
‭wasmCloud‬
‭Security Assessment‬

‭October 13, 2023‬

‭Prepared for:‬

‭wasmCloud‬
‭Open Source Technology Improvement Fund‬

‭Prepared by:‬‭Francesco Bertolaccini, Artur Cygan,‬‭Spencer Michaels‬

‭About Trail of Bits‬

‭Founded in 2012 and headquartered in New York, Trail of Bits provides technical security‬
‭assessment and advisory services to some of the world’s most targeted organizations. We‬
‭combine high-end security research with a real-world attacker mentality to reduce risk and‬
‭fortify code. With 100+ employees around the globe, we’ve helped secure critical software‬
‭elements that support billions of end users, including Kubernetes and the Linux kernel.‬

‭We maintain an exhaustive list of publications at‬‭https://github.com/trailofbits/publications‬‭,‬
‭with links to papers, presentations, public audit reports, and podcast appearances.‬

‭In recent years, Trail of Bits consultants have showcased cutting-edge research through‬
‭presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,‬
‭the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.‬

‭We specialize in software testing and code review projects, supporting client organizations‬
‭in the technology, defense, and finance industries, as well as government entities. Notable‬
‭clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.‬

‭Trail of Bits also operates a center of excellence with regard to blockchain security. Notable‬
‭projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,‬
‭MakerDAO, Matic, Uniswap, Web3, and Zcash.‬

‭To keep up to date with our latest news and announcements, please follow‬‭@trailofbits‬‭on‬
‭Twitter and explore our public repositories at‬‭https://github.com/trailofbits‬‭.‬‭To engage us‬
‭directly, visit our “Contact” page at‬‭https://www.trailofbits.com/contact‬‭,‬‭or email us at‬
‭info@trailofbits.com‬‭.‬

‭Trail of Bits, Inc.‬
‭228 Park Ave S #80688‬
‭New York, NY 10003‬
‭https://www.trailofbits.com‬
‭info@trailofbits.com‬

‭Trail of Bits‬ ‭1‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

‭Notices and Remarks‬

‭Copyright and Distribution‬
‭© 2023 by Trail of Bits, Inc.‬

‭All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this‬
‭report in the United Kingdom.‬

‭This report is considered by Trail of Bits to be public information;‬‭it is licensed to‬
‭wasmCloud under the terms of the project statement of work and has been made public at‬
‭wasmCloud’s request.‬‭Material within this report may‬‭not be reproduced or distributed in‬
‭part or in whole without the express written permission of Trail of Bits.‬

‭The sole canonical source for Trail of Bits publications is the‬‭Trail of Bits Publications page‬‭.‬
‭Reports accessed through any source other than that page may have been modified and‬
‭should not be considered authentic.‬

‭Test Coverage Disclaimer‬
‭All activities undertaken by Trail of Bits in association with this project were performed in‬
‭accordance with a statement of work and agreed upon project plan.‬

‭Security assessment projects are time-boxed and often reliant on information that may be‬
‭provided by a client, its affiliates, or its partners. As a result, the findings documented in‬
‭this report should not be considered a comprehensive list of security issues, flaws, or‬
‭defects in the target system or codebase.‬

‭Trail of Bits uses automated testing techniques to rapidly test the controls and security‬
‭properties of software. These techniques augment our manual security review work, but‬
‭each has its limitations: for example, a tool may not generate a random edge case that‬
‭violates a property or may not fully complete its analysis during the allotted time. Their use‬
‭is also limited by the time and resource constraints of a project.‬

‭Trail of Bits‬ ‭2‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

https://github.com/trailofbits/publications

‭Table of Contents‬

‭About Trail of Bits‬ ‭1‬
‭Notices and Remarks‬ ‭2‬
‭Table of Contents‬ ‭3‬
‭Project Summary‬ ‭4‬
‭Executive Summary‬ ‭5‬
‭Project Goals‬ ‭7‬
‭Project Targets‬ ‭8‬
‭Project Coverage‬ ‭9‬
‭Codebase Maturity Evaluation‬ ‭10‬
‭Summary of Findings‬ ‭12‬
‭Detailed Findings‬ ‭13‬

‭1. Out-of-bounds crash in extract_claims‬ ‭13‬
‭2. Stack overflow while enumerating containers in blobstore-fs‬ ‭15‬
‭3. Denial of service in blobstore-s3 using malicious actor‬ ‭17‬
‭4. Unexpected panic in validate_token‬ ‭18‬
‭5. Incorrect error message when starting actor from file‬ ‭19‬

‭A. Vulnerability Categories‬ ‭20‬
‭B. Code Maturity Categories‬ ‭22‬
‭C. Fix Review Results‬ ‭24‬

‭Detailed Fix Review Results‬ ‭25‬
‭D. Fix Review Status Categories‬ ‭26‬

‭Trail of Bits‬ ‭3‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

‭Project Summary‬

‭Contact Information‬
‭The following managers were associated with this project:‬

