TRAL
B/

Eclipse Mosquitto

Threat Model

February 24, 2023

Prepared for:
Eclipse Foundation
Organized by Open Source Technology Improvement Fund, Inc.

Prepared by: Kelly Kaoudis, Shaun Mirani, Spencer Michaels

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 80+ employees around the globe, we've helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O'Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.

228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 OSTIF Eclipse: Mosquitto Threat Model
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2023 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to the Eclipse
Foundation under the terms of the project statement of work and has been made public at
the Eclipse Foundation’s request. Material within this report may not be reproduced or
distributed in part or in whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Analysis Coverage Disclaimer

All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Threat modeling projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits 2 OSTIF Eclipse: Mosquitto Threat Model
PUBLIC

https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits
Notices and Remarks
Table of Contents
Executive Summary
Project Summary
Project Coverage
System Diagrams
Components

Trust Zones

Trust Zone Connections
Threat Actors

Threat Actor Paths

Summary of Recommendations

Summary of Findings
Detailed Findings

-_—

2. Unclear ACL, role, group enforcement priority

(O8]

4. Plaintext password storage and handling

5. Bridge -> broker -> bridge message looping

6. Broker does not check configuration filesystem permissions
7. Configuration reload may cause inconsistent behavior

8. Clients can publish last will messages to $CONTROL topics

A. Methodology

B. Security Controls and Rating Criteria

Trail of Bits
PUBLIC

. Insufficient default configuration file permissions

. Missing global connection rate limiting

= O N O A NN =

W W W W W W NN N DNNDN2 2 @ @ 2 2
0 N Ul A N O 00O A NN=2 ONOGO MW

OSTIF Eclipse: Mosquitto Threat Model

Executive Summary

Engagement Overview

OSTIF engaged Trail of Bits to conduct a lightweight threat model of the Eclipse Mosquitto
project. From February 13 to February 17, 2023, a team of three consultants met with the
client with three person-weeks of effort to evaluate relevant components and system
architecture, drawing from the Mozilla “Rapid Risk Assessment” methodology and the
National Institute of Standards and Technology's (NIST) guidance on data-centric threat
modeling (NIST 800-154). Details of the project’s timeline, test targets, and coverage are
provided in subsequent sections of this report.

Project Scope

Our assessment focused on the identification of security control flaws that could resultin a
compromise of confidentiality, integrity, or availability of the target system, especially with
respect to the controls noted in the category breakdown table below. An exhaustive list of
security control types and their definitions can be found in appendix B.

Summary of Findings

The audit uncovered flaws impacting system confidentiality, integrity, and availability. A
summary of the findings and details on notable findings are provided below.

FINDINGS BY SEVERITY FINDINGS BY CONTROL TYPE
Severity Count Category Count
High 5 Access Controls 4
Medium 2 Denial of Service 2
Low 1 System and Information 2
Integrity
Trail of Bits 4 OSTIF Eclipse: Mosquitto Threat Model

PUBLIC

https://infosec.mozilla.org/guidelines/risk/rapid_risk_assessment.html
https://csrc.nist.gov/publications/detail/sp/800-154/draft

Notable Findings

Significant security control flaws that impact system confidentiality, integrity, or availability
are listed below.

e TOB-MO0SQ-3
Since there is no clear broker-global way to configure and enforce rate limiting for
client or bridge connection and authentication attempts, an attacker could
brute-force the password(s) of one or more users, potentially resulting in denial of
service to other broker clients. Having authenticated with the brute-forced
credentials, the attacker would then have the ability to publish to and consume any
topics for which the credentials can legitimately be used, including $§CONTROL or
$SYS topics.

e TOB-MOSQ-5
Since there is no functionality to prevent infinitely looping messages between
bridged brokers, an attacker could bridge a malicious broker A to a broker they wish
to overwhelm, B, with the intention of exhausting B's system resources and B's
clients' resources.

e TOB-MOSQ-8
Since there are no restrictions on publishing “last will and testament” (LWT)
messages to Dynamic Security plugin $CONTROL topics or those of any other plugin,
an attacker could set the LWT for a client they control to alter the broker
security-related plugin configuration on their behalf when the LWT is published,
after the attacker's client has lost ACL permissions to make such changes directly.

Trail of Bits 5 OSTIF Eclipse: Mosquitto Threat Model
PUBLIC

Project Summary

Contact Information
The following project manager was associated with this project:

Jeff Braswell, Project Manager
jeff.braswell@trailofbits.com

The following engineering director was associated with this project:

Anders Helsing, Engineering Director, Application Security
anders.helsing@trailofbits.com

The following consultants were associated with this project:

Kelly Kaoudis, Consultant Shaun Mirani, Consultant
kelly.kaoudis@trailofbits.com shaun.mirani@trailofbits.com

Spencer Michaels, Consultant

spencer.michaels@trailofbits.com

Project Timeline

The significant events and milestones of the project are listed below.

Date Event

February 9, 2023 Pre-project kickoff call

February 14, 2023 Discovery meeting #1

February 16, 2023 Discovery meeting #2

February 23, 2023 Delivery of report draft and report readout meeting

March 24, 2023 Delivery of final report

Trail of Bits 6 OSTIF Eclipse: Mosquitto Threat Model

PUBLIC

Project Coverage

During a lightweight threat modeling assessment, engineers generally aim to cover the
entire target system as a coherent whole. In some cases, however, certain components
may be either unnecessary to examine, or impossible to review thoroughly.

Security Controls

The following security controls were used to evaluate the project targets during threat
modeling exercises. For further information regarding security controls, see appendix B.

Access Controls

Audit and Accountability
Cryptography

Denial of Service

Identification and Authentication

System and Information Integrity

Exclusions

We explicitly excluded the following components from the assessment scope:

mosquitto-go-auth, a third-party, Go-based alternative to Mosquitto’s Dynamic
Security plugin

HAProxy, which explicitly supports MQTT and is commonly deployed with
Mosquitto in production environments, but is not part of the Mosquitto project

The Certificate Authority, which is an end user-controlled component and not part
of the Mosquitto project

The openssl command-line utility, which is referred to throughout the Mosquitto
documentation as the preferred way to create certificates and other cryptographic
data, but is not itself part of the Mosquitto project

Any SSL/TLS library with which the client developer or infrastructure administrator
configures a Mosquitto broker or client, though Mosquitto’s usage of such libraries
is explicitly in scope

Trail of Bits 7 OSTIF Eclipse: Mosquitto Threat Model
PUBLIC

Limitations

Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. During this project, we were unable to perform comprehensive review of the
following areas, which may warrant further review:

¢ Implementation details of SSL/TLS library usage, which will be explored during
the secure code review portion of this assessment

e Deployment functionality, including the following:
o Platform-specific functionality related to installation or packaging

o Mosquitto Dockerfile environments

Trail of Bits 8 OSTIF Eclipse: Mosquitto Threat Model
PUBLIC

System Diagrams

The following diagrams depict the relationships between Mosquitto’s various components
and trust zones, as well as the potential paths that threat actors can take within them.

