
 Eclipse Mosquitto
 Threat Model

 February 24, 2023

 Prepared for:

 Eclipse Foundation
 Organized by Open Source Technology Improvement Fund, Inc.

 Prepared by: Kelly Kaoudis, Shaun Mirani, Spencer Michaels

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 80+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositories at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” page at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 228 Park Ave S #80688
 New York, NY 10003
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 1 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

 Notices and Remarks

 Copyright and Distribution
 © 2023 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be public information; it is licensed to the Eclipse
 Foundation under the terms of the project statement of work and has been made public at
 the Eclipse Foundation’s request. Material within this report may not be reproduced or
 distributed in part or in whole without the express written permission of Trail of Bits.

 The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page .
 Reports accessed through any source other than that page may have been modified and
 should not be considered authentic.

 Analysis Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and agreed upon project plan.

 Threat modeling projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As a result, the findings documented in
 this report should not be considered a comprehensive list of security issues, flaws, or
 defects in the target system or codebase.

 Trail of Bits 2 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

https://github.com/trailofbits/publications

 Table of Contents

 About Trail of Bits 1
 Notices and Remarks 2
 Table of Contents 2
 Executive Summary 4
 Project Summary 6
 Project Coverage 7
 System Diagrams 9
 Components 11
 Trust Zones 13
 Trust Zone Connections 14
 Threat Actors 16
 Threat Actor Paths 17
 Summary of Recommendations 19
 Summary of Findings 21
 Detailed Findings 22

 1. Insufficient default configuration file permissions 22
 2. Unclear ACL, role, group enforcement priority 24
 3. Missing global connection rate limiting 26
 4. Plaintext password storage and handling 28
 5. Bridge -> broker -> bridge message looping 30
 6. Broker does not check configuration filesystem permissions 32
 7. Configuration reload may cause inconsistent behavior 34
 8. Clients can publish last will messages to $CONTROL topics 35

 A. Methodology 37
 B. Security Controls and Rating Criteria 38

 Trail of Bits 3 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

 Executive Summary

 Engagement Overview
 OSTIF engaged Trail of Bits to conduct a lightweight threat model of the Eclipse Mosquitto
 project. From February 13 to February 17, 2023, a team of three consultants met with the
 client with three person-weeks of effort to evaluate relevant components and system
 architecture , drawing from the Mozilla “Rapid Risk Assessment” methodology and the
 National Institute of Standards and Technology’s (NIST) guidance on data-centric threat
 modeling (NIST 800-154). Details of the project’s timeline, test targets, and coverage are
 provided in subsequent sections of this report.

 Project Scope
 Our assessment focused on the identification of security control flaws that could result in a
 compromise of confidentiality, integrity, or availability of the target system, especially with
 respect to the controls noted in the category breakdown table below. An exhaustive list of
 security control types and their definitions can be found in appendix B .

 Summary of Findings
 The audit uncovered flaws impacting system confidentiality, integrity, and availability. A
 summary of the findings and details on notable findings are provided below.

 FINDINGS BY SEVERITY

 Severity Count

 High 5

 Medium 2

 Low 1

 FINDINGS BY CONTROL TYPE

 Category Count

 Access Controls 4

 Denial of Service 2

 System and Information
 Integrity

 2

 Trail of Bits 4 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

https://infosec.mozilla.org/guidelines/risk/rapid_risk_assessment.html
https://csrc.nist.gov/publications/detail/sp/800-154/draft

 Notable Findings
 Significant security control flaws that impact system confidentiality, integrity, or availability
 are listed below.

 ● TOB-MOSQ-3
 Since there is no clear broker-global way to configure and enforce rate limiting for
 client or bridge connection and authentication attempts, an attacker could
 brute-force the password(s) of one or more users, potentially resulting in denial of
 service to other broker clients. Having authenticated with the brute-forced
 credentials, the attacker would then have the ability to publish to and consume any
 topics for which the credentials can legitimately be used, including $CONTROL or
 $SYS topics.

 ● TOB-MOSQ-5
 Since there is no functionality to prevent infinitely looping messages between
 bridged brokers, an attacker could bridge a malicious broker A to a broker they wish
 to overwhelm, B, with the intention of exhausting B’s system resources and B’s
 clients’ resources.

 ● TOB-MOSQ-8
 Since there are no restrictions on publishing “last will and testament” (LWT)
 messages to Dynamic Security plugin $CONTROL topics or those of any other plugin,
 an attacker could set the LWT for a client they control to alter the broker
 security-related plugin configuration on their behalf when the LWT is published,
 after the attacker’s client has lost ACL permissions to make such changes directly.

 Trail of Bits 5 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

 Project Summary

 Contact Information
 The following project manager was associated with this project:

 Jeff Braswell , Project Manager
 jeff.braswell@trailofbits.com

 The following engineering director was associated with this project:

 Anders Helsing , Engineering Director, Application Security
 anders.helsing@trailofbits.com

 The following consultants were associated with this project:

 Kelly Kaoudis, Consultant Shaun Mirani, Consultant
 kelly.kaoudis@trailofbits.com shaun.mirani@trailofbits.com

 Spencer Michaels, Consultant
 spencer.michaels@trailofbits.com

 Project Timeline
 The significant events and milestones of the project are listed below.

 Date Event

 February 9, 2023 Pre-project kickoff call

 February 14, 2023 Discovery meeting #1

 February 16, 2023 Discovery meeting #2

 February 23, 2023 Delivery of report draft and report readout meeting

 March 24, 2023 Delivery of final report

 Trail of Bits 6 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

 Project Coverage

 During a lightweight threat modeling assessment, engineers generally aim to cover the
 entire target system as a coherent whole. In some cases, however, certain components
 may be either unnecessary to examine, or impossible to review thoroughly.

 Security Controls
 The following security controls were used to evaluate the project targets during threat
 modeling exercises. For further information regarding security controls, see appendix B .

