\\-I' ' D-Sec

Code Review of the Rust VMM Project
for The Rust VMM project

Final Report and Management Summary

2023-11-07

X41 D-Sec GmbH

Krefelder Str. 123

D-52070 Aachen
Amtsgericht Aachen: HRB19989

https://x41-dsec.de/
info@x41-dsec.de

Organized by the Open Source Technology Improvement Fund

https://x41-dsec.de/
info@x41-dsec.de

Code Review of the Rust VMM Project

The Rust VMM project

X41 D-Sec GmbH

PUBLIC

Page 2 of 24

Code Review of the Rust VMM Project The Rust VMM project

Revision Date Change Author(s)
1 2023-09-29 Final Report and Management M.Sc. H. Moesl-Canaval, R. Fem-
Summary mer

X41 D-Sec GmbH Page 1 of 24

Code Review of the Rust VMM Project The Rust VMM project

Contents

1 Executive Summary 4
2 Introduction 7
2.1 Methodology e 7
2.2 Findings Overview e e 9
2.3 SCOPE . . . e 9
24 COVEIAgE . . o o o i i e e e e e e e 10
2.5 Recommended Further Tests 10
3 Rating Methodology for Security Vulnerabilities 12
3.1 Common Weakness Enumeration 13
4 Results 14
4.1 Findings e e 14
4.2 Informational Notes 15
5 About X41 D-Sec GmbH 23

X41 D-Sec GmbH Page 2 of 24

Code Review of the Rust VMM Project

The Rust VMM project

Dashboard

Target
Customer
Name
Type
Version

Engagement
Type
Consultants

Engagement Effort

Total issues found

X41 D-Sec GmbH

The Rust VMM project
RustVMM

Virtual Machine Monitor
As indicated in Scope

Code Audit
2: H. Moesl-Canaval (M.Sc.) and R. Femmer
30 person-days, 2023-09-11 to 2023-09-29

0

Critical - @
High - i@

Medium (- @
|
Low - @
|

None - 6

Figure 1: Issue Overview (Severity)

Page 3 of 24

Code Review of the Rust VMM Project The Rust VMM project

1 Executive Summary

In September 2023, X41 D-Sec GmbH performed a Code Audit against the RustVMM to identify
vulnerabilities and weaknesses in the ecosystem.

Only six issues without a direct security impact were identified.

RustVMM provides a collection of crates that can be used to implement a Virtual Machine Mon-
itor (VMM), which can manage a number of virtual machines. The management includes starting
and stopping the machines and providing resources to them like virtualized devices (network,
storage), memory and CPUs. Vulnerabilities in the application would allow an attacker to exe-
cute code on the host machine or other guest machines, or break the isolation by disclosing data
belonging to the host machine or other guest machines. Further, due to resource management
being an integral part of the VMM, resource exhaustion scenarios pose a considerable risk to the
operator of the VMM,

At the beginning of the project, an initial kick-off meeting was set up between X41, OSTIF and the
maintainers of the project in order to align on the scope of this engagement. The meeting helped
to clarify the expectations of this assessment and also narrowed down the key focus areas.

Throughout the engagement the testers were in communication with OSTIF and the maintainers
of the library through a public Slack channel and email. The communication was excellent, and
help was provided whenever requested. Generally speaking, OSTIF as well as the maintainers of
the libraries deserve a lot of praise for their overall support and assistance. It was a pleasure for
the testing team working with them.

The test was performed by two experienced security experts between 2023-09-11 and 2023-
09-29. In such an audit the testers inspect the source code statically for vulnerabilities, both on
the implementation and on the design level.

Generally, the code quality is very high. Components are divided into sensible units that allow
to assess their security in isolation. It is obvious that security was a main concern during the
design and implementation of rust-vmm. While a lot of the security guarantees are provided
by the hypervisor, rust-vmm does an excellent job at all other parts of the system. Because

X41 D-Sec GmbH Page 4 of 24

Code Review of the Rust VMM Project The Rust VMM project

of this no issues with direct security impact could be identified. Only minor issues that may
become security problems in the future could be documented as informational notes. The most
severe one, that may have lead to possible memory corruption at some point, was reported to the
rust-vmm maintainers and fixed within a week, which is another testament to the overall security
posture of the project.