‭Dan Guido‬‭, Account Manager‬ ‭Jeff Braswell‬‭, Project‬‭Manager‬
‭dan@trailofbits.com‬ ‭jeff.braswell@trailofbits.com‬

‭The following engineers were associated with this project:‬

‭Francesco Bertolaccini‬‭, Consultant‬ ‭Artur Cygan‬‭, Consultant‬
‭francesco.bertolaccini@trailofbits.com‬ ‭artur.cygan@trailofbits.com‬

‭Spencer Michaels‬‭, Consultant‬
‭spencer.michaels@trailofbits.com‬

‭Project Timeline‬
‭The significant events and milestones of the project are listed below.‬

‭Date‬ ‭Event‬

‭August 18, 2023‬ ‭Pre-project kickoff call‬

‭August 28, 2023‬ ‭Status update meeting #1‬

‭September 13, 2023‬ ‭Delivery of report draft‬

‭September 13, 2023‬ ‭Report readout meeting‬

‭October 13, 2023‬ ‭Delivery of comprehensive report‬

‭Trail of Bits‬ ‭4‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

mailto:dan@trailofbits.com

‭Executive Summary‬

‭Engagement Overview‬
‭The Open Source Technology Foundation engaged Trail of Bits to review the security of‬
‭wasmCloud, a runtime and deployment platform for distributed WASM application‬
‭development.‬

‭A team of three consultants conducted the review from August 21 to September 1, for a‬
‭total of six engineer-weeks of effort. Our testing efforts focused on reviewing critical‬
‭components of the wasmCloud platform, with a particular emphasis on capability‬
‭providers, such as Rust micro-applications that proxy access to external services (like‬
‭databases) and HTTP servers. We supplemented our code review with fuzzing wherever‬
‭feasible, except in the case of the WASM runtime itself, which has already undergone‬
‭substantial fuzz testing and thus was not prioritized for fuzzing in this audit.‬

‭With full access to source code and documentation, we performed static and dynamic‬
‭testing of numerous wasmCloud components, using automated and manual processes. In‬
‭cases where the codebase diverged into two major versions (notably due to a Rust‬
‭reimplementation of legacy Elixir components which is still in development), we focused on‬
‭the stable legacy code, with which the newer code will be backwards compatible.‬

‭Observations and Impact‬
‭wasmCloud’s capability providers are generally implemented using widely used, well-vetted‬
‭third-party libraries to interact with the services they are backing. Potentially error-prone‬
‭operations, such as string transformation, are relatively rare.‬

‭No issues were discovered in wasmCloud’s use of JWTs for authentication; tokens were‬
‭appropriately validated for all observed authenticated endpoints.‬

‭The wasmCloud OTP host uses native Rust code, where we found a user-triggerable crash;‬
‭however, this issue is mitigated by the Rustler library’s error handling. Otherwise, the OTP‬
‭host appears to comply with Erlang/OTP best practices.‬

‭Recommendations‬
‭Based on the codebase maturity evaluation and findings identified during the security‬
‭review, Trail of Bits recommends that the wasmCloud team take the following steps.‬

‭●‬ ‭Remediate the findings disclosed in this report.‬‭These‬‭findings should be‬
‭addressed as part of a direct remediation or as part of any refactor that may occur‬
‭when addressing other recommendations.‬

‭●‬ ‭Ensure that documentation is kept up with the pace of development.‬
‭Document new functionality as it is implemented, especially provider settings that‬

‭Trail of Bits‬ ‭5‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

‭are configurable by users, and record any caveats regarding components‬
‭contributed by third parties (e.g. the SQL capability providers).‬

‭Finding Severities and Categories‬

‭The following tables provide the number of findings by severity and category.‬

‭EXPOSURE ANALYSIS‬

‭Severity‬ ‭Count‬

‭High‬ ‭0‬

‭Medium‬ ‭0‬

‭Low‬ ‭2‬

‭Informational‬ ‭2‬

‭Undetermined‬ ‭1‬

‭CATEGORY BREAKDOWN‬

‭Category‬ ‭Count‬

‭Data Validation‬ ‭3‬

‭Error Reporting‬ ‭2‬

‭Trail of Bits‬ ‭6‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

‭Project Goals‬

‭The engagement was scoped to provide a security assessment of the wasmCloud platform.‬
‭Specifically, we sought to answer the following non-exhaustive list of questions:‬

‭●‬ ‭Does the wasmCloud runtime appropriately sandbox user-provided code?‬

‭●‬ ‭Do the wasmCloud capability providers limit actors’ access to only the intended‬
‭capabilities? Are there breakouts or loopholes that can circumvent these intended‬
‭limitations?‬

‭●‬ ‭Can an attacker with full or partial control over the NATS agent use it to attack‬
‭wasmCloud actors or capability providers?‬

