
 wasmCloud
 Security Assessment

 October 13, 2023

 Prepared for:

 wasmCloud
 Open Source Technology Improvement Fund

 Prepared by: Francesco Bertolaccini, Artur Cygan, Spencer Michaels

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 100+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositories at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” page at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 228 Park Ave S #80688
 New York, NY 10003
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 1 wasmCloud Security Assessment
 PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

 Notices and Remarks

 Copyright and Distribution
 © 2023 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be public information; it is licensed to
 wasmCloud under the terms of the project statement of work and has been made public at
 wasmCloud’s request. Material within this report may not be reproduced or distributed in
 part or in whole without the express written permission of Trail of Bits.

 The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page .
 Reports accessed through any source other than that page may have been modified and
 should not be considered authentic.

 Test Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and agreed upon project plan.

 Security assessment projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As a result, the findings documented in
 this report should not be considered a comprehensive list of security issues, flaws, or
 defects in the target system or codebase.

 Trail of Bits uses automated testing techniques to rapidly test the controls and security
 properties of software. These techniques augment our manual security review work, but
 each has its limitations: for example, a tool may not generate a random edge case that
 violates a property or may not fully complete its analysis during the allotted time. Their use
 is also limited by the time and resource constraints of a project.

 Trail of Bits 2 wasmCloud Security Assessment
 PUBLIC

https://github.com/trailofbits/publications

 Table of Contents

 About Trail of Bits 1
 Notices and Remarks 2
 Table of Contents 3
 Project Summary 4
 Executive Summary 5
 Project Goals 7
 Project Targets 8
 Project Coverage 9
 Codebase Maturity Evaluation 10
 Summary of Findings 12
 Detailed Findings 13

 1. Out-of-bounds crash in extract_claims 13
 2. Stack overflow while enumerating containers in blobstore-fs 15
 3. Denial of service in blobstore-s3 using malicious actor 17
 4. Unexpected panic in validate_token 18
 5. Incorrect error message when starting actor from file 19

 A. Vulnerability Categories 20
 B. Code Maturity Categories 22
 C. Fix Review Results 24

 Detailed Fix Review Results 25
 D. Fix Review Status Categories 26

 Trail of Bits 3 wasmCloud Security Assessment
 PUBLIC

 Project Summary

 Contact Information
 The following managers were associated with this project:

 Dan Guido , Account Manager Jeff Braswell , Project Manager
 dan@trailofbits.com jeff.braswell@trailofbits.com

 The following engineers were associated with this project:

 Francesco Bertolaccini , Consultant Artur Cygan , Consultant
 francesco.bertolaccini@trailofbits.com artur.cygan@trailofbits.com

 Spencer Michaels , Consultant
 spencer.michaels@trailofbits.com

 Project Timeline
 The significant events and milestones of the project are listed below.

 Date Event

 August 18, 2023 Pre-project kickoff call

 August 28, 2023 Status update meeting #1

 September 13, 2023 Delivery of report draft

 September 13, 2023 Report readout meeting

 October 13, 2023 Delivery of comprehensive report

 Trail of Bits 4 wasmCloud Security Assessment
 PUBLIC

mailto:dan@trailofbits.com

 Executive Summary

 Engagement Overview
 The Open Source Technology Foundation engaged Trail of Bits to review the security of
 wasmCloud, a runtime and deployment platform for distributed WASM application
 development.

 A team of three consultants conducted the review from August 21 to September 1, for a
 total of six engineer-weeks of effort. Our testing efforts focused on reviewing critical
 components of the wasmCloud platform, with a particular emphasis on capability
 providers, such as Rust micro-applications that proxy access to external services (like
 databases) and HTTP servers. We supplemented our code review with fuzzing wherever
 feasible, except in the case of the WASM runtime itself, which has already undergone
 substantial fuzz testing and thus was not prioritized for fuzzing in this audit.

 With full access to source code and documentation, we performed static and dynamic
 testing of numerous wasmCloud components, using automated and manual processes. In
 cases where the codebase diverged into two major versions (notably due to a Rust
 reimplementation of legacy Elixir components which is still in development), we focused on
 the stable legacy code, with which the newer code will be backwards compatible.