Data Types

Generally, the Mosquitto broker and ctrl utilities communicate via publishing to and
subscribing to MQTT topics. There are no restrictions on the format or types of data that
can be communicated over MQTT. The Mosquitto broker and ctrl utilities also consume and
edit configuration files in the local filesystem.

High-Level Data Flow

Private Network 1 I Public Network I Private Network 2 | Public Network

1 1 !
Trust Trust Trust
Boundary Boundary Boundary

)

Client
(publisher)

uname/pwd

Broker

HAPro — - g
4 Authentication
J L e I

Client
Client

(publisher & - —¢ ¢ fificate

subscriber)

Web Browser
(subscriber)

|
|
| Broker
I r

mosquitto_sub

W

|
(remote test -tunamelpwd | Client
subscriber) | | Anonymatis—- (subscriber)
| | |
| | |
dynsec I Certificate ! l Client $SYS/..
$CONTROL/.... |unamelpwd—| Authority | Certificate l client
client |
| |
1 1 |
Protocol Key
@ MQTT over TLS over TCP
@ MQTT over TCP (unencrypted)
@ WebSocket Secure
Trail of Bits 9 OSTIF Eclipse: Mosquitto Threat Model

PUBLIC

Local Data Flow

Localhost Auth Configuration Alternatives

A
7 N

| other .(Option'a) mosquitto_ctrl_dynsec| 'mosguitto_passwd (Gptlondal%l
security configs - = - password_file
1 |
[5 e J
| I
(optional) ! ! ,
mosquitto_ctrl . ; mosquitto.conf
config f Broker l
| I
(optional) r---“———-—s————_ """ ===
> ! ecurity '
mosquitto_ctrl | PSK unpwd i
: Dynamic :
QOther Cl_Jstom 1 SSL/TLS Plugin ACL |
Plugin ~——— :
1 e)
— [[——
i Persistence ¥~ T~~~ ™/mosquitto/data
CA Store : Listeners
| Bridging
[TCP

Certificate o b - :
o |
Logging

Event Loop

+ Connection Key
e _ @ VQTT
Client $SYS Client (Bridged) @ Other
Broker

<)

2

o o
0o T
= Z 0
g5 g =

= Z

A g

w

|

|

|

]

1

1

1

Trail of Bits 10 OSTIF Eclipse: Mosquitto Threat Model
PUBLIC

Components

Eclipse Mosquitto is an open-source MQTT 5, 3.1.1, and 3.1 broker implementation
packaged with client, client-library, and broker-plugin foundation code. The following table
describes each Mosquitto component or external dependency and notes through an
asterisk (*) whether the component or dependency is not in scope. We explored the
implications of threats involving out of scope components which directly affect in-scope
components, but we do not consider threats to out of scope components.

Component
Broker

Dynamic Security broker
plugin

mosquitto-go-auth (*)

Bridge

HAProxy (*)

Certificate Authority (*)

SSL/TLS library (*)

Trail of Bits
PUBLIC

Description

This is the Mosquitto MQTT broker service.

This is the Mosquitto default authentication/authorization plugin
that enforces the access-control and authorization rules defined in
configuration files stored on the broker host's filesystem.

This is the third-party Mosquitto authentication/authorization
plugin that is compatible with a variety of data sources and
formats, such as mysql, Redis, and JWT. This component was out
of scope.

When a broker connects to another broker to send, receive, or
bidirectionally exchange reproduced messages and/or topics, the
connection is called a bridge. Infrastructure administrators
commonly build trees of brokers using bridges.

This is an MQTT-aware reverse proxy commonly used with
Mosquitto brokers. If the broker does not directly terminate client
TLS and is deployed behind HAProxy, HAProxy performs TLS
termination and load balancing on behalf of the broker. This
component was out of scope.

This is the authoritative party that holds the private key for signing
Mosquitto broker and client certificates, as well as the public key
for verifying them. This component was out of scope.

This is the library handling cryptographic operations in the
Mosquitto broker and in the libmosquitto API. The library is either
LibreSSL or OpenSSL. This component was out of scope.

11 OSTIF Eclipse: Mosquitto Threat Model

https://github.com/eclipse/mosquitto/tree/master/docker
https://github.com/eclipse/mosquitto/tree/master/docker

openssl (*)

Client

Custom broker plugin

mosquitto_ctrl

mosquitto_ctrl_dynsec

mosquitto_passwd

mosquitto_pub

mosquitto_sub

mosquitto_rr

Trail of Bits
PUBLIC

This is the command-line utility (indicated by documentation) to
generate certificates for Mosquitto broker and client operations.
This component was out of scope.

This is an MQTT client, either based on libmosquitto or third-party
client software (the latter was out of scope), that publishes to or
subscribes to topics coordinated by a Mosquitto broker instance.

This is a third-party plugin built with Mosquitto-provided
components for the purposes of configuring the Mosquitto broker.

This is a command-line tool to simplify the reconfiguration of the
MQTT broker at runtime. It optionally reads an options file, which
stores the command-line configuration, from the local filesystem.

This is a command-line tool for configuring the Mosquitto broker’s
Dynamic Security plugin (module). Generally, this tool simplifies
the publication to the Dynamic Security plugin’s $CONTROL MQTT
topics.

This is a command-line tool for managing Mosquitto broker
password files in the local filesystem.

This is a command-line tool that can publish simple messages to a
given Mosquitto-brokered topic.

This is a command-line tool that can subscribe to a
Mosquitto-brokered topic and will print all messages it receives.

This is a command-line request/response client that can both
receive and publish MQTT messages.

