
CubeFS Security
Audit
In collaboration with the CubeFS project maintainers, The Linux Foundation and the
Open Source Technology Improvement Fund

Prepared by
Adam Korczynski, Ada Logics
David Korczynski, Ada Logics

Report version: 1.0
Published: 2nd January 2024
This report is licensed under Creative Commons 4.0 (CC BY 4.0)

This page has intentionally been left blank
CubeFS 2023 Security Audit

2 Ada Logics Ltd

Table of Contents

Executive summary 4
Project scope 6
Threat model 7
SLSA review 11
Issues found 12

CubeFS 2023 Security Audit

3 Ada Logics Ltd

Executive summary

In the fall of 2023, Ada Logics conducted a security audit of CubeFS in a coordinated
collaboration between Ada Logics, CubeFS, OSTIF and the CNCF. The CNCF funded the work.
The security audit was a holistic security audit with the following goals:

1. Assess and formalize a threat model for CubeFS highlighting entrypoints, risks and at-risk
components.

2. Review the CubeFS codebase for security vulnerabilities of any severity.
3. Review CubeFS's supply-chain maturity against SLSA.

To formalize the threat model, Ada Logics relied on three sources of information: 1) CubeFS's
official documentation, 2) the CubeFS source tree and 3) feedback from the CubeFS
maintainers. The manual review was performed against the threat model to allow the auditors
to consider trust levels and threat actors as they were reviewing the code.

The report contains all issues found from both the threat modelling and manual code audit
exercises. Five of these issues were exploitable by threat actors identified during the threat
modelling, and these issues were assigned the following CVE's:

Issue CVE CVE
severitiy

Authenticated users can crash the CubeFS servers with
maliciously crafted requests

CVE-2023-
46738

Moderate

Timing attack can leak user passwords CVE-2023-
46739

Moderate

Insecure random string generator used for sensitive data CVE-2023-
46740

Moderate

CubeFS leaks magic secret key when starting Blobstore access
service

CVE-2023-
46741

Moderate

CubeFS leaks users key in logs CVE-2023-
46742

Moderate

Ada Logics disclosed these findings responsibly to CubeFS through CubeFS's public Github
Security Advisory disclosure channels. The CubeFS security response team responded to the
disclosures with fixes in a timely manner and before the audit had been completed.

The SLSA review found that CubeFS scores low because it does not include provenance for
releases. Ada Logics included practical steps for achieving SLSA Level 3 compliance.

CubeFS 2023 Security Audit

4 Ada Logics Ltd

Strategic recommendations

In this section, we include our strategic recommendations for CubeFS to maintain a secure
project moving forward. Several points in this section are reflected in "Found Issues" or other
parts of the report, whereas some are only included here.

Supply-Chain Security
CubeFS has undoubtedly included supply-chain security in its ongoing work. For example,
CubeFS has adopted Scorecard, which considers several different aspects of supply-chain
security risks in an automated manner. Nonetheless, Supply-chain Security is an area where
CubeFS can improve its ongoing work. The audit found that releases are not signed and do not
include provenance, which makes consumers vulnerable to known supply-chain risks. We have
included practical steps to take to add this to releases. While CubeFS has integrated the
Scorecard Github Action, CubeFS currently scores a 6,5 Scorecard score, which leaves room for
improvement. Open and closed-sourced software ecosystems are seeing an increase in supply-
chain attacks and their sophistication, with major recent attacks having had their first
compromise in the software development lifecycle rather than after deployment.

Static analysis
CubeFS uses automated SAST in its development pipeline however limited to only CodeQL for
security tooling. During the audit, Ada Logics tested CubeFS with other SAST tools, which found
true positives in the CubeFS code base. We recommend adding the GoSec and Semgrep tools as
wellm and add ignore directives for false positives.

Security-relevant documentation
CubeFS has good documentation but lacks a dedicated security-best-practices section to help
users deploy a security-hardened CubeFS instance. We recommend adding and maintaining
this to ensure users can consume CubeFS in a secure manner and avoid security issues arising
from misconfiguration.

During the security audit, the CubeFS team added a security-best-practices section to the
official CubeFS documentation which is available here:
https://cubefs.io/docs/master/maintenance/security_practice.html

CubeFS 2023 Security Audit

5 Ada Logics Ltd

https://cubefs.io/docs/master/maintenance/security_practice.html

Project Scope

The following Ada Logics auditors carried out the audit and prepared the report.

Name Title Email

Adam Korczynski Security Engineer, Ada Logics Adam@adalogics.com

David Korczynski Security Researcher, Ada Logics David@adalogics.com

The following CubeFS team members were part of the audit.

Name Title Email

Leon Chang maintainer changliang@oppo.com

Xiaochun He maintainer hexiaochun@oppo.com

Baijiaruo maintainer huyao2@oppo.com

Lei Zhang maintainer zhanglei12@oppo.com

The following OSTIF members were part of the audit.

Name Title Email

Derek Zimmer Executive Director, OSTIF Derek@ostif.org

Amir Montazery Managing Director, OSTIF Amir@ostif.org

Helen Woeste Project coordinator, OSTIF Helen@ostif.org

CubeFS 2023 Security Audit

6 Ada Logics Ltd

Threat model

In this part, we look at CubeFS's threat model. We have used open-source materials to
formalize the threat model including mainly from documentation produced by the CubeFS
ecosystem, recorded talks, presentations and third-party documentation.

CubeFS is a cloud-native data storage infrastructure often used on top of databases, machine-
learning platforms and applications deployed on top of Kubernetes. It supports multiple access
protocols like S3, POSIX and HDFS with flexibility for consumers using multiple protocols in the
same deployment.

CubeFS has four main components: 1) A metadata subsystem, 2) a data subsystem, 3) a
resource management node also called "Master" and 4) an Object Subsystem. Below, we
enumerate the components.

Metadata subsystem

The Metadata subsystem runs the MetaNode which stores all file metadata in the cluster. In
Kubernetes, this is deployed as a DaemonSet K8s resource.

Data subsystem

The data subsystem is known internally in CubeFS as DataNode and handles the actual storing of
file data. It mounts a large amount of disk space to store file data. When using CubeFS with
Kubernetes, DataNode is deployed as a DaemonSet .

Resource management

The resource management component is called Master and is responsible for managing
resources and maintaining the metadata of the whole cluster. When deploying CubeFS on
Kubernetes, the Master Node is deployed as a StatefulSet K8s resource.

Object Subsystem

This component runs ObjectNodes and acts as an interface between different protocols - HDFS,
POSIX and S3 - such that CubeFS works as the underlying data store, and the user can operate
CubeFS by way of either or several of these protocols. The Object Subsystem is also called the
Object Gateway internally in the CubeFS ecosystem.

In addition to the four core components, CubeFS implements an AuthNode which handles
authentication and authorization in a CubeFS deployment.

CubeFS is meant to be deployed in such a manner that it is available to users of varying
permission levels. This means that at a high level, CubeFS must be resistant to malicious cluster
users who have been granted access. For example, if an organization grants access to an
employee who gets convinced by a competitor to steal or corrupt data, the CubeFS devops
team must know the impact this employee has for risk mitigation and impact remediation
purposes. User permissions in CubeFS should start at the lowest and increase with the
permissions that CubeFS admins intend to add to the user.

There are at least two security-relevant implications for CubeFS's architectural and permission
design:

CubeFS 2023 Security Audit

7 Ada Logics Ltd

1. Users should not be able to achieve permissions they have not been granted. A permission
should not imply another permission, whether intended or not. At this level, we are
considering defined permissions that are not assigned to a user. This part of CubeFS's
security model distinguishes between privileges at a granular level.

