TRAL
B'Ts

wasmCloud

Security Assessment

October 13, 2023

Prepared for:
wasmCloud
Open Source Technology Improvement Fund

Prepared by: Francesco Bertolaccini, Artur Cygan, Spencer Michaels

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we've helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O'Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.

228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 wasmCloud Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2023 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to
wasmCloud under the terms of the project statement of work and has been made public at
wasmCloud's request. Material within this report may not be reproduced or distributed in
part or in whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer

All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 wasmCloud Security Assessment
PUBLIC

https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Project Summary 4
Executive Summary 5
Project Goals 7
Project Targets 8
Project Coverage 9
Codebase Maturity Evaluation 10
Summary of Findings 12
Detailed Findings 13
1. Out-of-bounds crash in extract_claims 13

2. Stack overflow while enumerating containers in blobstore-fs 15

3. Denial of service in blobstore-s3 using malicious actor 17

4. Unexpected panic in validate_token 18

5. Incorrect error message when starting actor from file 19

A. Vulnerability Categories 20
B. Code Maturity Categories 22
C. Fix Review Results 24
Detailed Fix Review Results 25

D. Fix Review Status Categories 26
Trail of Bits 3 wasmCloud Security Assessment

PUBLIC

Project Summary

Contact Information
The following managers were associated with this project:

Dan Guido, Account Manager Jeff Braswell, Project Manager
dan@trailofbits.com jeff.braswell@trailofbits.com

The following engineers were associated with this project:

Francesco Bertolaccini, Consultant Artur Cygan, Consultant
francesco.bertolaccini@trailofbits.com artur.cygan@trailofbits.com

Spencer Michaels, Consultant
spencer.michaels@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

August 18, 2023 Pre-project kickoff call

August 28, 2023 Status update meeting #1

September 13, 2023 Delivery of report draft

September 13, 2023 Report readout meeting

October 13, 2023 Delivery of comprehensive report

Trail of Bits 4 wasmCloud Security Assessment

PUBLIC

mailto:dan@trailofbits.com

Executive Summary

Engagement Overview

The Open Source Technology Foundation engaged Trail of Bits to review the security of
wasmCloud, a runtime and deployment platform for distributed WASM application
development.

A team of three consultants conducted the review from August 21 to September 1, for a
total of six engineer-weeks of effort. Our testing efforts focused on reviewing critical
components of the wasmCloud platform, with a particular emphasis on capability
providers, such as Rust micro-applications that proxy access to external services (like
databases) and HTTP servers. We supplemented our code review with fuzzing wherever
feasible, except in the case of the WASM runtime itself, which has already undergone
substantial fuzz testing and thus was not prioritized for fuzzing in this audit.

With full access to source code and documentation, we performed static and dynamic
testing of numerous wasmCloud components, using automated and manual processes. In
cases where the codebase diverged into two major versions (notably due to a Rust
reimplementation of legacy Elixir components which is still in development), we focused on
the stable legacy code, with which the newer code will be backwards compatible.

Observations and Impact

wasmCloud's capability providers are generally implemented using widely used, well-vetted
third-party libraries to interact with the services they are backing. Potentially error-prone
operations, such as string transformation, are relatively rare.

No issues were discovered in wasmCloud's use of JWTs for authentication; tokens were
appropriately validated for all observed authenticated endpoints.

The wasmCloud OTP host uses native Rust code, where we found a user-triggerable crash;
however, this issue is mitigated by the Rustler library’s error handling. Otherwise, the OTP
host appears to comply with Erlang/OTP best practices.

Recommendations

Based on the codebase maturity evaluation and findings identified during the security
review, Trail of Bits recommends that the wasmCloud team take the following steps.

e Remediate the findings disclosed in this report. These findings should be
addressed as part of a direct remediation or as part of any refactor that may occur
when addressing other recommendations.

e Ensure that documentation is kept up with the pace of development.
Document new functionality as it is implemented, especially provider settings that

Trail of Bits 5 wasmCloud Security Assessment
PUBLIC

are configurable by users, and record any caveats regarding components
contributed by third parties (e.g. the SQL capability providers).