12 OSTIF Eclipse: Mosquitto Threat Model

Trust Zones

Systems include logical “trust boundaries” or “zones” in which components may have
different criticality or sensitivity. Therefore, to further analyze a system, we decompose
components into zones based on shared criticality, rather than physical placement in the
system. Trust zones capture logical boundaries where controls should or could be enforced
by the system and allow designers to implement interstitial controls and policies between
zones of components as needed.

Zone

Private Network

Public Network

Localhost

Process

Trail of Bits
PUBLIC

Description

The network zone(s) under the control of
Mosquitto broker administrators and
client operators

The network zone for data that crosses
the broader internet (e.g., between a
client and a broker) and, therefore, must
cross third-party networks before
reaching its destination

The network and system-level zone for

data that may persist on the same host
as a component (e.g, the host running a
Mosquitto broker)

The running broker process on the host

13

Included Components

e libmosquitto clients
e Third-party MQTT clients

e Broker, when configured to
terminate client TLS itself

e HAProxy, when situated in
front of a broker

e Broker, when configured to
accept direct client
connections

e Certificate Authority
e libmosquitto clients
e Third-party MQTT clients

e Remote Mosquitto test
clients (e.g., mosquitto_rr)

e Broker
e Broker plugins

e Mosquitto ctrl and Dynamic
Security plugin ctrl utilities

e Local Mosquitto test clients
(e.g., mosquitto_rr)

e Broker

e Broker plugins

OSTIF Eclipse: Mosquitto Threat Model

Trust Zone Connections

At a design level, trust zones are delineated by the security controls that enforce the
differing levels of trust within each zone. As such, it is necessary to ensure that data cannot
move between trust zones without first satisfying the intended trust requirements of its

destination. We enumerate such connections between trust zones below.

Originating
Zone

Private
Network 1

Public
Network

Private
Network 2

Private
Network

Trail of Bits
PUBLIC

Destination

Zone

Public
Network

Private
Network 2

Public
Network

Localhost

Data Description

Data sent from a
client to HAProxy:

e Username,

password
e MQTT control
packets
e Published
messages

Data sent from
HAProxy or a broker
downstream to a
client (e.g.,
subscribed
messages)

Data sent between
bridged brokers:

e MQTT control
packets

e Bridged
messages

e Username,
password

Data sent from MQTT
clients to the broker:

e Username,
password

14

Connection
Type

Unencrypted
TCP, TLS, WS,
WSS

Unencrypted
TCP, TLS, WS,
WSS

Unencrypted
TCP, TLS

Unencrypted
TCP, TLS, WS,
WSS

Authentication
Type

Username/
password, client
certificate,
anonymous
access

Username/
password, client
certificate, PSK,
anonymous
access

Username/
password, client
certificate, PSK,
anonymous
access

Username/
password, client
certificate,
anonymous
access

OSTIF Eclipse: Mosquitto Threat Model

Localhost

Localhost

Trail of Bits
PUBLIC

Broker
Process

Private
Network

e MQTT control
packets

e Published
messages

Configuration data
loaded from the local
filesystem at broker
runtime or sent to
the running broker
via Mosquitto ctrl
utilities

Also, local test
clients’ published
messages sent to the
local broker

Published messages
delivered from the
broker to clients on
the local network

15

Unencrypted Username/

TCP, TLS, WS, password, client

WSS certificate,
anonymous
access

Unencrypted Username/

TCP, TLS, WS, password, client

WSS certificate,
anonymous
access

OSTIF Eclipse: Mosquitto Threat Model

Threat Actors

Similarly to establishing trust zones, defining malicious actors when conducting a threat
model is useful in determining which protections, if any, are necessary to mitigate or
remediate a vulnerability. We will use these actors in all subsequent findings from the
threat model. Additionally, we define other users of the system who may be impacted by,
or induced to undertake, an attack. For example, in a confused deputy attack such as
cross-site request forgery, a normal user would be both the victim and the potential direct
attacker, even though that user would be induced to undertake the action by a secondary
attacker.

Actor Description

External Attacker An attacker on the public network who can eavesdrop on and
potentially modify (MitM) other users’ connections that route through
the public network

Internal Attacker An attacker on a private network who can eavesdrop on and
potentially modify other users’ connections that route through that
private network

Local Attacker An attacker who controls a process or user account on the same host
as the Mosquitto broker and can affect the environment or filesystem

Client Developer Integrates libmosquitto in custom MQTT client applications

Client Has full control of the client device connected to a broker
Infrastructure Can read from or, as appropriate, publish to broker and broker plugin
Administrator $CONTROL and $SYS topics; has full access to the server or container

running the Mosquitto broker and ctrl utility software

Proxy Operator Has full administrative access to a reverse proxy (e.g., HAProxy) that
terminates client TLS for a Mosquitto broker

Contributor A regular contributor to Mosquitto source code
Maintainer A gatekeeper controlling additions to the source code
Certificate Authority A signer and validator of broker and client certificates
Trail of Bits 16 OSTIF Eclipse: Mosquitto Threat Model

PUBLIC

Threat Actor Paths

Additionally, defining attackers’ paths through the various zones is useful when analyzing
potential controls, remediations, and mitigations that exist in the current architecture.

Originating
Zone

Public

Network

Private
Network

Public

Network

Private
Network

Localhost

Localhost

Localhost

Trail of Bits
PUBLIC

Destination

Zone
Public

Network

Private
Network

Public

Network

Private
Network

Localhost

Localhost

Localhost

Actor

External
Attacker

Internal
Attacker

Certificate
Authority

Proxy
Operator

Local
Attacker

Local
Attacker

Local
Attacker

Description

An external attacker suitably positioned on the
public network between a client and broker is able
to read and tamper with unencrypted traffic.

An internal attacker suitably positioned on the
private network of either a client or broker is able
to read and tamper with unencrypted traffic.

A malicious or compromised Certificate Authority
can sign fake certificates to enable MitM attacks
on encrypted traffic by an external or internal
attacker.

The operator of a HAProxy instance that
terminates client TLS for a Mosquitto broker is
able to inspect and modify all traffic between the
client and broker.

An attacker gains control of a user account on the
broker host machine, or compromises another
process running on the host, and is able to 1)
make changes to the host environment that affect
broker behavior and 2) access broker
configuration data and logs.

An attacker obtains superuser access on the
broker host machine, or compromises another
process running on the host as root, and is able to
monitor and intercept all broker traffic.

