrayRef<clang::
TemplateParameterList*>) llvm-project/clang/lib/Sema/SemaDecl.
cpp:6436:27

9 #5 0x9e234ef in clang::Sema::ActOnDeclarator(clang::Scope*, clang::
Declarator&) llvm-project/clang/lib/Sema/SemaDecl.cpp:6216:15

10 #6 0x83eb185 in clang::Parser::
ParseDeclarationAfterDeclaratorAndAttributes(clang::Declarator&,
clang::Parser::ParsedTemplateInfo const&, clang::Parser::

ForRangeInit*) llvm-project/clang/lib/Parse/ParseDecl.cpp
:2517:24

The proposed fix includes the logic from 4.11 and also adjusts hasNUllabilityAttr to include a
check on each attribute iterated, to test if it is valid or not:

4241 static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
4242 for (const ParsedAttr &AL : attrs) {
4243 if (AL.isInvalid()) {
4244 continue;

LLVM Fuzzing Audit 39

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=20946
https://github.com/llvm/llvm-project/pull/77703
https://github.com/llvm/llvm-project/pull/77703

LLVM Fuzzing Audit 2024-01-11

4245 }
4246 if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
4247 AL.getKind() == ParsedAttr::AT_TypeNullable ||
4248 AL.getKind() == ParsedAttr::AT_TypeNullableResult ||

LLVM Fuzzing Audit 40

	About Ada Logics
	Project dashboard
	Executive Summary
	LLVM Fuzzing Audit
	Engagement overview
	LLVM OSS-Fuzz setup and repair
	Fixing issues reported by OSS-Fuzz.
	Expanding fuzzing coverage
	Identifying areas of improvement and future work

	Issues found and fixed
	Heap-buffer-overflow in llvm::xxh3_64bits
	Out of bounds write in llvm::DWARFUnitIndex::paseImpl
	Heap-buffer-overflow in llvm::object::WasmObjectFile::parseCodeSection
	Null-dereference READ in llvm::object::WasmObjectFile::parseLinkingSectionSymtab
	Heap-use-after-free in clang::Parser::isCXXDeclarationSpecifier
	Heap-use-after-free in clang::Sema::GetNameFromUnqualifiedId
	Global-buffer-overflow in llvm::hashing::detail::hash_short
	Heap-buffer-overflow in llvm_regcomp
	Heap-buffer-overflow in WasmObjectFile::parseLinkingSectionSymtab
	[llvm-special-case-list-fuzzer] fix off-by-one read
	NULL-dereference READ in processTypeAttrs
	NULL-dereference READ in GetFullTypeForDeclarator

