TRAL
B/

Eclipse Jetty

Threat Model and Code Review with Fix Review

June 13, 2023

Prepared for:

Greg Wilkins

The Eclipse Foundation

Organized by the Open Source Technology Improvement Fund, Inc.

Prepared by: Cliff Smith, Sam Alws, Kelly Kaoudis, and Spencer Michaels

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we've helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O'Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.

228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2023 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to the Eclipse
Foundation under the terms of the project statement of work and has been made public at
the Eclipse Foundation’s request. Material within this report may not be reproduced or
distributed in part or in whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer

All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Executive Summary 5
Project Summary 7
Project Goals 8
Project Targets 9
Project Coverage 10
Threat Model 11
Data Types 11
Data Flow 12
Components 15
Trust Zones 17
Trust Zone Connections 18
Threat Actors 20
Threat Scenarios 22
Recommendations 27
Automated Testing 30
Codebase Maturity Evaluation 31
Summary of Findings 33
Detailed Findings 36
1. Risk of integer overflow that could allow HpackDecoder to exceed maxHeaderSize
36
2. Cookie parser accepts unmatched quotation marks 38
3. Errant command quoting in CGI servlet 39
4. Symlink-allowed alias checker ignores protected targets list 41
5. Missing check for malformed Unicode escape sequences in
QuotedStringTokenizer.unquote 42
6. WebSocket frame length represented with 32-bit integer 44
7. WebSocket parser does not check for negative payload lengths 46
8. WebSocket parser greedily allocates ByteBuffers for large frames 47
9. Risk of integer overflow in HPACK's NBitInteger.decode 49
10. MetaDataBuilder.checkSize accepts headers of negative lengths 51

11. Insufficient space allocated when encoding QPACK instructions and entries 53

Trail of Bits 3 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

12. LiteralNameEntrylInstruction incorrectly encodes value length 56

13. Filelnitializer does not check for symlinks 58
14. Filelnitializer permits downloading files via plaintext HTTP 60
15. NullPointerException thrown by FastCGl parser on invalid frame type 61
16. Documentation does not specify that request contents and other user data can
be exposed in debug logs 63
17. HttpStreamOverFCGI internally marks all requests as plaintext HTTP 65
18. Excessively permissive and non-standards-compliant error handling in HTTP/2
implementation 67
19. XML external entities and entity expansion in Maven package metadata parser69
20. Use of deprecated AccessController class 70
21. QUIC server writes SSL private key to temporary plaintext file 71
22. Repeated code between HPACK and QPACK 73
23. Various exceptions in HpackDecoder.decode and QpackDecoder.decode 74
24. Incorrect QPACK encoding when multi-byte characters are used 75
25. No limits on maximum capacity in QPACK decoder 78
Summary of Recommendations 79
A. Vulnerability Categories 80
B. Code Maturity Categories 82
C. Fix Review Results 84
Detailed Fix Review Results 87
Trail of Bits 4 OSTIF Eclipse: Jetty Security Assessment

PUBLIC

Executive Summary

Engagement Overview

OSTIF engaged Trail of Bits to review the security of the Eclipse Foundation'’s Jetty project.
From March 6 to March 30, 2023, a team of two consultants conducted a lightweight threat
model of the project, and then a separate team of two consultants conducted a security
review of the client-provided source code; the two reviews took a combined six
person-weeks of effort. Details of the project’s timeline, test targets, and coverage are
provided in subsequent sections of this report.

Project Scope

Our testing efforts were focused on the identification of flaws that could resultin a
compromise of confidentiality, integrity, or availability of the target system. We conducted
this audit with full knowledge of the system, including access to the product’s source code
and documentation. We performed a static code review using both automated and manual
processes, supplemented by dynamic testing of the target system.

Summary of Findings

The audit uncovered significant flaws that could impact system confidentiality, integrity, or
availability. A summary of the findings and details on notable findings are provided below.