‭●‬ ‭Can RPC messages between actors and capability providers be spoofed or modified‬
‭without detection?‬

‭●‬ ‭Is it possible to deny service to the host or to take control of the execution‬
‭environment?‬

‭Trail of Bits‬ ‭7‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

‭Project Targets‬

‭The engagement involved a review and testing of the targets listed below.‬

‭wasmCloud‬
‭Repository‬ ‭https://github.com/wasmCloud/wasmCloud‬

‭Version‬ ‭33ef4f34a5748e445f01148ec7d00bb0f01c1606‬

‭Type‬ ‭Rust‬

‭Platform‬ ‭Native‬

‭wasmCloud-otp‬
‭Repository‬ ‭https://github.com/wasmCloud/wasmCloud-otp‬

‭Version‬ ‭1e9076ae8786168c23e7c28003e2212689d10948‬

‭Type‬ ‭Elixir, Rust‬

‭Platform‬ ‭BEAM, Native‬

‭wascap‬
‭Repository‬ ‭https://github.com/wasmCloud/wascap‬

‭Version‬ ‭a1299cc722a122cbde590047bcad9d3edb57d6c2‬

‭Type‬ ‭Rust‬

‭Platform‬ ‭Native‬

‭capability-providers‬
‭Repository‬ ‭https://github.com/wasmCloud/capability-providers‬

‭Version‬ ‭8446e10f93badf7db0a961e595143f3c42a3a6c8‬

‭Type‬ ‭Rust‬

‭Platform‬ ‭Native‬

‭nats-server‬
‭Repository‬ ‭https://github.com/nats-io/nats-server‬

‭Version‬ ‭d720a6931c71a83aa8df8715b7dc0f87d5b0f527‬

‭Type‬ ‭Go‬

‭Platform‬ ‭Native‬

‭Trail of Bits‬ ‭8‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

https://github.com/wasmCloud/wasmCloud
https://github.com/wasmCloud/wasmCloud-otp
https://github.com/wasmCloud/wascap
https://github.com/wasmCloud/capability-providers
https://github.com/nats-io/nats-server

‭Project Coverage‬

‭This section provides an overview of the analysis coverage of the review, as determined by‬
‭our high-level engagement goals. Our approaches included the following:‬

‭●‬ ‭Manual code review of all extant wasmCloud capability providers‬

‭●‬ ‭Fuzzing select critical functionality within the wasmCloud codebase‬

‭●‬ ‭Review of RPC message signing and integrity-checking code‬

‭●‬ ‭Review of the OTP host Elixir and Rust code‬

‭Coverage Limitations‬
‭Because of the time-boxed nature of testing work, it is common to encounter coverage‬
‭limitations. The following list outlines the coverage limitations of the engagement and‬
‭indicates system elements that may warrant further review:‬

‭●‬ ‭Due to time constraints, our manual code review and fuzzing of the wasmCloud core‬
‭codebase was not exhaustive, being necessarily limited to only certain subsets of‬
‭functionality. Most notably, fuzzing was limited to the protocol parsing routines in‬
‭nats-server, while the entirety of the capability providers was manually reviewed.‬

‭●‬ ‭Engineers were unable to fuzz the capability providers extensively over their RPC‬
‭interfaces, as this proved too cumbersome in the limited time available given the‬
‭infrastructure setup required. In these cases, we instead focused on manual code‬
‭review of the providers, and were able to achieve full coverage.‬

‭Trail of Bits‬ ‭9‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

‭Codebase Maturity Evaluation‬

‭Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of‬
‭the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies‬
‭identified here often stem from root causes within the software development life cycle that‬
‭should be addressed through standardization measures (e.g., the use of common libraries,‬
‭functions, or frameworks) or training and awareness programs.‬

‭Category‬ ‭Summary‬ ‭Result‬

‭Arithmetic‬ ‭wasmCloud does not perform critical arithmetic‬
‭operations.‬

‭Not‬
‭Applicable‬

‭Auditing‬ ‭The OTP host extensively uses the standard Elixir Logger‬
‭to log any important information. We found a minor‬
‭error in one of the log messages.‬

‭Satisfactory‬

‭Authentication /‬
‭Access Controls‬

‭wasmCloud’s capability provider model ensures that‬
‭applications can invoke only functionality that they are‬
‭explicitly authorized to provide.‬

‭Strong‬

‭Complexity‬
‭Management‬

‭The wasmCloud codebase is generally well-organized,‬
‭divided by functionality across a variety of distinct‬
‭repositories and crates.‬

‭Satisfactory‬

‭Configuration‬ ‭wasmCloud’s capability providers interact with their‬
‭respective backing services via well-known, widely used‬
‭libraries. Engineers did not note any issues in the‬
‭providers’ use of the relevant third-party APIs.‬

‭Satisfactory‬

‭Cryptography‬
‭and Key‬
‭Management‬

‭RPC messages between actors and capability providers‬
‭are appropriately validated and protected from spoofing.‬