The rust-vmm does not have many dependencies, however the security of the software project
also depends on the security and robustness of those third party libraries. X41 recommends
keeping all dependencies under a strict update regiment to plug any security issues that they
contain in a timely fashion.

Stakeholders using rust-vmm components may also consider to audit the underlying hypervisor.

Despite multiple auditors independently reviewing the same section of the code for better cov-
erage, no actual vulnerabilities having a direct security impact were identified during the review
process.

It is worth emphasizing that the rust-vmm project was put through rigorous testing by X41's
team and, overall, it was found to be highly robust and secure. The testing process revealed
that all Rust crates involved in the project are designed and implemented with great care and
attention to detail, and it demonstrated a strong ability to withstand scrutiny. As a result, the
overall impression and outcome of this security assessment is very positive.

The rust-vmm, as indicated by its name, is developed in Rust—a language renowned for its built-in
memory management features. Because of that, Rust has emerged as a favored option for devel-
opers keen on circumventing traditional memory corruption vulnerabilities and race conditions,
pitfalls commonly associated with memory-unsafe languages like C/C++. This inherent security
benefit, paired with Rust’s robust programming capabilities, underscores its growing appeal in
contemporary software development.

To further improve the security posture, it is encouraged to implement additional security con-
trols, which have been listed as part of the Informational Notes list. These describe potential
improvements with regards to missing input validation checks, memory leak mitigation and ran-
domness issues.

Again, it must be reiterated that this assessment provided valuable insights into the security pos-
ture at the time of testing, but it is important to note that any source code audit is unable to
guarantee that the software complex is free of additional bugs.

Finally, it is important to emphasize that Rust is a relatively new programming language and, as
such, is undergoing significant development. Alterations to the Rust compiler, particularly in the
realm of optimization logic, have the potential to compromise the efficacy of key mitigations
intrinsic to the Rust programming language.

X41 D-Sec GmbH Page 5 of 24

Code Review of the Rust VMM Project The Rust VMM project

All in all, given the in-production and high-profile use of the rust-vmm project, the code base
would profit from recurring security audits as changes within one part of the system may have
unintentional security impact to other parts.

X41 D-Sec GmbH Page 6 of 24

Code Review of the Rust VMM Project The Rust VMM project

2 Introduction

X41 reviewed the rust-vmm ecosystem, which provides a set of components to build custom
Virtual Machine Monitors (VMM). The packages - also called crates - are in use in various projects,
among them CrosVM and Firecracker.

A Virtual Machine Monitor exposes various components to untrusted code and therefore the se-
curity of the VMM is critical in order to not expose infrastructure or the users of the infrastructure
to malicious actors.

Attackers might attempt to target the memory management system and virtualized devices that
offer functionality to virtual machines, with the aim of executing code or revealing confidential
information from the host system or other guest systems.

2.1 Methodology

The review was based on a review of the source code.

A manual approach for penetration tests and for code reviews is used by X41. This process is
supported by tools such as static code analyzers and industry standard web application security
tools?.

X41 adheres to established standards for source code reviewing and penetration testing. These
are in particular the CERT Secure Coding? standards and the Study - A Penetration Testing Model®
of the German Federal Office for Information Security.

The workflow of source code reviews is shown in figure 2.1. In an initial, informal workshop
regarding the design and architecture of the application a basic threat model is created. This is
used to explore the source code for interesting attack surface and code paths. These are then

Lhttps://portswigger.net/burp

2https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards

Shttps://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetrati
on_pdf.pdf?__blob=publicationFile&v=1

X41 D-Sec GmbH Page 7 of 24

https://portswigger.net/burp
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile&v=1

Code Review of the Rust VMM Project

The Rust VMM project

audited manually and with the help of tools such as static analyzers and fuzzers. The identified

issues are documented and can be used in a GAP analysis to highlight changes to previous audits.