EXPOSURE ANALYSIS CATEGORY BREAKDOWN
Severity Count Category Count
High 9 Access Controls 1
Medium 7 Code Quality 2
Low 4 Cryptography 1
Informational 5 Data Exposure 2
Undetermined 0 Data Validation 11
Denial of Service 7
Error Reporting 1
Trail of Bits 5 OSTIF Eclipse: Jetty Security Assessment

PUBLIC

Notable Findings

Significant flaws that impact system confidentiality, integrity, or availability are listed below.

e TOB-JETTY-
An integer overflow could occur during the parsing of HPACK headers, which could
cause excessive resource consumption. A maliciously crafted header will cause Jetty
to allocate a 1.6 GB buffer while parsing a single message.

e TOB-JETTY-3
An error in the quotation mark escaping algorithm used for command line
arguments in the EE9 and EE10 CGlI servlets enables arbitrary command execution.

e TOB-JETTY-6
The WebSocket frame parser uses a 32-bit integer to represent the frame’s length
field, which can contain up to 64 bits. In addition to crashes, this bug can cause Jetty
to mistakenly split one WebSocket frame into multiple in a manner similar to the
errors that enable HTTP request smuggling attacks.

e TOB-JETTY-19
The Jetty module configuration system supports Maven package downloads from
maven:// URIs. When the maven-metadata.xml file is parsed, document type
definitions (DTDs) are parsed, which enables XML external entity (XXE) and XML
entity expansion (XEE) attacks.

Trail of Bits 6 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

Project Summary

Contact Information

The following managers were associated with this project:

Dan Guido, Account Manager Jeff Braswell, Project Manager

dan@trailofbits.com

jeff.braswell@trailofbits.com

The following engineers were associated with this project:

Kelly Kaoudis, Consultant Spencer Michaels, Consultant
kelly.kaoudis@trailofbits.com spencer.michaels@trailofbits.com
Cliff Smith, Consultant Sam Alws, Consultant
cliff.smith@trailofbits.com sam.alws@trailofbits.com

Project Timeline

The significant events and milestones of the project are listed below.

Date

March 6, 2023
March 7, 2023
March 10, 2023
March 15, 2023
March 30, 2023
May 5, 2023

June 13, 2023

Trail of Bits
PUBLIC

Event

Lightweight threat model kickoff

Threat model discovery #1

Threat model discovery #2 and code review kickoff
Threat model readout meeting

Report readout meeting

Delivery of final report

Delivery of fix review

7 OSTIF Eclipse: Jetty Security Assessment

mailto:dan@trailofbits.com

Project Goals

The engagement was scoped to provide a security assessment of Jetty. Specifically, we
sought to answer the following non-exhaustive list of questions:

Are the header and cookie parsing algorithms for HTTP/1 and HTTP/2 correct and
standards-compliant?

Are the WebSocket, HTTP/2, and HTTP/3 implementations secure and correct,
including their code for handling parsing, message generation, and connection
management?

Do the Jetty Core, EE9, and EE10 packages securely serve static resources from the
web server's filesystem? Can an attacker download files outside the configured root
directory?

Can attackers bypass any of the servlet security configuration settings specified in a
servlet's web . xml file?

Is the alias checking system implemented correctly?
Does the application deployment system have any exploitable bugs?

Do web application deployment and other features that extract archive files
correctly validate file paths? Are any such features vulnerable to “zip slip” or other
directory traversal attacks?

Are the cryptography and key management features compliant with best practices?

Are memory management operations, including buffer allocation and deallocation
operations during request generation and parsing, correct and secure?

Trail of Bits 8 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

Project Targets

The engagement involved a review and testing of the following target.

