

Page 1 of 28

Threat Modeling and Security Assessment of PHP-TUF

and Rugged Server on behalf of OSTIF

Page 2 of 28

TABLE OF CONTENTS

Executive Summary ... 3

Include Security (IncludeSec) .. 3

Assessment Objectives .. 3

Scope and Methodology ... 3

Findings Overview ... 3

Next Steps ... 3

Risk Categorizations .. 4

Critical-Risk .. 4

High-Risk.. 4

Medium-Risk ... 4

Low-Risk .. 4

Informational .. 4

Medium-Risk Findings ... 5

M1: [PHP-TUF] Path Traversal in Delegated Role Metadata .. 5

Low-Risk Findings .. 8

L1: [Rugged] Secrets Stored in Source Code Repository ... 8

L2: [PHP-TUF] Canonical JSON Encoding Differential.. 9

L3: [Rugged] Management Ports Open On All Interfaces ... 11

Informational Findings .. 13

I1: [Rugged] Online Root Key Generation ... 13

I2: [PHP-TUF] [Rugged] Out-of-Date Python Libraries in Use ... 14

Appendices .. 16

Statement of Coverage ... 16

A1: Threat Model .. 18

A2: Automated Security Testing and CI/CD Review .. 23

Security Concerns Commonly Present in Most Applications .. 27

Page 3 of 28

EXECUTIVE SUMMARY

Include Security (IncludeSec)

IncludeSec brings together some of the best information security talent from around the world. The team is
composed of security experts in every aspect of consumer and enterprise technology, from low-level hardware
and operating systems to the latest cutting-edge web and mobile applications. More information about the
company can be found at www.IncludeSecurity.com.

Assessment Objectives

The objective of this assessment was to identify and confirm potential security vulnerabilities within targets in-
scope of the SOW. The team assigned a qualitative risk ranking to each finding. Recommendations were
provided for remediation steps which could be implemented to secure the applications and systems.

Scope and Methodology

Include Security conducted a security assessment of the PHP-TUF application and Rugged Server, culminating in
the creation of a Threat Model on behalf of OSTIF. The assessment team performed a 23 day effort spanning
from October 16th, 2023 – November 15th, 2023, using a Standard Grey Box assessment methodology which
included a detailed review of all the components described in a manner consistent with the original Statement
of Work (SOW).

Findings Overview

IncludeSec identified a total of 6 findings. There were 0 deemed to be “Critical-Risk,” 0 deemed to be “High-
Risk,” 1 deemed to be “Medium-Risk,” and 3 deemed to be “Low-Risk,” which pose some tangible security risk.
Additionally, 2 “Informational” level findings were identified that do not immediately pose a security risk.

IncludeSec encourages the development team to redefine the stated risk categorizations internally in a manner
that incorporates internal knowledge regarding business model, customer risk, and mitigation environmental
factors.

Next Steps

IncludeSec advises the development team to remediate as many findings as possible in a prioritized manner and
make systemic changes to the Software Development Life Cycle (SDLC) to prevent further vulnerabilities from
being introduced into future release cycles. This report can be used as a basis for any SDLC changes. IncludeSec
welcomes the opportunity to assist the development team in improving their SDLC in future engagements by
providing security assessments of additional products. For inquiries or assistance scheduling remediation tests,
please contact us at remediation@includesecurity.com.

https://www.includesecurity.com/
mailto:remediation@includesecurity.com

Page 4 of 28

RISK CATEGORIZATIONS

At the conclusion of the assessment, Include Security categorized findings into five levels of perceived security
risk: Critical, High, Medium, Low, or Informational. The risk categorizations below are guidelines that
IncludeSec understands reflect best practices in the security industry and may differ from a client's internal
perceived risk. Additionally, all risk is viewed as "location agnostic" as if the system in question was deployed
on the Internet. It is common and encouraged that all clients recategorize findings based on their internal
business risk tolerances. Any discrepancies between assigned risk and internal perceived risk are addressed
during the course of remediation testing.

Critical-Risk findings are those that pose an immediate and serious threat to the company’s infrastructure and
customers. This includes loss of system, access, or application control, compromise of administrative accounts
or restriction of system functions, or the exposure of confidential information. These threats should take priority
during remediation efforts.

High-Risk findings are those that could pose serious threats including loss of system, access, or application
control, compromise of administrative accounts or restriction of system functions, or the exposure of
confidential information.

Medium-Risk findings are those that could potentially be used with other techniques to compromise accounts,
data, or performance.

Low-Risk findings pose limited exposure to compromise or loss of data, and are typically attributed to
configuration, and outdated patches or policies.

Informational findings pose little to no security exposure to compromise or loss of data which cover defense-
in-depth and best-practice changes which we recommend are made to the application. Any informational
findings for which the assessment team perceived a direct security risk, were also reported in the spirit of full
disclosure but were considered to be out of scope of the engagement.

The findings represented in this report are listed by a risk rated short name (e.g., C1, H2, M3, L4, and I5) and
finding title. Each finding may include if applicable: Title, Description, Impact, Reproduction (evidence necessary
to reproduce findings), Recommended Remediation, and References.

Page 5 of 28

MEDIUM-RISK FINDINGS

M1: [PHP-TUF] Path Traversal in Delegated Role Metadata

Description:

The targets role in TUF signs metadata that describes files to be trusted by clients. The targets role can
delegate trust to other roles that have arbitrary names decided by the repository TUF signer. When writing
metadata files for delegated roles to a client system, the PHP-TUF client did not protect against path traversal
attacks, leading to file writes outside the TUF metadata directory on an updating client's system.

While searching whether other TUF client implementations were subject to the same vulnerability, the
assessment team found that a similar vulnerability had been reported to the Python TUF project in 2021 as
CVE-2021-41131.

Impact:

A TUF repository owner could provide a path traversal sequence (i.e., dot-dot-slash, ../) as part of a delegated
role name in order to write files outside the expected target metadata directory. The file write is limited by
three factors: The file has a JSON extension; the content is a metadata file (not arbitrary content); and the
write occurs with the permissions of the user running PHP-TUF. Despite these restrictions, an attacker could
overwrite configuration files at known paths outside any TUF configuration directory in order to disrupt a
client's system and break other running applications.

Reproduction:

The simplest way to demonstrate the finding is to modify the existing tests/Unit/FileStorageTest.php test.

First, the existing fixture generator was modified to create a delegated role named “../blabla”:

$ sed -i 's/unclaimed/..\/blabla/g' Delegated/__init__.py Delegated/inconsistent/client_versions.ini
Delegated/consistent/client_versions.ini
$ python3 generate_fixtures.py

The new top level metadata fixtures had to be copied from the server metadata fixtures to the client fixtures:

$ cp fixtures/Delegated/consistent/server/*blabla* fixtures/Delegated/consistent/client/metadata/

Next, FileStorageTest.php was modified with the new role name. After this, the “Load trusted metadata”
section of the unit test passed, showing the role name was accepted:

$ sed -i 's/unclaimed/..\/blabla/g' tests/Unit/FileStorageTest.php
$ composer test tests/Unit/FileStorageTest.php
[...]
File Storage (Tuf\Tests\Unit\FileStorage)

 ✔ Create with invalid directory

 ✔ Load trusted metadata
[...]