2. The second implication is the distinction between root and non-root permissions. CubeFS
should accept a full cluster deletion by the cluster admin; it is not a security breach if the
cluster admin or CubeFS admin can take down the entire cluster or cause any other harm
to any part of CubeFS. There is an implied list of non-permitted actions that users should
not be allowed to perform. These are general security risks that pertain to other software
applications, such as Denial-of-Service attacks, stealing data, remote code execution,
corruption of data and other general threats.

Most commonly, CubeFS is not exposed directly to the internet but will be available to services
inside the cluster to which it is deployed. A CubeFS deployment will have multiple client nodes
that include a client container, which is intended to communicate with the remaining CubeFS
components. Communication between components happens via HTTP(S); Each component
exposes a web server to the cluster. As such, threats are likely to come from users who already
have a position in the cluster. This position can be through a legitimate use cage - a user that
should have access and has been granted so by the CubeFS admin, or it could be through a
threat actor who has already escalated privileges and who seeks to further advance their
position inside the cluster. In the former scenario, we have covered the expectations above,
which we can sum up as such: If a legitimate user turns malicious, the CubeFS admin should
know what their impact is and should be in control of reducing any permissions that the user
has. In other words, what the CubeFS admin expects the user can do represents the user's
privileges pricisely. For the latter, CubeFS should reduce the ease with which an attacker can
further escalate privileges inside the cluster.

CubeFS 2023 Security Audit

8 Ada Logics Ltd

Trust boundaries

In this section, we identify the trust boundaries of a CubeFS deployment. Below, we include a
trust-flow diagram of an out-of-the-box CubeFS deployment:

Typically, a CubeFS deployment will be deployed alongside an internet-facing application in the
cluster with which users communicate. When traffic enters the cluster, it crosses a trust
boundary and flows low to high in the direction from the internet to the cluster. This trust
boundary could also exist between the user-facing application and the CubeFS client nodes,
depending on the specific use case. The reason for this is that the user-facing application could
do its own validation and sanitization. From the user-facing application, traffic flows to the
CubeFS client nodes. These authenticate the request before processing it, and the traffic
crosses another trust boundary when being authenticated. At this point, trust flows low to high
in the direction from the CubeFS client nodes to the authenticator. Trust remains high until
CubeFS responds to the user external to the cluster.

CubeFS 2023 Security Audit

9 Ada Logics Ltd

Threat actors

A threat actor is an individual or group that intentionally attempts to exploit vulnerabilities,
deploy malicious code, or compromise or disrupt a CubeFS deployment, often for financial
gain, espionage, or sabotage. A threat actor is the personification of a possible attacker of
security issues. Each threat actor has a level of trust tied to them, and matching one or several
threat actors with CubeFS's threat model helps identify the high-level security risk. We identify
the following threat actors for CubeFS. A threat actor can assume multiple profiles from the
table below; for example, a fully untrusted user can also be a contributor to a 3rd-party library
used by CubeFS.

Threat Actor Description Level
of trust

Code contributor to
CubeFS

Person or group of people that contribute code to
CubeFS's upstream repository

None

Code contributor to
CubeFS's 3rd-party
dependencies

Person or group of people that contribute code to
CubeFS's 3rd-party dependencies None

External users of ingress
cluster entrypoints

Users that interact with internet-facing applications in the
cluster. The purpose of these entrypoints will for the most
part be to enable use of CubeFS.

None

Outside actor with
position in cluster

A person or group of people with no granted privileges
that have escalated privileges by using a weakness in
CubeFS, its underlying platform or a 3rd-party
dependency.

None

Cluster user Cluster users with non-root privileges. These are users of
the CubeFS deployment.

Low to
high

Infrastructure
contributors

These are users that maintain applications and
infrastructure running on the cluster. This threat actor is
not a user of CubeFS themselves, but they facilitate access
for other users.

Low

Cluster admin Users with sudo permissions over the cluster and CubeFS. Full

CubeFS 2023 Security Audit

10 Ada Logics Ltd

SLSA review

ADA Logics carried out a SLSA review of CubeFS. SLSA (https://github.com/slsa.dev) is a
framework for assessing the security practices of a given software project with a focus on
mitigating supply-chain risk. SLSA emphasises tamper resistance of artifacts as well as
ephemerality of the build and release cycle.

SLSA mitigates a series of attack vectors in the software development life cycle (SDLC), all of
which have seen real-world examples of successful attacks against open-source and proprietary
software.

Below, we include a diagram made by the SLSA illustrating the attack surface of the SDLC.

Each of the red markers demonstrate different areas of possible compromise that could allow
attackers to tamper with the artifact that the consumer invokes at the end of the SDLC.

SLSA splits its assessment criteria into 4 increasingly demanding levels. The higher the level of
compliance, the higher tamper-resistance the project ensures its consumers.

An essential part of ensuring tamper resistance is to include a verifiable provenance statement
with releases. SLSA provides a framework for creating this automatically when building release
artifacts (https://github.com/slsa-framework/slsa-github-generator) which we recommend
CubeFS adopts. Building artifacts by way of the slsa-github-generator will produce SLSA level 3
compliant provenance. CubeFS can adopt the slsa-github-generator by adding a Github
workflow that invokes the SLSA builder.

Complying with SLSA level 3 reflects a high standard of supply-chain mitigation, and CubeFS
consumers should not be discouraged from a low level of compliance. We recommend that the
CubeFS community tracks ongoing work for adopting the slsa-github-generator project and
working on this in the open. It is far from all open-source projects that have achieved level 3
compliance at this part of SLSA open-source lifetime.

CubeFS currently is at Level 0 by the SLSA specification.

CubeFS 2023 Security Audit

11 Ada Logics Ltd

https://slsa.dev/

Issues found

Ada Logics found 12 issues during the audit. The list includes all issues found by way of manual
auditing and fuzzing. Ada Logics uses a scoring system that considers impact and ease of
exploitation. This is different from the CVSS scoring system, and there may be discrepancies
between the severity assigned by Ada Logics and the severity resulting from a CVSS calculation.

Title Status Severity

1 Authenticated users can crash the CubeFS servers with
maliciously crafted requests

Fixed Moderate

2 CubeFS leaks magic secret key when starting Blobstore
access service

Fixed Moderate

3 CubeFS leaks users key in logs Fixed Moderate

4 Insecure cryptographic primitive used for sensitive data Fixed Moderate

5 Insecure random string generator used for sensitive data Fixed Moderate

6 Lack of security-best-practices documentation Fixed Moderate

7 Possible deadlocks Fixed Moderate

8 Possible nil-dereference from unmarshalling double pointer Fixed Low

9 Potential Slowloris attacks Fixed Low

10 Releases are not signed Fixed Moderate

11 Security Disclosure Email Does Not Work Fixed Low

12 Timing attack can leak user passwords Fixed Moderate

CubeFS 2023 Security Audit

12 Ada Logics Ltd

Authenticated users can crash the CubeFS servers with
maliciously crafted requests

Severity: Moderate

Status: Fixed

Id: ADA-CUBEFS-NKbh4NJK

Component: ObjectNode

The root cause is that when CubeFS reads the body of incoming requests, it reads it entirely into
memory and without an upper boundary. As such, an attacker can craft an HTTP that contains a
large body and exhausts memory of the machine, which results in crashing the server.