Mitigation Analysis

Initial Design Threat Code
Workshop o Modelling Review
Y
ixi GAP / Perfi
Fiinsiand / Performance| _ Documentation

Figure 2.1: Code Review Methodology

X41 D-Sec GmbH PUBLIC

Page 8 of 24

Code Review of the Rust VMM Project The Rust VMM project

2.2 Findings Overview

DESCRIPTION SEVERITY ID REF
Random Module not Random NONE RVMM-CR-23-100 421
Missing Divide-by-Zero Check NONE RVMM-CR-23-101 422
Missing Input Parameter Validation NONE RVMM-CR-23-102 423
Possible Out-of-Bounds Write in FamStruct NONE RVMM-CR-23-103 424
Possible Memory Leak in Temporary File Creation Routine NONE RVMM-CR-23-104 4.2.5
GuestMemory::try_access() Invariant not Checked NONE RVMM-CR-23-105 4.2.6
Table 2.1: Security-Relevant Findings
2.3 Scope

The rust-vmm security review was performed on the following Rust crates:

kvm-ioctls

- Commit:

linux-loader

- Commit:

seccompiler

- Commit:

vhost

- Commit:

vhost-device

- Commit:

vm-allocator

- Commit:

vm-device

- Commit:

vmme-sys-util

X41 D-Sec GmbH

edee241cc188f253c184ed48b3d5c4fb58a86da9

ddb20723b8ac0119676b53afe09401dale72d233

184f2d6838b753bcdf09be7c6b46934f33c86535

3808f9d0032bf763d79ff94504ec756f9065c83a

38caab24c5087551d6ec12d0002df798e5e4f5ac

20983a10b01549c00e1e0772fe8e2ccf07815cbf

39ceaeb64edc11860c44679f4b1563cec358047e2

Page 9 of 24

Code Review of the Rust VMM Project The Rust VMM project

- Commit: 3fb8f7693228ae3e582228414a0daalb90224c84
e vm-memory
- Commit: aff1dd4a5259f7deba56692840f7a2d9ca34c9c8
e vm-superio
- Commit: 0a3ae7fa5957098371ce934b476f729621fb8d07
e vm-virtio
As part of this source code audit, various trust boundaries within the virtualized environment
were examined. These boundaries encompassed the distinctions of Guest-Host, Guest-Guest,
Guest (Ring 3) to Guest (Ring 0), with an added consideration for Guest (Ring 3) to Guest (Ring
-1) attacks. Part of the threat model were vulnerabilities such as information disclosure, memory

corruption, and Denial of Service (DoS) attacks that might exploit these trust boundaries. Addi-
tionally, the testing team focused on logical issues within the allotted time.

Within the scope of the source code audit, only the most recent release of any given crate was
reviewed. Therefore, the commits or branches that were of primary interest pertained to the
HEAD of the main branch, which usually corresponds closely to the most recent release.

2.4 Coverage

A security assessment attempts to find the most important or sometimes as many of the existing
problems as possible, though it is practically never possible to rule out the possibility of additional
weaknesses being found in the future.

The time allocated to X41 for this assessment was sufficient to yield a reasonable coverage of
the given scope.

All parts of the scope were audited for unsafe management of memory and logic bugs and other
common security issues.

Suggestions for next steps in securing this scope can be found in section 2.5.

2.5 Recommended Further Tests

Fuzz testing is, in general, essential for the overall security of the rust-vmm project. It is com-
mendable that the vm-virtio crate has already incorporated fuzz testing methodologies. As the

X41 D-Sec GmbH Page 10 of 24

Code Review of the Rust VMM Project The Rust VMM project

project progresses, it should be evaluated whether other crates of the rust-vmm project could
benefit from fuzz testing.

X41 recommends to mitigate the issues described in this report.