 ● Access Controls

 ● Audit and Accountability

 ● Cryptography

 ● Denial of Service

 ● Identification and Authentication

 ● System and Information Integrity

 Exclusions
 We explicitly excluded the following components from the assessment scope:

 ● mosquitto-go-auth , a third-party, Go-based alternative to Mosquitto’s Dynamic
 Security plugin

 ● HAProxy , which explicitly supports MQTT and is commonly deployed with
 Mosquitto in production environments, but is not part of the Mosquitto project

 ● The Certificate Authority , which is an end user–controlled component and not part
 of the Mosquitto project

 ● The openssl command-line utility, which is referred to throughout the Mosquitto
 documentation as the preferred way to create certificates and other cryptographic
 data, but is not itself part of the Mosquitto project

 ● Any SSL/TLS library with which the client developer or infrastructure administrator
 configures a Mosquitto broker or client, though Mosquitto’s usage of such libraries
 is explicitly in scope

 Trail of Bits 7 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

 Limitations
 Because of the time-boxed nature of testing work, it is common to encounter coverage
 limitations. During this project, we were unable to perform comprehensive review of the
 following areas, which may warrant further review:

 ● Implementation details of SSL/TLS library usage , which will be explored during
 the secure code review portion of this assessment

 ● Deployment functionality , including the following:

 ○ Platform-specific functionality related to installation or packaging

 ○ Mosquitto Dockerfile environments

 Trail of Bits 8 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

 System Diagrams

 The following diagrams depict the relationships between Mosquitto’s various components
 and trust zones, as well as the potential paths that threat actors can take within them.

 Data Types
 Generally, the Mosquitto broker and ctrl utilities communicate via publishing to and
 subscribing to MQTT topics. There are no restrictions on the format or types of data that
 can be communicated over MQTT. The Mosquitto broker and ctrl utilities also consume and
 edit configuration files in the local filesystem.

 High-Level Data Flow

 Trail of Bits 9 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

 Local Data Flow

 Trail of Bits 10 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

 Components

 Eclipse Mosquitto is an open-source MQTT 5, 3.1.1, and 3.1 broker implementation
 packaged with client, client-library, and broker-plugin foundation code. The following table
 describes each Mosquitto component or external dependency and notes through an
 asterisk (*) whether the component or dependency is not in scope. We explored the
 implications of threats involving out of scope components which directly affect in-scope
 components, but we do not consider threats to out of scope components.

 Component Description

 Broker This is the Mosquitto MQTT broker service.

 Dynamic Security broker
 plugin

 This is the Mosquitto default authentication/authorization plugin
 that enforces the access-control and authorization rules defined in
 configuration files stored on the broker host’s filesystem.

 mosquitto-go-auth (*) This is the third-party Mosquitto authentication/authorization
 plugin that is compatible with a variety of data sources and
 formats, such as mysql, Redis, and JWT. This component was out
 of scope.

 Bridge When a broker connects to another broker to send, receive, or
 bidirectionally exchange reproduced messages and/or topics, the
 connection is called a bridge. Infrastructure administrators
 commonly build trees of brokers using bridges.

 HAProxy (*) This is an MQTT-aware reverse proxy commonly used with
 Mosquitto brokers. If the broker does not directly terminate client
 TLS and is deployed behind HAProxy, HAProxy performs TLS
 termination and load balancing on behalf of the broker. This
 component was out of scope.

 Certificate Authority (*) This is the authoritative party that holds the private key for signing
 Mosquitto broker and client certificates, as well as the public key
 for verifying them. This component was out of scope.

 SSL/TLS library (*) This is the library handling cryptographic operations in the
 Mosquitto broker and in the libmosquitto API. The library is either
 LibreSSL or OpenSSL . This component was out of scope.

 Trail of Bits 11 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

https://github.com/eclipse/mosquitto/tree/master/docker
https://github.com/eclipse/mosquitto/tree/master/docker

 openssl (*) This is the command-line utility (indicated by documentation) to
 generate certificates for Mosquitto broker and client operations.
 This component was out of scope.

 Client This is an MQTT client, either based on libmosquitto or third-party
 client software (the latter was out of scope), that publishes to or
 subscribes to topics coordinated by a Mosquitto broker instance.

 Custom broker plugin This is a third-party plugin built with Mosquitto-provided
 components for the purposes of configuring the Mosquitto broker.

 mosquitto_ctrl This is a command-line tool to simplify the reconfiguration of the
 MQTT broker at runtime. It optionally reads an options file, which
 stores the command-line configuration, from the local filesystem.

 mosquitto_ctrl_dynsec This is a command-line tool for configuring the Mosquitto broker’s
 Dynamic Security plugin (module). Generally, this tool simplifies
 the publication to the Dynamic Security plugin’s $CONTROL MQTT
 topics.

 mosquitto_passwd This is a command-line tool for managing Mosquitto broker
 password files in the local filesystem.

 mosquitto_pub This is a command-line tool that can publish simple messages to a
 given Mosquitto-brokered topic.

 mosquitto_sub This is a command-line tool that can subscribe to a
 Mosquitto-brokered topic and will print all messages it receives.

 mosquitto_rr This is a command-line request/response client that can both
 receive and publish MQTT messages.

 Trail of Bits 12 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

 Trust Zones

 Systems include logical “trust boundaries” or “zones” in which components may have
 different criticality or sensitivity. Therefore, to further analyze a system, we decompose
 components into zones based on shared criticality, rather than physical placement in the
 system. Trust zones capture logical boundaries where controls should or could be enforced
 by the system and allow designers to implement interstitial controls and policies between
 zones of components as needed.

 Zone Description Included Components

 Private Network The network zone(s) under the control of
 Mosquitto broker administrators and
 client operators

 ● libmosquitto clients

 ● Third-party MQTT clients

 ● Broker, when configured to
 terminate client TLS itself

 Public Network The network zone for data that crosses
 the broader internet (e.g., between a
 client and a broker) and, therefore, must
 cross third-party networks before
 reaching its destination

 ● HAProxy, when situated in
 front of a broker

 ● Broker, when configured to
 accept direct client
 connections

 ● Certificate Authority

 ● libmosquitto clients

 ● Third-party MQTT clients

 ● Remote Mosquitto test
 clients (e.g., mosquitto_rr)

 Localhost The network and system-level zone for
 data that may persist on the same host
 as a component (e.g, the host running a
 Mosquitto broker)

 ● Broker

 ● Broker plugins

 ● Mosquitto ctrl and Dynamic
 Security plugin ctrl utilities

 ● Local Mosquitto test clients
 (e.g., mosquitto_rr)

 Process The running broker process on the host ● Broker

 ● Broker plugins

 Trail of Bits 13 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

 Trust Zone Connections

 At a design level, trust zones are delineated by the security controls that enforce the
 differing levels of trust within each zone. As such, it is necessary to ensure that data cannot
 move between trust zones without first satisfying the intended trust requirements of its
 destination. We enumerate such connections between trust zones below.