Details
The issue exists across multiple CubeFS components. We have not made an exhaustive list and
will follow up with that. For now, we exemplify the issue with the deleteObjectsHandler of the
objectnode component. This handler reads the body of the incoming request entirely into
memory on line 561 below:

https://github.com/cubefs/cubefs/blob/45442918591d25e7ab555469df384df468df5dbc/objectnode/api_handler_object.go#L5
32C22-L567

532 func (o *ObjectNode) deleteObjectsHandler(w http.ResponseWriter, r *http.Request) {
533 var (
534 err error
535 errorCode *ErrorCode
536)
537 defer func() {
538 o.errorResponse(w, r, err, errorCode)
539 }()
540
541 var param = ParseRequestParam(r)
542 if param.Bucket() == "" {
543 errorCode = InvalidBucketName
544 return
545 }
546
547 var vol *Volume
548 if vol, err = o.getVol(param.Bucket()); err != nil {
549 log.LogErrorf("deleteObjectsHandler: load volume fail: requestID(%v)

volume(%v) err(%v)",
550 GetRequestID(r), param.Bucket(), err)
551 return
552 }
553
554 requestMD5 := r.Header.Get(ContentMD5)
555 if requestMD5 == "" {
556 errorCode = MissingContentMD5
557 return
558 }
559
560 var bytes []byte
561 bytes, err = ioutil.ReadAll(r.Body)
562 if err != nil {
563 log.LogErrorf("deleteObjectsHandler: read request body fail:

requestID(%v) volume(%v) err(%v)",
564 GetRequestID(r), param.Bucket(), err)
565 errorCode = UnexpectedContent
566 return
567 }

In this case, a user does not require permission to delete objects since the ACL check is done
after reading the request body.

PoC

CubeFS 2023 Security Audit

13 Ada Logics Ltd

We include two programs to reproduce this issue. Warning: save all work before running this
PoC, including work in browser tabs.

The first program is a server that represents the deleteObjectsHandler . We have stripped
unrelated parts of the function body that the HTTP request can easily pass legitimately. Start up
this server by creating the following go module and run it with go run main.go :

1 package main
2
3 import (
4 "fmt"
5 "io/ioutil"
6 "net/http"
7)
8
9 func main() {
10 http.HandleFunc("/deleteObjects", func(w http.ResponseWriter, r

*http.Request) {
11 // Here CubeFS gets the params. We skip that since an authenticated

user can get past that.
12
13 // Here CubeFS gets the volume. The user can pass a Bucket identifier

that will not return an error to get past that.
14
15 // Here CubeFS gets the requestMD5. The user can include any value in

the header to get past that.
16
17 // At this point, the handler invokes the vulnerable line
18 fmt.Println("Got request")
19 _, err := ioutil.ReadAll(r.Body)
20 if err != nil {
21 return
22 }
23 fmt.Println("Finished reading body")
24 })
25
26 fmt.Printf("Starting server at port 8080\n")
27 if err := http.ListenAndServe(":8080", nil); err != nil {
28 panic(err)
29 }
30 }

You should see Starting server at port 8080 in the terminal when starting this program.

The next program is the client. This program represents the malicious user who crafts a request
with a large body and sends it to the server. Depending on the system used when running this
program, it may be necessary to reduce or increase the size of the body. Create the following
main.go in another module and run it with go run main.go

1 package main
2
3 import (
4 "io"
5 "strings"
6 "net/http"
7)
8
9 func main() {
10 req := maliciousRequest()
11
12 _, err := http.DefaultClient.Do(req)
13 if err != nil{
14 panic(err)
15 }
16 }
17
18 func maliciousRequest() *http.Request {
19 s := strings.Repeat("malicious string", 100000000)
20 r1 := strings.NewReader(s)
21 r2 := strings.NewReader(s)
22 r3 := strings.NewReader(s)
23 r4 := strings.NewReader(s)
24 r5 := strings.NewReader(s)
25 r6 := strings.NewReader(s)
26 r7 := strings.NewReader(s)
27 r8 := strings.NewReader(s)
28 r := io.MultiReader(r1, r2, r3, r4, r5, r6, r7, r8)

CubeFS 2023 Security Audit

14 Ada Logics Ltd

29 req, err := http.NewRequest("POST", "http://localhost:8080/deleteObjects", r)
30 if err != nil {
31 panic(err)
32 }
33 return req
34 }

This request should exhaust memory temporarily and then crash the server.

Impact
All CubeFS users are impacted by this issue.

CubeFS 2023 Security Audit

15 Ada Logics Ltd

CubeFS leaks magic secret key when starting Blobstore
access service

Severity: Moderate

Status: Fixed

Id: ADA-CUBEFS-MNJHBrv3

Component: BlobStore

CubeFS leaks secret configuration keys during initialization of the blobstore access service
controller, more specifically here:

https://github.com/cubefs/cubefs/blob/26da9925a3db98ff9a1e9a12cca2c457f736b831/blobstore/access/server.go#L76-L86

76 func initWithRegionMagic(regionMagic string) {
77 if regionMagic == "" {
78 log.Warn("no region magic setting, using default secret keys for

checksum")
79 return
80 }
81
82 log.Info("using magic secret keys for checksum with:", regionMagic)
83 b := sha1.Sum([]byte(regionMagic))
84 initTokenSecret(b[:8])
85 initLocationSecret(b[:8])
86 }

Users with access to the logs can retrieve the secret key and escalate privileges to carry out
operations on blobs that they otherwise don’t have the necessary permissions for. For example,
a threat actor who has successfully retrieved a magic secret key from the logs can delete blobs
from the blob store by validating their requests in this step:

https://github.com/cubefs/cubefs/blob/26da9925a3db98ff9a1e9a12cca2c457f736b831/blobstore/access/server.go#L546-L569

546 func (s *Service) DeleteBlob(c *rpc.Context) {
547 args := new(access.DeleteBlobArgs)
548 if err := c.ParseArgs(args); err != nil {
549 c.RespondError(err)
550 return
551 }
552
553 ctx := c.Request.Context()
554 span := trace.SpanFromContextSafe(ctx)
555
556 span.Debugf("accept /deleteblob request args:%+v", args)
557 if !args.IsValid() {
558 c.RespondError(errcode.ErrIllegalArguments)
559 return
560 }
561
562 valid := false
563 for _, secretKey := range tokenSecretKeys {
564 token := uptoken.DecodeToken(args.Token)
565 if token.IsValid(args.ClusterID, args.Vid, args.BlobID,

uint32(args.Size), secretKey[:]) {
566 valid = true
567 break
568 }
569 }

To exploit this security issue, the attacker needs to have privileges to read the logs. They could
have obtained these privileges legitimately, or they could have obtained them by already
having escalated privileges.

CubeFS 2023 Security Audit

16 Ada Logics Ltd

CubeFS leaks users key in logs

Severity: Moderate

Status: Fixed

Id: ADA-CUBEFS-vc34CGVVJB

Component: Master

CubeFS leaks secret user keys and access keys in the logs in multiple components. When
CubeCS creates new users, it leaks the user's secret key. This could allow a lower-privileged user
with access to the logs to retrieve sensitive information and impersonate other users with
higher privileges than themselves.

Details
The vulnerable API that leaks secret keys is createKey :

https://github.com/cubefs/cubefs/blob/26da9925a3db98ff9a1e9a12cca2c457f736b831/master/user.go#L43-L111

43 func (u *User) createKey(param *proto.UserCreateParam) (userInfo *proto.UserInfo, err
error) {

44 var (
45 AKUser *proto.AKUser
46 userPolicy *proto.UserPolicy
47 exist bool
48)
49 if param.ID == "" {
50 err = proto.ErrInvalidUserID
51 return
52 }
53 if !param.Type.Valid() {
54 err = proto.ErrInvalidUserType
55 return
56 }
57
58 var userID = param.ID
59 var password = param.Password
60 if password == "" {
61 password = DefaultUserPassword
62 }
63 var accessKey = param.AccessKey
64 if accessKey == "" {
65 accessKey = util.RandomString(accessKeyLength,

util.Numeric|util.LowerLetter|util.UpperLetter)
66 } else {
67 if !proto.IsValidAK(accessKey) {
68 err = proto.ErrInvalidAccessKey
69 return
70 }
71 }
72 var secretKey = param.SecretKey
73 if secretKey == "" {
74 secretKey = util.RandomString(secretKeyLength,

util.Numeric|util.LowerLetter|util.UpperLetter)
75 } else {
76 if !proto.IsValidSK(secretKey) {
77 err = proto.ErrInvalidSecretKey
78 return
79 }
80 }
81 var userType = param.Type
82 var description = param.Description
83 u.userStoreMutex.Lock()
84 defer u.userStoreMutex.Unlock()
85 u.AKStoreMutex.Lock()
86 defer u.AKStoreMutex.Unlock()
87 //check duplicate
88 if _, exist = u.userStore.Load(userID); exist {
89 err = proto.ErrDuplicateUserID
90 return
91 }
92 _, exist = u.AKStore.Load(accessKey)
93 for exist {