Eclipse Jetty

Repository https://github.com/jetty/jetty.project/tree/jetty-12.0.x
Version 12.0.0 (rev. bde186c2f78fb7c87c7bfadf9b0a970657de71f3)
Type Java
Platform JVM
Trail of Bits 9 OSTIF Eclipse: Jetty Security Assessment

PUBLIC

https://github.com/jetty/jetty.project/tree/jetty-12.0.x

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following:

e A manual review of the parsers and protocol implementations, including HTTP/1.1,
HTTP/2, HTTP/3, QUIC, HPACK, QPACK, cookies, multipart encoding, and
WebSockets

e A manual review of the start, module, and deployment systems

e Dynamic testing of the module configuration and the start system

e Static analysis of the entire codebase using Semgrep and CodeQL

e Fuzzing of the parsers and protocol implementations using libfuzzer

Coverage Limitations

Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. The following list outlines the coverage limitations of the engagement and
indicates system elements that may warrant further review:

e Our code review of the EE9 and EE10 libraries was not comprehensive.

e The protocol implementations were not compared to and validated against the
applicable specifications point-by-point.

Trail of Bits 10 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

Threat Model

As part of the audit, Trail of Bits conducted a lightweight threat model, drawing from
Mozilla's “Rapid Risk Assessment” methodology and the National Institute of Standards and
Technology's (NIST) guidance on data-centric threat modeling (NIST 800-154). We began our
assessment of the design of Jetty by reviewing the Eclipse Jetty 11.x and 12.x operations
and programming guides and Jetty’s in-progress CVE fix discussions.

Data Types

Depending on its configuration, a deployed Jetty server or client includes Jetty’s
implementations of standard web protocols as well as Java-specific protocols, including the
following:

HTTP/1.0, HTTP/1.1, HTTP/2 (cleartext and secure versions), and HTTP/3
WebSocket

FastCal

SOCKS4

PROXY protocol

Jetty also surfaces TLS- and ALPN-related information to application developers through
Jetty-provided callbacks connected to the underlying Java development kit (JDK)
functionality.

Trail of Bits 11 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

https://infosec.mozilla.org/guidelines/risk/rapid_risk_assessment.html
https://csrc.nist.gov/publications/detail/sp/800-154/draft

Data Flow
Network Data Flow

The following diagram shows an example of a distributed deployment of Jetty.

Note that the stack of boxes labeled “Jetty Server Instance” represents a cluster of several
Jetty instances serving the same application logic, each deployed on its own Java virtual
machine (JVM), managed by an orchestration system such as Kubernetes.

Also note that each box labeled “Jetty” in the diagram represents a server coupled with the
Jetty client component. The client component makes outbound requests on the server’s
behalf to other servers.

Protocol Key

Certificate

O HTTP over TLS Authority

. WebSocket over TLS
O RPC over TLS

. Unencrypted

I
I
I
I

Logging

Service Jetty Server |
P) HTTP 2
I
I
I
I
1
1

A A Client
L
| | SSH
Lbi’—'—b]
- : : Jetty Server Reverse _ - _ | HTTP11
! ! Instance Proxy o = Client
1 |
Test HTTP2 | .)
Client
! 1 1
] I I | WebSocket
Client
I 1 Identity I
\J I 1 Service I
Internal 1 1 1
Certificate I | I I HTTP2c
Authority — " Client
—_ | - LDAP !
I | N — |
Private Network | DMZ | Datacenter Public Network
Trust Trust Trust
Boundary Boundary Boundary
Figure 1: Example network data flows in a distributed deployment of Jetty
Trail of Bits 12 OSTIF Eclipse: Jetty Security Assessment

PUBLIC

Embedded Data Flow

The following diagram shows an example deployment of Jetty as the embedded servlet
container for another Java framework—in this case, Spring Boot. In this example, Spring
Boot starts Jetty. Then, at runtime, requests pass through Jetty first and then through

Spring components (here, a security filter and a request filter) before reaching the endpoint
business logic.

HTTP 2 Client HTTP 1.1 Client
Localhost
JVM
— ! ! S—
[Jetty Request Processing Logic } Local log
Y Y

SpringBoot
v]
SpringBoot Security Filter }

Spring

—

Properties
v v P
SpringBoot Request Filter }
v v

Endpoint Business Logic

JMX Console

Figure 2: Example data flows where Jetty is the embedded servlet container for Spring Boot

Trail of Bits 13

OSTIF Eclipse: Jetty Security Assessment
PUBLIC

'Localhost
JVM

Component Tree

The following diagram shows an example component tree of beans that a typical developer
might use, such as client request filters that accept or reject connections before Jetty
passes them to the served web applications, various connection factories that create and
manage client connections, a login service to protect a particular ConnectionFactory,
and several types of logging and monitoring mechanisms, the most common of which is
Java Management Extensions (JMX)-based. Note that each bean must implicitly trust its
registered parent.