An attacker obtains access to the user account
under which Mosquitto is running on the broker
host machine. The attacker uses methods such as
ptrace(2) to monitor network traffic sent and

17 OSTIF Eclipse: Mosquitto Threat Model

received by the broker process.

Private Private Internal A compromised/malicious bridge or client

Network Network Attacker operator is able to consume excessive broker
system resources and potentially negatively affect
other clients and other bridged brokers via
excessive published messages, authentication
attempts, or connection attempts.

Trail of Bits 18 OSTIF Eclipse: Mosquitto Threat Model
PUBLIC

Summary of Recommendations

Throughout the engagement, Trail of Bits identified a number of threat scenarios that pose
risk to Mosquitto deployments and clients. Trail of Bits recommends that the Mosquitto
maintainers and contributors address the findings detailed in this report, especially
prioritizing the steps below to further build upon threat modeling exercises:

e Simplify the ACL system. Removing manual priority specification from the Dynamic
Security ACL system entirely will make evaluation order more consistent.

o For a combination of a username, an action, and a topic path, ACL rules
should be evaluated in order from those that apply to the most
specific/narrowest applicable path (e.g., parent/foo/bar/stuff) to the
least specific/broadest applicable path (e.g., parent/#). This will ensure that
the most specific rules always apply first.

o Only allow access control configuration file/runtime configuration changes to
come from the ctrl utilities run as the mosquitto user (or root).

o Deny all client/username access by default until the infrastructure admin
intentionally allows a particular client access to a given topic or set of topics.

e Improve the fuzzing coverage. Particularly with regard to MQTT packet parsing
code, additional fuzzing coverage obtained via internal or external audits will help
determine how, for example, MQTT packet parsers within Mosquitto handle their
respective acceptable input ranges.

o Log more extensive information on errors such as crashes, hangs, and
unexpected exits or syscalls within the Mosquitto broker and Dynamic
Security plugin. This will help broker administrators produce better issue
reports in the event of a problem at runtime in their deployments.

e Leverage static analysis. Run a targeted set of CodeQL or other static analysis
rules built from known-bad patterns against pull requests to help prevent
regressions and “low-hanging fruit” vulnerabilities from being introduced.

o Instead of running a large SAST query set, which could lead to an
overwhelming number of false-positive or less-useful alerts, scan each PR
against develop and master branches with a small, tailored CodeQL query
suite based on past Mosquitto security flaws, security issues in similar MQTT
projects, and potentially general known-bad security patterns.

Trail of Bits 19 OSTIF Eclipse: Mosquitto Threat Model
PUBLIC

https://mosquitto.org/documentation/dynamic-security/
https://shostack.org/archive/2005/11/star-wars-and-the-principle-of-least-privilege/
https://shostack.org/archive/2005/11/friday-star-wars-principle-of-fail-safe-defaults/
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/customizing-code-scanning#using-a-custom-configuration-file
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/customizing-code-scanning#using-a-custom-configuration-file
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/customizing-code-scanning#scanning-pull-requests

o Determine an upper bound for false positives reported over a period of time
(e.g., 24 hours or one week), after which a particular CodeQL query is
primarily not reporting helpful information; modify or remove any query that
produces too many false positives by this upper bound.

o Exclude test-related code and folder paths from CodeQL to further reduce
false-positive alerts.

o Require each PR author to resolve PR-specific CodeQL findings (require
status checks to pass) before allowing PRs to be merged into develop or
master.

e Implement comprehensive ACL exploration functionality. Enable infrastructure
administrators to easily validate per-topic and per-client what combinations of
access control decisions will apply (and in what order) at runtime.

e Do not store passwords or other sensitive data in plaintext in configuration
files. This will reduce the potential attack surface and information desirable to an
attacker on the broker host.

o Only store (or allow use of) hashed and uniquely salted broker passwords.

o Enable administrators to provide sensitive data, such as a bridge connection
remote_password, at runtime so it is only read into broker memory and not
stored on the broker host filesystem.

e Refactor the handwritten parsers. Reimplement each parser in an
human-readable specification format such as ASN.1. Use a parser generator on
these specifications to create the actual code to link into Mosquitto. This will enable
formal verification; handwritten parser routines are more likely than formally
verified, automatically generated parsers to contain subtle, unintended issues.

o Additionally, consider more clearly separating the parsing code from the
input validation and packet handling code to facilitate verification, testing,
and fuzzing of critical paths.

Trail of Bits 20 OSTIF Eclipse: Mosquitto Threat Model
PUBLIC

https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/customizing-code-scanning#avoiding-unnecessary-scans-of-pull-requests
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/managing-a-branch-protection-rule#creating-a-branch-protection-rule
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/managing-a-branch-protection-rule#creating-a-branch-protection-rule
https://cwe.mitre.org/data/definitions/256.html

Summary of Findings

The table below summarizes findings during the review, including type and severity details.

ID Title Type Severity
1 Insufficient default configuration file permissions Access Controls High
2 Unclear ACL, role, group enforcement priority Access Controls Medium
3 Missing global connection rate limiting Denial of Service | High
4 Plaintext password storage and handling System and High
Information
Integrity
5 Bridge->broker->bridge message looping Denial of Service High
6 Broker does not check configuration filesystem Access Controls Medium

permissions

7 Configuration reload may cause inconsistent System and Low
behavior Information
Integrity
8 Clients can publish last will messages to Access Controls High
$CONTROL topics
Trail of Bits 21 OSTIF Eclipse: Mosquitto Threat Model

PUBLIC

Detailed Findings

1. Insufficient default configuration file permissions
Severity: High Difficulty: High
Type: Access Controls Finding ID: TOB-MOSQ-1

Target: Mosquitto Broker

Description

Mosquitto broker settings can come from local user-managed files such as
mosquitto.conf. On a system with Linux capabilities, any user with CAP_KILL capabilities
for the broker parent process can force the broker to reload all configuration files by
sending the SIGHUP signal to the broker process via kill().

Mosquitto utilities such as mosquitto_ctrl do not disallow or discourage manual edits to
these configuration files, nor do these utilities check that filesystem permissions are
sufficiently restrictive before updating the file in question.

Threat Scenario
An infrastructure administrator creates broker configuration files such as acl_file with
broad write permissions.

A malicious user on the machine where the broker runs lacks the capability to SIGHUP the
broker process, but can edit configuration files to enable anonymous access in
mosquitto.conf, change group membership in acl_file, and add an unexpected
psk_file entry, among other actions. The next time the administrator makes a benign
change to any one of the configuration files and SIGHUPs the broker, the broker accepts all
changes (including the attacker’s) across all configuration files.