‭Satisfactory‬

‭Data Handling‬ ‭RPC message data is safely handled and transformed‬
‭into corresponding calls to the relevant back-end‬
‭services.‬

‭Satisfactory‬

‭Documentation‬ ‭wasmCloud’s high-level documentation is generally‬
‭comprehensive, but documentation pertaining to‬
‭detailed features (such as capability provider settings) or‬

‭Moderate‬

‭Trail of Bits‬ ‭10‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

‭recently implemented functionality is lacking. In addition,‬
‭code comments are generally sparse.‬

‭Memory Safety‬
‭and Error‬
‭Handling‬

‭With a handful of simple, one-line exceptions, no‬‭unsafe‬
‭code is used anywhere in the wasmCloud codebase.‬
‭Errors are handled appropriately using Rust’s native error‬
‭semantics.‬

‭Satisfactory‬

‭Testing and‬
‭Verification‬

‭Unit tests exist for most major functionality, although‬
‭there are no fuzz tests for external input handling (such‬
‭as in capability providers).‬

‭Moderate‬

‭Trail of Bits‬ ‭11‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

‭Summary of Findings‬

‭The table below summarizes the findings of the review, including type and severity details.‬

‭ID‬ ‭Title‬ ‭Type‬ ‭Severity‬

‭1‬ ‭Out-of-bounds crash in extract_claims‬ ‭Data Validation‬ ‭Low‬

‭2‬ ‭Stack overflow while enumerating containers in‬
‭blobstore-fs‬

‭Data Validation‬ ‭Low‬

‭3‬ ‭Denial of service in blobstore-s3 using malicious‬
‭actor‬

‭Data Validation‬ ‭Undetermined‬

‭4‬ ‭Unexpected panic in validate_token‬ ‭Error Reporting‬ ‭Informational‬

‭5‬ ‭Incorrect error message when starting actor from‬
‭file‬

‭Error Reporting‬ ‭Informational‬

‭Trail of Bits‬ ‭12‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

‭Detailed Findings‬

‭1. Out-of-bounds crash in extract_claims‬

‭Severity:‬‭Low‬ ‭Difficulty:‬‭Low‬

‭Type: Data Validation‬ ‭Finding ID: TOB-WACL-1‬

‭Target:‬‭wascap/src/wasm.rs‬

‭Description‬
‭The‬‭strip_custom_section‬‭function does not sufficiently‬‭validate data and crashes‬
‭when the range is not within the buffer (figure 1.1). The function is used in the‬
‭extract_claims‬‭function and is given an untrusted‬‭input. In the‬‭wasmCloud-otp‬‭, even‬
‭though‬‭extract_claims‬‭is called as an Erlang NIF (Native‬‭Implemented Function) and‬
‭potentially could bring down the VM upon crashing, the panic is handled gracefully by the‬
‭Rustler library, resulting in an isolated crash of the Elixir process.‬

‭if‬‭let‬‭Some‬‭((id,‬‭range‬‭))‬‭=‬‭payload.as_section()‬‭{‬
‭wasm_encoder::RawSection‬‭{‬

‭id,‬
‭data:‬‭&‬‭buf‬‭[range]‬‭,‬

‭}‬
‭.append_to(&‬‭mut‬‭output);‬

‭}‬

‭Figure 1.1:‬‭wascap/src/wasm.rs#L161-L167‬

‭We found this issue by fuzzing the‬‭extract_claims‬‭function with‬‭cargo-fuzz‬‭(figure‬
‭2.1).‬

‭#![no_main]‬

‭use‬‭libfuzzer_sys::fuzz_target;‬

‭use‬‭getrandom::register_custom_getrandom;‬

‭// TODO: the program won’t compile without this, why?‬
‭fn‬‭custom_getrandom‬‭(buf:‬‭&‬‭mut‬‭[‬‭u8‬‭])‬‭->‬‭Result‬‭<(),‬‭getrandom::Error>‬‭{‬

‭return‬‭Ok‬‭(());‬
‭}‬
‭register_custom_getrandom!(custom_getrandom);‬

‭fuzz_target!(|data:‬‭&‬‭[‬‭u8‬‭]|‬‭{‬

‭Trail of Bits‬ ‭13‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

https://github.com/wasmCloud/wascap/blob/a1299cc722a122cbde590047bcad9d3edb57d6c2/src/wasm.rs#L161-L167

‭let‬‭_‬‭=‬‭wascap::wasm::extract_claims(data);‬
‭});‬

‭Figure 1.2: A simple‬‭extract_claims‬‭fuzzing harness‬‭that passes the fuzzer-provided bytes‬
‭straight to the function‬

‭After fixing the issue (figure 1.3), we fuzzed the function for an extended period of time;‬
‭however, we found no additional issues.‬