 Observations and Impact
 wasmCloud’s capability providers are generally implemented using widely used, well-vetted
 third-party libraries to interact with the services they are backing. Potentially error-prone
 operations, such as string transformation, are relatively rare.

 No issues were discovered in wasmCloud’s use of JWTs for authentication; tokens were
 appropriately validated for all observed authenticated endpoints.

 The wasmCloud OTP host uses native Rust code, where we found a user-triggerable crash;
 however, this issue is mitigated by the Rustler library’s error handling. Otherwise, the OTP
 host appears to comply with Erlang/OTP best practices.

 Recommendations
 Based on the codebase maturity evaluation and findings identified during the security
 review, Trail of Bits recommends that the wasmCloud team take the following steps.

 ● Remediate the findings disclosed in this report. These findings should be
 addressed as part of a direct remediation or as part of any refactor that may occur
 when addressing other recommendations.

 ● Ensure that documentation is kept up with the pace of development.
 Document new functionality as it is implemented, especially provider settings that

 Trail of Bits 5 wasmCloud Security Assessment
 PUBLIC

 are configurable by users, and record any caveats regarding components
 contributed by third parties (e.g. the SQL capability providers).

 Finding Severities and Categories

 The following tables provide the number of findings by severity and category.

 EXPOSURE ANALYSIS

 Severity Count

 High 0

 Medium 0

 Low 2

 Informational 2

 Undetermined 1

 CATEGORY BREAKDOWN

 Category Count

 Data Validation 3

 Error Reporting 2

 Trail of Bits 6 wasmCloud Security Assessment
 PUBLIC

 Project Goals

 The engagement was scoped to provide a security assessment of the wasmCloud platform.
 Specifically, we sought to answer the following non-exhaustive list of questions:

 ● Does the wasmCloud runtime appropriately sandbox user-provided code?

 ● Do the wasmCloud capability providers limit actors’ access to only the intended
 capabilities? Are there breakouts or loopholes that can circumvent these intended
 limitations?

 ● Can an attacker with full or partial control over the NATS agent use it to attack
 wasmCloud actors or capability providers?

 ● Can RPC messages between actors and capability providers be spoofed or modified
 without detection?

 ● Is it possible to deny service to the host or to take control of the execution
 environment?

 Trail of Bits 7 wasmCloud Security Assessment
 PUBLIC

 Project Targets

 The engagement involved a review and testing of the targets listed below.

 wasmCloud
 Repository https://github.com/wasmCloud/wasmCloud

 Version 33ef4f34a5748e445f01148ec7d00bb0f01c1606

 Type Rust

 Platform Native

 wasmCloud-otp
 Repository https://github.com/wasmCloud/wasmCloud-otp

 Version 1e9076ae8786168c23e7c28003e2212689d10948

 Type Elixir, Rust

 Platform BEAM, Native

 wascap
 Repository https://github.com/wasmCloud/wascap

 Version a1299cc722a122cbde590047bcad9d3edb57d6c2

 Type Rust

 Platform Native

 capability-providers
 Repository https://github.com/wasmCloud/capability-providers

 Version 8446e10f93badf7db0a961e595143f3c42a3a6c8

 Type Rust

 Platform Native

 nats-server
 Repository https://github.com/nats-io/nats-server

 Version d720a6931c71a83aa8df8715b7dc0f87d5b0f527

 Type Go

 Platform Native

 Trail of Bits 8 wasmCloud Security Assessment
 PUBLIC

https://github.com/wasmCloud/wasmCloud
https://github.com/wasmCloud/wasmCloud-otp
https://github.com/wasmCloud/wascap
https://github.com/wasmCloud/capability-providers
https://github.com/nats-io/nats-server

 Project Coverage

 This section provides an overview of the analysis coverage of the review, as determined by
 our high-level engagement goals. Our approaches included the following:

 ● Manual code review of all extant wasmCloud capability providers

 ● Fuzzing select critical functionality within the wasmCloud codebase

 ● Review of RPC message signing and integrity-checking code

 ● Review of the OTP host Elixir and Rust code

 Coverage Limitations
 Because of the time-boxed nature of testing work, it is common to encounter coverage
 limitations. The following list outlines the coverage limitations of the engagement and
 indicates system elements that may warrant further review:

 ● Due to time constraints, our manual code review and fuzzing of the wasmCloud core
 codebase was not exhaustive, being necessarily limited to only certain subsets of
 functionality. Most notably, fuzzing was limited to the protocol parsing routines in
 nats-server, while the entirety of the capability providers was manually reviewed.