The next part of the test used the FileStorage class to write to the filesystem. The providerMetadataStorage
array was modified to the following:

 public function providerMetadataStorage(): array
 {
 return [
 '../blabla' => [
 TargetsMetadata::class,
 '../blabla',
 '../blabla.json',
],
];
 }

https://github.com/theupdateframework/python-tuf/security/advisories/GHSA-wjw6-2cqr-j4qr

Page 6 of 28

On re-running the test, the following output was produced, showing an attempt to write one level above the
temporary directory set as the FileStorage base class:

File Storage (Tuf\Tests\Unit\FileStorage)

 ✔ Create with invalid directory

 ✔ Load trusted metadata

 ✔ Writing and deleting root metadata

 ✔ Writing and deleting timestamp metadata

 ✔ Writing and deleting snapshot metadata

 ✔ Writing and deleting targets metadata

 ✘ Writing and deleting delegated·role metadata
 ┐
 ├ file_put_contents(/tmp/../blabla.json): Failed to open stream: Permission denied
 │
 ╵ /home/tuf/Downloads/tuf/php-tuf/vendor/symfony/phpunit-bridge/DeprecationErrorHandler.php:132
 ╵ /home/tuf/Downloads/tuf/php-tuf/src/Client/DurableStorage/FileStorage.php:53
 ╵ /home/tuf/Downloads/tuf/php-tuf/src/Metadata/StorageBase.php:78
 ╵ /home/tuf/Downloads/tuf/php-tuf/tests/Unit/FileStorageTest.php:116
 ┴

While this is not a comprehensive end-to-end test of the path traversal, it demonstrates divergent behavior
from the Python-TUF implementation which encoded path separators before writing metadata files.

The fetchAndVerifyTargetsMetadata() function was found in the file php-tuf/src/Client/Updater.php, line
375:

 private function fetchAndVerifyTargetsMetadata(string $role): void
 {
 $fileInfo = $this->storage->getSnapshot()->getFileMetaInfo("$role.json");
 // § 5.6.1
 $targetsVersion = $this->storage->getRoot()->supportsConsistentSnapshots()
 ? $fileInfo['version']
 : null;
 $newTargetsData = $this->server->getTargets($targetsVersion, $role, $fileInfo['length'] ?? null);
 $this->universalVerifier->verify(TargetsMetadata::TYPE, $newTargetsData);
 // § 5.5.6
 $this->storage->save($newTargetsData);
 }

The storage->save() function was located in the file php-tuf/src/Metadata/StorageBase.php, line 75.

 public function save(MetadataBase $metadata): void
 {
 $metadata->ensureIsTrusted();
 $this->write($metadata->getRole(), $metadata->getSource());
 }

write() was an abstract function implemented in the file php-tuf/src/Client/DurableStorage/FileStorage.php,
line 51:

 protected function write(string $name, string $data): void
 {
 file_put_contents($this->toPath($name), $data);
 }

toPath() was located in the same file on line 40. It directly concatenated the $name variable, which was still
the delegated role name at this point, into the path to be written:

 protected function toPath(string $name): string
 {
 return $this->basePath . DIRECTORY_SEPARATOR . $name . '.json';
 }

Page 7 of 28

Recommended Remediation:

Usually for path traversal vulnerabilities, the assessment team recommends validating input against a pre-
approved list of safe paths. Any input which contains characters outside expected values can be rejected.
However, the TUF specification does not restrict the name of delegated roles in any way and doing so could
therefore lead to incompatibilities with other implementations.

To ensure interoperability, the team suggests adding a PHP version of the fix developed in python-tuf, which
used the urllib.parse.quote() function to encode forward and backslashes before writing metadata files to the
filesystem, see the file python-tuf/blob/develop/tuf/ngclient/updater.py, line 137. Note that the second
parameter to urllib.parse.quote() was empty, otherwise a forward slash would be marked as a safe character:

 def _generate_target_file_path(self, targetinfo: TargetFile) -> str:
 if self.target_dir is None:
 raise ValueError("target_dir must be set if filepath is not given")

 # Use URL encoded target path as filename
 filename = parse.quote(targetinfo.path, "")
 return os.path.join(self.target_dir, filename)

References:

Metadata files for targets delegation
Path Traversal

https://theupdateframework.github.io/specification/v1.0.33/#metadata-files-for-targets-delegation
https://owasp.org/www-community/attacks/Path_Traversal

Page 8 of 28

LOW-RISK FINDINGS

L1: [Rugged] Secrets Stored in Source Code Repository

Description:

Hardcoded credentials were discovered in the Rugged codebase. These were a mixture of build credentials,
used for the Gitlab CI/CD and infrastructure, and passwords for users and services in the Rugged containerized
deployment.

Impact:

Build credentials committed together with the source code can remain in the repository for a long period of
time, and even when deleted at some point, it can often still be possible to extract them from the repository's
revision history. These credentials could potentially perform privileged CI/CD functions such as accessing
private docker images not intended for public viewing.

Hardcoded, easily-guessable secrets for deployed infrastructure services could enable privilege escalation
between compromised infrastructure components. Even if services were intended for development/testing
only and not production, such as RabbitMQ, the finding Management Ports Open On All Interfaces shows the
risk for users running Rugged exposed services with default passwords on their development machines.

Secrets were identified in the codebase at the following locations:

File Line Number Description

gitlab-ci.yml 15 CI_JOB_TOKEN
d9-site/*-composer.json 33 github-oauth
git/modules/.mk/modules/docs/themes/harmony/config 8 Gitlab deploy token
git/modules/.mk/config 15 Gitlab deploy token
mk/.gitmodules 3 Gitlab deploy token
build/ansible/rabbitmq.yml 6 RabbitMQ Password
build/ansible/rabbitmq.yml 26 RabbitMQ Dev Password
ddev/docker-compose.rabbitmq.yml 12 RabbitMQ Erlang Cookie
build/ansible/roles/rugged.workers/defaults/main.yml 59 Supervisorctl Password

Reproduction:

A plaintext CI_JOB_TOKEN secret was found in the file .gitlab-ci.yml, line 12:

tests-general: &test-defaults
 stage: test
 variables:
 CI_JOB_TOKEN: uy[...]Ab
 CI_REGISTRY: registry.gitlab.com

This could be used to authenticate as the “rugged-registry” user with the Gitlab registry:

$ echo ${CI_JOB_TOKEN} | docker login -u "rugged-registry" --password-stdin $CI_REGISTRY
WARNING! Your password will be stored unencrypted in /home/kali/.docker/config.json.
Configure a credential helper to remove this warning. See
https://docs.docker.com/engine/reference/commandline/login/#credentials-store

Login Succeeded

However, the assessment team was unable to push malicious images using this token, and it was determined
to only have read access. The development team confirmed this: “In order for us to run CI locally, back when

Page 9 of 28

the project was private, we needed to specify the token directly, rather than just use the auto-generated one.
IIRC, I had generated a minimally permissioned token with just registry read access.”

The following snippet from line 11 shows a hardcoded shared secret value used for authenticating to
RabbitMQ nodes:

 environment:
 - RABBITMQ_ERLANG_COOKIE=G[...]S
 - RABBITMQ_DEFAULT_VHOST=/

As explored in the finding Management Ports Open On All Interfaces, the RabbitMQ management service
listened on all interfaces when Rugged ran in development, making known or hardcoded secrets impactful in
allowing attackers to exploit these services.

Recommended Remediation:

The assessment team recommends invalidating all credentials and other secrets stored in the version history.
The Gitlab build credentials now appear obsolete and could be removed from the codebase.

For infrastructure credentials such as RabbitMQ passwords, the team suggests generating these randomly
upon initial deployment of Rugged and storing them in a local configuration file that can be loaded by any
infrastructure components that require them.

In future, the team recommends implementing an integration such as Git-secrets or Trufflehog which can run
in the project CI pipeline and automatically report hardcoded credentials, although this may be less important
going forward now that Rugged is an open source project.