‭if‬‭let‬‭Some‬‭((id,‬‭range))‬‭=‬‭payload.as_section()‬‭{‬
‭if‬‭range.end‬‭<=‬‭buf.len()‬‭{‬

‭wasm_encoder::RawSection‬‭{‬
‭id,‬
‭data:‬‭&‬‭buf‬‭[range],‬

‭}‬
‭.append_to(&‬‭mut‬‭output);‬

‭}‬
‭else‬‭{‬

‭return‬‭Err‬‭(errors::new(ErrorKind::InvalidCapability));‬
‭}‬

‭}‬

‭Figure 1.3: The fix we applied to continue fuzzing‬‭extract_claims‬‭. The code requires a new‬
‭error value because we reused one of the existing ones that likely does not match the semantics.‬

‭Exploit Scenario‬
‭An attacker deploys a new module with invalid claims. While decoding the claims, the‬
‭extract_claims‬‭function panics and crashes the Elixir‬‭process.‬

‭Recommendations‬
‭Short term, fix the‬‭strip_custom_section‬‭function‬‭by adding the range check, as shown‬
‭in the figure 1.3. Add the‬‭extract_claims‬‭fuzzing‬‭harness to the‬‭wascap‬‭repository and‬
‭run it for an extended period of time before each release of the library.‬

‭Long term, add a fuzzing harness for each Rust function that processes user-provided data.‬

‭References‬
‭●‬ ‭Erlang - NIFs‬

‭Trail of Bits‬ ‭14‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

https://www.erlang.org/doc/tutorial/nif.html

‭2. Stack overflow while enumerating containers in blobstore-fs‬

‭Severity:‬‭Low‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-WACL-2‬

‭Target:‬‭capability-providers/blobstore-fs/src/fs_utils.rs‬

‭Description‬
‭The‬‭all_dirs‬‭function is vulnerable to a stack overflow‬‭caused by unbounded recursion,‬
‭triggered by either the presence of circular symlinks inside the root of the blobstore (as‬
‭configured during startup), or the presence of excessively nested directory inside the same.‬
‭Because this function is used by‬‭FsProvider::list_containers‬‭,‬‭this issue would result‬
‭in a denial of service for all actors that use the method exposed by affected blobstores.‬

‭let mut‬‭subdirs:‬‭Vec‬‭<PathBuf> =‬‭Vec‬‭::new();‬
‭for‬‭dir‬‭in‬‭&dirs {‬

‭let mut‬‭local_subdirs =‬‭all_dirs(prefix.join(dir.as_path()).as_path(),‬‭prefix);‬
‭subdirs.append(‬‭&mut‬‭local_subdirs);‬

‭}‬
‭dirs.append(‬‭&mut‬‭subdirs);‬
‭dirs‬

‭Figure 2.1:‬‭capability-providers/blobstore-fs/src/fs_utils.rs#L24-L30‬

‭Exploit Scenario‬
‭An attacker creates a circular symlink inside the storage directory.‬

‭Alternatively, an attacker can—under the right circumstances—create successively nested‬
‭directories with a sufficient depth to cause a stack overflow.‬

‭blobstore.create_container(ctx, &"a".to_string()).‬‭await‬‭?;‬
‭blobstore.create_container(ctx, &"a/a".to_string()).‬‭await‬‭?;‬
‭blobstore.create_container(ctx, &"a/a/a".to_string()).‬‭await‬‭?;‬
‭...‬
‭blobstore.create_container(ctx, &"a/a/a/.../a/a/a".to_string()).‬‭await‬‭?;‬

‭blobstore.list_containers().‬‭await‬‭?;‬

‭Figure 2.2: Possible attack to a vulnerable blobstore‬

‭In practice, this attack requires the underlying file system to allow exceptionally long‬
‭filenames, and we have not been able to produce a working attack payload. However, this‬
‭does not prove that no such file systems exist or will exist in the future.‬

‭Trail of Bits‬ ‭15‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

https://github.com/wasmCloud/capability-providers/blob/8446e10f93badf7db0a961e595143f3c42a3a6c8/blobstore-fs/src/fs_utils.rs#L24-L30

‭Recommendations‬
‭Short term, limit the amount of allowable recursion depth to ensure that no stack overflow‬
‭attack is possible given realistic stack sizes, as shown in figure 2.3.‬

‭pub fn‬‭all_dirs(root: &Path, prefix: &Path,‬‭depth:‬‭i32‬‭) ->‬‭Vec‬‭<PathBuf> {‬
‭if‬‭depth > 1000 {‬

‭return vec![];‬
‭}‬

‭...‬
‭// Now recursively go in all directories and collect‬‭all sub-directories‬
‭let mut‬‭subdirs:‬‭Vec‬‭<PathBuf> =‬‭Vec‬‭::new();‬
‭for‬‭dir‬‭in‬‭&dirs {‬