X41 D-Sec GmbH Page 11 of 24

Code Review of the Rust VMM Project The Rust VMM project

3 Rating Methodology for Security
Vulnerabilities

Security vulnerabilities are given a purely technical rating by the testers as they are discovered
during the test. Business factors and financial risks for The Rust VMM project are beyond the
scope of a penetration test which focuses entirely on technical factors. Yet technical results from
a penetration test may be an integral part of a general risk assessment. A penetration test is based
on a limited time frame and only covers vulnerabilities and security issues which have been found
in the given time, there is no claim for full coverage.

In total, five different ratings exist, which are as follows:

Severity Rating

None
Low
Medium
High

A low rating indicates that the vulnerability is either very hard for an attacker to exploit due
to special circumstances, or that the impact of exploitation is limited, whereas findings with a
medium rating are more likely to be exploited or have a higher impact. High and critical ratings
are assigned when the testers deem the prerequisites realistic or trivial and the impact significant
or very significant.

Findings with the rating ‘none’ are called informational findings and are related to security harden-
ing, affect functionality, or other topics that are not directly related to security. X41 recommends
to mitigate these issues as well, because they often become exploitable in the future. Doing so
will strengthen the security of the system and is recommended for defense in depth.

X41 D-Sec GmbH Page 12 of 24

Code Review of the Rust VMM Project The Rust VMM project

3.1 Common Weakness Enumeration

The CWE! is a set of software weaknesses that allows the categorization of vulnerabilities and
weaknesses in software. If applicable, X41 provides the CWE-ID for each vulnerability that is
discovered during a test.

CWE is a very powerful method to categorize a vulnerability and to give general descriptions and
solution advice on recurring vulnerability types. CWE is developed by MITREZ. More information
can be found on the CWE website at https://cwe.mitre.org/.

1 Common Weakness Enumeration
2https://www.mitre.org

X41 D-Sec GmbH Page 13 of 24

https://cwe.mitre.org/
https://www.mitre.org

Code Review of the Rust VMM Project The Rust VMM project

4 Results

This chapter describes the results of this test. The security-relevant findings are documented in
Section 4.1. Additionally, findings without a direct security impact are documented in Section 4.2.

4.1 Findings

No issues with a direct impact on the security were identified.

During the code audit of the rust-vmm project, no noteworthy issues were uncovered that could
potentially result in vulnerabilities.

X41 D-Sec GmbH Page 14 of 24

Code Review of the Rust VMM Project The Rust VMM project

4.2 Informational Notes

The following observations do not have a direct security impact, but are related to security hard-
ening, affect functionality, or other topics that are not directly related to security. X41 recom-
mends to mitigate these issues as well, because they often become exploitable in the future.
Doing so will strengthen the security of the system and is recommended for defense in depth.

42,1 RVMM-CR-23-100: Random Module not Random

Affected Component: vmm-sys-util/src/rand.rs

4.2.1.1 Description

The ymm-sys-util crate exposes a module called rand which exposing rand_alphanumerics() and
rand_bytes(). As their name suggests, these functions generate random sequences of 0sString
and u8 values, however, they rely on the RDTSC for z86_64 systems and libc's clock_gettime()
for randomness. Frequently, people assume that bytes or sequences labeled as random are un-
predictable and might use them for security-sensitive purposes. This could pose a problem in
specific situations.

We found no relevant code in rust-vmm that would present itself as problematic, however, the
rand_alphanumerics() is already being used to construct temporary files on Windows (c.f. vmm-s
ys-util/src/tempfile.rs), which are usually expected to be unpredictable.

4.2.1.2 Solution Advice

X41 recommends to use, and if needed, wrap the rand or any other hardened crate providing a
better source of randomness.

X41 D-Sec GmbH Page 15 of 24

20

21

22

Code Review of the Rust VMM Project The Rust VMM project

4.2.2 RVMM-CR-23-101: Missing Divide-by-Zero Check

Affected Component: vm-memory/src/bitmap/backend/atomic_bitmap.rs

4.2.2.1 Description

While reviewing the vm-memory Rust crate, it was noticed that the function AtomicBitmap::new()
does not properly check the page_size parameter for being zero. As this parameter is being used
as a divisor within the function, a value of zero leads to a Divide-by-zero CPU fault resulting in
an application panic. Listing 4.1 shows the affected code snippet.