CubeFS 2023 Security Audit

17 Ada Logics Ltd

94 accessKey = util.RandomString(accessKeyLength,
util.Numeric|util.LowerLetter|util.UpperLetter)

95 _, exist = u.AKStore.Load(accessKey)
96 }
97 userPolicy = proto.NewUserPolicy()
98 userInfo = &proto.UserInfo{UserID: userID, AccessKey: accessKey, SecretKey:

secretKey, Policy: userPolicy,
99 UserType: userType, CreateTime: time.Unix(time.Now().Unix(),

0).Format(proto.TimeFormat), Description: description}
100 AKUser = &proto.AKUser{AccessKey: accessKey, UserID: userID, Password:

encodingPassword(password)}
101 if err = u.syncAddUserInfo(userInfo); err != nil {
102 return
103 }
104 if err = u.syncAddAKUser(AKUser); err != nil {
105 return
106 }
107 u.userStore.Store(userID, userInfo)
108 u.AKStore.Store(accessKey, AKUser)
109 log.LogInfof("action[createUser], userID: %v, accesskey[%v], secretkey[%v]",

userID, accessKey, secretKey)
110 return
111 }

createKey creates a UserInfo , an access key and a secret key and stores it in the respective
stores. If createKey successfully creates all three pieces of information and successfully stores
them, it will log the created pieces of information on this line:

https://github.com/cubefs/cubefs/blob/26da9925a3db98ff9a1e9a12cca2c457f736b831/master/user.go#L109

109 log.LogInfof("action[createUser], userID: %v, accesskey[%v], secretkey[%v]",
userID, accessKey, secretKey)

Impact
An attacker who has access to the logs can see the secret key in plain text and impersonate the
user. The attacker can either be an internal user with limited privileges to read the log, or it can
be an external user who has escalated privileges sufficiently to access the logs.

To find the places where CubeFS logs the users accessKey , we refer to the following grep call:
grep -r "log\." . --exclude=*test.go | grep accessKey . Not all occurrences of this constitute a
vulnerability: Only cases of logging after authorization represent a security issue.

CubeFS 2023 Security Audit

18 Ada Logics Ltd

Insecure cryptographic primitive used for sensitive data

Severity: Moderate

Status: Fixed

Id: ADA-CUBEFS-VGvgh234hb2

Component: Master

Cubefs Master uses an insecure cryptographic primitive for encoding user passwords. Cubefs
uses SHA1 to encode the password. Researchers have identified theoretical collision attacks of
SHA1 for the first time in 2004 but have only demonstrated it in practice in 2017 (Marc Stevens,
Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov. "The first collision for full SHA-
1"). NIST recommends that existing usage of SHA1 for security-sensitve information should be
upgraded to SHA2 or SHA3 (https://www.nist.gov/news-events/news/2022/12/nist-retires-sha-
1-cryptographic-algorithm). The issue exists in the encodingPassword helper:

https://github.com/cubefs/cubefs/blob/45442918591d25e7ab555469df384df468df5dbc/master/user.go#L547-L551

547 func encodingPassword(s string) string {
548 t := sha1.New()
549 io.WriteString(t, s)
550 return hex.EncodeToString(t.Sum(nil))
551 }

Cubefs uses this helper when creating a user below on line 100:

https://github.com/cubefs/cubefs/blob/45442918591d25e7ab555469df384df468df5dbc/master/user.go#L43-L111

43 func (u *User) createKey(param *proto.UserCreateParam) (userInfo *proto.UserInfo, err
error) {

44 var (
45 AKUser *proto.AKUser
46 userPolicy *proto.UserPolicy
47 exist bool
48)
49 if param.ID == "" {
50 err = proto.ErrInvalidUserID
51 return
52 }
53 if !param.Type.Valid() {
54 err = proto.ErrInvalidUserType
55 return
56 }
57
58 var userID = param.ID
59 var password = param.Password
60 if password == "" {
61 password = DefaultUserPassword
62 }
63 var accessKey = param.AccessKey
64 if accessKey == "" {
65 accessKey = util.RandomString(accessKeyLength,

util.Numeric|util.LowerLetter|util.UpperLetter)
66 } else {
67 if !proto.IsValidAK(accessKey) {
68 err = proto.ErrInvalidAccessKey
69 return
70 }
71 }
72 var secretKey = param.SecretKey
73 if secretKey == "" {
74 secretKey = util.RandomString(secretKeyLength,

util.Numeric|util.LowerLetter|util.UpperLetter)
75 } else {
76 if !proto.IsValidSK(secretKey) {
77 err = proto.ErrInvalidSecretKey
78 return
79 }
80 }

CubeFS 2023 Security Audit

19 Ada Logics Ltd

81 var userType = param.Type
82 var description = param.Description
83 u.userStoreMutex.Lock()
84 defer u.userStoreMutex.Unlock()
85 u.AKStoreMutex.Lock()
86 defer u.AKStoreMutex.Unlock()
87 //check duplicate
88 if _, exist = u.userStore.Load(userID); exist {
89 err = proto.ErrDuplicateUserID
90 return
91 }
92 _, exist = u.AKStore.Load(accessKey)
93 for exist {
94 accessKey = util.RandomString(accessKeyLength,

util.Numeric|util.LowerLetter|util.UpperLetter)
95 _, exist = u.AKStore.Load(accessKey)
96 }
97 userPolicy = proto.NewUserPolicy()
98 userInfo = &proto.UserInfo{UserID: userID, AccessKey: accessKey, SecretKey:

secretKey, Policy: userPolicy,
99 UserType: userType, CreateTime: time.Unix(time.Now().Unix(),

0).Format(proto.TimeFormat), Description: description}
100 AKUser = &proto.AKUser{AccessKey: accessKey, UserID: userID, Password:

encodingPassword(password)}
101 if err = u.syncAddUserInfo(userInfo); err != nil {
102 return
103 }
104 if err = u.syncAddAKUser(AKUser); err != nil {
105 return
106 }
107 u.userStore.Store(userID, userInfo)
108 u.AKStore.Store(accessKey, AKUser)
109 log.LogInfof("action[createUser], userID: %v, accesskey[%v], secretkey[%v]",

userID, accessKey, secretKey)
110 return
111 }

An attacker who can retrieve the database records of users has a lower barrier for getting the
actual passwords of users than if Cubefs used a secure primitive such as SHA2 or SHA3. To
exploit this weakness, an attacker would already need to escalate privileges or gain access to
database records from misconfiguration of a Cubefs deployment. Even so, an attacker has the
potential for further escalating privileges by exploiting this weakness depending on the user
credentials they can steal.

Mitigation
We recommend using a secure primitive for user passwords. This would mitigate risk even if an
attacker has access to the encrypted user passwords.

CubeFS 2023 Security Audit

20 Ada Logics Ltd

Insecure random string generator used for sensitive data

Severity: Moderate

Status: Fixed

Id: ADA-CUBEFS-BH£Rj2432jk

Component: Master

CubeFS uses an insecure random string generator to generate user-specific, sensitive keys used
to authenticate users in a CubeFS deployment. This could allow an attacker to predict and/or
guess the generated string and impersonate a user, thereby obtaining higher privileges.