‭let mut‬‭local_subdirs = all_dirs(‬
‭prefix.join(dir.as_path()).as_path(),‬
‭prefix,‬
‭depth + 1‬‭);‬

‭subdirs.append(‬‭&mut‬‭local_subdirs);‬
‭}‬
‭dirs.append(‬‭&mut‬‭subdirs);‬
‭dirs‬

‭}‬

‭Figure 2.3: Limiting the amount of allowable recursion depth‬

‭Long term, consider limiting the reliance on the underlying file system to a minimum by‬
‭disallowing nesting containers. For example, Base64-encode all container and object‬
‭names before passing them down to the file system routines.‬

‭References‬
‭●‬ ‭OWASP Denial of Service Cheat Sheet ("Input validation" section)‬

‭Trail of Bits‬ ‭16‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

https://cheatsheetseries.owasp.org/cheatsheets/Denial_of_Service_Cheat_Sheet.html#input-validation

‭3. Denial of service in blobstore-s3 using malicious actor‬

‭Severity:‬‭Undetermined‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-WACL-3‬

‭Target:‬‭capability-providers/blobstore-s3/src/lib.rs‬

‭Description‬
‭The‬‭stream_bytes‬‭function continues looping until‬‭it detects that all of the available bytes‬
‭have been sent. It does this based on the output of the‬‭send_chunk‬‭function, which‬
‭reports the amount of bytes that have been sent by the call.‬

‭An attacker could send specially crafted responses that cause‬‭stream_bytes‬‭to continue‬
‭looping, causing‬‭send_chunk‬‭to report that no errors‬‭were detected while also reporting‬
‭that no bytes were sent.‬

‭while‬‭bytes_sent < bytes_to_send‬‭{‬
‭let chunk_offset = offset + bytes_sent;‬
‭let chunk_len = (self.max_chunk_size() as u64).min(bytes_to_send - bytes_sent);‬
‭bytes_sent += self‬

‭.send_chunk‬‭(‬
‭ctx,‬
‭Chunk {‬

‭is_last: offset + chunk_len > end_range,‬
‭bytes: bytes[bytes_sent as usize..(bytes_sent + chunk_len) as usize]‬

‭.to_vec(),‬
‭offset: chunk_offset as u64,‬
‭container_id: bucket_id.to_string(),‬
‭object_id: cobj.object_id.clone(),‬

‭},‬
‭)‬
‭.await?;‬

‭}‬

‭Figure 3.1:‬‭capability-providers/blobstore-s3/src/lib.rs#L188-L204‬

‭Exploit Scenario‬
‭An attacker can send a maliciously crafted request to get an object from a blobstore-s3‬
‭provider, then send successful responses without making actual progress in the transfer by‬
‭reporting that empty-sized chunks were received.‬

‭Recommendations‬
‭Make‬‭send_chunk‬‭report a failure if a zero-sized response‬‭is received.‬

‭Trail of Bits‬ ‭17‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

https://github.com/wasmCloud/capability-providers/blob/8446e10f93badf7db0a961e595143f3c42a3a6c8/blobstore-s3/src/lib.rs#L188-L204

‭4. Unexpected panic in validate_token‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Error Reporting‬ ‭Finding ID: TOB-WACL-4‬

‭Target:‬‭wascap/src/jwt.rs‬

‭Description‬
‭The‬‭validate_token‬‭function from the‬‭wascap‬‭library‬‭panics with an out-of-bounds error‬
‭when input is given in an unexpected format. The function expects the input to be a valid‬
‭JWT token with three segments separated by a dot (figure 4.1). This implicit assumption is‬
‭satisfied in the code; however, the function is public and does not mention the assumption‬
‭in its documentation.‬

‭/// Validates a signed JWT. This will check the signature, expiration time, and‬
‭not-valid-before time‬
‭pub‬‭fn‬‭validate_token‬‭<T>(input:‬‭&str‬‭)‬‭->‬‭Result‬‭<TokenValidation>‬
‭where‬

‭T:‬‭Serialize‬‭+‬‭DeserializeOwned‬‭+‬‭WascapEntity,‬
‭{‬

‭let‬‭segments:‬‭Vec‬‭<&‬‭str‬‭>‬‭=‬‭input.split(‬‭'.'‬‭).collect();‬
‭let‬‭header_and_claims‬‭=‬‭format!‬‭(‬‭"{}.{}"‬‭,‬‭segments[‬‭0‬‭]‬‭,‬‭segments[‬‭1‬‭]‬‭);‬
‭let‬‭sig‬‭=‬‭base64::decode_config(‬‭segments[‬‭2‬‭]‬‭,‬‭base64::URL_SAFE_NO_PAD)?;‬
‭...‬

‭}‬

‭Figure 4.1:‬‭wascap/src/jwt.rs#L612-L641‬

‭Exploit Scenario‬
‭A developer uses the‬‭validate_token‬‭function expecting‬‭it to fully validate the token‬
‭string. The function receives an untrusted malicious input that forces the program to panic.‬