 ● Engineers were unable to fuzz the capability providers extensively over their RPC
 interfaces, as this proved too cumbersome in the limited time available given the
 infrastructure setup required. In these cases, we instead focused on manual code
 review of the providers, and were able to achieve full coverage.

 Trail of Bits 9 wasmCloud Security Assessment
 PUBLIC

 Codebase Maturity Evaluation

 Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
 the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
 identified here often stem from root causes within the software development life cycle that
 should be addressed through standardization measures (e.g., the use of common libraries,
 functions, or frameworks) or training and awareness programs.

 Category Summary Result

 Arithmetic wasmCloud does not perform critical arithmetic
 operations.

 Not
 Applicable

 Auditing The OTP host extensively uses the standard Elixir Logger
 to log any important information. We found a minor
 error in one of the log messages.

 Satisfactory

 Authentication /
 Access Controls

 wasmCloud’s capability provider model ensures that
 applications can invoke only functionality that they are
 explicitly authorized to provide.

 Strong

 Complexity
 Management

 The wasmCloud codebase is generally well-organized,
 divided by functionality across a variety of distinct
 repositories and crates.

 Satisfactory

 Configuration wasmCloud’s capability providers interact with their
 respective backing services via well-known, widely used
 libraries. Engineers did not note any issues in the
 providers’ use of the relevant third-party APIs.

 Satisfactory

 Cryptography
 and Key
 Management

 RPC messages between actors and capability providers
 are appropriately validated and protected from spoofing.

 Satisfactory

 Data Handling RPC message data is safely handled and transformed
 into corresponding calls to the relevant back-end
 services.

 Satisfactory

 Documentation wasmCloud’s high-level documentation is generally
 comprehensive, but documentation pertaining to
 detailed features (such as capability provider settings) or

 Moderate

 Trail of Bits 10 wasmCloud Security Assessment
 PUBLIC

 recently implemented functionality is lacking. In addition,
 code comments are generally sparse.

 Memory Safety
 and Error
 Handling

 With a handful of simple, one-line exceptions, no unsafe
 code is used anywhere in the wasmCloud codebase.
 Errors are handled appropriately using Rust’s native error
 semantics.

 Satisfactory

 Testing and
 Verification

 Unit tests exist for most major functionality, although
 there are no fuzz tests for external input handling (such
 as in capability providers).

 Moderate

 Trail of Bits 11 wasmCloud Security Assessment
 PUBLIC

 Summary of Findings

 The table below summarizes the findings of the review, including type and severity details.

 ID Title Type Severity

 1 Out-of-bounds crash in extract_claims Data Validation Low

 2 Stack overflow while enumerating containers in
 blobstore-fs

 Data Validation Low

 3 Denial of service in blobstore-s3 using malicious
 actor

 Data Validation Undetermined

 4 Unexpected panic in validate_token Error Reporting Informational

 5 Incorrect error message when starting actor from
 file

 Error Reporting Informational

 Trail of Bits 12 wasmCloud Security Assessment
 PUBLIC

 Detailed Findings

 1. Out-of-bounds crash in extract_claims

 Severity: Low Difficulty: Low

 Type: Data Validation Finding ID: TOB-WACL-1

 Target: wascap/src/wasm.rs

 Description
 The strip_custom_section function does not sufficiently validate data and crashes
 when the range is not within the buffer (figure 1.1). The function is used in the
 extract_claims function and is given an untrusted input. In the wasmCloud-otp , even
 though extract_claims is called as an Erlang NIF (Native Implemented Function) and
 potentially could bring down the VM upon crashing, the panic is handled gracefully by the
 Rustler library, resulting in an isolated crash of the Elixir process.

 if let Some ((id, range)) = payload.as_section() {
 wasm_encoder::RawSection {

 id,
 data: & buf [range] ,

 }
 .append_to(& mut output);

 }

 Figure 1.1: wascap/src/wasm.rs#L161-L167

 We found this issue by fuzzing the extract_claims function with cargo-fuzz (figure
 2.1).