Finding Severities and Categories

The following tables provide the number of findings by severity and category.

EXPOSURE ANALYSIS CATEGORY BREAKDOWN
Severity Count Category Count
High 0 Data Validation 3
Medium 0 Error Reporting 2
Low 2
Informational 2
Undetermined 1

Trail of Bits 6 wasmCloud Security Assessment

PUBLIC

Project Goals

The engagement was scoped to provide a security assessment of the wasmCloud platform.
Specifically, we sought to answer the following non-exhaustive list of questions:

e Does the wasmCloud runtime appropriately sandbox user-provided code?

e Do the wasmCloud capability providers limit actors’ access to only the intended
capabilities? Are there breakouts or loopholes that can circumvent these intended
limitations?

e Can an attacker with full or partial control over the NATS agent use it to attack
wasmCloud actors or capability providers?

e Can RPC messages between actors and capability providers be spoofed or modified
without detection?

e Isit possible to deny service to the host or to take control of the execution
environment?

Trail of Bits 7 wasmCloud Security Assessment
PUBLIC

Project Targets

The engagement involved a review and testing of the targets listed below.

wasmCloud

Repository https://github.com/wasmCloud/wasmCloud
Version 33ef4f34a5748e445f01148ec7d00bbofo1c1606
Type Rust

Platform Native

wasmCloud-otp

Repository https://github.com/wasmCloud/wasmCloud-otp
Version 1€9076ae8786168c23e7c28003e€2212689d10948
Type Elixir, Rust

Platform BEAM, Native

wascap

Repository https://github.com/wasmCloud/wascap

Version a1299cc722a122cbde590047bcad9d3edb57d6c2
Type Rust

Platform Native

capability-providers

Repository https://github.com/wasmCloud/capability-providers
Version 8446e10f93badf7db0a961e595143f3c42a3a6¢c8
Type Rust

Platform Native

nats-server

Repository https://github.com/nats-io/nats-server

Version d720a6931c71a83aa8df8715b7dcof87d5b0f527

Type Go

Platform Native

Trail of Bits 8 wasmCloud Security Assessment

PUBLIC

https://github.com/wasmCloud/wasmCloud
https://github.com/wasmCloud/wasmCloud-otp
https://github.com/wasmCloud/wascap
https://github.com/wasmCloud/capability-providers
https://github.com/nats-io/nats-server

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following;:

Manual code review of all extant wasmCloud capability providers
Fuzzing select critical functionality within the wasmCloud codebase
Review of RPC message signing and integrity-checking code

Review of the OTP host Elixir and Rust code

Coverage Limitations

Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. The following list outlines the coverage limitations of the engagement and
indicates system elements that may warrant further review:

Due to time constraints, our manual code review and fuzzing of the wasmCloud core
codebase was not exhaustive, being necessarily limited to only certain subsets of
functionality. Most notably, fuzzing was limited to the protocol parsing routines in
nats-server, while the entirety of the capability providers was manually reviewed.

Engineers were unable to fuzz the capability providers extensively over their RPC
interfaces, as this proved too cumbersome in the limited time available given the
infrastructure setup required. In these cases, we instead focused on manual code
review of the providers, and were able to achieve full coverage.

Trail of Bits 9 wasmCloud Security Assessment
PUBLIC

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category

Arithmetic

Auditing

Authentication /
Access Controls

Complexity
Management

Configuration

Cryptography
and Key
Management

Data Handling

Documentation

Trail of Bits
PUBLIC

Summary

wasmCloud does not perform critical arithmetic
operations.

The OTP host extensively uses the standard Elixir Logger
to log any important information. We found a minor
error in one of the log messages.

wasmCloud's capability provider model ensures that
applications can invoke only functionality that they are
explicitly authorized to provide.

The wasmCloud codebase is generally well-organized,
divided by functionality across a variety of distinct
repositories and crates.

wasmCloud's capability providers interact with their
respective backing services via well-known, widely used
libraries. Engineers did not note any issues in the
providers’ use of the relevant third-party APIs.

RPC messages between actors and capability providers

are appropriately validated and protected from spoofing.

RPC message data is safely handled and transformed
into corresponding calls to the relevant back-end
services.