‭Recommendations‬
‭Short term, add input format validation before accessing the segments and a test case with‬
‭malformed input.‬

‭Long term, always validate all inputs to functions or document the input assumptions if‬
‭validation is not in place for a specific reason.‬

‭Trail of Bits‬ ‭18‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

https://github.com/wasmCloud/wascap/blob/a1299cc722a122cbde590047bcad9d3edb57d6c2/src/jwt.rs#L612-L641

‭5. Incorrect error message when starting actor from file‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭Low‬

‭Type: Error Reporting‬ ‭Finding ID: TOB-WACL-5‬

‭Target:‬‭host_core/lib/host_core/actors/actor_supervisor.ex‬

‭Description‬
‭The error message when starting an actor from a file contains a string interpolation bug‬
‭that causes the message to not include the‬‭fileref‬‭content (figure 5.1). This causes the‬
‭error message to contain the literal string‬‭${fileref}‬‭instead. It is worth noting that the‬
‭fileref content will be included anyway as an attribute.‬

‭Logger‬‭.error(‬
‭"Failed to read actor file from‬‭${fileref}‬‭:‬‭#{‬‭inspect(err)‬‭}‬‭"‬‭,‬
‭fileref‬‭:‬‭fileref‬

‭)‬

‭Figure 5.1:‬‭host_core/lib/host_core/actors/actor_supervisor.ex#L301‬

‭Recommendations‬
‭Short term, change the error message to correctly interpolate the‬‭fileref‬‭string.‬

‭Trail of Bits‬ ‭19‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

https://github.com/wasmCloud/wasmcloud-otp/blob/1e9076ae8786168c23e7c28003e2212689d10948/host_core/lib/host_core/actors/actor_supervisor.ex#L301

‭A. Vulnerability Categories‬

‭The following tables describe the vulnerability categories, severity levels, and difficulty‬
‭levels used in this document.‬

‭Vulnerability Categories‬

‭Category‬ ‭Description‬

‭Access Controls‬ ‭Insufficient authorization or assessment of rights‬

‭Auditing and Logging‬ ‭Insufficient auditing of actions or logging of problems‬

‭Authentication‬ ‭Improper identification of users‬

‭Configuration‬ ‭Misconfigured servers, devices, or software components‬

‭Cryptography‬ ‭A breach of system confidentiality or integrity‬

‭Data Exposure‬ ‭Exposure of sensitive information‬

‭Data Validation‬ ‭Improper reliance on the structure or values of data‬

‭Denial of Service‬ ‭A system failure with an availability impact‬

‭Error Reporting‬ ‭Insecure or insufficient reporting of error conditions‬

‭Patching‬ ‭Use of an outdated software package or library‬

‭Session Management‬ ‭Improper identification of authenticated users‬

‭Testing‬ ‭Insufficient test methodology or test coverage‬

‭Timing‬ ‭Race conditions or other order-of-operations flaws‬

‭Undefined Behavior‬ ‭Undefined behavior triggered within the system‬

‭Trail of Bits‬ ‭20‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

‭Severity Levels‬

‭Severity‬ ‭Description‬

‭Informational‬ ‭The issue does not pose an immediate risk but is relevant to security best‬
‭practices.‬

‭Undetermined‬ ‭The extent of the risk was not determined during this engagement.‬

‭Low‬ ‭The risk is small or is not one the client has indicated is important.‬

‭Medium‬ ‭User information is at risk; exploitation could pose reputational, legal, or‬
‭moderate financial risks.‬

‭High‬ ‭The flaw could affect numerous users and have serious reputational, legal,‬
‭or financial implications.‬

‭Difficulty Levels‬

‭Difficulty‬ ‭Description‬

‭Undetermined‬ ‭The difficulty of exploitation was not determined during this engagement.‬

‭Low‬ ‭The flaw is well known; public tools for its exploitation exist or can be‬
‭scripted.‬

‭Medium‬ ‭An attacker must write an exploit or will need in-depth knowledge of the‬
‭system.‬

‭High‬ ‭An attacker must have privileged access to the system, may need to know‬
‭complex technical details, or must discover other weaknesses to exploit this‬
‭issue.‬

‭Trail of Bits‬ ‭21‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

‭B. Code Maturity Categories‬

‭The following tables describe the code maturity categories and rating criteria used in this‬
‭document.‬

‭Code Maturity Categories‬

‭Category‬ ‭Description‬

‭Arithmetic‬ ‭The proper use of mathematical operations and semantics‬

‭Auditing‬ ‭The use of event auditing and logging to support monitoring‬

‭Authentication /‬
‭Access Controls‬

‭The use of robust access controls to handle identification and‬
‭authorization and to ensure safe interactions with the system‬

‭Complexity‬
‭Management‬

‭The presence of clear structures designed to manage system complexity,‬
‭including the separation of system logic into clearly defined functions‬