Component Tree

Server |
Server e s | Connector MBean | } ALPNServerConnectionFactary MBean }1 . [A B ey
MBean L connection

» WebAppContext <—{Serv|etContextHandler CrossOriginFilter W

~ 1 webAppContext MBean /= [ServletContextHandler MBean }1 h CrossOriginFilter MBean

— ContextHandlerCollection
‘ | Servlet2 B WAR2

{ ContextHandlerCallection MBean]1'1 L e
} _______ Servietz MBean
I
|
|
|
=

) (o
WebAppContext F—[ServletComextHandler CrossOriginFilter
-| WebAppContext MBean J< - 7{ ServletContextHandler MBean]t e i CrossOriginFilier MBean
I
I
I
I

Seven | 1| WAl

h |__Servlet1 MBean

Connector <—P§LPNServerConnectionFacmry-—P roxyConnection Factorﬁ

Protocol Key

@ urencrypted
EventListener

hosil.portl

() HTTPaver TLS
@) RMiover TLS
. Unencrypted

Connector
hostl:port2

LowResourceMonitor, | = SR }““
LowResourceMonitor MBean |

ServerFCGIConnectionFactory

b e e]

== { ServerFCGIConnectionFactory MBean

XML
.| Configuration

JAASLoginService

b JAASLoginService MBean

Platform S—
MBeanServer —{ SLF4] = LogBack Ji ’[Log }
(JMX) ----------- SLF4) MBean |4 LogBack MBean — 710&117 —
HTTP Basic
Auth
uname | pwd T
P —— "—77__:‘ Trust Boundary
Remote Log
Console] (remote) |
Figure 3: An example Jetty component tree
Trail of Bits 14 OSTIF Eclipse: Jetty Security Assessment

PUBLIC

Components

The following table describes each Jetty component and dependency identified for our
analysis. It also indicates whether the component or dependency is not in scope; an
asterisk (*) next a component’s name indicates that it was out of scope for this assessment.
We explored the implications of threats involving out-of-scope components that directly
affect in-scope components, but we did not consider threats to the out-of-scope
components themselves.

Component Description

Source Control Source control includes the infrastructure that provides version
control, hosts the Jetty codebase, facilitates the submission of
pull requests and issues, and allows maintainers to release Jetty
JARs and security advisories.

Client Side Components and services on the client side initiate connections
and requests.

Jetty Client (*) A client requests data from a Jetty server or from a server built
with Jetty libraries. Client-side Jetty libraries may optionally be
used to handle client network connections and parsing. This
component is out of scope.

Client-Side Component Key client-side components include ClientConnector,
Libraries HttpClient, and HttpClientTransport.

The deployer or administrator can add client-side component
libraries to the Jetty server to form a microservice that can both
receive and initiate connections and requests.

JMX Console (*) The JMX console is a console application (e.g., JMC, Nagios) that
can connect to the JMX APl to consume information regarding
the server-side JVM, Jetty server, Jetty server components, and
potentially also application logic. It may run remotely or on the
same host as the Jetty server. This component is out of scope.

Server Side Components on the server side receive and handle connections
and requests.

Application-Specific Logic Developer-provided business logic connects with Jetty (and
clients) via the application logic base APIs. This component is out
of scope.
Trail of Bits 15 OSTIF Eclipse: Jetty Security Assessment

PUBLIC

Application Handler APIs connect application-specific business logic to Jetty; they are
Logic Base APIs an alternative to servlet APIs.
APIs

Servlet APIs Servlet APIs are an alternative to the Jetty handler APIs; they
expose more in-depth functionality, including session
management.