Result

Not
Applicable

Satisfactory

Strong

Satisfactory

Satisfactory

Satisfactory

Satisfactory

wasmCloud's high-level documentation is generally Moderate
comprehensive, but documentation pertaining to
detailed features (such as capability provider settings) or

10 wasmCloud Security Assessment

recently implemented functionality is lacking. In addition,
code comments are generally sparse.

Memory Safety With a handful of simple, one-line exceptions, no unsafe Satisfactory
and Error code is used anywhere in the wasmCloud codebase.
Handling Errors are handled appropriately using Rust’s native error

semantics.
Testing and Unit tests exist for most major functionality, although Moderate
Verification there are no fuzz tests for external input handling (such

as in capability providers).

Trail of Bits 11 wasmCloud Security Assessment
PUBLIC

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity
1 Out-of-bounds crash in extract_claims Data Validation Low
2 Stack overflow while enumerating containers in Data Validation Low

blobstore-fs

3 Denial of service in blobstore-s3 using malicious Data Validation Undetermined
actor
4 Unexpected panic in validate_token Error Reporting Informational
5 Incorrect error message when starting actor from Error Reporting Informational
file
Trail of Bits 12 wasmCloud Security Assessment

PUBLIC

Detailed Findings

1. Out-of-bounds crash in extract_claims
Severity: Low Difficulty: Low
Type: Data Validation Finding ID: TOB-WACL-1

Target: wascap/src/wasm.rs

Description

The strip_custom_section function does not sufficiently validate data and crashes
when the range is not within the buffer (figure 1.1). The function is used in the
extract_claims function and is given an untrusted input. In the wasmCloud-otp, even
though extract_claims is called as an Erlang NIF (Native Implemented Function) and
potentially could bring down the VM upon crashing, the panic is handled gracefully by the
Rustler library, resulting in an isolated crash of the Elixir process.

if let Some((id, range)) = payload.as_section() {
wasm_encoder : :RawSection {
id,
data: &buf[range],

}
.append_to(&mut output);

Figure 1.1: wascap/src/wasm.rs#L161-L167

We found this issue by fuzzing the extract_claims function with cargo-fuzz (figure
2.1).

#![no_main]

use libfuzzer_sys::fuzz_target;

use getrandom::register_custom_getrandom;

// TODO: the program won’'t compile without this, why?

fn custom_getrandom(buf: &mut [u8]) -> Result<(), getrandom::Error> {
return Ok(());

}

register_custom_getrandom! (custom_getrandom);

fuzz_target!(|data: &[u8]| {

Trail of Bits 13 wasmCloud Security Assessment
PUBLIC

https://github.com/wasmCloud/wascap/blob/a1299cc722a122cbde590047bcad9d3edb57d6c2/src/wasm.rs#L161-L167

let _ = wascap::wasm::extract_claims(data);

1)

Figure 1.2: Asimple extract_claims fuzzing harness that passes the fuzzer-provided bytes
straight to the function

After fixing the issue (figure 1.3), we fuzzed the function for an extended period of time;
however, we found no additional issues.

if let Some((id, range)) = payload.as_section() {
if range.end <= buf.len() {
wasm_encoder : :RawSection {
id,
data: &buf[range],

}

.append_to(&mut output);
}
else {

return Err(errors::new(ErrorKind::InvalidCapability));
}

}

Figure 1.3: The fix we applied to continue fuzzing extract_claims. The code requires a new
error value because we reused one of the existing ones that likely does not match the semantics.

Exploit Scenario
An attacker deploys a new module with invalid claims. While decoding the claims, the

extract_claims function panics and crashes the Elixir process.

Recommendations
Short term, fix the strip_custom_section function by adding the range check, as shown

in the figure 1.3. Add the extract_claims fuzzing harness to the wascap repository and
run it for an extended period of time before each release of the library.

Long term, add a fuzzing harness for each Rust function that processes user-provided data.