When CubeFS creates new users, it creates a piece of sensitive information for the user called
the “accessKey”. To create the accesKey , CubeFS uses an insecure string generator which makes
it easy to guess and thereby impersonate the created user. The API that generates access keys is
RandomString :

https://github.com/cubefs/cubefs/blob/26da9925a3db98ff9a1e9a12cca2c457f736b831/util/string.go#L58-L67

58 func RandomString(length int, seed RandomSeed) string {
59 runs := seed.Runes()
60 result := ""
61 for i := 0; i < length; i++ {
62 rand.Seed(time.Now().UnixNano())
63 randNumber := rand.Intn(len(runs))
64 result += string(runs[randNumber])
65 }
66 return result
67 }

RandomString uses math/rand seeded with UnixNano() to generate the string, which is
predictable. math/rand is not suited for sensitive information, as stated in the documentation:
https://pkg.go.dev/math/rand#pkg-overview.

CubeFS uses RandomString() to generate user access keys in the following places:

https://github.com/cubefs/cubefs/blob/26da9925a3db98ff9a1e9a12cca2c457f736b831/master/user.go#L63-L66

63 var accessKey = param.AccessKey
64 if accessKey == "" {
65 accessKey = util.RandomString(accessKeyLength,

util.Numeric|util.LowerLetter|util.UpperLetter)
66 } else {

https://github.com/cubefs/cubefs/blob/26da9925a3db98ff9a1e9a12cca2c457f736b831/master/user.go#L92-L96

92 _, exist = u.AKStore.Load(accessKey)
93 for exist {
94 accessKey = util.RandomString(accessKeyLength,

util.Numeric|util.LowerLetter|util.UpperLetter)
95 _, exist = u.AKStore.Load(accessKey)
96 }

https://github.com/cubefs/cubefs/blob/26da9925a3db98ff9a1e9a12cca2c457f736b831/master/user.go#L72-L75

72 var secretKey = param.SecretKey
73 if secretKey == "" {
74 secretKey = util.RandomString(secretKeyLength,

util.Numeric|util.LowerLetter|util.UpperLetter)
75 } else {

CubeFS 2023 Security Audit

21 Ada Logics Ltd

Impact
An attacker could exploit the predictable random string generator and guess a users access key
to impersonate the user and obtain higher privileges.

CubeFS 2023 Security Audit

22 Ada Logics Ltd

Lack of security-best-practices documentation

Severity: Moderate

Status: Fixed

Id: ADA-CUBEFS-vc34CGVVJB

Component: CubeFS

CubeFS maintain documentation on how to easily get started with CubeFS, which is positive;
however, CubeFS lacks a section or dedicated page on deploying and using CubeFS in a secure,
production-ready manner.

We recommend setting up a dedicated page to accommodate this. See the Istio security-best-
practices page for reference: https://istio.io/latest/docs/ops/best-practices/security/.

Without an officially maintained security-best-practices page, users may deploy CubeFS in ways
that are known by the community to be insecure and obviously necessary for secure but also
easy to overlook. Users should not be expected to read through the entire documentation to
dissect the critical parts for deployment. Instead, we recommend a dedicated page for this
purpose.

The work to maintain secure-best-practices documentation should be considered an ongoing
process. Adding this to the documentation, maintaining it and developing it over time is good
practice.

CubeFS 2023 Security Audit

23 Ada Logics Ltd

Possible deadlocks

Severity: Moderate

Status: Fixed

Id: ADA-CUBEFS-LK432hu

Component: Multiple

Cubefs is susceptible to a number of deadlocks across multiple components. This is an
umbrella issue for all identified possible deadlocks. Deadlocks happen when two threads or
programs are waiting for each other to finish, where one of them does not finish. This has
security implications if an attacker is able to cause the deadlock. The attacker will steer the
execution of the program into a path where the program invokes a lock but does not unlock it.

Below we enumerate the places across the Cubefs source tree where this can happen.

Rate limiter
Below, Cubefs locks the mutex on line 60 and unlocks it on line 72. Between the mutex lock and
unlock, the method can exit in two places: line 63 and line 67.

https://github.com/cubefs/cubefs/blob/46cb4d149c45f1ad7b40381b5a2a20bd6d599e25/util/ratelimit/keyratelimit.go#L58-L73

58 func (k *KeyRateLimit) Release(key string) {
59
60 k.mutex.Lock()
61 limit, ok := k.current[key]
62 if !ok {
63 panic("key not in map. Possible reason: Release without Acquire.")
64 }
65 limit.refCount--
66 if limit.refCount < 0 {
67 panic("internal error: refs < 0")
68 }
69 if limit.refCount == 0 {
70 delete(k.current, key)
71 }
72 k.mutex.Unlock()
73 }

flowctrl
A similar case to the Rate limiter exists in the flowctrl package:

https://github.com/cubefs/cubefs/blob/46cb4d149c45f1ad7b40381b5a2a20bd6d599e25/util/flowctrl/keycontroller.go#L55-L71

55 func (k *KeyFlowCtrl) Release(key string) {
56
57 k.mutex.Lock()
58 ctrl, ok := k.current[key]
59 if !ok {
60 panic("key not in map. Possible reason: Release without Acquire.")
61 }
62 ctrl.refCount--
63 if ctrl.refCount < 0 {
64 panic("internal error: refs < 0")
65 }
66 if ctrl.refCount == 0 {
67 ctrl.c.Close() // avoid goroutine leak
68 delete(k.current, key)
69 }
70 k.mutex.Unlock()
71 }

Cubefs locks the mutex on line 57 and unlocks it on line 70. The method can exit on lines 60 and
64 without unlocking.

CubeFS 2023 Security Audit

24 Ada Logics Ltd

Metanode
Metanodes method for marshalling a value to bytes has a potential deadlock if the call to
binary.Write fails with an error, which will cause the method to panic without releasing the

lock.

Below, MarshalValue() locks on line 703 and unlocks on line 719. On line 709, the method
panics without releasing the lock:

https://github.com/cubefs/cubefs/blob/46cb4d149c45f1ad7b40381b5a2a20bd6d599e25/metanode/inode.go#L698-L721

698 func (i *Inode) MarshalValue() (val []byte) {
699 var err error
700 buff := bytes.NewBuffer(make([]byte, 0, 128))
701 buff.Grow(64)
702
703 i.RLock()
704 i.MarshalInodeValue(buff)
705 if i.getLayerLen() > 0 && i.getVer() == 0 {
706 log.LogFatalf("action[MarshalValue] inode %v current verseq %v, hist

len (%v) stack(%v)", i.Inode, i.getVer(), i.getLayerLen(), string(debug.Stack()))
707 }
708 if err = binary.Write(buff, binary.BigEndian, int32(i.getLayerLen())); err

!= nil {
709 panic(err)
710 }
711
712 if i.multiSnap != nil {
713 for _, ino := range i.multiSnap.multiVersions {
714 ino.MarshalInodeValue(buff)
715 }
716 }
717
718 val = buff.Bytes()
719 i.RUnlock()
720 return
721 }

An attacker who can trigger the panic in a controlled manner has the potential to exploit this by
locking a lot or all resources on the machine and thereby cause denial of service.