JMX API (%) The MBeanServer platform (if included in a deployment)
exposes an API to access and monitor the JVM, Jetty
components, and application-specific components. Registering a
bean with the JMX server creates a corresponding MBean and
surfaces its status and other metadata via the API. This
component is out of scope.

Server-Side Component Server-side component libraries are used to build Jetty-based

Libraries web servers. These component libraries provide server-side
connection and request handling and parsing support for
protocols such as HTTP/1.1, HTTP/2, HTTP/3, WebSocket, and
FastCGl.

Bean A bean is a serializable class instance at runtime, registered as
part of the Jetty server's component tree. Beans added to a
component tree must inherit functionality for event listening and
life cycle handling. Beans in a component tree can communicate
via EventListener APIs. Each bean in a component tree trusts
its parent and any other beans with which it can communicate
via EventListener events. A bean’s parent can optionally
manage its activity (start and stop it via LifeCycle).

Reverse Proxy (*) The reverse proxy is a server that advertises the location or
name of an application served via Jetty. The reverse proxy
handles the conveyance and distribution of client requests
across instances of the Jetty-served application, “fronting” the
Jetty-served application so that multiple Jetty instances can
handle requests directed to the same endpoint and so that no
Jetty instance needs be exposed to a public network directly. The
reverse proxy can also handle TLS termination on behalf of a
Jetty-served application. This component is out of scope.

Trail of Bits 16 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

Trust Zones

Trust zones capture logical boundaries where controls should or could be enforced by the
system, and allow developers to implement controls and policies between zones.

Zone

Public Network

Application
Network

Private
Network

Localhost

JVM

Trail of Bits
PUBLIC

Description

The public network is the wider
external-facing internet zone.

The application network is the
(private) datacenter network in
which one or more clusters of
Jetty server instances (or
standalone Jetty servers) and
additional related services
reside.

The private network is an
intranet or internal network that
is inaccessible from the public
network and has access to the
application network. It is
generally administrative in
nature.

The localhost is the host or
container within which the JVM
(running the Jetty server) runs.

This is the local Java runtime.

17

Included Components

Clients

Certificate authority

Jetty server instances
Reverse proxy
Non-Jetty services
o Logging
o Data stores
o LDAP or other identity stores

o Jetty cluster management
(e.g., Kubernetes)

Administrators
o Server administrator
o Server deployer
Clients

Remote JMX console application
(UMC, Nagios, etc., potentially
accessed via SSH bastion)

JVM

Local JMX console application

Jetty instance

JDK

Jakarta EE

Java ME (embedded deployments)
Spring Boot

OSTIF Eclipse: Jetty Security Assessment

Trust Zone Connections

This table describes the connections that occur between trust zones.

Originating
Zone

Public
Network

Public
Network

Application
Network

Public
Network

Trail of Bits
PUBLIC

Destination
Zone

Public
Network

Application
Network

Public
Network

Application
Network

Description

A client on the
internet makes a
network request to a
public endpoint of the
application served by
Jetty.

In this case, Jetty can
also be the
embedded servlet
container for another
framework, such as
Spring Boot.

A client on the public
network connects to a
reverse proxy fronting
an application served
by Jetty.

This reverse proxy
may handle TLS
termination.

A Jetty server is
configured to export
logs or JMX API
information to a
remote service with a
public endpoint (e.g.,
Datadog).

The host of a Jetty
server is (perhaps
accidentally)

18

Connection
Types

e HTTP
e FastCaGl
e WebSocket

e HTTP
e WebSocket
e FastCaGl

e HTTP
e RMI

e RMI

e RMlIl over TLS

Authentication
Types

e Stateless;
delegated to
application
logic

e Stateful
(connection
based);
delegated to
JDK (e.g., TLS
1.2, TLS 1.3)

e None

e TLS1.2
e TLS1.3

e None

e Varies

e Username and
password

e None

OSTIF Eclipse: Jetty Security Assessment

Application
Network

Application
Network

Private
Network

Private
Network

Localhost

Trail of Bits
PUBLIC

Application
Network

Application
Network

Application
Network

Application
Network

JVM

configured to allow
public access to the
JMX API port.