References
e Erlang - NIFs

Trail of Bits 14 wasmCloud Security Assessment
PUBLIC

https://www.erlang.org/doc/tutorial/nif.html

2. Stack overflow while enumerating containers in blobstore-fs
Severity: Low Difficulty: High
Type: Data Validation Finding ID: TOB-WACL-2

Target: capability-providers/blobstore-fs/src/fs_utils.rs

Description

The all_dirs function is vulnerable to a stack overflow caused by unbounded recursion,
triggered by either the presence of circular symlinks inside the root of the blobstore (as
configured during startup), or the presence of excessively nested directory inside the same.
Because this function is used by FsProvider: :1list_containers, this issue would result
in a denial of service for all actors that use the method exposed by affected blobstores.

let mut subdirs: Vec<PathBuf> = Vec::new();

for dir in &dirs {
let mut local_subdirs = all_dirs(prefix.join(dir.as_path()).as_path(), prefix);
subdirs.append(&mut local_subdirs);

}
dirs.append(&mut subdirs);
dirs

Figure 2.1: capability-providers/blobstore-fs/src/fs_utils.rs#L24-1L30

Exploit Scenario
An attacker creates a circular symlink inside the storage directory.

Alternatively, an attacker can—under the right circumstances—create successively nested
directories with a sufficient depth to cause a stack overflow.

blobstore.create_container(ctx, &"a".to_string()).await?;
blobstore.create_container(ctx, &"a/a".to_string()).await?;
blobstore.create_container(ctx, &"a/a/a".to_string()).await?;

blobstore.create_container(ctx, &"a/a/a/.../a/a/a".to_string()).await?;
blobstore.list_containers().await?;

Figure 2.2: Possible attack to a vulnerable blobstore

In practice, this attack requires the underlying file system to allow exceptionally long
filenames, and we have not been able to produce a working attack payload. However, this
does not prove that no such file systems exist or will exist in the future.

Trail of Bits 15 wasmCloud Security Assessment
PUBLIC

https://github.com/wasmCloud/capability-providers/blob/8446e10f93badf7db0a961e595143f3c42a3a6c8/blobstore-fs/src/fs_utils.rs#L24-L30

Recommendations
Short term, limit the amount of allowable recursion depth to ensure that no stack overflow
attack is possible given realistic stack sizes, as shown in figure 2.3.

pub fn all_dirs(root: &Path, prefix: &Path, depth: i32) -> Vec<PathBuf> {
if depth > 1000 {
return vec![];

}

// Now recursively go in all directories and collect all sub-directories
let mut subdirs: Vec<PathBuf> = Vec::new();
for dir in &dirs {
let mut local_subdirs = all_dirs(
prefix.join(dir.as_path()).as_path(),
prefix,
depth + 1);
subdirs.append(&mut local_subdirs);

}
dirs.append(&mut subdirs);

dirs

Figure 2.3: Limiting the amount of allowable recursion depth

Long term, consider limiting the reliance on the underlying file system to a minimum by
disallowing nesting containers. For example, Base64-encode all container and object
names before passing them down to the file system routines.

References
e OWASP Denial of Service Cheat Sheet ("Input validation" section)

Trail of Bits 16 wasmCloud Security Assessment
PUBLIC

https://cheatsheetseries.owasp.org/cheatsheets/Denial_of_Service_Cheat_Sheet.html#input-validation

3. Denial of service in blobstore-s3 using malicious actor
Severity: Undetermined Difficulty: High
Type: Data Validation Finding ID: TOB-WACL-3

Target: capability-providers/blobstore-s3/src/1lib.rs

Description

The stream_bytes function continues looping until it detects that all of the available bytes
have been sent. It does this based on the output of the send_chunk function, which
reports the amount of bytes that have been sent by the call.

An attacker could send specially crafted responses that cause stream_bytes to continue
looping, causing send_chunk to report that no errors were detected while also reporting
that no bytes were sent.

while bytes_sent < bytes_to_send {
let chunk_offset = offset + bytes_sent;
let chunk_len = (self.max_chunk_size() as u64).min(bytes_to_send - bytes_sent);
bytes_sent += self
.send_chunk (
ctx,
Chunk {
is_last: offset + chunk_len > end_range,
bytes: bytes[bytes_sent as usize..(bytes_sent + chunk_len) as usize]
.to_vec(),
offset: chunk_offset as u64,
container_id: bucket_id.to_string(),
object_id: cobj.object_id.clone(),
e
)

.await?;

Figure 3.1: capability-providers/blobstore-s3/src/1ib.rs#L188-1.204

Exploit Scenario

An attacker can send a maliciously crafted request to get an object from a blobstore-s3
provider, then send successful responses without making actual progress in the transfer by
reporting that empty-sized chunks were received.