QosCtrlManager
The Cubefs QoS manager's method for assigning QoS to clients, assignClientsNewQos is
susceptible to a deadlock in case the manager has not enabled QoS. Below, the manager locks
on line 692 and unlocks on line 722. On line 694, the manager will return if the QoS is not
enabled:

https://github.com/cubefs/cubefs/blob/46cb4d149c45f1ad7b40381b5a2a20bd6d599e25/master/limiter.go#L691-L735

691 func (qosManager *QosCtrlManager) assignClientsNewQos(factorType uint32) {
692 qosManager.RLock()
693 if !qosManager.qosEnable {
694 return
695 }
696 serverLimit := qosManager.serverFactorLimitMap[factorType]
697 var bufferAllocated uint64
698
699 // recalculate client Assign limit and buffer
700 for _, cliInfoMgr := range qosManager.cliInfoMgrMap {
701 cliInfo := cliInfoMgr.Cli.FactorMap[factorType]
702 assignInfo := cliInfoMgr.Assign.FactorMap[factorType]
703
704 if cliInfo.Used+cliInfoMgr.Cli.FactorMap[factorType].Need == 0 {
705 assignInfo.UsedLimit = 0
706 assignInfo.UsedBuffer = 0
707 } else {
708 assignInfo.UsedLimit =

uint64(float64(cliInfo.Used+cliInfo.Need) * float64(1-serverLimit.LimitRate))
709 if serverLimit.Allocated != 0 {
710 assignInfo.UsedBuffer =

uint64(float64(serverLimit.Buffer) * (float64(assignInfo.UsedLimit) /
float64(serverLimit.Allocated)) * 0.5)

711 }
712

CubeFS 2023 Security Audit

25 Ada Logics Ltd

713 // buffer left may be quit large and we should not use up
and doesn't mean if buffer large than used limit line

714 if assignInfo.UsedBuffer > assignInfo.UsedLimit {
715 assignInfo.UsedBuffer = assignInfo.UsedLimit
716 }
717 }
718
719 bufferAllocated += assignInfo.UsedBuffer
720 }
721
722 qosManager.RUnlock()
723
724 if serverLimit.Buffer > bufferAllocated {
725 serverLimit.Buffer -= bufferAllocated
726 } else {
727 serverLimit.Buffer = 0
728 log.LogWarnf("action[assignClientsNewQos] vol [%v] type [%v] clients

buffer [%v] and server buffer used up trigger flow limit overall",
729 qosManager.vol.Name, proto.QosTypeString(factorType),

bufferAllocated)
730 }
731
732 log.QosWriteDebugf("action[assignClientsNewQos] vol [%v] type [%v]

serverLimit buffer:[%v] used:[%v] need:[%v] total:[%v]",
733 qosManager.vol.Name, proto.QosTypeString(factorType),
734 serverLimit.Buffer, serverLimit.Allocated,

serverLimit.NeedAfterAlloc, serverLimit.Total)
735 }

An attacker cannot control whether Cubefs should proceed into this branch and return:

1 if !qosManager.qosEnable {
2 return
3 }

For an attacker to return on line 694 and thereby prevent Cubefs from unlocking the manager,
they would need to know that the victims Cubefs deployment has disabled QoS and thereby
cause Cubefs to invoke assignClientsNewQos .

Block cache
The Block cache manager has a method for removing item keys from the cache to free up
space, freeSpace . This method invokes a loop that ends when a counter, cnt reaches 500000 .
Each loop iteration performs the following steps: 1) The Block cache manager locks, 2) an item
is deleted from the store, 3) the Block cache manager unlocks. This process is susceptible to a
deadlock because the freeSpace method can exist between step 1 and 3, i.e. it is possible for
freeSpace to lock the Block cache manager and return without unlocking it.

On line 390 the manager enters the for loop. Inside the loop, the manager locks on line 399 and
unlocks on line 415. On line 403, freeSpace can return without unlocking the manager.

https://github.com/cubefs/cubefs/blob/46cb4d149c45f1ad7b40381b5a2a20bd6d599e25/blockcache/bcache/manage.go#L379-
L419

379 func (bm *bcacheManager) freeSpace(store *DiskStore, free float32, files int64) {
380 var decreaseSpace int64
381 var decreaseCnt int
382
383 if free < store.freeLimit {
384 decreaseSpace = int64((store.freeLimit - free) *

(float32(store.capacity)))
385 }
386 if files > int64(store.limit) {
387 decreaseCnt = int(files - int64(store.limit))
388 }
389
390 cnt := 0
391 for {
392 if decreaseCnt <= 0 && decreaseSpace <= 0 {
393 break
394 }
395 //avoid dead loop
396 if cnt > 500000 {
397 break
398 }

CubeFS 2023 Security Audit

26 Ada Logics Ltd

399 bm.Lock()
400
401 element := bm.lrulist.Front()
402 if element == nil {
403 return
404 }
405 item := element.Value.(*cacheItem)
406
407 if err := store.remove(item.key); err == nil {
408 bm.lrulist.Remove(element)
409 delete(bm.bcacheKeys, item.key)
410 decreaseSpace -= int64(item.size)
411 decreaseCnt--
412 cnt++
413 }
414
415 bm.Unlock()
416 log.LogDebugf("remove %v from cache", item.key)
417
418 }
419 }

Volume manager
When Cubefs's Volume Manager applies an update to a volume unit, it does so with
applyAdminUpdateVolumeUnit . applyAdminUpdateVolumeUnit gets the disk info with a call to the disk

managers GetDiskInfo . If this call fails, applyAdminUpdateVolumeUnit returns the error. Before
getting the disk info, applyAdminUpdateVolumeUnit puts a lock on the volume that is being
modified, and applyAdminUpdateVolumeUnit will not release that lock if the call to GetDiskInfo
fails. In other words, if the call to GetDiskInfo fails, the lock will not be released. The parameter
to GetDiskInfo is passed directly from a parameter to applyAdminUpdateVolumeUnit .

applyAdminUpdateVolumeUnit locks the volume on line 691 and unlocks it again on line 710. On
line 701, applyAdminUpdateVolumeUnit returns without unlocking the volume.

https://github.com/cubefs/cubefs/blob/46cb4d149c45f1ad7b40381b5a2a20bd6d599e25/blobstore/clustermgr/volumemgr/vol
umemgr.go#L675-L711

675 func (v *VolumeMgr) applyAdminUpdateVolumeUnit(ctx context.Context, unitInfo
*cm.AdminUpdateUnitArgs) error {

676 span := trace.SpanFromContextSafe(ctx)
677 vol := v.all.getVol(unitInfo.Vuid.Vid())
678 if vol == nil {
679 span.Errorf("apply admin update volume unit,vid %d not exist",

unitInfo.Vuid.Vid())
680 return ErrVolumeNotExist
681 }
682 index := unitInfo.Vuid.Index()
683 vol.lock.RLock()
684 if int(index) >= len(vol.vUnits) {
685 span.Errorf("apply admin update volume unit,index:%d over vuids

length ", index)
686 vol.lock.RUnlock()
687 return ErrVolumeUnitNotExist
688 }
689 vol.lock.RUnlock()
690
691 vol.lock.Lock()
692 if proto.IsValidEpoch(unitInfo.Epoch) {
693 vol.vUnits[index].epoch = unitInfo.Epoch
694 vol.vUnits[index].vuInfo.Vuid =

proto.EncodeVuid(vol.vUnits[index].vuidPrefix, unitInfo.Epoch)
695 }
696 if proto.IsValidEpoch(unitInfo.NextEpoch) {
697 vol.vUnits[index].nextEpoch = unitInfo.NextEpoch
698 }
699 diskInfo, err := v.diskMgr.GetDiskInfo(ctx, unitInfo.DiskID)
700 if err != nil {
701 return err
702 }
703 vol.vUnits[index].vuInfo.DiskID = diskInfo.DiskID
704 vol.vUnits[index].vuInfo.Host = diskInfo.Host
705 vol.vUnits[index].vuInfo.Compacting = unitInfo.Compacting
706
707 unitRecord := vol.vUnits[index].ToVolumeUnitRecord()
708 err = v.volumeTbl.PutVolumeUnit(unitInfo.Vuid.VuidPrefix(), unitRecord)
709 vol.lock.Unlock()
710 return err

CubeFS 2023 Security Audit

27 Ada Logics Ltd

711 }

This deadlock can be triggered in two ways. One way is to pass a parameter to
applyAdminUpdateVolumeUnit , which the user knows will result in returning on line 701. The
second way is to modify the disk manager such that when another user invokes GetDiskInfo()
on line 699, it will fail. GetDiskInfo returns an error if the diskInfo of the passed DiskID does
not exist:

https://github.com/cubefs/cubefs/blob/5ab518b3598ee99a74b333d0d2abc80739bbae4d/blobstore/clustermgr/diskmgr/diskm
gr.go#L274-L285

274 func (d *DiskMgr) GetDiskInfo(ctx context.Context, id proto.DiskID)
(*blobnode.DiskInfo, error) {

275 diskInfo, ok := d.getDisk(id)
276 if !ok {
277 return nil, apierrors.ErrCMDiskNotFound
278 }
279
280 diskInfo.lock.RLock()
281 defer diskInfo.lock.RUnlock()
282 newDiskInfo := *(diskInfo.info)
283 // need to copy before return, or the higher level may change the disk info

by the disk info pointer
284 return &(newDiskInfo), nil
285 }

An attacker could trigger the deadlock by removing disks that the caller of
applyAdminUpdateVolumeUnit expects to exist.