A Jetty server instance
makes a connection
to an internal service
(e.g., an LDAP data
store or another
microservice).

A reverse proxy
forwards a request to
a Jetty server
instance.

A test client connects
to a hard-coded (IP or
DNS) instance that is
part of a cluster. All
cluster instances
serve the same
application via Jetty.

An administrator
connects via SSH to
the machine on which
Jetty is running.

A local user makes
changes to the JVM's
configuration or
environment or sends
signals to a running
JVM process.

19

LDAP
HTTP

Custom
protocol
(e.g., RPQ)

RPC
HTTP

HTTP

SSH

Filesystem
UNIX sockets
IPC signals

Java
reflection

TLS
Application-
specific
request
authentication

None

TLS
Application-
specific
request
authentication

None

None

Username and
password

Public key

System user
authentication
and access
controls

OSTIF Eclipse: Jetty Security Assessment

Threat Actors

When conducting a threat model, we define the types of actors that could threaten the
security of the system. We also define other “users” of the system who may be impacted by
or induced to undertake an attack. Establishing the types of actors that use and/or could
threaten the system is useful in determining which protections, if any, are necessary to
mitigate or remediate vulnerabilities.

Actor

External Attacker

Internal Attacker

Client

Local Attacker

Jetty Contributor
Jetty Maintainer

Application Developer

Server Administrator

Server Deployer

Trail of Bits
PUBLIC

Description

An external attacker is an attacker on the public network (internet)
from which at least one Jetty instance is accessible.

This attacker can observe and analyze Jetty source commits as they
land in the public repository for exploitable features.

This refers to an attacker on a private or application network from
which at least one Jetty instance is accessible.

“Client” refers to either a client of a Jetty server instance that can
integrate the Jetty client libraries or a wholly distinct networked
application.

A local attacker is an attacker who controls a process or user
account on the same host as the Jetty instance and can affect the
system environment, including the filesystem.

This refers to a non-maintainer Jetty contributor.

This refers to a core Jetty contributor. Maintainers must review and
approve pull requests prior to merging them.

An application developer creates, maintains, and updates
applications deployed via Jetty.

A server administrator administers a networked application that is
either built with Jetty components, served via a Jetty instance
embedded as a servlet container in another framework, or served
via a standalone Jetty instance.

A server deployer releases an application served via Jetty or built
with Jetty components into the running environment. The deployer

20 OSTIF Eclipse: Jetty Security Assessment

may not be a separate individual from the server administrator
and application developer.

Trail of Bits 21 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

Threat Scenarios

The following table describes possible threat scenarios that the system could be vulnerable
to, given the design, architecture, and risk profile of Jetty.

Threat Scenario Actors Components
Excessive resource Insufficient exceptional-case header or e Malicious e Jetty server
consumption cookie parsing and exception handling client e Client
during parsing in a Jetty server could allow an

attacker-controlled client to cause a
DoS of the Jetty server instance's other
connections by sending a request
containing duplicate, potentially
conflicting headers; a header with an
excessive number of parameters; or a
header that itself contains malformed
parameters crafted to pin the server to
its JVM resource limits.

Excessive file If a Jetty server (re)authenticates users e Malicious e Jetty server
descriptor and/or each time a new authenticated channel client e Client
memory opens (likely to prevent spoofing) but

consumption does not also enforce (by default) a

sufficiently strict dynamic global
per-user rate limit proportional to
Jetty's system resource limit(s) when
stateful channel-based authentication
is in use, a malicious client could cause
a DoS of other Jetty instance
connections, especially in
resource-limited or embedded use
cases, by attempting to open many
authenticated channels (under a
mechanism such as SPNEGO).