References:

Github: Removing Sensitive Data from a Repository
Git-secrets: Prevent Committing Secrets to the Repository
How CLI Tools Authenticate to Nodes (and Nodes to Each Other): the Erlang Cookie

L2: [PHP-TUF] Canonical JSON Encoding Differential

Description:

The TUF specification requires a data format that encodes metadata canonically or at least deterministically.
This ensures that TUF implementations can create identical signatures on semantically identical metadata. The
commonly agreed standard among TUF implementations has been canonical JSON.

The JSON encoder in PHP-TUF does not create canonical JSON, and produces different serialization than the
Python-TUF client implementation. Specifically, associative arrays/objects inside lists were not sorted. This
affects the signed metadata object format described in section 4.2.1 of the TUF spec:

{
 "signed" : ROLE,
 "signatures" : [
 { "keyid" : KEYID,
 "sig" : SIGNATURE }
 , ...]
}

https://help.github.com/en/github/authenticating-to-github/removing-sensitive-data-from-a-repository
https://github.com/awslabs/git-secrets
https://www.rabbitmq.com/clustering.html#erlang-cookie
https://theupdateframework.github.io/specification/v1.0.33/#file-formats-object-format

Page 10 of 28

Impact:

Not producing canonical JSON means that different TUF implementations could produce mutually
incompatible metadata files. In practice, this would lead to PHP-TUF being unable to verify valid metadata
files, causing legitimate updates to fail for clients. This could occur either via divergent behavior in TUF
implementations, or by an attacker who was able to modify metadata files but constrained by the need for the
metadata files to remain valid.

Reproduction:

The following unit test was added to tests/Unit/CanonicalJsonTraitTest.php. This contained two associative
arrays, which are ordered differently in PHP but should be sorted lexicographically so as to be identical in
Canonical JSON:

 public function testCanonicalEncode(): void
 {
 $json1 = static::encodeJson([1,2, ['aladdin' => '1', 'apple' => '2']]);
 $json2 = static::encodeJson([1,2, ['apple' => '2', 'aladdin' => '1']]);
 $this->assertSame($json1, $json2);
 }

When run, the test failed:

composer test tests/Unit/CanonicalJsonTraitTest.php
> phpunit --testdox 'tests/Unit/CanonicalJsonTraitTest.php'
PHPUnit 9.6.13 by Sebastian Bergmann and contributors.

Canonical Json Trait (Tuf\Tests\Unit\CanonicalJsonTrait)

 ✔ Sort

 ✘ Canonical encode
 ┐
 ├ Failed asserting that two strings are identical.
 ┊ ---·Expected
 ┊ +++·Actual
 ┊ @@ @@
 ┊ -'[1,2,{"aladdin":"1","apple":"2"}]'
 ┊ +'[1,2,{"apple":"2","aladdin":"1"}]'
 │

By comparison, the Python-TUF implementation used the encode_canonical() function from securesystemslib
to canonicalize JSON. This function returned the same value for each test case, correctly passing the same test:

>>> from securesystemslib.formats import *
>>> print(encode_canonical([1,2, {'aladdin': '1', 'apple': '2'}]))
[1,2,{"aladdin":"1","apple":"2"}]
>>> print(encode_canonical([1,2, {'apple': '2', 'aladdin': '1'}]))
[1,2,{"aladdin":"1","apple":"2"}]

Canonical JSON was important for verifying metadata signatures, as in the file php-
tuf/src/Client/SignatureVerifier.php, line 68:

 public function checkSignatures(MetadataBase $metadata): void
 {
[...]
 foreach ($metadata->getSignatures() as $signature) {
 // Don't allow the same key to be counted twice.
 if ($role->isKeyIdAcceptable($signature['keyid']) && $this->verifySingleSignature($metadata-
>toCanonicalJson(), $signature)) {
 $verifiedKeySignatures[$signature['keyid']] = true;
 }

The origin of the finding was in the sortKeys() function in the file php-tuf/src/CanonicalJsonTrait.php, line 68.
The function returned early when a list was found, rather than recursively sorting the items within it:

Page 11 of 28

 private static function sortKeys(array &$data): void
 {
 // If $data is numerically indexed, the keys are already sorted, by
 // definition.
 if (array_is_list($data)) {
 return;
 }

 if (!ksort($data, SORT_STRING)) {
 throw new \RuntimeException("Failure sorting keys. Canonicalization is not possible.");
 }

 foreach ($data as $key => $value) {
 if (is_array($value)) {
 static::sortKeys($data[$key]);
 }
 }
 }

Recommended Remediation:

The assessment team recommends modifying the canonical JSON sort function in order to iterate over array
items and recursively sort them. Ideally, the encode_canonical() function from securesystemslib would be re-
implemented in PHP in order to exhibit identical behavior and ensure compatibility between different TUF
implementations.

References:

RFC 8785: JSON Canonicalization Scheme (JCS) 3.2.3

L3: [Rugged] Management Ports Open On All Interfaces

Description:

When Rugged was started, it was found to run management services on all interfaces. Services listening on
0.0.0.0 on developer or production servers can be accessed by other hosts on the same networks as the server
unless an inbound firewall has been configured.

Impact:

The following services were found to be running on all interfaces:

• RabbitMQ (port 15672)

• Celery (port 8888)

This finding is exacerbated by the fact that default, guessable, passwords were used for these services as
recorded in the Secrets Stored in Source Code Repository finding.

A Rugged developer or local tester who was using a shared Wi-Fi network (for instance in a cafe) would
expose their local Rugged installation to attacks, such as arbitrary data being published to a queue, or to
admin users (such as new RabbitMQ management users) being created.

A production Rugged instance installed on a server without a firewall would, by default, be opening these
ports up to the Internet. However, discussing this topic with the Drupal infrastructure team, they said that
“before this goes to production, we plan to switch to AWS’s managed RabbitMQ service and not run our own
container for it.”

https://www.rfc-editor.org/rfc/rfc8785#name-sorting-of-object-propertie

Page 12 of 28

Reproduction:

After running “make start” in the rugged directory to start DDEV containers, the following command was run
on the host to show services listening on all interfaces:

$ sudo netstat -tulpn | grep 0.0.0.0
tcp 0 0 0.0.0.0:15672 0.0.0.0:* LISTEN 77422/docker-proxy
tcp6 0 0 :::15672 :::* LISTEN 77429/docker-proxy
tcp 0 0 0.0.0.0:8888 0.0.0.0:* LISTEN 77462/docker-proxy
tcp6 0 0 :::8888 :::* LISTEN 77471/docker-proxy

The following docker command showed the port mappings to services running within the ddev-rugged-flower
and ddev-rugged-rabbitmq containers:

$ docker container ls
92a42577afa0 mher/flower "celery flower"
3 weeks ago Up 31 seconds 5555/tcp, 0.0.0.0:8888->8888/tcp, :::8888->8888/tcp
 ddev-rugged-flower
e87a55700088 registry.gitlab.com/rugged/rugged/rabbitmq:latest "/bin/sh -c 'docker-…"
3 weeks ago Up 31 seconds 4369/tcp, 5671-5672/tcp, 15671/tcp, 15691-15692/tcp, 25672/tcp,
0.0.0.0:15672->15672/tcp, :::15672->15672/tcp ddev-rugged-rabbitmq

The following screenshot shows the RabbitMQ management login page accessible from another host on the
network:

Figure 1

The finding was due to the ports directive in the Docker compose configuration in rugged/.ddev/docker-
compose.flower.yml and rugged/.ddev/docker-compose.rabbitmq.yml:

version: '3.6'
services:
 rabbitmq:
 container_name: ddev-${DDEV_SITENAME}-rabbitmq
 hostname: ${DDEV_SITENAME}-rabbitmq
 image: registry.gitlab.com/rugged/rugged/rabbitmq:latest
 ports:
 - "15672:15672" # RabbitMQ web UI

Recommended Remediation:

The assessment team recommends mapping the external port to localhost only, so that these services cannot
be accessed outside the host running them.