 Originating
 Zone

 Destination
 Zone

 Data Description Connection
 Type

 Authentication
 Type

 Private
 Network 1

 Public
 Network

 Data sent from a
 client to HAProxy:

 ● Username,
 password

 ● MQTT control
 packets

 ● Published
 messages

 Unencrypted
 TCP, TLS, WS,
 WSS

 Username/
 password, client
 certificate,
 anonymous
 access

 Public
 Network

 Private
 Network 2

 Data sent from
 HAProxy or a broker
 downstream to a
 client (e.g.,
 subscribed
 messages)

 Unencrypted
 TCP, TLS, WS,
 WSS

 Username/
 password, client
 certificate, PSK,
 anonymous
 access

 Private
 Network 2

 Public
 Network

 Data sent between
 bridged brokers:

 ● MQTT control
 packets

 ● Bridged
 messages

 ● Username,
 password

 Unencrypted
 TCP, TLS

 Username/
 password, client
 certificate, PSK,
 anonymous
 access

 Private
 Network

 Localhost Data sent from MQTT
 clients to the broker:

 ● Username,
 password

 Unencrypted
 TCP, TLS, WS,
 WSS

 Username/
 password, client
 certificate,
 anonymous
 access

 Trail of Bits 14 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

 ● MQTT control
 packets

 ● Published
 messages

 Localhost Broker
 Process

 Configuration data
 loaded from the local
 filesystem at broker
 runtime or sent to
 the running broker
 via Mosquitto ctrl
 utilities

 Also, local test
 clients’ published
 messages sent to the
 local broker

 Unencrypted
 TCP, TLS, WS,
 WSS

 Username/
 password, client
 certificate,
 anonymous
 access

 Localhost Private
 Network

 Published messages
 delivered from the
 broker to clients on
 the local network

 Unencrypted
 TCP, TLS, WS,
 WSS

 Username/
 password, client
 certificate,
 anonymous
 access

 Trail of Bits 15 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

 Threat Actors

 Similarly to establishing trust zones, defining malicious actors when conducting a threat
 model is useful in determining which protections, if any, are necessary to mitigate or
 remediate a vulnerability. We will use these actors in all subsequent findings from the
 threat model. Additionally, we define other users of the system who may be impacted by,
 or induced to undertake, an attack. For example, in a confused deputy attack such as
 cross-site request forgery, a normal user would be both the victim and the potential direct
 attacker, even though that user would be induced to undertake the action by a secondary
 attacker.

 Actor Description

 External Attacker An attacker on the public network who can eavesdrop on and
 potentially modify (MitM) other users’ connections that route through
 the public network

 Internal Attacker An attacker on a private network who can eavesdrop on and
 potentially modify other users’ connections that route through that
 private network

 Local Attacker An attacker who controls a process or user account on the same host
 as the Mosquitto broker and can affect the environment or filesystem

 Client Developer Integrates libmosquitto in custom MQTT client applications

 Client Has full control of the client device connected to a broker

 Infrastructure
 Administrator

 Can read from or, as appropriate, publish to broker and broker plugin
 $CONTROL and $SYS topics; has full access to the server or container
 running the Mosquitto broker and ctrl utility software

 Proxy Operator Has full administrative access to a reverse proxy (e.g., HAProxy) that
 terminates client TLS for a Mosquitto broker

 Contributor A regular contributor to Mosquitto source code

 Maintainer A gatekeeper controlling additions to the source code

 Certificate Authority A signer and validator of broker and client certificates

 Trail of Bits 16 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

 Threat Actor Paths

 Additionally, defining attackers’ paths through the various zones is useful when analyzing
 potential controls, remediations, and mitigations that exist in the current architecture.

 Originating
 Zone

 Destination
 Zone

 Actor Description

 Public
 Network

 Public
 Network

 External
 Attacker

 An external attacker suitably positioned on the
 public network between a client and broker is able
 to read and tamper with unencrypted traffic.

 Private
 Network

 Private
 Network

 Internal
 Attacker

 An internal attacker suitably positioned on the
 private network of either a client or broker is able
 to read and tamper with unencrypted traffic.

 Public
 Network

 Public
 Network

 Certificate
 Authority

 A malicious or compromised Certificate Authority
 can sign fake certificates to enable MitM attacks
 on encrypted traffic by an external or internal
 attacker.

 Private
 Network

 Private
 Network

 Proxy
 Operator

 The operator of a HAProxy instance that
 terminates client TLS for a Mosquitto broker is
 able to inspect and modify all traffic between the
 client and broker.

 Localhost Localhost Local
 Attacker

 An attacker gains control of a user account on the
 broker host machine, or compromises another
 process running on the host, and is able to 1)
 make changes to the host environment that affect
 broker behavior and 2) access broker
 configuration data and logs.

 Localhost Localhost Local
 Attacker

 An attacker obtains superuser access on the
 broker host machine, or compromises another
 process running on the host as root, and is able to
 monitor and intercept all broker traffic.

 Localhost Localhost Local
 Attacker

 An attacker obtains access to the user account
 under which Mosquitto is running on the broker
 host machine. The attacker uses methods such as
 ptrace(2) to monitor network traffic sent and

 Trail of Bits 17 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

 received by the broker process.

 Private
 Network

 Private
 Network

 Internal
 Attacker

 A compromised/malicious bridge or client
 operator is able to consume excessive broker
 system resources and potentially negatively affect
 other clients and other bridged brokers via
 excessive published messages, authentication
 attempts, or connection attempts.

 Trail of Bits 18 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

 Summary of Recommendations

 Throughout the engagement, Trail of Bits identified a number of threat scenarios that pose
 risk to Mosquitto deployments and clients. Trail of Bits recommends that the Mosquitto
 maintainers and contributors address the findings detailed in this report, especially
 prioritizing the steps below to further build upon threat modeling exercises:

 ● Simplify the ACL system. Removing manual priority specification from the Dynamic
 Security ACL system entirely will make evaluation order more consistent.