While the function is solely used within the rust-vmm ecosystem with valid page_size values
unequal to zero, the function is public and might be used to construct a bitmap by other 3rd-
party-crates using vm-memory.

impl AtomicBitmap {
/// Create a new bitmap of “byte_size , with one bit per page. This is effectively
/// rounded up, and we get a new vector of the next multiple of 64 bigger than “bit_size .
pub fn new(byte_size: usize, page_size: usize) -> Self {
let mut num_pages = byte_size / page_size;
if byte_size 7 page_size > 0 {

num_pages += 1;

// Adding one entry element more just inm case ‘num_pages 1%s not a multiple of 64 .
let map_size = num_pages / 64 + 1;
let map: Vec<AtomicU64> = (0..map_size).map(|_| AtomicU64::new(0)).collect();

AtomicBitmap {
map,
size: num_pages,

page_size,

Listing 4.1: AtomicBitmap::new() Function

X41 D-Sec GmbH Page 16 of 24

Code Review of the Rust VMM Project The Rust VMM project

4.2.2.2 Solution Advice

X41 advises performing thorough input parameter validation to prevent any possibility of encoun-
tering a Divide-by-zero situation.

X41 D-Sec GmbH Page 17 of 24

Code Review of the Rust VMM Project The Rust VMM project

4.2.3 RVMM-CR-23-102: Missing Input Parameter Validation

Affected Component: vhost/crates/vhost-user-backend/src/handler.rs

4.2.3.1 Description

While reviewing the vhost crate, it was found that the function VHostUserHandler::set_vring_base()
lacks validation of the input parameter index, which is used for indexing an internal vector and

could potentially lead to a Out-of-Bounds write resulting in an application panic. Listing 4.2 de-

picts the vulnerable code segment.

impl<S, V, B> VhostUserBackendReqgHandlerMut for VhostUserHandler<S, V, B>

S:
V:
B:

VhostUserBackend<V, B>,
VringT<GM>,
NewBitmap + Clone,

fn set_vring_base(&mut self, index: u32, base: u32) -> VhostUserResult<()> {

where
{

}
}

let event_idx: bool = (self.acked_features & (1 << VIRTIO_RING_F_EVENT_IDX)) != 0;
self.vrings[index as usize].set_queue_next_avail(base as ul6);
self.vrings[index as usize].set_queue_event_idx(event_idx);

self.backend.set_event_idx(event_idx);

0k (0O)

Listing 4.2: VHostUserHandler::set_vring_base() Function

4.2.3.2 Solution Advice

X41 advises performing thorough input parameter validation to prevent any possibility of encoun-
tering potential Out-of-Bounds read/writes.

X41 D-Sec GmbH Page 18 of 24

I

© 0w N o o

Code Review of the Rust VMM Project The Rust VMM project

4.2.4 RVMM-CR-23-103: Possible Out-of-Bounds Write in FamStruct

Affected Component: vmm-sys-util/src/fam.rs

4.2.4.1 Description

X41 found that there is a possible Out-of-bounds write in FamStruct::set_len(), if the argument
len holds values that - when cast from it's original type usize to isize - become negative, the
code will proceed to zero out 1en bytes of memory, which in all likelihood will crash the process.
The provided test in listing 4.3 can trigger this issue.

generate_fam_struct_impl! (MockFamStructU8, u8, entries, u32, len, 100);
type MockFamStructWrapperU8 = FamStructWrapper<MockFamStructU8>;
#[test]
fn test_invalid_type_conversion() {
let mut adapter = MockFamStructWrapperU8::new(10).unwrap();
assert! (matches! (
adapter.set_len(Oxffff ffff ffff ££00),
Err(Error::SizeLimitExceeded)

));

Listing 4.3: Test Triggering a SEGFAULT Due to Out-of-Bounds Write

Instead of the expected error of an exceeded size limit, the process crashes. The security impact
is negligible since the method is not exposed to the user of the vmm-sys-util crate. However,
the maintainers may decide to expose the method at some point in the future, which could lead
to a security issue.