References:

15672 - Pentesting RabbitMQ Management

https://book.hacktricks.xyz/network-services-pentesting/15672-pentesting-rabbitmq-management

Page 13 of 28

INFORMATIONAL FINDINGS

I1: [Rugged] Online Root Key Generation

Description:

The Rugged server currently generates all role signing keys inside the root worker container, and mounts keys
from a host system volume inside other running containers. This works to facilitate development, but for
production the TUF spec section 6.1 states that all keys except those for the timestamp and mirror roles
should be stored securely offline.

Impact:

For a Rugged deployer, there is currently limited support for managing root keys securely. Root keys are the
ultimate root of trust in the TUF ecosystem, and their compromise is unrecoverable within the existing
updating system as it would mean a new root file will need to be issued to clients out of band.

Reproduction:

Keypairs were generated by sending a generate_keypair_task() to the root worker; this task was defined in
the file rugged/rugged/workers/root-worker.py, line 42:

 @worker.task(name='generate_keypair_task', queue=queue)
 def generate_keypair_task(key, role, **context):
 """ Generate keypairs for use in a TUF repository. """
 set_log_level_from_context(context)
 log.debug("Received 'generate_keypair' task.")
 log.info(f"Generating '{key}' keypair for '{role}' role.")
 return KeyManager().generate_keypair(key, role)

The generate_keypair() function was found in the file rugged/rugged/tuf/key_manager.py, lines 26-47. The
_generate_and_write_ed25519_keypair() function from securesystemslib was used to write a keypair to a
temporary file and then copy it to the Rugged shared filesystem:

class KeyManager():
 """ Provides key CRUD functionality. """

 """ Static cache for keys found on the filesystem. """
 _role_keys = {}

 def generate_keypair(self, key_name, role_name):
 """ Generate a keypair for a given role """
 if not self._ensure_rugged_key_dirs():
 return (False, False)
 with TemporaryDirectory() as tempdir:
 temp_privkey_path = f"{tempdir}/{role_name}/{key_name}"
 temp_pubkey_path = f"{temp_privkey_path}.pub"
 log.debug(f"Generating keypair at {temp_privkey_path}.")
 # @TODO: Add support for passwords.
 _generate_and_write_ed25519_keypair(filepath=temp_privkey_path)
 privkey_result = self._copy_key(temp_privkey_path, key_name, role_name, 'signing')
 pubkey_result = self._copy_key(temp_pubkey_path, key_name, role_name, 'verification')
 # Clear the cache for this role, so that the directory will
 # be re-scanned to pick up the new key.
 self._clear_cache_by_role(role_name)
 return (privkey_result, pubkey_result)

By default, root metadata expiry was set to 1 year, forcing rotation of the root key(s) at least once per year.
Key rotation of any top-level key would require a signature from the root key or threshold of root keys, which
would require either bringing the root key(s) online or using them to generate new keys offline.

https://theupdateframework.github.io/specification/latest/#key-management-and-migration

Page 14 of 28

Recommended Remediation:

The assessment team recommends that a process be drawn up for secure generation of root keys used in
Rugged. This could be based off the Python Software Foundation's TUF key generation and signing
ceremonies, outlined in PEP-458.

A small number of trusted Drupal personnel would use an air gapped computer, with trusted operating
system and third party packages, with no data persisting after the ceremony. Ideally, private hardware
security modules (YubiHSMs) would be used to generate key material to maximize the difficulty of an attacker
extracting root private keys. A threshold of root signatures required to sign a new root key would be chosen,
i.e. 2 of 4 keys, and then after the ceremony, this threshold of Drupal personnel could use their keys to sign
the first root metadata file. This could be copied onto the Rugged host along with the verification keys.

The root key threshold would need to be reached to sign each time the root key was rotated, but the Drupal
team already performed quarterly key rotation for other critical keys, so this TUF rotation process could be
designed to occur alongside that, or every 6 or 12 months.

Rugged should then be tested to ensure that it can operate with just a signed root metadata file and no access
to the root private key(s) under every circumstance.

References:

PEP 458
PSF TUF Runbook

I2: [PHP-TUF] [Rugged] Out-of-Date Python Libraries in Use

Description:

Both the PHP-TUF and Rugged applications were found to use outdated Python libraries which are affected by
publicly known vulnerabilities.

Impact:

Both projects used Python environments managed by Pipenv to simplify development. Unlike with other
language dependencies, no facility was in place to ensure these were automatically updated and free of
publicly known security vulnerabilities (such as PHP-TUF's use of “composer audit” in the CI/CD pipeline).

An attacker who discovers out-of-date software within the application could use it to focus exploit attempts.
Note that these vulnerabilities require specific conditions to be exploitable, and in this case the finding has
been marked Informational as the assessment team did not identify a way for an attacker to exploit the
vulnerabilities. Still, the assessment team recommends increasing the robustness of the project's supply chain
by adding automated checks for out-of-date Python packages.

https://peps.python.org/pep-0458/#managing-offline-keys
https://peps.python.org/pep-0458/
https://github.com/psf/psf-tuf-runbook

Page 15 of 28

The following table lists out-of-date components with known vulnerabilities which were found during the
assessment:

PHP-TUF

Package Version ID Fixed Versions

certifi 2022.12.7 PYSEC-2023-135 2023.7.22
cryptography 39.0.1 GHSA-5cpq-8wj7-hf2v 41.0.0
cryptography 39.0.1 GHSA-jm77-qphf-c4w8 41.0.3
cryptography 39.0.1 GHSA-v8gr-m533-ghj9 41.0.4
requests 2.28.1 PYSEC-2023-74 2.31.0
urllib3 1.26.13 PYSEC-2023-192 1.26.17, 2.0.6
urllib3 1.26.13 PYSEC-2023-212 1.26.18, 2.0.7

Rugged

Package Version ID Fixed Versions

cryptography 41.0.3 GHSA-v8gr-m533-ghj9 41.0.4
urllib3 2.0.4 PYSEC-2023-192 1.26.17, 2.0.6
urllib3 2.0.4 PYSEC-2023-212 1.26.18, 2.0.7

Reproduction:

The following snippet from the file php-tuf/Pipfile shows that the cryptography library in use was version
39.0.1:

$ cat Pipfile
[[source]]
name = "pypi"
url = "https://pypi.org/simple"
verify_ssl = true

[dev-packages]

[packages]
certifi = "==2022.12.7"
cffi = "==1.15.1"
chardet = "==5.1.0"
colorama = "==0.4.6"
cryptography = "==39.0.1"

Out of date dependencies were found using the snyk tool.

Recommended Remediation:

The assessment team recommends updating all out-of-date components to their most recent releases. If this
is not possible, the assessment team recommends updating all dependencies to at least the earliest version
that addresses all publicly known vulnerabilities.

References:

Pipenv check
Snyk Python

https://osv.dev/vulnerability/PYSEC-2023-135
https://osv.dev/vulnerability/GHSA-5cpq-8wj7-hf2v
https://osv.dev/vulnerability/GHSA-jm77-qphf-c4w8
https://osv.dev/vulnerability/GHSA-v8gr-m533-ghj9
https://osv.dev/vulnerability/PYSEC-2023-74
https://osv.dev/vulnerability/PYSEC-2023-192
https://osv.dev/vulnerability/PYSEC-2023-212
https://osv.dev/vulnerability/GHSA-v8gr-m533-ghj9
https://osv.dev/vulnerability/PYSEC-2023-192
https://osv.dev/vulnerability/PYSEC-2023-212
https://fig.io/manual/pipenv/check
https://docs.snyk.io/scan-using-snyk/supported-languages-and-frameworks/python

Page 16 of 28

APPENDICES

Statement of Coverage

The Update Framework (TUF) at a high level provides a cryptographically-secured process to discover and
obtain new versions of files. A PHP-TUF client and Rugged server have been developed in order to deliver
updates for Drupal packages, however they are also open source software that could be used by other
projects. This security assessment of the PHP-TUF client and Rugged server consisted of a number of
components.