 ○ For a combination of a username, an action, and a topic path, ACL rules
 should be evaluated in order from those that apply to the most
 specific/narrowest applicable path (e.g., parent/foo/bar/stuff) to the
 least specific/broadest applicable path (e.g., parent/#). This will ensure that
 the most specific rules always apply first.

 ○ Only allow access control configuration file/runtime configuration changes to
 come from the ctrl utilities run as the mosquitto user (or root).

 ○ Deny all client/username access by default until the infrastructure admin
 intentionally allows a particular client access to a given topic or set of topics.

 ● Improve the fuzzing coverage. Particularly with regard to MQTT packet parsing
 code, additional fuzzing coverage obtained via internal or external audits will help
 determine how, for example, MQTT packet parsers within Mosquitto handle their
 respective acceptable input ranges.

 ○ Log more extensive information on errors such as crashes, hangs, and
 unexpected exits or syscalls within the Mosquitto broker and Dynamic
 Security plugin. This will help broker administrators produce better issue
 reports in the event of a problem at runtime in their deployments.

 ● Leverage static analysis. Run a targeted set of CodeQL or other static analysis
 rules built from known-bad patterns against pull requests to help prevent
 regressions and “low-hanging fruit” vulnerabilities from being introduced.

 ○ Instead of running a large SAST query set, which could lead to an
 overwhelming number of false-positive or less-useful alerts, scan each PR
 against develop and master branches with a small, tailored CodeQL query
 suite based on past Mosquitto security flaws, security issues in similar MQTT
 projects, and potentially general known-bad security patterns.

 Trail of Bits 19 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

https://mosquitto.org/documentation/dynamic-security/
https://shostack.org/archive/2005/11/star-wars-and-the-principle-of-least-privilege/
https://shostack.org/archive/2005/11/friday-star-wars-principle-of-fail-safe-defaults/
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/customizing-code-scanning#using-a-custom-configuration-file
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/customizing-code-scanning#using-a-custom-configuration-file
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/customizing-code-scanning#scanning-pull-requests

 ○ Determine an upper bound for false positives reported over a period of time
 (e.g., 24 hours or one week), after which a particular CodeQL query is
 primarily not reporting helpful information; modify or remove any query that
 produces too many false positives by this upper bound.

 ○ Exclude test-related code and folder paths from CodeQL to further reduce
 false-positive alerts.

 ○ Require each PR author to resolve PR-specific CodeQL findings (require
 status checks to pass) before allowing PRs to be merged into develop or
 master .

 ● Implement comprehensive ACL exploration functionality. Enable infrastructure
 administrators to easily validate per-topic and per-client what combinations of
 access control decisions will apply (and in what order) at runtime.

 ● Do not store passwords or other sensitive data in plaintext in configuration
 files. This will reduce the potential attack surface and information desirable to an
 attacker on the broker host.

 ○ Only store (or allow use of) hashed and uniquely salted broker passwords .

 ○ Enable administrators to provide sensitive data, such as a bridge connection
 remote_password , at runtime so it is only read into broker memory and not
 stored on the broker host filesystem.

 ● Refactor the handwritten parsers. Reimplement each parser in an
 human-readable specification format such as ASN.1. Use a parser generator on
 these specifications to create the actual code to link into Mosquitto. This will enable
 formal verification; handwritten parser routines are more likely than formally
 verified, automatically generated parsers to contain subtle, unintended issues.

 ○ Additionally, consider more clearly separating the parsing code from the
 input validation and packet handling code to facilitate verification, testing,
 and fuzzing of critical paths.

 Trail of Bits 20 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/customizing-code-scanning#avoiding-unnecessary-scans-of-pull-requests
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/managing-a-branch-protection-rule#creating-a-branch-protection-rule
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/managing-a-branch-protection-rule#creating-a-branch-protection-rule
https://cwe.mitre.org/data/definitions/256.html

 Summary of Findings

 The table below summarizes findings during the review, including type and severity details.

 ID Title Type Severity

 1 Insufficient default configuration file permissions Access Controls High

 2 Unclear ACL, role, group enforcement priority Access Controls Medium

 3 Missing global connection rate limiting Denial of Service High

 4 Plaintext password storage and handling System and
 Information
 Integrity

 High

 5 Bridge->broker->bridge message looping Denial of Service High

 6 Broker does not check configuration filesystem
 permissions

 Access Controls Medium

 7 Configuration reload may cause inconsistent
 behavior

 System and
 Information
 Integrity

 Low

 8 Clients can publish last will messages to
 $CONTROL topics

 Access Controls High

 Trail of Bits 21 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

 Detailed Findings

 1. Insu�cient default configuration file permissions

 Severity: High Difficulty: High

 Type: Access Controls Finding ID: TOB-MOSQ-1

 Target: Mosquitto Broker

 Description
 Mosquitto broker settings can come from local user-managed files such as
 mosquitto.conf . On a system with Linux capabilities, any user with CAP_KILL capabilities
 for the broker parent process can force the broker to reload all configuration files by
 sending the SIGHUP signal to the broker process via kill() .

 Mosquitto utilities such as mosquitto_ctrl do not disallow or discourage manual edits to
 these configuration files, nor do these utilities check that filesystem permissions are
 sufficiently restrictive before updating the file in question.

 Threat Scenario
 An infrastructure administrator creates broker configuration files such as acl_file with
 broad write permissions.

 A malicious user on the machine where the broker runs lacks the capability to SIGHUP the
 broker process, but can edit configuration files to enable anonymous access in
 mosquitto.conf , change group membership in acl_file , and add an unexpected
 psk_file entry, among other actions. The next time the administrator makes a benign
 change to any one of the configuration files and SIGHUP s the broker, the broker accepts all
 changes (including the attacker’s) across all configuration files.

 Docker also lacks default container filesystem protections, which means running the broker
 in a container does not prevent or protect against this scenario. Any container-host user
 account with the necessary filesystem access permissions can still directly edit broker
 configuration files located within a Docker container.