 #![no_main]

 use libfuzzer_sys::fuzz_target;

 use getrandom::register_custom_getrandom;

 // TODO: the program won’t compile without this, why?
 fn custom_getrandom (buf: & mut [u8]) -> Result <(), getrandom::Error> {

 return Ok (());
 }
 register_custom_getrandom!(custom_getrandom);

 fuzz_target!(|data: & [u8]| {

 Trail of Bits 13 wasmCloud Security Assessment
 PUBLIC

https://github.com/wasmCloud/wascap/blob/a1299cc722a122cbde590047bcad9d3edb57d6c2/src/wasm.rs#L161-L167

 let _ = wascap::wasm::extract_claims(data);
 });

 Figure 1.2: A simple extract_claims fuzzing harness that passes the fuzzer-provided bytes
 straight to the function

 After fixing the issue (figure 1.3), we fuzzed the function for an extended period of time;
 however, we found no additional issues.

 if let Some ((id, range)) = payload.as_section() {
 if range.end <= buf.len() {

 wasm_encoder::RawSection {
 id,
 data: & buf [range],

 }
 .append_to(& mut output);

 }
 else {

 return Err (errors::new(ErrorKind::InvalidCapability));
 }

 }

 Figure 1.3: The fix we applied to continue fuzzing extract_claims . The code requires a new
 error value because we reused one of the existing ones that likely does not match the semantics.

 Exploit Scenario
 An attacker deploys a new module with invalid claims. While decoding the claims, the
 extract_claims function panics and crashes the Elixir process.

 Recommendations
 Short term, fix the strip_custom_section function by adding the range check, as shown
 in the figure 1.3. Add the extract_claims fuzzing harness to the wascap repository and
 run it for an extended period of time before each release of the library.

 Long term, add a fuzzing harness for each Rust function that processes user-provided data.

 References
 ● Erlang - NIFs

 Trail of Bits 14 wasmCloud Security Assessment
 PUBLIC

https://www.erlang.org/doc/tutorial/nif.html

 2. Stack overflow while enumerating containers in blobstore-fs

 Severity: Low Difficulty: High

 Type: Data Validation Finding ID: TOB-WACL-2

 Target: capability-providers/blobstore-fs/src/fs_utils.rs

 Description
 The all_dirs function is vulnerable to a stack overflow caused by unbounded recursion,
 triggered by either the presence of circular symlinks inside the root of the blobstore (as
 configured during startup), or the presence of excessively nested directory inside the same.
 Because this function is used by FsProvider::list_containers , this issue would result
 in a denial of service for all actors that use the method exposed by affected blobstores.

 let mut subdirs: Vec <PathBuf> = Vec ::new();
 for dir in &dirs {

 let mut local_subdirs = all_dirs(prefix.join(dir.as_path()).as_path(), prefix);
 subdirs.append(&mut local_subdirs);

 }
 dirs.append(&mut subdirs);
 dirs

 Figure 2.1: capability-providers/blobstore-fs/src/fs_utils.rs#L24-L30

 Exploit Scenario
 An attacker creates a circular symlink inside the storage directory.

 Alternatively, an attacker can—under the right circumstances—create successively nested
 directories with a sufficient depth to cause a stack overflow.

 blobstore.create_container(ctx, &"a".to_string()). await ?;
 blobstore.create_container(ctx, &"a/a".to_string()). await ?;
 blobstore.create_container(ctx, &"a/a/a".to_string()). await ?;
 ...
 blobstore.create_container(ctx, &"a/a/a/.../a/a/a".to_string()). await ?;

 blobstore.list_containers(). await ?;

 Figure 2.2: Possible attack to a vulnerable blobstore

 In practice, this attack requires the underlying file system to allow exceptionally long
 filenames, and we have not been able to produce a working attack payload. However, this
 does not prove that no such file systems exist or will exist in the future.