Blobnode
The PutShard method of the ShardsBuf type is susceptible to a deadlock from a missing lock
release in case of a wrong size comparison.

PutShard performs a size comparison as part of a sanity check and returns an error if the data
size does not match the expected size. When doing so, PutShard does not unlock the ShardsBuf .

On line 293 below, PutShard locks the ShardsBuf and unlocks it on line 312. On line 309,
PutShard performs the sanity check if int64(len(shards.shards[bid].data)) != size { and

returns errShardSizeNotMatch on line 310 if it fails. Before returning errShardSizeNotMatch ,
PutShard does not unlock the ShardsBuf , and it remains locked after returning:

https://github.com/cubefs/cubefs/blob/46cb4d149c45f1ad7b40381b5a2a20bd6d599e25/blobstore/blobnode/work_shard_rec
over.go#L292-L324

292 func (shards *ShardsBuf) PutShard(bid proto.BlobID, input io.Reader) error {
293 shards.mu.Lock()
294
295 if _, ok := shards.shards[bid]; !ok {
296 shards.mu.Unlock()
297 return errBidNotFoundInBuf
298 }
299 if shards.shards[bid].size == 0 {
300 shards.mu.Unlock()
301 return nil
302 }
303 if shards.shards[bid].ok {
304 shards.mu.Unlock()
305 return errBufHasData
306 }
307
308 size := shards.shards[bid].size
309 if int64(len(shards.shards[bid].data)) != size {
310 return errShardSizeNotMatch
311 }
312 shards.mu.Unlock()
313
314 // read data from remote is slow,so optimize use of lock
315 _, err := io.ReadFull(input, shards.shards[bid].data)
316 if err != nil {
317 return err
318 }

CubeFS 2023 Security Audit

28 Ada Logics Ltd

319
320 shards.mu.Lock()
321 shards.shards[bid].ok = true
322 shards.mu.Unlock()
323 return nil
324 }

CubeFS 2023 Security Audit

29 Ada Logics Ltd

Possible nil-dereference from unmarshalling double
pointer

Severity: Low

Status: Fixed

Id: ADA-CUBEFS-ASBDVGA

Component: ObjectNode

Unmarshalling into a double-pointer can result in nil-pointer dereference if the raw bytes are
NULL .

CubeFS has a case that would trigger a nil-pointer dereference and crash the CubeFS
ObjectNode:

https://github.com/cubefs/cubefs/blob/45442918591d25e7ab555469df384df468df5dbc/objectnode/acl_api.go#L186-L201

186 func getObjectACL(vol *Volume, path string, needDefault bool) (*AccessControlPolicy,
error) {

187 xAttr, err := vol.GetXAttr(path, XAttrKeyOSSACL)
188 if err != nil || xAttr == nil {
189 return nil, err
190 }
191 var acp *AccessControlPolicy
192 data := xAttr.Get(XAttrKeyOSSACL)
193 if len(data) > 0 {
194 if err = json.Unmarshal(data, &acp); err != nil {
195 err = xml.Unmarshal(data, &acp)
196 }
197 } else if needDefault {
198 acp = CreateDefaultACL(vol.owner)
199 }
200 return acp, err
201 }

On line 194, getObjectACL unmarshals into a double pointer. acp is declared on line 191 as a
pointer and is referenced with a pointer on line 194. If data on line 194 is the byte sequence
equal to NULL , acp will be nil on line 194 and return nil, nil .

This behaviour will trigger a nil-pointer dereference on 145 in the below code snippet:
https://github.com/cubefs/cubefs/blob/6a0d5fa45a77ff20c752fa9e44738bf5d86c84bd/objectn
ode/acl_handler.go#L110-L153

1 func (o *ObjectNode) getObjectACLHandler(w http.ResponseWriter, r *http.Request) {
2 var (
3 err error
4 erc *ErrorCode
5)
6 defer func() {
7 o.errorResponse(w, r, err, erc)
8 }()
9
10 param := ParseRequestParam(r)
11 if param.Bucket() == "" {
12 erc = InvalidBucketName
13 return
14 }
15 if param.Object() == "" {
16 erc = InvalidKey
17 return
18 }
19
20 var vol *Volume
21 if vol, err = o.getVol(param.bucket); err != nil {
22 log.LogErrorf("getObjectACLHandler: load volume fail: requestID(%v)

volume(%v) err(%v)",
23 GetRequestID(r), param.bucket, err)

CubeFS 2023 Security Audit

30 Ada Logics Ltd

24 return
25 }
26 var acl *AccessControlPolicy
27 if acl, err = getObjectACL(vol, param.object, true); err != nil {
28 log.LogErrorf("getObjectACLHandler: get acl fail: requestID(%v)

volume(%v) path(%v) err(%v)",
29 GetRequestID(r), param.bucket, param.object, err)
30 if err == syscall.ENOENT {
31 erc = NoSuchKey
32 }
33 return
34 }
35 var data []byte
36 if data, err = acl.XmlMarshal(); err != nil {
37 log.LogErrorf("getObjectACLHandler: xml marshal fail: requestID(%v)

volume(%v) path(%v) acl(%+v) err(%v)",
38 GetRequestID(r), param.bucket, param.object, acl, err)
39 return
40 }
41
42 writeSuccessResponseXML(w, data)
43 return
44 }

On line 136 getObjectACLHandler invokes getObjectACL . If this returns nil, nil , then a nil-
pointer dereference will be triggered on line 145.

Mitigation
Unmarshal into a single pointer instead of a double pointer.

CubeFS 2023 Security Audit

31 Ada Logics Ltd

Potential Slowloris attacks

Severity: Low

Status: Fixed

Id: ADA-CUBEFS-AMK23ghJVHJ

Component: AuthNode

Slowloris is a type of attack where an attacker opens a connection between their controlled
machine and the victim's server. Once the attacker has opened the connection, they keep it
open for as long as possible. They will do the same with a large number of controlled machines
to hog the available connections and prevent other users from accessing the service. As such,
the victim's server stays up but remains busy from processing the attacker's requests and
becomes unavailable to legitimate users.

An attacker can exploit a Slowloris issue by identifying execution paths in their target
application that cause it to take longer time to return from, and the attacker can then send
requests that force the application into these. The fact that Cubefs's Master server is susceptible
to a Slowloris attack does not mean that it is easily exploitable.