 Since the attacker must obtain a user account on the broker host machine, we consider
 this scenario to be of high difficulty. Since the changes a malicious user makes can broadly
 affect trust between the broker and all connected clients, we consider this issue to be of
 high severity.

 Trail of Bits 22 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

 Recommendations
 Short term, modify the Mosquitto documentation to clearly recommend strict default
 configuration file permissions such as 640 or even 600 , and ensure all Mosquitto
 Dockerfiles set the default configuration folder and file permissions to disallow reads and
 writes from users who do not directly own them.

 Long term, make the ctrl utilities the primary way to interact with any configuration files for
 the Mosquitto broker. Ctrl utilities should automatically create all Mosquitto configuration
 files; if a given file does not already exist, create it empty or with a default deny-all ruleset
 with strict default access permissions (e.g., 600). Similarly to the recommendations
 provided for TOB-MOSQ-6 , ctrl utilities should refuse to load or modify broker
 configuration files that lack strict-enough filesystem access permissions, akin to ssh ’s
 restrictions.

 References
 ● Adam Shostack: Fail-Safe Defaults

 Trail of Bits 23 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

https://www.cisa.gov/uscert/bsi/articles/knowledge/principles/failing-securely
https://shostack.org/archive/2005/11/friday-star-wars-principle-of-fail-safe-defaults/

 2. Unclear ACL, role, group enforcement priority

 Severity: Medium Difficulty: Low

 Type: Access Controls Finding ID: TOB-MOSQ-2

 Target: Dynamic Security plugin

 Description
 It is unclear from the documentation and examples within the documentation which ACLs
 will be checked first, or the priority order in which rules will apply, if multiple (user-wise,
 group-wise, or role-wise) rules apply to a particular client (user) publishing to or subscribing
 to a given topic.

 Threat Scenario
 For a broker with many clients and multiple roles/groups, the infrastructure administrator
 creates overlapping access rules, including a general allow-all-actions rule for all usernames
 for topic/# and a narrowly scoped rule intended to make subscribing to, publishing to,
 and receiving messages from topic/secret available only to members of the secret
 group.

 The admin assumes the topic/secret group-based deny rule will take precedence over
 the allow-everything rule when a client attempts topic/secret access. Since ‘ # ’ has a
 lower ordinal value than other characters that are possible in topic names, and neither rule
 has a priority value assigned, the administrator assumes the deny rule will apply before
 the publish-allow rule for all topics under topic/ .

 However, since client-role-related rules are always checked before group-related rules in
 acl_check() and the method returns once a matching rule is found for the action type
 and client, an attacker-controlled client not in the secret group can subscribe to
 topic/secret and receive messages published to it, contrary to the administrator’s
 assumptions.

 We consider this scenario to be of low difficulty, since the malicious client can by default
 receive messages on topic/secret . We consider this scenario to be of medium severity
 since potentially sensitive user information published to the topic is compromised.

 Recommendations
 Short term, clarify the ACL documentation and examples regarding the interaction of the
 administrator-configurable priority parameter with user-associated, role-associated, and
 group-associated rules. Document the implicit precedence ordering of user and
 group-associated rules due to acl_check() structure.

 Trail of Bits 24 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

https://github.com/eclipse/mosquitto/blob/develop/plugins/dynamic-security/acl.c#L218

 Long term, to reduce complexity, take the following actions:

 ● Remove the configurable priority rule parameter entirely.

 ● Refactor the ACL checking code so that user and group-specific rules are equally
 likely to apply to a username/client, action, and topic combination:

 ○ Determine and then check the full set of ACL rules that apply for a user and
 the groups to which they belong for the given topic.

 ○ Order rule checking from the narrowest (longest) topic specifier to the
 broadest (mainly, shortest) topic specifier:

 ■ Since rules applying to wildcarded (# , +) topic specifiers are broader
 than other rules applying to a comparable number of topic path
 segments, rules containing wildcards should be checked as the last of
 each set at a given level of the topic tree.

 ■ For example, to determine whether a client may subscribe to
 topic/foo/secret , first determine the branch(es) of the tree of
 topics within which the topic in question falls (e.g., topic/ ,
 topic/foo/). Then, check only within the applicable topic-tree branch
 for rules relating to the narrowest/most closely related path (e.g.,
 topic/foo/secret) first, returning if an applicable more-specific
 rule is found before any broader rules may apply.

 ■ Thus, rules applying only to topic/foo/secret are checked before
 rules that cover, for example, topic/foo/# and topic/# .

 ○ If the Dynamic Security plugin checks ACL rules following this topic-tree
 ordering, it should also be possible to remove the current lexicographic
 fallback rule ordering.

 Ordering rule checks by topic should be less error-prone and should prove more intuitive
 to broker and client administrators.

 Trail of Bits 25 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

https://mosquitto.org/documentation/dynamic-security/

 3. Missing global connection rate limiting

 Severity: High Difficulty: Low

 Type: Denial of Service Finding ID: TOB-MOSQ-3

 Target: Broker

 Description
 A number of per-listener maximum values are configurable in Mosquitto, including the
 maximum number of client connections, the global maximum client packet size, and the
 global publishable payload size.

 However, there are no rate-limiting mechanisms for broker-wide (global) connection and
 authentication attempts, which, if implemented, would prevent broker resource overuse by
 a particular client or bridge. These mechanisms cannot be clearly set with just one or a few
 configuration settings.

 Section 5.4.8 of the MQTT v5 specification (“Detecting abnormal behaviors”) encourages
 monitoring client behavior to detect repeated connection or authentication attempts and
 recommends adding misbehaving clients to a dynamic blocklist or rate-limiting list.

 Threat Scenario
 An attacker discovers a vulnerable Mosquitto broker through Shodan and obtains a valid
 client username for this broker. Through many failed attempts across multiple listeners
 (each listener could have different configuration settings, but all listeners rely on the same
 acl_file if it is present, and the same password_file), the user applies MQTT-pwn to
 obtain the correct password through brute force, as in issue #2076 .

 If acl_file does not exist, or existing ACL rules do not prevent such access from the
 credentials the attacker obtained, the now-authenticated attacker can publish to (and
 consume messages from) $CONTROL topics and other sensitive topics identified using
 MQTT-pwn.