Docker also lacks default container filesystem protections, which means running the broker
in a container does not prevent or protect against this scenario. Any container-host user
account with the necessary filesystem access permissions can still directly edit broker
configuration files located within a Docker container.

Since the attacker must obtain a user account on the broker host machine, we consider
this scenario to be of high difficulty. Since the changes a malicious user makes can broadly
affect trust between the broker and all connected clients, we consider this issue to be of
high severity.

Trail of Bits 22 OSTIF Eclipse: Mosquitto Threat Model
PUBLIC

Recommendations

Short term, modify the Mosquitto documentation to clearly recommend strict default
configuration file permissions such as 640 or even 600, and ensure all Mosquitto
Dockerfiles set the default configuration folder and file permissions to disallow reads and
writes from users who do not directly own them.

Long term, make the ctrl utilities the primary way to interact with any configuration files for
the Mosquitto broker. Ctrl utilities should automatically create all Mosquitto configuration
files; if a given file does not already exist, create it empty or with a default deny-all ruleset
with strict default access permissions (e.g., 600). Similarly to the recommendations
provided for TOB-MOSQ-6, ctrl utilities should refuse to load or modify broker
configuration files that lack strict-enough filesystem access permissions, akin to ssh’s
restrictions.

References
e Adam Shostack: Fail-Safe Defaults

Trail of Bits 23 OSTIF Eclipse: Mosquitto Threat Model
PUBLIC

https://www.cisa.gov/uscert/bsi/articles/knowledge/principles/failing-securely
https://shostack.org/archive/2005/11/friday-star-wars-principle-of-fail-safe-defaults/

2. Unclear ACL, role, group enforcement priority
Severity: Medium Difficulty: Low
Type: Access Controls Finding ID: TOB-M0OSQ-2

Target: Dynamic Security plugin

Description

It is unclear from the documentation and examples within the documentation which ACLs
will be checked first, or the priority order in which rules will apply, if multiple (user-wise,
group-wise, or role-wise) rules apply to a particular client (user) publishing to or subscribing
to a given topic.

Threat Scenario

For a broker with many clients and multiple roles/groups, the infrastructure administrator
creates overlapping access rules, including a general allow-all-actions rule for all usernames
for topic/# and a narrowly scoped rule intended to make subscribing to, publishing to,
and receiving messages from topic/secret available only to members of the secret

group.

The admin assumes the topic/secret group-based deny rule will take precedence over
the allow-everything rule when a client attempts topic/secret access. Since ‘# has a
lower ordinal value than other characters that are possible in topic names, and neither rule
has a priority value assigned, the administrator assumes the deny rule will apply before
the publish-allow rule for all topics under topic/.

However, since client-role-related rules are always checked before group-related rules in
acl_check() and the method returns once a matching rule is found for the action type
and client, an attacker-controlled client not in the secret group can subscribe to
topic/secret and receive messages published to it, contrary to the administrator’s
assumptions.

We consider this scenario to be of low difficulty, since the malicious client can by default
receive messages on topic/secret. We consider this scenario to be of medium severity
since potentially sensitive user information published to the topic is compromised.

Recommendations

Short term, clarify the ACL documentation and examples regarding the interaction of the
administrator-configurable priority parameter with user-associated, role-associated, and
group-associated rules. Document the implicit precedence ordering of user and
group-associated rules due to acl_check() structure.

Trail of Bits 24 OSTIF Eclipse: Mosquitto Threat Model
PUBLIC

https://github.com/eclipse/mosquitto/blob/develop/plugins/dynamic-security/acl.c#L218

Long term, to reduce complexity, take the following actions:
e Remove the configurable priority rule parameter entirely.

e Refactor the ACL checking code so that user and group-specific rules are equally
likely to apply to a username/client, action, and topic combination:

o Determine and then check the full set of ACL rules that apply for a user and
the groups to which they belong for the given topic.

o Order rule checking from the narrowest (longest) topic specifier to the
broadest (mainly, shortest) topic specifier:

m Since rules applying to wildcarded (#, +) topic specifiers are broader
than other rules applying to a comparable number of topic path
segments, rules containing wildcards should be checked as the /ast of
each set at a given level of the topic tree.

m For example, to determine whether a client may subscribe to
topic/foo/secret, first determine the branch(es) of the tree of
topics within which the topic in question falls (e.g., topic/,
topic/foo/). Then, check only within the applicable topic-tree branch
for rules relating to the narrowest/most closely related path (e.g.,
topic/foo/secret)first, returning if an applicable more-specific
rule is found before any broader rules may apply.

m Thus, rules applying only to topic/foo/secret are checked before
rules that cover, for example, topic/foo/# and topic/#.

o If the Dynamic Security plugin checks ACL rules following this topic-tree
ordering, it should also be possible to remove the current lexicographic
fallback rule ordering.

Ordering rule checks by topic should be less error-prone and should prove more intuitive
to broker and client administrators.

Trail of Bits 25 OSTIF Eclipse: Mosquitto Threat Model
PUBLIC

https://mosquitto.org/documentation/dynamic-security/

3. Missing global connection rate limiting
Severity: High Difficulty: Low
Type: Denial of Service Finding ID: TOB-MOSQ-3

Target: Broker

Description

A number of per-listener maximum values are configurable in Mosquitto, including the
maximum number of client connections, the global maximum client packet size, and the
global publishable payload size.

However, there are no rate-limiting mechanisms for broker-wide (global) connection and
authentication attempts, which, if implemented, would prevent broker resource overuse by
a particular client or bridge. These mechanisms cannot be clearly set with just one or a few
configuration settings.

Section 5.4.8 of the MQTT v5 specification (“Detecting abnormal behaviors”) encourages
monitoring client behavior to detect repeated connection or authentication attempts and
recommends adding misbehaving clients to a dynamic blocklist or rate-limiting list.

Threat Scenario

An attacker discovers a vulnerable Mosquitto broker through Shodan and obtains a valid
client username for this broker. Through many failed attempts across multiple listeners
(each listener could have different configuration settings, but all listeners rely on the same
acl_fileifitis present, and the same password_file), the user applies MQTT-pwn to
obtain the correct password through brute force, as in issue #2076.