‭Configuration‬ ‭The configuration of system components in accordance with best‬
‭practices‬

‭Cryptography and‬
‭Key Management‬

‭The safe use of cryptographic primitives and functions, along with the‬
‭presence of robust mechanisms for key generation and distribution‬

‭Data Handling‬ ‭The safe handling of user inputs and data processed by the system‬

‭Documentation‬ ‭The presence of comprehensive and readable codebase documentation‬

‭Memory Safety‬
‭and Error Handling‬

‭The presence of memory safety and robust error-handling mechanisms‬

‭Testing and‬
‭Verification‬

‭The presence of robust testing procedures (e.g., unit tests, integration‬
‭tests, and verification methods) and sufficient test coverage‬

‭Rating Criteria‬

‭Rating‬ ‭Description‬

‭Strong‬ ‭No issues were found, and the system exceeds industry standards.‬

‭Satisfactory‬ ‭Minor issues were found, but the system is compliant with best practices.‬

‭Moderate‬ ‭Some issues that may affect system safety were found.‬

‭Weak‬ ‭Many issues that affect system safety were found.‬

‭Trail of Bits‬ ‭22‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

‭Missing‬ ‭A required component is missing, significantly affecting system safety.‬

‭Not Applicable‬ ‭The category is not applicable to this review.‬

‭Not Considered‬ ‭The category was not considered in this review.‬

‭Further‬
‭Investigation‬
‭Required‬

‭Further investigation is required to reach a meaningful conclusion.‬

‭Trail of Bits‬ ‭23‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

‭C. Fix Review Results‬

‭When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues‬
‭identified in the original report. This work involves a review of specific areas of the source‬
‭code and system configuration, not comprehensive analysis of the system.‬

‭On October 4, 2023, Trail of Bits reviewed the fixes and mitigations implemented by the‬
‭wasmCloud team for the issues identified in this report. We reviewed each fix to determine‬
‭its effectiveness in resolving the associated issue.‬

‭In summary, wasmCloud has resolved all identified issues. For additional information,‬
‭please see the Detailed Fix Review Results below.‬

‭ID‬ ‭Title‬ ‭Status‬

‭1‬ ‭Out of bounds crash in extract_claims‬ ‭Resolved‬

‭2‬ ‭Stack overflow while enumerating containers in blobstore-fs‬ ‭Resolved‬

‭3‬ ‭Denial of Service in blobstore-s3 using malicious actor‬ ‭Resolved‬

‭4‬ ‭Unexpected panic in validate_token‬ ‭Resolved‬

‭5‬ ‭Incorrect error message when starting actor from file‬ ‭Resolved‬

‭Trail of Bits‬ ‭24‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

‭Detailed Fix Review Results‬
‭TOB-WACL-1: Out of bounds crash in extract_claims‬
‭Resolved in‬‭commit 664d9b9‬‭. The missing range validation‬‭was added.‬

‭TOB-WACL-2:‬‭Stack overflow while enumerating containers‬‭in blobstore-fs‬
‭Resolved in‬‭PR capability-providers/271‬‭. The fix limits‬‭the recursion to a maximum of 1,000‬
‭calls.‬

‭TOB-WACL-3:‬‭Denial of Service in blobstore-s3 using‬‭malicious actor‬
‭Resolved in‬‭PR capability-providers/271‬‭. The missing‬‭response emptiness check was added.‬

‭TOB-WACL-4:‬‭Unexpected panic in validate_token‬
‭Resolved in‬‭PR wascap/52‬‭. The missing segments quantity‬‭validation was added.‬

‭TOB-WACL-5:‬‭Incorrect error message when starting‬‭actor from file‬
‭Resolved in‬‭PR wasmcloud-otp/648‬‭. The mistake in message‬‭log string interpolation was‬
‭fixed.‬

‭Trail of Bits‬ ‭25‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

https://github.com/wasmCloud/wascap/commit/664d9b9ae34f981d5c5a3bb6403530253894361c
https://github.com/wasmCloud/capability-providers/pull/271
https://github.com/wasmCloud/capability-providers/pull/271
https://github.com/wasmCloud/wascap/pull/52
https://github.com/wasmCloud/wasmcloud-otp/pull/648

‭D. Fix Review Status Categories‬

‭The following table describes the statuses used to indicate whether an issue has been‬
‭sufficiently addressed.‬

‭Fix Status‬

‭Status‬ ‭Description‬

‭Undetermined‬ ‭The status of the issue was not determined during this engagement.‬

‭Unresolved‬ ‭The issue persists and has not been resolved.‬

‭Partially Resolved‬ ‭The issue persists but has been partially resolved.‬

‭Resolved‬ ‭The issue has been sufficiently resolved.‬

‭Trail of Bits‬ ‭26‬ ‭wasmCloud Security Assessment‬
‭PUBLIC‬