 Trail of Bits 15 wasmCloud Security Assessment
 PUBLIC

https://github.com/wasmCloud/capability-providers/blob/8446e10f93badf7db0a961e595143f3c42a3a6c8/blobstore-fs/src/fs_utils.rs#L24-L30

 Recommendations
 Short term, limit the amount of allowable recursion depth to ensure that no stack overflow
 attack is possible given realistic stack sizes, as shown in figure 2.3.

 pub fn all_dirs(root: &Path, prefix: &Path, depth: i32) -> Vec <PathBuf> {
 if depth > 1000 {

 return vec![];
 }

 ...
 // Now recursively go in all directories and collect all sub-directories
 let mut subdirs: Vec <PathBuf> = Vec ::new();
 for dir in &dirs {

 let mut local_subdirs = all_dirs(
 prefix.join(dir.as_path()).as_path(),
 prefix,
 depth + 1);

 subdirs.append(&mut local_subdirs);
 }
 dirs.append(&mut subdirs);
 dirs

 }

 Figure 2.3: Limiting the amount of allowable recursion depth

 Long term, consider limiting the reliance on the underlying file system to a minimum by
 disallowing nesting containers. For example, Base64-encode all container and object
 names before passing them down to the file system routines.

 References
 ● OWASP Denial of Service Cheat Sheet ("Input validation" section)

 Trail of Bits 16 wasmCloud Security Assessment
 PUBLIC

https://cheatsheetseries.owasp.org/cheatsheets/Denial_of_Service_Cheat_Sheet.html#input-validation

 3. Denial of service in blobstore-s3 using malicious actor

 Severity: Undetermined Difficulty: High

 Type: Data Validation Finding ID: TOB-WACL-3

 Target: capability-providers/blobstore-s3/src/lib.rs

 Description
 The stream_bytes function continues looping until it detects that all of the available bytes
 have been sent. It does this based on the output of the send_chunk function, which
 reports the amount of bytes that have been sent by the call.

 An attacker could send specially crafted responses that cause stream_bytes to continue
 looping, causing send_chunk to report that no errors were detected while also reporting
 that no bytes were sent.

 while bytes_sent < bytes_to_send {
 let chunk_offset = offset + bytes_sent;
 let chunk_len = (self.max_chunk_size() as u64).min(bytes_to_send - bytes_sent);
 bytes_sent += self

 .send_chunk (
 ctx,
 Chunk {

 is_last: offset + chunk_len > end_range,
 bytes: bytes[bytes_sent as usize..(bytes_sent + chunk_len) as usize]

 .to_vec(),
 offset: chunk_offset as u64,
 container_id: bucket_id.to_string(),
 object_id: cobj.object_id.clone(),

 },
)
 .await?;

 }

 Figure 3.1: capability-providers/blobstore-s3/src/lib.rs#L188-L204

 Exploit Scenario
 An attacker can send a maliciously crafted request to get an object from a blobstore-s3
 provider, then send successful responses without making actual progress in the transfer by
 reporting that empty-sized chunks were received.

 Recommendations
 Make send_chunk report a failure if a zero-sized response is received.

 Trail of Bits 17 wasmCloud Security Assessment
 PUBLIC

https://github.com/wasmCloud/capability-providers/blob/8446e10f93badf7db0a961e595143f3c42a3a6c8/blobstore-s3/src/lib.rs#L188-L204

 4. Unexpected panic in validate_token

 Severity: Informational Difficulty: High

 Type: Error Reporting Finding ID: TOB-WACL-4

 Target: wascap/src/jwt.rs

 Description
 The validate_token function from the wascap library panics with an out-of-bounds error
 when input is given in an unexpected format. The function expects the input to be a valid
 JWT token with three segments separated by a dot (figure 4.1). This implicit assumption is
 satisfied in the code; however, the function is public and does not mention the assumption
 in its documentation.