Code Review and Dynamic Testing
The open source PHP-TUF and Rugged repositories were subjected to source code review, covering all non-
testing code. A local testing environment was setup following available documentation. Most dynamic testing
for both projects involved modifying existing unit and integration tests, since this was the most efficient way
to exercise targeted codepaths when testing, particularly in the case of Rugged.

The code integrating these projects into Drupal infrastructure was not in scope for the assessment, however
the assessment team were made aware of the following additional projects to help build understanding of the
project and the threat model:

• Drupal-rugged: A mirror of the Rugged repository which adds Helm charts and other devops scripts for
deployment on Drupal infrastructure. Also adds an SFTP server for Rugged to receive packages from
Drupal infrastructure to sign.

• Packagist signed: A mirror of selected Packagist.org composer packages with TUF signing by Rugged,
using the Satis package repository generator.

• Composer Integration: Composer plugin to add PHP-TUF verification to package downloads.

• Python-TUF: Most complete client implementation of TUF, used by Rugged server code.

Additionally, note that at the time of the assessment, Rugged was in active development and not all features
of the TUF spec, most notably Consistent Snapshots, had been implemented.

Repository links in this section contain a commit hash, linking to the state of the code at the time of review.

Threat Model Exploration and Write Up
The assessment team interviewed the lead developer of the Rugged codebase and the architect responsible
for integrating it with the rest of the infrastructure. This gave the team insights into the threats faced by the
system in the context of the Drupal infrastructure, which could not be obtained from reading the source code
of the open source projects alone.

Specification Compliance Review
The assessment team read the current version of the TUF specification, which was v1.0.33, and examined the
behavior of PHP-TUF to ensure compliance with the specification. This largely consisted of comparing the
source code to the spec document, but also included exercising functions dynamically and writing tests in
cases where it was hard to determine compliance from source code review alone. The team raised one
finding, Canonical JSON Encoding Differential, where the PHP TUF client did not act according to the
specification.

In future, the assessment team recommends that a common set of testing fixtures be developed across all TUF
client implementations. Then it could be ensured that all implementations return the correct specification-
compliant outputs when processing the same fixtures, and would make developing additional
implementations in other languages easier.

https://github.com/php-tuf/php-tuf/tree/e52c432a6b6b99eeb1fa19383dc57f6fe837d268
https://gitlab.com/rugged/rugged/-/tree/83adf4303d300c17f69c10a24dec2ce2fd8aaef3
https://gitlab.com/drupal-infrastructure/package-signing/drupal-rugged/-/tree/83adf4303d300c17f69c10a24dec2ce2fd8aaef3
https://gitlab.com/drupal-infrastructure/package-signing/packagist-signed
https://github.com/php-tuf/composer-integration/tree/3b5de405667de73efb032fc42064ac5b64bc0c57
https://github.com/theupdateframework/python-tuf/tree/f04dc716cbed1c01b85278ada4e338b9a213c576
https://theupdateframework.github.io/specification/latest/#consistent-snapshots
https://theupdateframework.github.io/specification/v1.0.33/index.html

Page 17 of 28

Automated Security Testing and CI/CD Review
Interviews with Drupal developers were also key for this part of the assessment. The developer team were
interested in suggestions for how the existing CI/CD pipeline could be augmented with automated security
checks. As part of this, the assessment team executed a number of FOSS static analyzers against both
repositories in order to determine which would be most valuable to add as part of the CI/CD pipelines.

Additionally, the assessment team looked for other security improvements that fell outside the code alone,
such as recommendations on key rotation and repository access.

OSS-Fuzz Integration – Rugged & PHP-TUF
There was originally an intention to implement fuzz testing with OSS-Fuzz integration for Rugged. However,
after the source code review and interviews with the developers, the assessment team decided that this
would not be a valuable goal to pursue, and the course change was agreed with the Drupal team. The
following challenges were identified:

• Limited Attacker-Controlled Input: Rugged’s design involves minimal attacker-controlled input,
primarily handling signing of binary blobs without parsing them. There was no network protocol, API,
or parsed file format to fuzz.

• Multi-Container Architecture: This architecture complicates the creation of an effective fuzz testing
environment.

• Language and Codepath Considerations: Given Rugged’s high-level language and rigid codepath (lack
of complex parsing), fuzz testing may not yield significant results.

In lieu of fuzz testing, efforts were directed towards testing Rugged’s reliability, including stress tests with a
high volume of large files. The assessment team tested sending twenty 5GB files through the Rugged pipeline
simultaneously, and while CPU spiked for several minutes, the files were eventually processed successfully.

PHP-TUF would make a better candidate for fuzz testing as it parses untrusted metadata files, and is less
complex to build than Rugged. But as originally noted in the proposal, there is no OSS-Fuzz language support
for PHP, and an overall lack of existing tooling for fuzzing PHP. The assessment team noted that the PHP-TUF
unit test suite had poor coverage on several security-critical classes such as SignatureVerifier. The team
suggests greater coverage for the unit test suite and end-to-end testing to be added as a priority.

Page 18 of 28

A1: Threat Model
To outline the attack surface and discover the applicable threats, the first step in drawing up the threat model
for a TUF-enabled Drupal package update workflow was identifying the system's main components, links, and
trust boundaries, and consequently security requirements. Note that existing work has been done on threat
modelling for TUF, and this analysis focuses on PHP-TUF and Rugged and how they would fit within Drupal's
infrastructure as informed by interviews with developers.

A tool to graphically depict this is a Data Flow Diagram. This type of diagram should assist analysts, helping
them better understand the system and identify applicable threats using the STRIDE approach. The team drew
up the following data flow diagram, which is described in the sections below:

Figure 2

Partial Application Decomposition

The following are the process entities involved in the architecture:

• Drupal Jenkins CI/CD pipeline: Internal publishing pipeline for Drupal packages

• Monitor Worker: Responsible for regularly scanning and managing the network filesystem, and on
seeing changes, copying targets to an inbound processing directory and dispatching signing tasks to
other workers

• Task Queue: Task queue worker, implemented by RabbitMQ

• Root Worker: The root worker is intended to be offline most of the time. It contains the highest value
secret, the root key, which is required to sign the other top level keys

• Targets Worker: Loads target file and signs target metadata using target key

• Timestamp Worker: Signs timestamp metadata using timestamp key

• Snapshot Worker: Signs snapshot metadata using snapshot key

Page 19 of 28

• PHP-TUF: PHP-TUF client library

• Application or Dependency Manager: An application that directly contains PHP-TUF, or a TUF-enabled
dependency manager such as Composer

The following data stores were identified:

• Drupal package repository: Distributed version control for Drupal packages

• “Post to TUF” Network Filesystem: Network filesystem that forms the inbound interface to Rugged.
Packages place here are processed by Rugged's monitor worker, which creates directories to manage
the currently processing target. In Drupal's architecture, this is implemented as an SFTP server.

• Rugged Shared Directory: Shared directory on host between Rugged workers. Contains directories for
signing and verification keys, and metadata and targets

• TUF metadata repository: Hosts the TUF metadata. May be behind a Content Delivery Network (CDN)

• PHP TUF Local Storage: Local store of TUF keys and saved metadata

The following actor objects were identified within the system:

• Drupal package maintainer: A package maintainer who can publish new versions of Drupal packages

• End User: A user who wishes to update their Drupal components

• Drupal DevOps: An administrative user who can deploy, modify, or access any Drupal infrastructure
components

The DevOps user was not included in the threat model diagram as they are assumed to have necessary total
access to all deployed infrastructure. Suggestions to quantify and mitigate risk from this level of access are
made elsewhere in the report.