Trail of Bits 22 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

Attacker-controlled
application logic

Unsafe
deserialization

Sensitivity to
unexpected
changes in the
underlying
implementation
due to JVM or DK
“rootkits”

Trail of Bits
PUBLIC

The lack of served application
allowlisting coupled with the lack of
third-party content tracking and/or
allowlisting in a Jetty server instance
configured for web application “hot

reloading” could allow an attacker who

gains sufficient local filesystem access
privileges (or who merely exploits a
vulnerable servlet) to subvert that
servlet or to force the Jetty server
instance to serve a malicious servlet
added to SUETTY_BASE /webapps.

The potential lack of safeguards on the

deserialization of request, connection,
and/or user data could allow an
external attacker to exfiltrate other
users’ data or execute malicious code
within a Jetty server process by
sending a request to the Jetty server
containing a payload that must be
deserialized by either Jetty or the
application-specific logic running on
top of Jetty. The use of JPMS may
reduce (but not eliminate) the impact
of such an attack by reducing the
accessible code in the running
environment.

If a core part of the local JVM, JDK, or
EE functionality called from the Jetty
server is augmented or fully replaced,
a local attacker could exfiltrate
sensitive data from locations such as
Jetty's TrustStore or JKS, place
malicious data in the TrustStore or
JKS, or intercept and modify sensitive
data sent over (client) connections via
a local user account with sufficient
system privileges.

23

e Local e Jetty server
attacker
e (Client e Jetty server
e Local e Localhost
attacker o JVM
e |DK
e Jakarta EE

Jetty server

OSTIF Eclipse: Jetty Security Assessment

https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html
https://www.csoonline.com/article/3629311/java-deserialization-vulnerabilities-explained-and-how-to-defend-against-them.html
https://openjdk.org/projects/jigsaw/spec/sotms/
https://www.ece.iastate.edu/kcsl/defcon24-talk/

Insecure default
connection
encryption
configuration

Request smuggling
via HTTP/2
downgrade,
duplicate header
allowance, or
similar issues

Trail of Bits
PUBLIC

The lack of default connection e Local
encryption (TLS) or the use of weak attacker
default cipher suites could allow

a malicious intermediary with sufficient
system-user permissions and access to
either the client system or Jetty server
instance host system to intercept and
modify client (or Jetty client
component) connections to the Jetty
server.

Remote
attacker

Inconsistent header parsing and e Remote
handling could allow a remote attacker attacker
to force Jetty to pass unexpected and

potentially malicious additional

requests to application logic or further

services within the distributed system

via a single crafted request.

The following are examples of
situations to consider mitigating where
request smuggling can occur:

e Improper HTTP/2-to-HTTP/1.1
downgrade header handling

e Improper handling of duplicate
headers in the same request
(e.g., Content-Length)

e Allowing for conflicting
headers' presence in the same
request (e.g., a short
Content-Length value along
with Transfer-Encoding:
chunked)

e Jetty server

e C(Client

e Jetty server

24 OSTIF Eclipse: Jetty Security Assessment

HTTP or header
parsing mismatch
between Jetty and
Spring Boot, or
similar frameworks

Request smuggling
due to
discrepancies
between parsing
done by other
servers (e.g., a
reverse proxy) and
Jetty

Access to or
modification of
temporary data

Security through
obscurity

Trail of Bits
PUBLIC

Potential discrepancies between
protocol, header, or cookie parsing
done by Spring Boot (or a similar Java
framework) and by Jetty itself could
allow a remote attacker to smuggle
unexpected requests into the served
web application when Jetty runs as the
embedded servlet container within
another Java framework such as Spring
Boot.

If a Jetty instance is run in a particular
compliance mode, but it is fronted by a
reverse proxy whose HTTP or header
parsing capabilities are not fully
consistent with Jetty configured with
the compliance mode in question, a
remote attacker could conduct request
smuggling.

An attacker with filesystem access to
the Jetty temporary directory or an
application-specific temporary
directory could read sensitive data
mistakenly stored there or modify files
that will later be read back into the
application.