If acl_file does not exist, or existing ACL rules do not prevent such access from the
credentials the attacker obtained, the now-authenticated attacker can publish to (and
consume messages from) $CONTROL topics and other sensitive topics identified using
MQTT-pwn.

Alternatively, an improperly configured client simply overwhelms the broker by making
many connection and/or authentication or authorization attempts across listeners.

We consider this issue to be of low difficulty, since the attacker requires no specialized
knowledge to exploit the issue. The severity is rated as high because this issue could affect
all broker clients.

Trail of Bits 26 OSTIF Eclipse: Mosquitto Threat Model
PUBLIC

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf
https://github.com/akamai-threat-research/mqtt-pwn
https://github.com/eclipse/mosquitto/issues/2076

Recommendations

Short term, if such a combination of options exists currently, clearly document how to
rate-limit connection attempts, authentication attempts, authorization attempts, and
publish attempts from a particular client, across all listeners configured on a broker.

Long term, implement and document a simple global (broker-wide) rate-limiting set of
configuration options for connections, authentication, and publication. In particular,
implement and document an option to specifically rate limit authentication attempts
globally by user identity. Thus configured, the Mosquitto broker should uniquely identify
and rate limit any individual client across listeners and individual connections. Additionally,
either remove per-listener rate-limiting options or clearly document how per-listener rate
limiting will interact with global rate limits.

References
e CWE-307: Improper Restriction of Excessive Authentication Attempts

Trail of Bits 27 OSTIF Eclipse: Mosquitto Threat Model
PUBLIC

https://cwe.mitre.org/data/definitions/307.html

4. Plaintext password storage and handling
Severity: High Difficulty: High
Type: System and Information Integrity Finding ID: TOB-MOSQ-4

Target: Multiple

Description
The Mosquitto ctrl utilities and broker permit plaintext password storage and usage.

For example, they allow a user to provide a plaintext password, such as the broker
administrator password, as the value of a command-line utility configuration option, and
they allow the storage of plaintext passwords in configuration files such as
mosquitto.conf, password_file, and the mosquitto_ctrl options file.

Threat Scenario

An attacker obtains read access to the filesystem of the machine or container hosting the
Mosquitto broker and copies the broker configuration files. From the mosquitto_ctrl
saved options file, the attacker obtains a broker administrator user password and gains
broker administrator access.

Alternatively, an attacker gains read access on a client device from which the administrator
has previously remotely configured the broker. The attacker recovers the broker
administrator password from the device's shell history file and gains broker administrator
access.

Alternatively, an attacker obtains the remote_password and remote_username that this
broker uses to bridge “out” to another broker without TLS PSK or a bound local IP from
mosquitto.conf, and impersonates this broker to the remote broker.

Since these scenarios require filesystem read access, we consider this issue to be of high
difficulty. The outcome is administrator-level broker takeover, which affects all clients and
bridged brokers, so the severity is also high.

Recommendations

Short term, disallow all password storage in configuration files other than password_file.
Disallow user creation through passing a plaintext password value directly on the
command line to mosquitto_passwd. Prefer reading passwords into app memory through
a secondary dialogue, where feasible without breaking existing functionality, instead of
allowing password(s) directly as the value of a given command-line argument.

Trail of Bits 28 OSTIF Eclipse: Mosquitto Threat Model
PUBLIC

Long term, also disallow plaintext passwords entirely in password_file, even when TLS
support is not compiled into Mosquitto, so that the default choice is the most secure choice
(with regard to password storage) that the broadest number of users will accept. Do not
store or support existing unsalted and unhashed passwords. Following OWASP and NIST
recommendations, either choose a more secure key stretching algorithm (i.e., argon2) or
configure PBKDF2 by default with an appropriately large number of hash iterations, salt
size, and so on. Write test cases to ensure the Mosquitto utilities and broker reject
authenticated-user topic accesses from users with passwords that the broker has stored as
plaintext in password_file until the administrator updates the password file.

References

OWASP Password Storage: PBKDF2

NIST SP 800-132: Recommendation for Password-Based Key Derivation Part 1:
Storage Applications

e NIST SP 800-63: Digital Identity Guidelines
e CWE-256: Plaintext Storage of a Password
e CWE-260: Password in Configuration File
Trail of Bits 29 OSTIF Eclipse: Mosquitto Threat Model

PUBLIC

https://github.com/eclipse/mosquitto/blob/develop/mosquitto.conf#L603
https://github.com/eclipse/mosquitto/blob/develop/mosquitto.conf#L603
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pbkdf2
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
https://pages.nist.gov/800-63-3/sp800-63-3.html
https://cwe.mitre.org/data/definitions/256.html
https://cwe.mitre.org/data/definitions/260.html

5. Bridge -> broker -> bridge message looping
Severity: High Difficulty: Low
Type: Denial of Service Finding ID: TOB-MOSQ-5

Target: Broker

Description

It is possible to bidirectionally bridge two Mosquitto brokers A and B and infinitely loop
messages between them. It is also possible to rearrange a broker’s topic tree when bridging
A to B such that each broker’s topics appear to contain no loops, but A will re-receive
messages it published to B, and/or vice versa.

Infinite loops could over-consume broker system resources.

Threat Scenario

An attacker bridges a broker they control, A, to a target broker with existing clients, B, and
also subscribes to the topics brokered by B on which messages bridged from A to B
propagate, intentionally creating a loop between A and B.

Since there is no rate limiting for messages propagated across a bridge to clients that
subscribe to bridge topics, any message “bridged” to B from A could be looped back
through A to the target B as many times as A’s resource allocation can support, consuming
additional system resources of B with each message publish back to A and replay to B over
the bridge.

If the attacker provisions A with a greater resource allocation than B, A could continue
amplifying the amount of messages looped through B up to or past B's resource limits,
denying service to clients and other bridged connections of B, and potentially also knocking
B offline.

Topics imported from A and brokered by B to clients can no longer be consumed without
causing client network-connection saturation. All existing clients of these topics are either
pinned to their maximum resources or knocked offline.

Since this scenario requires only the ability to bridge another broker A to the target broker
B, we consider this attack to be of low difficulty. Since all clients and the broker B itself
could be affected, we consider the severity to be high.