Recommendations
Make send_chunk report a failure if a zero-sized response is received.

Trail of Bits 17 wasmCloud Security Assessment
PUBLIC

https://github.com/wasmCloud/capability-providers/blob/8446e10f93badf7db0a961e595143f3c42a3a6c8/blobstore-s3/src/lib.rs#L188-L204

4. Unexpected panic in validate_token
Severity: Informational Difficulty: High
Type: Error Reporting Finding ID: TOB-WACL-4

Target: wascap/src/jwt.rs

Description

The validate_token function from the wascap library panics with an out-of-bounds error
when input is given in an unexpected format. The function expects the input to be a valid
JWT token with three segments separated by a dot (figure 4.1). This implicit assumption is
satisfied in the code; however, the function is public and does not mention the assumption
in its documentation.

/// Validates a signed JWT. This will check the signature, expiration time, and
not-valid-before time
pub fn validate_token<T>(input: &str) -> Result<TokenValidation>
where
T: Serialize + DeserializeOwned + WascapEntity,

{

let segments: Vec<&str> = input.split('.').collect();

let header_and_claims = format!("{}.{}", segments[0], segments[1]);

let sig = base64::decode_config(segments[2], base64::URL_SAFE_NO_PAD)?;
}

Figure 4.1: wascap/src/jwt.rs#L612-1L641

Exploit Scenario
A developer uses the validate_token function expecting it to fully validate the token
string. The function receives an untrusted malicious input that forces the program to panic.

Recommendations
Short term, add input format validation before accessing the segments and a test case with

malformed input.

Long term, always validate all inputs to functions or document the input assumptions if
validation is not in place for a specific reason.

Trail of Bits 18 wasmCloud Security Assessment
PUBLIC

https://github.com/wasmCloud/wascap/blob/a1299cc722a122cbde590047bcad9d3edb57d6c2/src/jwt.rs#L612-L641

5. Incorrect error message when starting actor from file
Severity: Informational Difficulty: Low
Type: Error Reporting Finding ID: TOB-WACL-5

Target: host_core/lib/host_core/actors/actor_supervisor.ex

Description

The error message when starting an actor from a file contains a string interpolation bug
that causes the message to not include the fileref content (figure 5.1). This causes the
error message to contain the literal string ${fileref} instead. It is worth noting that the
fileref content will be included anyway as an attribute.

Logger.error(
"Failed to read actor file from S${fileref}: #{inspect(err)}",
fileref: fileref

)
Figure 5.1: host_core/lib/host_core/actors/actor_supervisor.ex#L301

Recommendations
Short term, change the error message to correctly interpolate the fileref string.

Trail of Bits 19 wasmCloud Security Assessment
PUBLIC

https://github.com/wasmCloud/wasmcloud-otp/blob/1e9076ae8786168c23e7c28003e2212689d10948/host_core/lib/host_core/actors/actor_supervisor.ex#L301

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category

Access Controls
Auditing and Logging
Authentication
Configuration
Cryptography

Data Exposure

Data Validation
Denial of Service
Error Reporting
Patching

Session Management
Testing

Timing

Undefined Behavior

Trail of Bits
PUBLIC

Description

Insufficient authorization or assessment of rights
Insufficient auditing of actions or logging of problems
Improper identification of users

Misconfigured servers, devices, or software components
A breach of system confidentiality or integrity
Exposure of sensitive information

Improper reliance on the structure or values of data
A system failure with an availability impact

Insecure or insufficient reporting of error conditions
Use of an outdated software package or library
Improper identification of authenticated users
Insufficient test methodology or test coverage

Race conditions or other order-of-operations flaws

Undefined behavior triggered within the system

20 wasmCloud Security Assessment

Severity Levels
Severity

Informational

Undetermined
Low

Medium

High

Description

The issue does not pose an immediate risk but is relevant to security best
practices.