 /// Validates a signed JWT. This will check the signature, expiration time, and
 not-valid-before time
 pub fn validate_token <T>(input: &str) -> Result <TokenValidation>
 where

 T: Serialize + DeserializeOwned + WascapEntity,
 {

 let segments: Vec <& str > = input.split('.').collect();
 let header_and_claims = format! ("{}.{}" , segments[0] , segments[1]);
 let sig = base64::decode_config(segments[2] , base64::URL_SAFE_NO_PAD)?;
 ...

 }

 Figure 4.1: wascap/src/jwt.rs#L612-L641

 Exploit Scenario
 A developer uses the validate_token function expecting it to fully validate the token
 string. The function receives an untrusted malicious input that forces the program to panic.

 Recommendations
 Short term, add input format validation before accessing the segments and a test case with
 malformed input.

 Long term, always validate all inputs to functions or document the input assumptions if
 validation is not in place for a specific reason.

 Trail of Bits 18 wasmCloud Security Assessment
 PUBLIC

https://github.com/wasmCloud/wascap/blob/a1299cc722a122cbde590047bcad9d3edb57d6c2/src/jwt.rs#L612-L641

 5. Incorrect error message when starting actor from file

 Severity: Informational Difficulty: Low

 Type: Error Reporting Finding ID: TOB-WACL-5

 Target: host_core/lib/host_core/actors/actor_supervisor.ex

 Description
 The error message when starting an actor from a file contains a string interpolation bug
 that causes the message to not include the fileref content (figure 5.1). This causes the
 error message to contain the literal string ${fileref} instead. It is worth noting that the
 fileref content will be included anyway as an attribute.

 Logger .error(
 "Failed to read actor file from ${fileref} : #{ inspect(err) } " ,
 fileref : fileref

)

 Figure 5.1: host_core/lib/host_core/actors/actor_supervisor.ex#L301

 Recommendations
 Short term, change the error message to correctly interpolate the fileref string.

 Trail of Bits 19 wasmCloud Security Assessment
 PUBLIC

https://github.com/wasmCloud/wasmcloud-otp/blob/1e9076ae8786168c23e7c28003e2212689d10948/host_core/lib/host_core/actors/actor_supervisor.ex#L301

 A. Vulnerability Categories

 The following tables describe the vulnerability categories, severity levels, and difficulty
 levels used in this document.

 Vulnerability Categories

 Category Description

 Access Controls Insufficient authorization or assessment of rights

 Auditing and Logging Insufficient auditing of actions or logging of problems

 Authentication Improper identification of users

 Configuration Misconfigured servers, devices, or software components

 Cryptography A breach of system confidentiality or integrity

 Data Exposure Exposure of sensitive information

 Data Validation Improper reliance on the structure or values of data

 Denial of Service A system failure with an availability impact

 Error Reporting Insecure or insufficient reporting of error conditions

 Patching Use of an outdated software package or library

 Session Management Improper identification of authenticated users

 Testing Insufficient test methodology or test coverage

 Timing Race conditions or other order-of-operations flaws

 Undefined Behavior Undefined behavior triggered within the system

 Trail of Bits 20 wasmCloud Security Assessment
 PUBLIC

 Severity Levels

 Severity Description

 Informational The issue does not pose an immediate risk but is relevant to security best
 practices.

 Undetermined The extent of the risk was not determined during this engagement.

 Low The risk is small or is not one the client has indicated is important.

 Medium User information is at risk; exploitation could pose reputational, legal, or
 moderate financial risks.

 High The flaw could affect numerous users and have serious reputational, legal,
 or financial implications.

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploitation was not determined during this engagement.

 Low The flaw is well known; public tools for its exploitation exist or can be
 scripted.

 Medium An attacker must write an exploit or will need in-depth knowledge of the
 system.

 High An attacker must have privileged access to the system, may need to know
 complex technical details, or must discover other weaknesses to exploit this
 issue.

 Trail of Bits 21 wasmCloud Security Assessment
 PUBLIC

 B. Code Maturity Categories

 The following tables describe the code maturity categories and rating criteria used in this
 document.