Trail of Bits 30 OSTIF Eclipse: Mosquitto Threat Model
PUBLIC

https://github.com/eclipse/mosquitto/blob/develop/mosquitto.conf#L754

Recommendations

Short term, create topic-tree validation tooling that administrators of B can run to find and
eliminate publish/subscribe loops that could degrade service for clients or bridges.
Introduce global rate-limiting functionality across bridges and clients, as is also
recommended for TOB-MOSQ-3, to prevent any bridged-in broker A from overwhelming
the broker in question, B, through intentionally looping messages.

Long term, refactor the bridging code to wholly prevent any bridge A from directly (or
indirectly, through topic/topic tree remapping) both producing and consuming the same
remote topic on B.

Trail of Bits 31 OSTIF Eclipse: Mosquitto Threat Model
PUBLIC

6. Broker does not check configuration filesystem permissions
Severity: Medium Difficulty: High
Type: Access Controls Finding ID: TOB-MOSQ-6

Target: Broker

Description

Mosquitto can be provided with a password file containing username-password or
username-hash pairs. However, when the broker loads the password file, it does not verify
that the file’s access permissions are sufficiently strict.

Threat Scenario

A naive user uses chmod to make an existing broker password_file writable to additional
host system users (i.e., by making the file world- or group-writable). An attacker then
obtains write access as a low-privileged user, writes a new entry to the file, and waits for
the Mosquitto broker to eventually restart, which loads the attacker’s new broker
credentials.

Since this scenario requires local write access, and the attacker's system user may not have
the capability to force the broker to reload configuration files with SIGHUP, we consider this
finding to be of high difficulty. We consider the severity to be medium because this
example’s broker relies only on the password file for client access control, resulting in the
attacker gaining broad access to all brokered topics.

Recommendations

Short term, after addressing TOB-MOSQ-1, when the broker loads a password file (both at
startup and during SIGHUP-triggered reloads), check that the password file's permission
flags are set to 9600 (writable/readable by user only). Display a warning message about
password file permissions if they are not sufficient; consider ssh’s “permissions are too
open” error message, reproduced below.

000EEEEEEEEEEEEEEEEEEEEEEEEECCEEEEEECEEEEEEECEEEEEECCEEEEEE

@ WARNING: UNPROTECTED PRIVATE KEY FILE! @
00EEEEEEEEEEEEEEEEEECECEEEEECCEEEEEECCEEEEEECEEEEEECCEEEEEE

Permissions 0644 for '/Users/example/.ssh/id_rsa.pub' are too open.

It is required that your private key files are NOT accessible by others.
This private key will be ignored.

bad permissions: ignore key: /Users/example/.ssh/id_rsa.pub

Permission denied (publickey,password).

Trail of Bits 32 OSTIF Eclipse: Mosquitto Threat Model
PUBLIC

Long term, take the following actions:

e |If the security of the application depends on the fact that local configuration files are
writable only by certain users (i.e., root and mosquitto), it is important not only to
check that access permissions are sufficiently strict when loading such a file, but
also that the broker fails to start if this invariant does not hold.

e If filesystem permissions for a configuration file such as password_file are
insufficient, do not allow the broker to start. It is important to fail to start the broker
instead of simply failing to load the password file, to avoid unintentionally running
with no usernames and passwords if password_file permissions are too open.

This method is not foolproof, as there is also a possibility of a time-of-check to time-of-use
(TOCTOU) race between the broker checking the permissions of a file and another process
completing a permissions or file contents modification; however, this method does help
rule out the most common case of naive over-permissioning.

References
e OWASP: Filesystem Permissions

e C(CWE-367: TOCTOU

e Man: ssh

Trail of Bits 33 OSTIF Eclipse: Mosquitto Threat Model
PUBLIC

https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html#filesystem-permissions
https://cwe.mitre.org/data/definitions/367.html
https://www.man7.org/linux/man-pages/man1/ssh.1.html

7. Configuration reload may cause inconsistent behavior
Severity: Low Difficulty: High
Type: System and Information Integrity Finding ID: TOB-MOSQ-7

Target: Broker

Description

The Mosquitto broker reloads its configuration upon receiving a SIGHUP signal. If settings
that affect how requests are handled are changed, requests that are received during the
configuration reload could be processed in unexpected or inconsistent ways.

Note that plugins can be loaded only at startup and cannot be unloaded via a SIGHUP, so
authentication race conditions are not a concern for this issue.

Threat Scenario
An administrator configures a broker with allow_zero_length_clientid=true.

Later, they change that setting to false in the Mosquitto configuration file. Rather than
risk downtime by restarting the broker entirely, they send a SIGHUP to the broker so that it
reloads its configuration.

A client that was initially allowed to connect with a zero-length client ID could still remain
connected after this change, leading to unexpected behavior.

We consider this issue to be of low severity since authentication plugins cannot be
reloaded via the SIGHUP method. We consider the difficulty to be high since privileged local
access is required to restart the broker.

Recommendations

Short term, pause the processing of incoming or queued requests during configuration
reloads and resume only once all authentication methods are fully initialized. In addition,
consider providing a configuration option to drop queued requests instead to
accommodate client use cases in which a drop-and-retry approach would be preferable to
blocking.

Long term, to reduce similar ambiguities, ensure that all (sensitive)
configuration-dependent functionality cannot execute while the configuration isin a
transitional state, such as during a SIGHUP-induced reload.

Trail of Bits 34 OSTIF Eclipse: Mosquitto Threat Model
PUBLIC

8. Clients can publish last will messages to SCONTROL topics
Severity: High Difficulty: Low
Type: Access Controls Finding ID: TOB-MOSQ-8

Target: Broker

Description

On initial connection, an MQTT client can set a “last will and testament” (LWT) containing an
arbitrary message that is limited only in length. The broker publishes this LWT to the
chosen MQTT topic in the event the client unexpectedly loses its connection to the broker.

While a client's proposed will topic cannot be greater than a certain length and cannot
contain invalid UTF-8 characters, the Mosquitto broker does not prevent a client from
publishing its LWT to $CONTROL topics, which access control plugins such as Dynamic
Security use as a configuration API.

This could result in a scenario in which an attacker-controlled client is able to set in
advance an LWT that will alter security-related plugin configurations when it is published,
after the client has lost ACL permissions to make such changes directly.

Threat Scenario

A client connects to the Mosquitto broker and sets as its LWT a command to alter the
Dynamic Security configuration, such as by adding a backdoor user account with
administrative privileges. The client sets the $CONTROL topic for this Dynamic Security
action as the LWT destination topic.