 Alternatively, an improperly configured client simply overwhelms the broker by making
 many connection and/or authentication or authorization attempts across listeners.

 We consider this issue to be of low difficulty, since the attacker requires no specialized
 knowledge to exploit the issue. The severity is rated as high because this issue could affect
 all broker clients.

 Trail of Bits 26 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf
https://github.com/akamai-threat-research/mqtt-pwn
https://github.com/eclipse/mosquitto/issues/2076

 Recommendations
 Short term, if such a combination of options exists currently, clearly document how to
 rate-limit connection attempts, authentication attempts, authorization attempts, and
 publish attempts from a particular client, across all listeners configured on a broker.

 Long term, implement and document a simple global (broker-wide) rate-limiting set of
 configuration options for connections, authentication, and publication. In particular,
 implement and document an option to specifically rate limit authentication attempts
 globally by user identity. Thus configured, the Mosquitto broker should uniquely identify
 and rate limit any individual client across listeners and individual connections. Additionally,
 either remove per-listener rate-limiting options or clearly document how per-listener rate
 limiting will interact with global rate limits.

 References
 ● CWE-307: Improper Restriction of Excessive Authentication Attempts

 Trail of Bits 27 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

https://cwe.mitre.org/data/definitions/307.html

 4. Plaintext password storage and handling

 Severity: High Difficulty: High

 Type: System and Information Integrity Finding ID: TOB-MOSQ-4

 Target: Multiple

 Description
 The Mosquitto ctrl utilities and broker permit plaintext password storage and usage.

 For example, they allow a user to provide a plaintext password, such as the broker
 administrator password, as the value of a command-line utility configuration option, and
 they allow the storage of plaintext passwords in configuration files such as
 mosquitto.conf , password_file , and the mosquitto_ctrl options file.

 Threat Scenario
 An attacker obtains read access to the filesystem of the machine or container hosting the
 Mosquitto broker and copies the broker configuration files. From the mosquitto_ctrl
 saved options file, the attacker obtains a broker administrator user password and gains
 broker administrator access.

 Alternatively, an attacker gains read access on a client device from which the administrator
 has previously remotely configured the broker. The attacker recovers the broker
 administrator password from the device’s shell history file and gains broker administrator
 access.

 Alternatively, an attacker obtains the remote_password and remote_username that this
 broker uses to bridge “out” to another broker without TLS PSK or a bound local IP from
 mosquitto.conf , and impersonates this broker to the remote broker.

 Since these scenarios require filesystem read access, we consider this issue to be of high
 difficulty. The outcome is administrator-level broker takeover, which affects all clients and
 bridged brokers, so the severity is also high.

 Recommendations
 Short term, disallow all password storage in configuration files other than password_file .
 Disallow user creation through passing a plaintext password value directly on the
 command line to mosquitto_passwd . Prefer reading passwords into app memory through
 a secondary dialogue, where feasible without breaking existing functionality, instead of
 allowing password(s) directly as the value of a given command-line argument.

 Trail of Bits 28 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

 Long term, also disallow plaintext passwords entirely in password_file , even when TLS
 support is not compiled into Mosquitto, so that the default choice is the most secure choice
 (with regard to password storage) that the broadest number of users will accept. Do not
 store or support existing unsalted and unhashed passwords. Following OWASP and NIST
 recommendations, either choose a more secure key stretching algorithm (i.e., argon2) or
 configure PBKDF2 by default with an appropriately large number of hash iterations, salt
 size, and so on. Write test cases to ensure the Mosquitto utilities and broker reject
 authenticated-user topic accesses from users with passwords that the broker has stored as
 plaintext in password_file until the administrator updates the password file.

 References
 ● OWASP Password Storage: PBKDF2

 ● NIST SP 800-132 : Recommendation for Password-Based Key Derivation Part 1:
 Storage Applications

 ● NIST SP 800-63 : Digital Identity Guidelines

 ● CWE-256: Plaintext Storage of a Password

 ● CWE-260: Password in Configuration File

 Trail of Bits 29 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

https://github.com/eclipse/mosquitto/blob/develop/mosquitto.conf#L603
https://github.com/eclipse/mosquitto/blob/develop/mosquitto.conf#L603
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pbkdf2
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
https://pages.nist.gov/800-63-3/sp800-63-3.html
https://cwe.mitre.org/data/definitions/256.html
https://cwe.mitre.org/data/definitions/260.html

 5. Bridge -> broker -> bridge message looping

 Severity: High Difficulty: Low

 Type: Denial of Service Finding ID: TOB-MOSQ-5

 Target: Broker

 Description
 It is possible to bidirectionally bridge two Mosquitto brokers A and B and infinitely loop
 messages between them. It is also possible to rearrange a broker’s topic tree when bridging
 A to B such that each broker’s topics appear to contain no loops, but A will re-receive
 messages it published to B, and/or vice versa.

 Infinite loops could over-consume broker system resources.

 Threat Scenario
 An attacker bridges a broker they control, A, to a target broker with existing clients, B, and
 also subscribes to the topics brokered by B on which messages bridged from A to B
 propagate, intentionally creating a loop between A and B.

 Since there is no rate limiting for messages propagated across a bridge to clients that
 subscribe to bridge topics, any message “bridged” to B from A could be looped back
 through A to the target B as many times as A’s resource allocation can support, consuming
 additional system resources of B with each message publish back to A and replay to B over
 the bridge.

 If the attacker provisions A with a greater resource allocation than B, A could continue
 amplifying the amount of messages looped through B up to or past B’s resource limits,
 denying service to clients and other bridged connections of B, and potentially also knocking
 B offline.

 Topics imported from A and brokered by B to clients can no longer be consumed without
 causing client network-connection saturation. All existing clients of these topics are either
 pinned to their maximum resources or knocked offline.

 Since this scenario requires only the ability to bridge another broker A to the target broker
 B, we consider this attack to be of low difficulty. Since all clients and the broker B itself
 could be affected, we consider the severity to be high.

 Trail of Bits 30 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

https://github.com/eclipse/mosquitto/blob/develop/mosquitto.conf#L754

 Recommendations
 Short term, create topic-tree validation tooling that administrators of B can run to find and
 eliminate publish/subscribe loops that could degrade service for clients or bridges.
 Introduce global rate-limiting functionality across bridges and clients, as is also
 recommended for TOB-MOSQ-3 , to prevent any bridged-in broker A from overwhelming
 the broker in question, B, through intentionally looping messages.