The extent of the risk was not determined during this engagement.
The risk is small or is not one the client has indicated is important.

User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels
Difficulty
Undetermined

Low
Medium

High

Trail of Bits
PUBLIC

Description
The difficulty of exploitation was not determined during this engagement.

The flaw is well known; public tools for its exploitation exist or can be
scripted.

An attacker must write an exploit or will need in-depth knowledge of the
system.

An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

21 wasmCloud Security Assessment

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category
Arithmetic
Auditing

Authentication /
Access Controls

Complexity
Management

Configuration
Cryptography and
Key Management
Data Handling
Documentation

Memory Safety

and Error Handling

Testing and
Verification

Description
The proper use of mathematical operations and semantics
The use of event auditing and logging to support monitoring

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

The configuration of system components in accordance with best
practices

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

The safe handling of user inputs and data processed by the system
The presence of comprehensive and readable codebase documentation

The presence of memory safety and robust error-handling mechanisms

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Rating Criteria
Rating
Strong

Satisfactory

Description
No issues were found, and the system exceeds industry standards.

Minor issues were found, but the system is compliant with best practices.

Moderate Some issues that may affect system safety were found.
I Weak Many issues that affect system safety were found.
Trail of Bits 22 wasmCloud Security Assessment

PUBLIC

I Missing A required component is missing, significantly affecting system safety.
Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further Further investigation is required to reach a meaningful conclusion.
Investigation
Required

Trail of Bits 23 wasmCloud Security Assessment

PUBLIC

C. Fix Review Results

When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
identified in the original report. This work involves a review of specific areas of the source
code and system configuration, not comprehensive analysis of the system.

On October 4, 2023, Trail of Bits reviewed the fixes and mitigations implemented by the
wasmCloud team for the issues identified in this report. We reviewed each fix to determine

its effectiveness in resolving the associated issue.

In summary, wasmCloud has resolved all identified issues. For additional information,

please see the Detailed Fix Review Results below.

ID Title
1 Out of bounds crash in extract_claims
2 Stack overflow while enumerating containers in blobstore-fs
3 Denial of Service in blobstore-s3 using malicious actor
4 Unexpected panic in validate_token
5 Incorrect error message when starting actor from file
Trail of Bits 24

PUBLIC

Status

Resolved

Resolved

Resolved

Resolved

Resolved

wasmCloud Security Assessment

Detailed Fix Review Results

TOB-WACL-1: Out of bounds crash in extract_claims
Resolved in commit 664d9b9. The missing range validation was added.

TOB-WACL-2: Stack overflow while enumerating containers in blobstore-fs
Resolved in PR capability-providers/271. The fix limits the recursion to a maximum of 1,000
calls.

TOB-WACL-3: Denial of Service in blobstore-s3 using malicious actor
Resolved in PR capability-providers/271. The missing response emptiness check was added.

TOB-WACL-4: Unexpected panic in validate_token
Resolved in PR wascap/52. The missing segments quantity validation was added.

TOB-WACL-5: Incorrect error message when starting actor from file
Resolved in PR wasmcloud-otp/648. The mistake in message log string interpolation was
fixed.

Trail of Bits 25 wasmCloud Security Assessment
PUBLIC

https://github.com/wasmCloud/wascap/commit/664d9b9ae34f981d5c5a3bb6403530253894361c
https://github.com/wasmCloud/capability-providers/pull/271
https://github.com/wasmCloud/capability-providers/pull/271
https://github.com/wasmCloud/wascap/pull/52
https://github.com/wasmCloud/wasmcloud-otp/pull/648

D. Fix Review Status Categories

The following table describes the statuses used to indicate whether an issue has been

sufficiently addressed.

Fix Status
Status
Undetermined

I Unresolved
Partially Resolved

Resolved

Trail of Bits
PUBLIC

Description

The status of the issue was not determined during this engagement.
The issue persists and has not been resolved.

The issue persists but has been partially resolved.

The issue has been sufficiently resolved.

26 wasmCloud Security Assessment