While the client is connected, an administrator revokes its privileges. The client then
disconnects without sending a DISCONNECT packet to the broker, causing the broker to
publish the previously-set LWT to the previously-selected $CONTROL topic, creating a
backdoor account through the Dynamic Security plugin API. The attacker maintains
privileged broker access via this new account.

We consider this issue to be of high severity since a malicious client’s ability to change
Dynamic Security plugin configuration on abnormal disconnect could affect all other broker
clients. We consider the difficulty to be low since no specialized knowledge or significant
effort is required to set such an LWT.

Recommendations
Short term, as is currently done with $SYS topics, prevent all clients from setting any
$CONTROL topic as the destination topic for an LWT.

Trail of Bits 35 OSTIF Eclipse: Mosquitto Threat Model
PUBLIC

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901205

Long term, consider implementing a dedicated last will topic that consists primarily of
LWTs. Although the MQTTV5 specification requires handling LWTs, it makes no restrictions
on which topic(s) should receive and propagate such messages.

Trail of Bits 36 OSTIF Eclipse: Mosquitto Threat Model
PUBLIC

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc479576982

A. Methodology

Trail of Bits' threat modeling assessments are intended to provide a detailed analysis of the
risks facing an application at a structural and operational level, assessing the security of its
design as opposed to its implementation details. During these assessments, engineers rely
heavily on frequent meetings with the client’s developers, paired with extensive readings of
any and all documentation the client can make available. Code review and dynamic testing
are not an integral part of threat modeling assessments, although engineers may
occasionally consult the codebase or a live instance to verify specific assumptions about
the system’s design.

Engineers begin a threat modeling assessment by identifying the system’s security controls,
the safeguards and guarantees that are critical to maintaining the target system'’s
confidentiality, integrity, and availability. These security controls dictate the assessment's
overarching scope and are determined based on the specific requirements of the target
system, which may include technical and reputational concerns, legal liability, regulatory
compliance, and so on.

With these security controls in mind, engineers then divide the system into logical
components—discrete elements that perform specific tasks—and establish trust zones
around groups of components that lie within a common trust boundary. They identify the
types of data handled by the system, enumerating the points at which data is sent,
received, or stored by each component, as well as within and across trust boundaries.

Having established a detailed map of the target system'’s structure and data flows,
engineers then identify threat actors—anyone who might threaten the target's security,
whether a malicious external attacker, a naive insider, or otherwise. Based on each threat
actor's initial privileges and knowledge, threat actor paths are then traced out through the
system, establishing which controls and data a threat actor might be able to improperly
access, as well as which safeguards stand in the way of such compromise. Any viable attack
path discovered in this way constitutes a finding, which is paired with design
recommendations by which such gaps in the system'’s defenses can be remediated.

After enumerating a list of findings, engineers rate the strength of each security control,
indicating the general robustness of that type of defense against the full spectrum of
possible attacks.

Trail of Bits 37 OSTIF Eclipse: Mosquitto Threat Model
PUBLIC

B. Security Controls and Rating Criteria

The following tables describe the security controls and rating criteria used in this report.

Security Controls
Category
Access Controls

Audit and
Accountability

Awareness and
Training

Security
Assessment and
Authorization

Configuration
Management

Contingency
Planning

Cryptography

Denial of Service

Identification and
Authentication

Incident Response
Maintenance
Media Protection
Personnel Security

Physical and
Environmental
Protection

Planning

Trail of Bits
PUBLIC

Description
Authorization, session management, separation of duties, etc.

Logging, non-repudiation, monitoring, analysis, reporting, etc.

Policy, procedures, and related capabilities

Assessments, penetration testing, authorization to deploy, etc.

Inventory, secure baselines, configuration management, & change control

Disaster recovery, continuity, backups, testing, and related controls

The cryptographic controls implemented at rest, in transit, and in process

The controls to defend against different types of denial-of-service attacks
impacting availability

User and system identification and authentication controls

Policy, process, handling, reporting, and related controls
Preventative and predictive maintenance, and related controls
|dentification, storage, sanitization, and removal

HR Processes, screening, and related controls

Controls to protect work sites and related assets

Security architecture, policy, procedures, management, etc.

38 OSTIF Eclipse: Mosquitto Threat Model

Program
Management

Risk Assessment

System and
Communications
Protection

System and
Information
Integrity

System and
Services
Acquisition

Assigned responsibility and commitment to plans for critical
infrastructure, enterprise architecture, information security programs,
plan of action and milestones, and risk management strategies.

Risk assessment policies, vulnerability scanning capabilities, and risk
management solutions.

Network level controls to protect data

Software integrity, malicious code protection, monitoring, information
handling, and related controls

Development lifecycle, documentation, supply chain, etc.

Rating Criteria
Rating
Strong

Satisfactory

Moderate

Weak

Missing

Not Applicable
Not Considered

Further

Trail of Bits
PUBLIC

Description
The security control was reviewed and no concerns were found.

The security control had only minor issues; though it may lack certain
non-critical operational procedures or security measures, their absence
does not expose users to a significant degree of risk. Remediation in this
area is suggested, but is not urgent.

The security control had several issues or an impactful issue which may
expose users to some degree of risk, albeit not to a severe degree.
Remediation in this area is desired.

The security control had several significant issues which are likely to
expose users to a substantial amount of risk. Remediation in this area
should be prioritized.

The security control was found to be nonexistent or totally ineffective for
its intended purpose, despite being necessary for the system'’s security.
The implementation of this control should be prioritized.

The security control is not applicable to this review.
The security control was not considered in this review.

Further investigation is required to reach a meaningful conclusion.

39 OSTIF Eclipse: Mosquitto Threat Model

Investigation
Required

Severity Levels
Severity

Informational

Undetermined
Low

Medium

High

Description

The issue does not pose an immediate risk but is relevant to security best
practices.

The extent of the risk was not determined during this engagement.
The risk is small or is not one the client has indicated is important.

User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels
Difficulty
Undetermined

Low
Medium

High

Trail of Bits
PUBLIC

Description
The difficulty of exploitation was not determined during this engagement.

The threat is well known or common; an attacker can exploit it without
significant effort or specialized knowledge.

An attacker must acquire in-depth knowledge of the system or expend a
non-trivial amount of effort in order to exploit this issue.

An attacker must acquire complex insider knowledge or privileged access to
the system in order to exploit this issue.

40 OSTIF Eclipse: Mosquitto Threat Model