The following list details the data flows between entities:

• Commit code: Package maintainer commits code to main branch (Git commit and push)

• Publish release: CI/CD pipeline triggered for tagged package release (CI/CD automation)

• Upload package: Towards the end of the Jenkins pipeline, the package is uploaded to Rugged's post to
TUF network filesystem (Filesystem copy across network boundaries)

• Scan for new targets: The monitor worker periodically re-scans the post_to_tuf directory to check for
newly added package targets (Filesystem read)

• Copy targets: Hold semaphore and copy targets from network filesystem to Rugged inbound targets
(Filesystem copy)

• Dispatch tasks: Monitor workers sends tasks to be executed by the other Rugged workers (Task queue)

• Trigger target update: Sends metadata update task to worker (Task queue)

• Trigger snapshot update: Sends metadata update task to worker (Task queue)

• Trigger timestamp update: Sends metadata update task to worker (Task queue)

• Sign root metadata: Root keys are used to write and sign the root metadata file (Shared filesystem
access)

• Metadata: Writes target metadata to TUF repository (Shared filesystem access)

• Metadata: Writes snapshot metadata to TUF repository (Shared filesystem access)

• Metadata: Writes timestamp metadata to TUF repository (Shared filesystem access)

• Metadata: Reads target signing key, and target files for signing (Shared filesystem access)

• Metadata: Reads timestamp key, and timestamp files for signing (Shared filesystem access)

• Metadata: Reads snapshot key, and snapshot files for signing (Shared filesystem access)

• Read keys: Reads existing signing keys when rotating keys (Shared filesystem access)

Page 20 of 28

• Host metadata files: The metadata directory of the Rugged shared directories is hosted on a
webserver (Serve from filesystem)

• Upload package: Packages are published directly from the Jenkins CI/CD pipeline to the Drupal
package repository (Serve from filesystem)

• Updates application: The end user explicitly updates their software, or it auto-updates (Local
application)

• Download and verify metadata: PHP-TUF's main execution path runs, verifying all metadata files start
from the root and ensuring target file is trusted (HTTP)

• Request metadata: The PHP-TUF client downloads relevant metadata to verify package target (HTTP)

• Write metadata: Saves verified download metadata locally (Local filesystem access)

• Load keys: Load saved keys from local storage, including root verification key, which forms TUF root of
trust (Local filesystem access)

• Request target package: After verifying target metadata, the client fetches the target and verifies the
metadata included a matching hash (HTTP)

• Write package: After successful verified update, write target files to local system (Local filesystem)

• Execute TUF updater: Execute main workflow of PHP-TUF client (Library function call)

• Download and verify target using metadata: Target file is download from remote repo and hash is
verified against trusted metadata hashes (HTTP)

The following trust boundaries were identified:

• Between Drupal Package Repository and Jenkins CI/CD: Out of scope of this assessment, but any
maintainer who can publish packages to the CI/CD pipeline can send input to be processed by Rugged
via the Post To TUF directory.

• Between Jenkins CI/CD and Post To TUF Directory: Out of scope of this assessment, but the Post To
TUF directory (SFTP server) should be isolated as far as possible and only allow writing from the
pipeline and Rugged monitor worker. A potentially slow file copy across the network occurs here.

• Between Post To TUF Network Filesystem and Rugged Monitor worker: The Rugged monitor worker
processes the contents of the Post To TUF directory by holding a semaphore and copying them into the
inbound targets part of Rugged's shared filesystem where other workers can see the targets.

• Between Monitor Worker and other Rugged workers: The Rugged monitor worker does not have
access to any signing keys, but is able to dispatch signing tasks to other workers.

• Between Root/Target worker and other Rugged components: As it has access to the root signing keys,
the root worker is intended to be kept offline most of the time, and therefore has a stronger trust
boundary than other Rugged workers. The targets worker would ideally delegate its trust to another
role to perform most target signing, and could therefore be kept offline too, but this is not mandated
in the TUF specification.

• Between other Rugged workers: Each Rugged worker runs in a separate container and uses platform-
level security controls to provide a limited security boundary between them. While snapshot and
timestamp workers are isolated to some degree from the shared volume mount and from each other,
they need to sign metadata so frequently that their keys are kept online. In practice, compromise of
the snapshot worker without simultaneous compromise of the timestamp worker would be unlikely to
occur.

• Between Rugged workers and shared filesystem: Key directories are selectively mounted as volumes
inside the relevant Rugged workers.

Page 21 of 28

• Between Rugged shared directory and public metadata directory: This is the “public-facing” part of
the Rugged system

• Between public metadata directory and PHP-TUF: According to the TUF specification, updates should
be able to occur over unencrypted HTTP. The PHP-TUF client is responsible for verifying all data
received from the public repository.

The following lists potential threats, attack vectors, and mitigations specific to this system. Note that this
section does not address attacks which all TUF implementations are expected to prevent, such as fast-forward
and indefinite freeze attacks. The threats are split here between those affecting Rugged, PHP-TUF, and those
affecting other components.

Rugged

Component Threat Description Mitigation

Monitor
worker

Deliberate
inbound stall

An attacker with the capability
of publishing packages to
Drupal's Jenkins CI/CD stalls
the Post to TUF directory by
causing the monitor worker
semaphore to be consistently
held

Paging test that alerts Drupal
infrastructure team (via OpsGenie) to
a pipeline that has not processed
packages within a set timeframe

Timestamp
worker

Single Rugged
worker
compromised

An infrastructure deployment
flaw leads to an attacker
gaining shell access on a non-
root worker

The attacker would be able to modify
limited parts of the signing workflow,
but would not be able to access keys
for other workers or escalate
privileges to other containers

Rugged
shared
volume

Malicious
package

An attacker able to publish
packages to Drupal's Jenkins
CI/CD generates a package
that can cause writes to
targeted files and directories
when processed by Rugged
workers

Rugged performs no parsing or
execution of inbound files, so there
should be no escalation path from
signed data to higher privileges on
Rugged workers

Rugged
shared
volume

Disk is full Shared volume runs out space
due to large number of
metadata and target files

Target files can be configured to be
deleted after signing. Operations team
alerted due to monitoring (DataDog)

Rugged
shared
volume

Compromised
DevOps/insider
attack

A privileged DevOps account is
compromised, and can access
all online keys

According to interviews, Rugged is
hosted in locked down AWS account
with only five trusted Drupal team
members with good security hygiene
having complete access. Compromise
of all online keys could allow signing
arbitrary packages, but it is
recoverable

Gitlab
repository

Gitlab
compromise

An attacker gains access to a
maintainer's account of the
Rugged repository. They can
push and deploy code to

The attacker would at least be unable
to compromise the root key if it is
stored offline, making the attack
recoverable

Page 22 of 28

attack production
infrastructure

AWS
account

AWS account
compromised

A Drupal AWS admin IAM user
is compromised, or a separate
Drupal service is attacked
which enables privilege
escalation to Rugged

An AWS configuration review of
Drupal's account should be conducted,
and the Drupal team should consider
hosting Rugged in its own dedicated
account

PHP-TUF

Component Threat Description Mitigation

PHP-TUF Man in the middle
attack

An attacker with network control
masquerades as a legitimate
metadata repository to have user
install malicious package

PHP-TUF verifies all data with
trusted root keys which an
attacker does not have

PHP-TUF Malicious TUF
metadata

A malicious repository or package
owner generates crafted metadata
files to exploit vulnerabilities in PHP
client