AuthNode

https://github.com/cubefs/cubefs/blob/9c9f0bad65fc4a904160ff22cdaba2d9d6becd7c/authnode/http_server.go#L37-L44

37 srv := &http.Server{
38 Addr: colonSplit + m.port,
39 TLSConfig: cfg,
40 }
41 if err := srv.ListenAndServeTLS("/app/server.crt", "/app/server.key");

err != nil {
42 log.LogErrorf("action[startHTTPService] failed,err[%v]", err)
43 panic(err)
44 }

Master
The root cause of the Master server Slowloris issue is that is does not declare a timeout. On line
50 below, startHTTPService declares the HTTP Server with address and handler but does not
declare a timeout.

https://github.com/cubefs/cubefs/blob/5ab518b3598ee99a74b333d0d2abc80739bbae4d/master/http_server.go#L37-L64

37 func (m *Server) startHTTPService(modulename string, cfg *config.Config) {
38 router := mux.NewRouter().SkipClean(true)
39 m.registerAPIRoutes(router)
40 m.registerAPIMiddleware(router)
41 if m.cluster.authenticate {
42 m.registerAuthenticationMiddleware(router)
43 }
44 exporter.InitWithRouter(modulename, cfg, router, m.port)
45 addr := fmt.Sprintf(":%s", m.port)
46 if m.bindIp {
47 addr = fmt.Sprintf("%s:%s", m.ip, m.port)
48 }
49
50 var server = &http.Server{
51 Addr: addr,
52 Handler: router,
53 }
54
55 var serveAPI = func() {
56 if err := server.ListenAndServe(); err != nil {
57 log.LogErrorf("serveAPI: serve http server failed: err(%v)", err)
58 return
59 }
60 }
61 go serveAPI()

CubeFS 2023 Security Audit

32 Ada Logics Ltd

62 m.apiServer = server
63 return
64 }

The server does not have a timeout at all because the server has specified neither ReadTimeout
nor ReadHeaderTimeout . This grants an attacker ample flexibility and possibilities for getting the
server to hang. Note that the server also does not have write timeouts, which adds to an
attacker's possibilities of triggering this.

Below, we enumerate all other HTTP servers that do not specify timeouts. We do not include
tests and examples.

https://github.com/cubefs/cubefs/blob/5ab518b3598ee99a74b333d0d2abc80739bbae4d/blobstore/cmd/cmd.go#L135-L144

135 if mod.graceful {
136 programEntry := func(state *graceful.State) {
137 router, handlers := mod.SetUp()
138
139 httpServer := &http.Server{
140 Addr: cfg.BindAddr,
141 Handler: reorderMiddleWareHandlers(router, lh, cfg.BindAddr,

cfg.Auth, handlers),
142 }
143
144 log.Info("server is running at:", cfg.BindAddr)

https://github.com/cubefs/cubefs/blob/5ab518b3598ee99a74b333d0d2abc80739bbae4d/blobstore/cmd/cmd.go#L171-L174

171 httpServer := &http.Server{
172 Addr: cfg.BindAddr,
173 Handler: reorderMiddleWareHandlers(router, lh, cfg.BindAddr, cfg.Auth,

handlers),
174 }

https://github.com/cubefs/cubefs/blob/5ab518b3598ee99a74b333d0d2abc80739bbae4d/blobstore/common/raftserver/transp
ort.go#L70-L73

70 tr.httpSvr = &http.Server{
71 Addr: fmt.Sprintf(":%d", port),
72 Handler: router,
73 }

https://github.com/cubefs/cubefs/blob/5ab518b3598ee99a74b333d0d2abc80739bbae4d/blobstore/common/consul/consul.go
#L216-L227

216 srv = &http.Server{}
217 srv.Addr = ln.Addr().String()
218 port = ln.Addr().(*net.TCPAddr).Port
219 log.Info("start health check server on: ", srv.Addr)
220 http.HandleFunc(patten, healthCheck)
221 go func() {
222 httpError := srv.Serve(ln.(*net.TCPListener))
223 if httpError != nil && httpError != http.ErrServerClosed {
224 log.Fatalf("health server HTTP error: ", httpError)
225 }
226 log.Info("health check server exit")
227 }()

https://github.com/cubefs/cubefs/blob/5ab518b3598ee99a74b333d0d2abc80739bbae4d/objectnode/server.go#L463-L473

463 var server = &http.Server{
464 Addr: ":" + o.listen,
465 Handler: router,
466 }
467
468 go func() {
469 if err = server.ListenAndServe(); err != nil {
470 log.LogErrorf("startMuxRestAPI: start http server fail, err(%v)", err)
471 return
472 }
473 }()

CubeFS 2023 Security Audit

33 Ada Logics Ltd

Mitigation
Add timeouts when declaring the servers.

CubeFS 2023 Security Audit

34 Ada Logics Ltd

Releases are not signed

Severity: Moderate

Status: Fixed

Id: ADA-CUBEFS-NJb32hjJBN

Component: CubeFS

CubeFS releases are not signed, with keys available alongside releases. Signing releases and
allowing consumers to verify them mitigates supply-chain risks.

A tool like Cosign makes the signing process easy and low-effort and keeps the overhead for
consumers low to verify signatures. These signatures should be available with releases.

Mitigation
Release signing by way of Cosign can be adopted by way of the official Cosign Github Action:
https://github.com/marketplace/actions/cosign-installer.

CubeFS 2023 Security Audit

35 Ada Logics Ltd

Security Disclosure Email Does Not Work

Severity: Low

Status: Fixed

Id: ADA-CUBEFS-vc34CGVVJB

Component: Security Policy

During the audit, Ada Logics attempted to disclose a finding to the email address listed in
CubeFS's security disclosure guidelines:
https://github.com/cubefs/cubefs/blob/master/SECURITY.md. The email bounced, and the
CubeFS team did not receive the security finding.

This could prevent or discourage community members from contributing to CubeFS's security
posture. We recommend regularly ensuring that communication channels for responsible
security disclosures are tested.

During the security audit, the CubeFS maintainers enable disclosures through the Github
interface.

CubeFS 2023 Security Audit

36 Ada Logics Ltd

Timing attack can leak user passwords

Severity: Moderate

Status: Fixed

Id: ADA-CUBEFS-Jh2iu3423b

Component: Master

Summary
CubeFS uses a string comparison for user passwords that is prone to timing attacks. A timing
attack is a side-channel attack whereby an attacker observes the response time from an
application and can deduce the number of matching characters in their payload against the
control string.

Details
CubeFS password validation routine:

https://github.com/cubefs/cubefs/blob/fdfa176a97e0fbb57c953e2b4a3aebe329e2a631/master/gapi_user.go#L337-L356

337 func (s *UserService) validatePassword(ctx context.Context, args struct {
338 UserID string
339 Password string
340 }) (*proto.UserInfo, error) {
341 ui, err := s.user.getUserInfo(args.UserID)
342 if err != nil {
343 return nil, err
344 }
345
346 ak, err := s.user.getAKUser(ui.AccessKey)
347 if err != nil {
348 return nil, err
349 }
350
351 if ak.Password != args.Password {
352 log.LogWarnf("user:[%s] login pass word has err", args.UserID)
353 return nil, fmt.Errorf("user or password has err")
354 }
355 return ui, nil
356 }

... is prone to a timing/side channel attack due to the way CubeFS compares the two passwords
on this line:

https://github.com/cubefs/cubefs/blob/fdfa176a97e0fbb57c953e2b4a3aebe329e2a631/master/gapi_user.go#L351

351 if ak.Password != args.Password {

For similar issues in the Go ecosystem, which include technical discussions about timing
attacks and mitigation, see:

https://github.com/advisories/GHSA-mq6f-5xh5-hgcf
https://github.com/gin-gonic/gin/issues/3168

Impact
This vulnerability allows unauthenticated users to escalate privileges to the level corresponding
to the highest privileged user in the UserService. If there are users with root permissions being
authenticated by validatePassword , this is the possible level of privilege escalation.

All CubeFS users using the Master UserService s validatePassword to validate user passwords are
impacted by this.

CubeFS 2023 Security Audit

37 Ada Logics Ltd