 Code Maturity Categories

 Category Description

 Arithmetic The proper use of mathematical operations and semantics

 Auditing The use of event auditing and logging to support monitoring

 Authentication /
 Access Controls

 The use of robust access controls to handle identification and
 authorization and to ensure safe interactions with the system

 Complexity
 Management

 The presence of clear structures designed to manage system complexity,
 including the separation of system logic into clearly defined functions

 Configuration The configuration of system components in accordance with best
 practices

 Cryptography and
 Key Management

 The safe use of cryptographic primitives and functions, along with the
 presence of robust mechanisms for key generation and distribution

 Data Handling The safe handling of user inputs and data processed by the system

 Documentation The presence of comprehensive and readable codebase documentation

 Memory Safety
 and Error Handling

 The presence of memory safety and robust error-handling mechanisms

 Testing and
 Verification

 The presence of robust testing procedures (e.g., unit tests, integration
 tests, and verification methods) and sufficient test coverage

 Rating Criteria

 Rating Description

 Strong No issues were found, and the system exceeds industry standards.

 Satisfactory Minor issues were found, but the system is compliant with best practices.

 Moderate Some issues that may affect system safety were found.

 Weak Many issues that affect system safety were found.

 Trail of Bits 22 wasmCloud Security Assessment
 PUBLIC

 Missing A required component is missing, significantly affecting system safety.

 Not Applicable The category is not applicable to this review.

 Not Considered The category was not considered in this review.

 Further
 Investigation
 Required

 Further investigation is required to reach a meaningful conclusion.

 Trail of Bits 23 wasmCloud Security Assessment
 PUBLIC

 C. Fix Review Results

 When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
 identified in the original report. This work involves a review of specific areas of the source
 code and system configuration, not comprehensive analysis of the system.

 On October 4, 2023, Trail of Bits reviewed the fixes and mitigations implemented by the
 wasmCloud team for the issues identified in this report. We reviewed each fix to determine
 its effectiveness in resolving the associated issue.

 In summary, wasmCloud has resolved all identified issues. For additional information,
 please see the Detailed Fix Review Results below.

 ID Title Status

 1 Out of bounds crash in extract_claims Resolved

 2 Stack overflow while enumerating containers in blobstore-fs Resolved

 3 Denial of Service in blobstore-s3 using malicious actor Resolved

 4 Unexpected panic in validate_token Resolved

 5 Incorrect error message when starting actor from file Resolved

 Trail of Bits 24 wasmCloud Security Assessment
 PUBLIC

 Detailed Fix Review Results
 TOB-WACL-1: Out of bounds crash in extract_claims
 Resolved in commit 664d9b9 . The missing range validation was added.

 TOB-WACL-2: Stack overflow while enumerating containers in blobstore-fs
 Resolved in PR capability-providers/271 . The fix limits the recursion to a maximum of 1,000
 calls.

 TOB-WACL-3: Denial of Service in blobstore-s3 using malicious actor
 Resolved in PR capability-providers/271 . The missing response emptiness check was added.

 TOB-WACL-4: Unexpected panic in validate_token
 Resolved in PR wascap/52 . The missing segments quantity validation was added.

 TOB-WACL-5: Incorrect error message when starting actor from file
 Resolved in PR wasmcloud-otp/648 . The mistake in message log string interpolation was
 fixed.

 Trail of Bits 25 wasmCloud Security Assessment
 PUBLIC

https://github.com/wasmCloud/wascap/commit/664d9b9ae34f981d5c5a3bb6403530253894361c
https://github.com/wasmCloud/capability-providers/pull/271
https://github.com/wasmCloud/capability-providers/pull/271
https://github.com/wasmCloud/wascap/pull/52
https://github.com/wasmCloud/wasmcloud-otp/pull/648

 D. Fix Review Status Categories

 The following table describes the statuses used to indicate whether an issue has been
 sufficiently addressed.

 Fix Status

 Status Description

 Undetermined The status of the issue was not determined during this engagement.

 Unresolved The issue persists and has not been resolved.

 Partially Resolved The issue persists but has been partially resolved.

 Resolved The issue has been sufficiently resolved.

 Trail of Bits 26 wasmCloud Security Assessment
 PUBLIC