Ensure PHP-TUF client cannot
write files outside of its own
directory, and set limits on
maximum number of metadata it
can download

PHP-TUF Specification
mismatch in
signature
verification

PHP-TUF does not follow the
specification in a security-critical
verification section (for instance,
signatures with the same keyid
wrongly allowed)

Attacker would still need to get
client to download their
malicious metadata to exploit
vulnerability, which may be carry
out at scale

Other Components

Component Threat Description Mitigation

TUF
metadata
repository

Denial of
service

A motivated attacker creates a
distributed denial of service against
the metadata repository, or it occurs
naturally due to high volume of
users or misconfigured clients

Repository is NGINX fronted by
Fastly, a CDN which can handle
significant traffic

Post to TUF
SFTP server

Signature on
arbitrary
package

An attacker can write files to the
Post To TUF filesystem without them
having been processed by Jenkins
CI/CD first

Drupal infrastructure team
confirmed that SFTP server access
(currently on bare-metal “Drush”
servers") is restricted to limited
number of highly trusted stuff
members

Page 23 of 28

A2: Automated Security Testing and CI/CD Review
The assessment team reviewed the existing, automated, security testing for the PHP-TUF, and Rugged
projects.

PHP-TUF Review of Existing CI/CD

PHP-TUF contained a Github Actions pipeline (.github/workflows/build.yml) which ran on pushes and pull
requests to the main branch, and daily at 3am.

At the time of the assessment the CI/CD pipeline was broken due to an error installing Pip dependencies and
the last successful run was five months prior. The assessment team recommends prioritizing the required fixes
to ensure the pipeline can be run successfully.

The pipeline repository ran PHP's inbuilt syntax linter, the PHP_CodeSniffer tool, and composer audit as
specified in the file build.yml:

 - name: PHP linting
 if: matrix.operating-system != 'windows-latest'
 run: composer lint

 - name: Run PHPCS
 run: composer phpcs
[...]
 - name: Run test suite
 run: composer test

 - name: Check dependencies for known security vulnerabilities
 run: composer audit

PHP_CodeSniffer was confirmed to be running, however it was using a limited configuration defined in the file
phpcs.xml.dist, based on PSR-2, which did not enforce documentation consistency. This explained GitHub
issue #316 which noted that PHP_CS was not checking that @param matched the relevant type hints. It is a
minor point, but as of 2019 PSR-2 is now deprecated and PSR-12 is recommended in its place.

PHP-TUF also integrated GitHub's Dependabot. Dependabot had open issues for out of date dependencies,
such as the Python cryptography library. These automated issues had not been actioned, but this is also a
minor point because the known vulnerabilities were not exploitable in this context as mentioned in the finding
Out-of-Date Python Libraries in Use.

A second GitHub action ran each day and opened an issue if a new version of the TUF spec had been released.
This is a helpful way to ensure the repository is kept up to date with security-relevant changes.

Rugged Review of Existing CI/CD

The assessment team found that the Rugged CI/CD pipeline was skipped, due to lack of CI/CD minutes on
Gitlab.

Apart from running its test suite, which provided comprehensive unit testing, Rugged did not run any specific
security static analysis tools as part of its CI/CD test suite. Python linting could be performed using the “make
lint” command, which would run flake8 for style, pyre for type-checking, and bandit for common Python
security vulnerabilities. The first obvious improvement would be to ensure that this linting step runs
automatically during CI/CD.

No security vulnerability disclosure policy existed for the Rugged repository, which increases the chance of a
high-risk vulnerability being disclosed publicly. The assessment team recommends adding a SECURITY file to
the repository along the lines of Gitlab's example.

https://github.com/php-tuf/php-tuf/actions/runs/6409438399/job/17400601949
https://github.com/php-tuf/php-tuf/actions/runs/5274428122
https://github.com/squizlabs/PHP_CodeSniffer
https://www.michalspacek.com/check-vulnerable-packages-with-composer-audit
https://www.php-fig.org/psr/psr-2/
https://github.com/php-tuf/php-tuf/issues/313
https://github.com/php-tuf/php-tuf/issues/313
https://www.php-fig.org/psr/psr-2/
https://github.com/php-tuf/php-tuf/pull/351
https://github.com/php-tuf/php-tuf/blob/main/.github/workflows/specification-version-check.yml
https://flake8.pycqa.org/en/latest/
https://github.com/facebook/pyre-check
https://pypi.org/project/bandit/
https://gitlab.com/gitlab-org/cli/-/blob/main/SECURITY.md

Page 24 of 28

It was out of scope for this review, but the assessment team noted that the main branch was not protected in
the drupal-rugged repository. This would make it easier for a compromised developer account to bypass code
review and publish malicious Rugged code directly to production, via ArgoCD continuous deployment.

Static Analysis Tool Comparison

The assessment team investigated several popular static analysis tools to determine the value they could
provide for the PHP-TUF and Rugged codebases.

Overall, these tools did not seem to be hugely valuable for either project. In summary:

• phpcs-security-audit and Semgrep could be worth adding to PHP-TUF as they will highlight typical PHP
coding flaws without many false positives.

• Semgrep could also be valuable for Rugged after documentation and development-specific directories
are excluded to prevent false positives. But a bigger priority would be to improve the CI/CD pipeline
and extend the existing unit testing coverage as this will test the specific security aims of TUF rather
than providing generic language-based security guidance.

Detailed results are below:

1) phpcs-security-audit

phpcs-security-audit was considered as it is a ruleset that can be easily loaded into the existing PHP_CS
configuration. It contains core PHP rules in addition to Drupal specific rules for detecting common PHP
security errors including use of “bad functions” (such as, system()) and risky coding behaviors (such as, type
juggling).

php-tuf$ composer require --dev pheromone/phpcs-security-audit
[...]
php-tuf$./vendor/bin/phpcs -i
The installed coding standards are MySource, PEAR, PSR1, PSR2, PSR12, Squiz, Zend, Security and
SlevomatCodingStandard

With the new rules added, PHP_CS was run again, without any additional results:

$ composer phpcs --extensions=php,inc,lib,module,info --standard=./vendor/pheromone/phpcs-security-
audit/example_base_ruleset.xml
> phpcs

While the ruleset did not detect any new results, the lack of false positives, and ease of adding to PHP-TUF,
makes this a reasonable tool to include in the CI/CD pipeline as it can detect the use of “dangerous” PHP
functions such as passthru().

2) Progpilot and Exakat

Progpilot and Exakat are two PHP-specific static analysis tools. The assessment team tried these and found
them to be outdated, difficult to configure, and targeted more towards PHP web applications, and therefore
unsuitable for integrating with PHP-TUF.

3) Semgrep

A security static analysis checking tool that the assessment team has found to add value for many projects is
Semgrep. Semgrep is a multi-language “semantic grep” tool which is under active development, requires
minimal initial setup with its large number of community rulesets, and is easy to extend with per-project rules.