4.2.4.2 Solution Advice

X41 disclosed this possible memory corruption to the maintainers prior to the release of this
report. A fix 1 was committed to vmm-sys-util within a week.

1 https://github.com/rust-vmm/vmm-sys-util/commit/5bf1061dd9fc18a2d25edal2ce2d2ea63fb999d4

X41 D-Sec GmbH Page 19 of 24

Code Review of the Rust VMM Project The Rust VMM project

4.2.5 RVMM-CR-23-104: Possible Memory Leak in Temporary File Creation
Routine

Affected Component: vmm-sys-util/src/tempfile.rs

4.2.5.1 Description

While reviewing the vmm-sys-util Rust crate, it was noticed that on a very rare occasion the
memory region of a CString depicting a temporary file name does not get freed after usage re-
sulting in a memory leak situation.

According to the Rust documentation, a call to std::ffi::CString::into_raw(), which transfers owner-
ship of the string to a C caller, must be accompanied by a final call to std::ffi::CString::from_raw()
which retakes the ownership again. Failure in doing so results in a memory leak.

In the code snippet shown in listing 4.4, ownership of a CString is transferred in (1) through
calling into_raw()to C and returned in (3) via from_raw() to Rust. In case of an error in mkstemp ()
in (2), the function is exited without calling from_raw() leading to the memory leak. According
to the documentation of mkstemp() (https://man7.org/linux/man-pages/man3/mkstemp.3.html)
this can only happen if there already exists a file which happens to have the same file name as
the temporary file.

pub fn new_with_prefix<P: AsRef<0sStr>>(prefix: P) -> Result<TempFile> {
use std::ffi::CString;
use std::os::unix::{ffi::0sStrExt, io::FromRawFd};

let mut os_fname = prefix.as_ref().to_os_string();
os_fname.push ("XXXXXX");

let raw_fname = match CString::new(os_fname.as_bytes()) {
(1) Ok(c_string) => c_string.into_raw(),
Err(_) => return Err(Error::new(libc::EINVAL)),
};

// SAFETY: Safe because ‘raw_fname’ originates from CString::into_raw, meaning
// it is a pointer to a nul-terminated sequence of characters.

let fd = unsafe { libc::mkstemp(raw_fname) };

if £fd == -1 {

(2) return errno_result();

// SAFETY: raw_fname originates from a call to CString::into_raw. The length
// of the string has not changed, as mkstemp returns a valid file name, and
// '"\0' cannot be part of a valid filename.

X41 D-Sec GmbH Page 20 of 24

23

24

25

26

27

28

29

30

31

32

33

34

35

Code Review of the Rust VMM Project The Rust VMM project

(3) let c_tempname = unsafe { CString::from_raw(raw_fname) };

let os_tempname = OsStr::from_bytes(c_tempname.as_bytes());

// SAFETY: Safe because we checked “fd != -1 above and we uniquely own the file
// descriptor. This “fd' will be freed etc when “File and thus

// “TempFile goes out of scope.

let file = unsafe { File::from_raw_fd(fd) };

Ok(TempFile {
path: PathBuf::from(os_tempname),
file: Some(file),

b

Listing 4.4: TempFile::new_with_prefix() Function

4.2.5.2 Solution Advice

X41 advises calling std::ffi::CString::from_raw() before returning from the function to avoid mem-
ory leaks. This also affects other types such as std: :ffi::0sString or std: :boxed: :Box.