 Long term, refactor the bridging code to wholly prevent any bridge A from directly (or
 indirectly, through topic/topic tree remapping) both producing and consuming the same
 remote topic on B.

 Trail of Bits 31 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

 6. Broker does not check configuration filesystem permissions

 Severity: Medium Difficulty: High

 Type: Access Controls Finding ID: TOB-MOSQ-6

 Target: Broker

 Description
 Mosquitto can be provided with a password file containing username-password or
 username-hash pairs. However, when the broker loads the password file, it does not verify
 that the file’s access permissions are sufficiently strict.

 Threat Scenario
 A naive user uses chmod to make an existing broker password_file writable to additional
 host system users (i.e., by making the file world- or group-writable). An attacker then
 obtains write access as a low-privileged user, writes a new entry to the file, and waits for
 the Mosquitto broker to eventually restart, which loads the attacker’s new broker
 credentials.

 Since this scenario requires local write access, and the attacker’s system user may not have
 the capability to force the broker to reload configuration files with SIGHUP , we consider this
 finding to be of high difficulty. We consider the severity to be medium because this
 example’s broker relies only on the password file for client access control, resulting in the
 attacker gaining broad access to all brokered topics.

 Recommendations
 Short term, after addressing TOB-MOSQ-1 , when the broker loads a password file (both at
 startup and during SIGHUP -triggered reloads), check that the password file’s permission
 flags are set to 0600 (writable/readable by user only). Display a warning message about
 password file permissions if they are not sufficient; consider ssh ’s “permissions are too
 open” error message, reproduced below.

 @@@
 @ WARNING: UNPROTECTED PRIVATE KEY FILE! @
 @@@
 Permissions 0644 for '/Users/example/.ssh/id_rsa.pub' are too open.
 It is required that your private key files are NOT accessible by others.
 This private key will be ignored.
 bad permissions: ignore key: /Users/example/.ssh/id_rsa.pub
 Permission denied (publickey,password).

 Trail of Bits 32 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

 Long term, take the following actions:

 ● If the security of the application depends on the fact that local configuration files are
 writable only by certain users (i.e., root and mosquitto), it is important not only to
 check that access permissions are sufficiently strict when loading such a file, but
 also that the broker fails to start if this invariant does not hold.

 ● If filesystem permissions for a configuration file such as password_file are
 insufficient, do not allow the broker to start. It is important to fail to start the broker
 instead of simply failing to load the password file, to avoid unintentionally running
 with no usernames and passwords if password_file permissions are too open.

 This method is not foolproof, as there is also a possibility of a time-of-check to time-of-use
 (TOCTOU) race between the broker checking the permissions of a file and another process
 completing a permissions or file contents modification; however, this method does help
 rule out the most common case of naive over-permissioning.

 References
 ● OWASP: Filesystem Permissions

 ● CWE-367: TOCTOU

 ● Man: ssh

 Trail of Bits 33 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html#filesystem-permissions
https://cwe.mitre.org/data/definitions/367.html
https://www.man7.org/linux/man-pages/man1/ssh.1.html

 7. Configuration reload may cause inconsistent behavior

 Severity: Low Difficulty: High

 Type: System and Information Integrity Finding ID: TOB-MOSQ-7

 Target: Broker

 Description
 The Mosquitto broker reloads its configuration upon receiving a SIGHUP signal. If settings
 that affect how requests are handled are changed, requests that are received during the
 configuration reload could be processed in unexpected or inconsistent ways.

 Note that plugins can be loaded only at startup and cannot be unloaded via a SIGHUP , so
 authentication race conditions are not a concern for this issue.

 Threat Scenario
 An administrator configures a broker with allow_zero_length_clientid=true .

 Later, they change that setting to false in the Mosquitto configuration file. Rather than
 risk downtime by restarting the broker entirely, they send a SIGHUP to the broker so that it
 reloads its configuration.

 A client that was initially allowed to connect with a zero-length client ID could still remain
 connected after this change, leading to unexpected behavior.

 We consider this issue to be of low severity since authentication plugins cannot be
 reloaded via the SIGHUP method. We consider the difficulty to be high since privileged local
 access is required to restart the broker.

 Recommendations
 Short term, pause the processing of incoming or queued requests during configuration
 reloads and resume only once all authentication methods are fully initialized. In addition,
 consider providing a configuration option to drop queued requests instead to
 accommodate client use cases in which a drop-and-retry approach would be preferable to
 blocking.

 Long term, to reduce similar ambiguities, ensure that all (sensitive)
 configuration-dependent functionality cannot execute while the configuration is in a
 transitional state, such as during a SIGHUP -induced reload.

 Trail of Bits 34 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

 8. Clients can publish last will messages to $CONTROL topics

 Severity: High Difficulty: Low

 Type: Access Controls Finding ID: TOB-MOSQ-8

 Target: Broker

 Description
 On initial connection, an MQTT client can set a “last will and testament” (LWT) containing an
 arbitrary message that is limited only in length. The broker publishes this LWT to the
 chosen MQTT topic in the event the client unexpectedly loses its connection to the broker.

 While a client’s proposed will topic cannot be greater than a certain length and cannot
 contain invalid UTF-8 characters, the Mosquitto broker does not prevent a client from
 publishing its LWT to $CONTROL topics, which access control plugins such as Dynamic
 Security use as a configuration API.

 This could result in a scenario in which an attacker-controlled client is able to set in
 advance an LWT that will alter security-related plugin configurations when it is published,
 after the client has lost ACL permissions to make such changes directly.

 Threat Scenario
 A client connects to the Mosquitto broker and sets as its LWT a command to alter the
 Dynamic Security configuration, such as by adding a backdoor user account with
 administrative privileges. The client sets the $CONTROL topic for this Dynamic Security
 action as the LWT destination topic.

 While the client is connected, an administrator revokes its privileges. The client then
 disconnects without sending a DISCONNECT packet to the broker , causing the broker to
 publish the previously-set LWT to the previously-selected $CONTROL topic, creating a
 backdoor account through the Dynamic Security plugin API. The attacker maintains
 privileged broker access via this new account.