The team ran Semgrep against PHP-TUF with many rules that have been successful at identifying security
hotspots in other projects:

https://gitlab.com/drupal-infrastructure/package-signing/drupal-rugged/-/branches
https://github.com/FloeDesignTechnologies/phpcs-security-audit
https://github.com/designsecurity/progpilot
https://github.com/exakat/exakat
https://semgrep.dev/

Page 25 of 28

semgrep --config auto --config "p/comment" --config "p/cwe-top-25" --config "p/owasp-top-ten" --config "p/r2c-
security-audit" --config "p/default"

Only one finding was output:

 src/Client/DurableStorage/FileStorage.php
 php.lang.security.unlink-use.unlink-use
 Using user input when deleting files with `unlink()` is potentially dangerous. A malicious
 actor could use this to modify or access files they have no right to.
 Details: https://sg.run/rYeR

 58┆ @unlink($this->toPath($name));

This was a false positive, as the only non-test invocation of the delete() function which called unlink() was at
php-tuf/src/Client/Updater.php, lines 239-246, where the parameter was not attacker-controlled:

 // § 5.3.11: Delete the trusted timestamp and snapshot files if either
 // file has rooted keys.
 if ($rootsDownloaded &&
 (static::hasRotatedKeys($originalRootData, $rootData, 'timestamp')
 || static::hasRotatedKeys($originalRootData, $rootData, 'snapshot'))) {
 $this->storage->delete(TimestampMetadata::TYPE);
 $this->storage->delete(SnapshotMetadata::TYPE);
 }

Still, Semgrep led to the src/Client/DurableStorage/FileStorage.php class, where another vulnerability was
eventually found. Security static analysis tools can sometimes highlight state-changing areas of the code
where vulnerabilities are more likely to occur.

The same Semgrep command was also run against Rugged, where there were numerous false positives,
mostly involving the documentation generator and build tools. Semgrep did also identify opportunities to
further lock down the Docker compose container configuration in DDEV containers.

4) SonarQube

SonarQube is one of the most comprehensive and well-known static analysis tools. PHP-TUF was scanned,
producing “1 bug”, “84 code smells”, “0 vulnerabilities”, and “2 security hotspots”:

Figure 3

SonarQube identified the bug, “Objects should not be created to be dropped immediately without being used”
in the file tests/Unit/FileStorageTest.php, lines 20-31. This assessment team determined that this was a false

https://www.sonarsource.com/

Page 26 of 28

positive based on how the PHP test worked, as a class was created to check it did not throw an exception,
rather than to be used.

The “security hotspots” both related to where the word “password” had been detected in the source code, in
the file fixtures/keys/regenerate.py, line 9, and fixtures/builder.py, line 109:

 return (
 repository_tool.import_ed25519_publickey_from_file(public_key),
 repository_tool.import_ed25519_privatekey_from_file(private_key, password='pw')
)

Again, these were related to testing and were false positives.

Similarly, to the Semgrep results, the SonarQube scan of Rugged produced “55 bugs” but all were related to
the documentation. There was one true positive security vulnerability identified; the github-oauth hardcoded
secret reported in Secrets Stored in Source Code Repository, while other hardcoded credentials were missed.

Summary of recommendations

Overall, the assessment team recommends that the following steps be prioritized:

• Ensure the CI/CD pipeline for PHP-TUF is running successfully

• Purchase CI/CD minutes for Rugged

• Review maintainers and developers of each project, ensure 2FA is enforced, and enable branch
protection

• Consider integrating phpcs-security-audit and Semgrep with the PHP-TUF's CI/CD pipeline

• Ensure the linting step is run as part of Rugged's CI/CD pipeline

• Consider adding Semgrep to Rugged's CI/CD pipeline, with only relevant directories scanned to
prevent false positives

• Add a SECURITY.md file for Rugged

Page 27 of 28

Security Concerns Commonly Present in Most Applications

This section contains information about general classes of vulnerabilities that affect most publicly exposed
web applications. As such, IncludeSec does not present these as specific findings in assessment reports, but
instead presents these topics as this report Appendix to ensure Client awareness of these topics. IncludeSec
always encourages clients to review these topics and decide independently whether the security benefits
apply and are worth the trade-offs in usability for users.

Credential Stuffing

Credential Stuffing attacks occur when attackers obtain a list of compromised username and password
combinations (usually from breaches of other online services) and attempt to leverage them to gain access to
user accounts. Attackers often conduct these attacks in parallel using several source IP addresses, making
them difficult to prevent with IP rate limiting, session limiting measures, attack detection JavaScript, or server-
side awareness of vulnerable accounts (e.g., HaveIBeenPwned Database). Additionally, Credential Stuffing
attacks are unlikely to trigger account lockout mechanisms because, unlike a traditional brute-force attack,
only a small number of password combinations are attempted for each account. CAPTCHAs are becoming
increasingly trivial to bypass with recent developments in the field of machine learning, and as a result the
industry does not consider CAPTCHA to be a robust security control to prevent automated attacks.

Include Security believes that the only complete mitigation for the credential stuffing threat is Mandatory
Multi-Factor Authentication (MFA). However, this mitigation adds significant friction to the user experience as
well as support overhead, so the most common approach in the industry is to deploy some partial mitigations
but ultimately accept some risk that Credential Stuffing attacks remain a possibility in the absolute sense. Note
that this risk may be very low if defense in depth is applied using controls mentioned above.

Multifactor Authentication is Not Mandatory

Multifactor Authentication (MFA/2FA) mitigates many common authentication vulnerabilities by requiring
users to have physical access to another device to prove their identity when logging into services. This
prevents prevalent attacks such as Credential Stuffing (discussed above), Brute-Force Guessing attacks, and
some types of Authentication-Based Account Enumeration. Hardware 2FA/MFA methods, such as
WebAuthn/FIDO2, also mitigate phishing attacks that have compromised accounts using legacy 2FA/MFA
methods (SMS, etc.) during several high-profile breaches.

As mentioned earlier, mandatory multifactor authentication greatly increases friction for users and support
staff and is not widely deployed in the industry for these reasons, except in specific applications with very high
security needs. Many applications support optional 2FA/MFA, and while this practice does increase security
for users who opt into it, most of the platforms who have analyzed their user base have shown that typical
users will not choose to enable it if it is not enabled by default (or mandatory), putting the users at risk of
attacks such as phishing and credential stuffing.

Application Allows Concurrent Sessions for Same User

Some applications restrict users from having multiple active sessions at a time, such as connecting from
multiple devices or browsers. This control is meant to mitigate the risk of an attacker compromising the
account in some way and going unnoticed by the user.

IncludeSec believes the security impact to an application if this security feature is not implemented is marginal
and instead recommends notifying users of other successful authentication events, logging of successful
authentication events, as well as providing functionality to terminate all active sessions in the event of account

https://ieeexplore.ieee.org/document/9580020
https://ieeexplore.ieee.org/document/9580020
https://www.nass.org/sites/default/files/2020-05/Yubico%20White%20Paper%20How%20WebAuthn%20Works.pdf

Page 28 of 28

compromise. This approach allows users to respond quickly to security concerns without introducing
unnecessary usability concerns.

JWTs Remain Valid After Deauthentication

It is considered best practice for applications that leverage traditional server-side sessions to destroy the
session object on the server as well as clear the data from the browser when a client deauthenticates from the
application, whether voluntarily or via session timeout. If the application does not do this, an attacker with
access to the user’s browser or other means to compromise the session token could continue performing
actions on the user’s account even after they have logged out.

With JSON Web Tokens (JWTs), the application instead stores session state in a cryptographically signed token
that is managed by the client. With this design, the token will remain valid until its expiration date, even if the
user deauthenticates. While it is possible to maintain a JWT “blacklist” on the server to effectively revoke
tokens, Include Security instead recommends following general security best practices regarding JWTs:

1. Access tokens should have a very short expiration time (in general, less than 1 hour).
2. The application can transparently refresh the session in the background using refresh tokens, which

are generally longer lived than access tokens.
3. Refresh Tokens should implement Refresh Token Rotation, which helps identify and mitigate

compromised refresh tokens by invalidating previous refresh tokens each time a token is refreshed.
4. JWTs should be signed with modern cryptographic algorithms (i.e., RS256) and validated using the

most proven library provided by the web application framework in use.
5. JWTs should not contain security relevant or confidential data in the payload, such as PII or application

secrets.

https://stateful.com/blog/oauth-refresh-token-best-practices