X41 D-Sec GmbH PUBLIC Page 21 of 24

Code Review of the Rust VMM Project The Rust VMM project

4.2.6 RVMM-CR-23-105: GuestMemory::try_access() Invariant not Checked

Affected Component: vmm-memory/src/guest_memory.rs

4.2.6.1 Description

X41 found that the trait GuestMemory defined in the vm-memory crate exposes try_access(),
which takes a callback function as parameter. The method expects the callback to adhere to the
invariant to return a size whose value is between 0 and the also provided len parameter. How-
ever, the callback function may violate this and return lengths higher than the provided length,
which is not checked for. Listing 4.5 shows the code responsible for handling the return value of
the callback. The variable cur stores the current address, which after adding an arbitrary length
exceeding count, may still be valid and thus result in a hole in the guest memory map.

match f(total, len as usize, start, region) {
0k(0) => return Ok(total),
Ok(len) => {
total += len;
// “total’ may exceed “count’ if the callback breaks the invariant
// The following condition ts false, when total > count
if total == count {
break;
}
cur = match cur.overflowing_add(len as GuestUsize) {
(GuestAddress(0), _) => GuestAddress(0),
(result, false) => result,
(_, true) => panic!("guest address overflow"),
}
// We my still end up with a valid “cur’ address, but may have
// skipped a hole.
}

e => return e,

Listing 4.5: Handling Callback Return Value

4.2.6.2 Solution Advice

X41 recommends to produce a runtime error or panic when the provided callback does not ob-
serve the invariant to let the implementers know of a bug.

X41 D-Sec GmbH Page 22 of 24

Code Review of the Rust VMM Project The Rust VMM project

5 About X41 D-Sec GmbH

X41 D-Sec GmbH is an expert provider for application security and penetration testing services.
Having extensive industry experience and expertise in the area of information security, a strong
core security team of world-class security experts enables X41 D-Sec GmbH to perform premium
security services.

X41 has the following references that show their experience in the field:

Source code audit of the Git source code version control system?
Review of the Mozilla Firefox updater?

X41 Browser Security White Paper?

Review of Cryptographic Protocols (Wire)*

Identification of flaws in Fax Machines>¢

Smartcard Stack Fuzzing’

The testers at X41 have extensive experience with penetration testing and red teaming exercises
in complex environments. This includes enterprise environments with thousands of users and
vendor infrastructures such as the Mozilla Firefox Updater (Balrog).

Fields of expertise in the area of application security encompass security-centered code reviews,
binary reverse-engineering and vulnerability-discovery. Custom research and IT security consult-
ing, as well as support services, are the core competencies of X41. The team has a strong techni-
cal background and performs security reviews of complex and high-profile applications such as
Google Chrome and Microsoft Edge web browsers.

X41 D-Sec GmbH can be reached via https://x41-dsec.de or mailto:info@x41-dsec.de.

Lhttps://x41-dsec.de/security/research/news/2023/01/17/git-security-audit-ostif/
2https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/
3https://browser-security.x41—dsec.de/X41-Browser—Security-White-Paper.pdf
4https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phasel-20170208.pdf
Shttps://www.x41-dsec.de/lab/blog/fax/
Shttps://2018.zeronights.ru/en/reports/zero-fax-given/

7 https://www.x41-dsec.de/lab/blog/smartcards/

X41 D-Sec GmbH Page 23 of 24

https://x41-dsec.de
mailto:info@x41-dsec.de
https://x41-dsec.de/security/research/news/2023/01/17/git-security-audit-ostif/
https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/
https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf
https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf
https://www.x41-dsec.de/lab/blog/fax/
https://2018.zeronights.ru/en/reports/zero-fax-given/
https://www.x41-dsec.de/lab/blog/smartcards/

Code Review of the Rust VMM Project The Rust VMM project

Acronyms

CWE Common Weakness Enumeration 13

X41 D-Sec GmbH Page 24 of 24

	Executive Summary
	Introduction
	Methodology
	Findings Overview
	Scope
	Coverage
	Recommended Further Tests

	Rating Methodology for Security Vulnerabilities
	Common Weakness Enumeration

	Results
	Findings
	Informational Notes
	RVMM-CR-23-100
	RVMM-CR-23-101
	RVMM-CR-23-102
	RVMM-CR-23-103
	RVMM-CR-23-104
	RVMM-CR-23-105

	About X41 D-Sec GmbH