 We consider this issue to be of high severity since a malicious client’s ability to change
 Dynamic Security plugin configuration on abnormal disconnect could affect all other broker
 clients. We consider the difficulty to be low since no specialized knowledge or significant
 effort is required to set such an LWT.

 Recommendations
 Short term, as is currently done with $SYS topics, prevent all clients from setting any
 $CONTROL topic as the destination topic for an LWT.

 Trail of Bits 35 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901205

 Long term, consider implementing a dedicated last will topic that consists primarily of
 LWTs. Although the MQTTv5 specification requires handling LWTs, it makes no restrictions
 on which topic(s) should receive and propagate such messages.

 Trail of Bits 36 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc479576982

 A. Methodology

 Trail of Bits’ threat modeling assessments are intended to provide a detailed analysis of the
 risks facing an application at a structural and operational level, assessing the security of its
 design as opposed to its implementation details. During these assessments, engineers rely
 heavily on frequent meetings with the client’s developers, paired with extensive readings of
 any and all documentation the client can make available. Code review and dynamic testing
 are not an integral part of threat modeling assessments, although engineers may
 occasionally consult the codebase or a live instance to verify specific assumptions about
 the system’s design.

 Engineers begin a threat modeling assessment by identifying the system’s security controls ,
 the safeguards and guarantees that are critical to maintaining the target system’s
 confidentiality, integrity, and availability. These security controls dictate the assessment’s
 overarching scope and are determined based on the specific requirements of the target
 system, which may include technical and reputational concerns, legal liability, regulatory
 compliance, and so on.

 With these security controls in mind, engineers then divide the system into logical
 components —discrete elements that perform specific tasks—and establish trust zones
 around groups of components that lie within a common trust boundary. They identify the
 types of data handled by the system, enumerating the points at which data is sent,
 received, or stored by each component, as well as within and across trust boundaries.

 Having established a detailed map of the target system’s structure and data flows,
 engineers then identify threat actors —anyone who might threaten the target’s security,
 whether a malicious external attacker, a naive insider, or otherwise. Based on each threat
 actor’s initial privileges and knowledge, threat actor paths are then traced out through the
 system, establishing which controls and data a threat actor might be able to improperly
 access, as well as which safeguards stand in the way of such compromise. Any viable attack
 path discovered in this way constitutes a finding , which is paired with design
 recommendations by which such gaps in the system’s defenses can be remediated.

 After enumerating a list of findings, engineers rate the strength of each security control,
 indicating the general robustness of that type of defense against the full spectrum of
 possible attacks.

 Trail of Bits 37 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

 B. Security Controls and Rating Criteria

 The following tables describe the security controls and rating criteria used in this report.

 Security Controls

 Category Description

 Access Controls Authorization, session management, separation of duties, etc.

 Audit and
 Accountability

 Logging, non-repudiation, monitoring, analysis, reporting, etc.

 Awareness and
 Training

 Policy, procedures, and related capabilities

 Security
 Assessment and
 Authorization

 Assessments, penetration testing, authorization to deploy, etc.

 Configuration
 Management

 Inventory, secure baselines, configuration management, & change control

 Contingency
 Planning

 Disaster recovery, continuity, backups, testing, and related controls

 Cryptography The cryptographic controls implemented at rest, in transit, and in process

 Denial of Service The controls to defend against different types of denial-of-service attacks
 impacting availability

 Identification and
 Authentication

 User and system identification and authentication controls

 Incident Response Policy, process, handling, reporting, and related controls

 Maintenance Preventative and predictive maintenance, and related controls

 Media Protection Identification, storage, sanitization, and removal

 Personnel Security HR Processes, screening, and related controls

 Physical and
 Environmental
 Protection

 Controls to protect work sites and related assets

 Planning Security architecture, policy, procedures, management, etc.

 Trail of Bits 38 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

 Program
 Management

 Assigned responsibility and commitment to plans for critical
 infrastructure, enterprise architecture, information security programs,
 plan of action and milestones, and risk management strategies.

 Risk Assessment Risk assessment policies, vulnerability scanning capabilities, and risk
 management solutions.

 System and
 Communications
 Protection

 Network level controls to protect data

 System and
 Information
 Integrity

 Software integrity, malicious code protection, monitoring, information
 handling, and related controls

 System and
 Services
 Acquisition

 Development lifecycle, documentation, supply chain, etc.

 Rating Criteria

 Rating Description

 Strong The security control was reviewed and no concerns were found.

 Satisfactory The security control had only minor issues; though it may lack certain
 non-critical operational procedures or security measures, their absence
 does not expose users to a significant degree of risk. Remediation in this
 area is suggested, but is not urgent.

 Moderate The security control had several issues or an impactful issue which may
 expose users to some degree of risk, albeit not to a severe degree.
 Remediation in this area is desired.

 Weak The security control had several significant issues which are likely to
 expose users to a substantial amount of risk. Remediation in this area
 should be prioritized.

 Missing The security control was found to be nonexistent or totally ineffective for
 its intended purpose, despite being necessary for the system’s security.
 The implementation of this control should be prioritized.

 Not Applicable The security control is not applicable to this review.

 Not Considered The security control was not considered in this review.

 Further Further investigation is required to reach a meaningful conclusion.

 Trail of Bits 39 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

 Investigation
 Required

 Severity Levels

 Severity Description

 Informational The issue does not pose an immediate risk but is relevant to security best
 practices.

 Undetermined The extent of the risk was not determined during this engagement.

 Low The risk is small or is not one the client has indicated is important.

 Medium User information is at risk; exploitation could pose reputational, legal, or
 moderate financial risks.

 High The flaw could affect numerous users and have serious reputational, legal,
 or financial implications.

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploitation was not determined during this engagement.

 Low The threat is well known or common; an attacker can exploit it without
 significant effort or specialized knowledge.

 Medium An attacker must acquire in-depth knowledge of the system or expend a
 non-trivial amount of effort in order to exploit this issue.

 High An attacker must acquire complex insider knowledge or privileged access to
 the system in order to exploit this issue.

 Trail of Bits 40 OSTIF Eclipse: Mosquitto Threat Model
 PUBLIC