A remote attacker monitoring pull
requests and commits to the Jetty
repository could infer the presence of
a vulnerability from static analysis over
changes made to the codebase (or
in-progress pull requests) to fix a
security issue prior to its official
announcement. The attacker could
exploit vulnerabilities identified in this
way before updates are released.

25

e Remote
attacker

e Remote
attacker

e Local
attacker

o Jetty
contributor

e Remote
attacker

e Jetty
e Spring Boot

o Jetty

e Reverse
proxy

e Localhost

e Jetty server

e Source
control

OSTIF Eclipse: Jetty Security Assessment

Administrator
misconfiguration
of the underlying
system

Trail of Bits
PUBLIC

A misconfigured JVM that exposes the e External e Jetty server
JMX API on a publicly accessible port attacker o JVMXAPI
could allow an external attacker to

- L e Server e Remote JMX
exfiltrate sensitive Jetty/system -
) i 4) administrat |
information or to modify the running or console
Jetty instance or JVM (e.g., shut down
the running Jetty instance—denying
service to other users—or shrink
resource allocations to starve
legitimate connections) by connecting
a JMX console application to the port.

26 OSTIF Eclipse: Jetty Security Assessment

Recommendations

e Jetty should check for a minimal set of safe(r) default security configuration practices
during the server startup process.

o

o

Trail of Bits

PUBLIC

Prefer the strictest default configuration overall that common Jetty use cases
(such as deployment with Spring Boot and/or as part of a distributed system)
can accommodate.

Log (likely to the user-configured Jetty error log location at the INFO level)
brief information about any unsafe security practices in use. Consider also
including links to documentation on mitigating such unsafe practices.

Document the safe server configurations for each of the most common types
of Jetty deployments and indicate the types of attacks that such
configurations will prevent. For example, configuring a Jetty server with a
stricter header parsing compliance mode may decrease the likelihood of
exploits of header parser differentials, such as request smuggling.

A Jetty instance that sources web apps from (or allows delegated web app
usage from) any other system or symlinked location should log a message
directing users to install web apps solely in ${jetty.base}/webapps.

m Also consider logging a warning if the ${jetty.base} (or
S{jetty.base} subdirectory) access permissions are overbroad (i.e.,
allow read or write access from users other than the account that Jetty
runs under).

When run with a default configuration, a Jetty instance should fail to start
without a configured TrustStore, JKS, and ss1 module.

m The server administrator or deployer should have to purposefully set
a configuration option (whose name contains the word “unsafe”) to
“true” or a similar setting to allow cleartext connections.

m Throw an exception with a sufficiently explanatory name and message
pointing to documentation on how to configure TrustStore, JKS,
and the ss1 module and on how to alternatively allow
unsafe/cleartext connections.

By default, a Jetty instance should not allow X-Forwarded-* (e.g.,
X-Forwarded-For) headers since their directives’ interpretations vary
between servers, and such headers are frequently spoofed.

27 OSTIF Eclipse: Jetty Security Assessment

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Forwarded-For#security_and_privacy_concerns

m Jetty instances should use setForwardedOnly () by default so that
Jetty administrators must explicitly configure the allowance of
X-Forwarded-* headers; this should be documented in the
programming and operations guides.

e Ensure that frameworks that can embed Jetty, such as Spring Boot, recommend and
use the most up-to-date Jetty release version so that “second-degree” Jetty users can
also benefit from security-related fixes.

e Check that all implementations and uses of the Serializable interface in Jetty
both properly sanitize input prior to deserialization operations and override the
ObjectInputStream#resolveClass() method to prevent arbitrary class
deserialization in all Jetty modes of operation.

e Ensure that Jetty's default functionality for parsing headers, cookies, and request
bodies received over HTTP/1.1, HTTP/2, and WebSocket is consistent with Spring
Boot's functionality, as a common use case for Jetty is as the servlet container
embedded within a Spring Boot deployment.

o

When Jetty is configured as the Spring Boot servlet container, prevent users
from applying parsing functionality in Jetty that is not consistent with that of
Spring Boot (which could result in unexpected/exploitable server-layer
behavior inconsistencies).

If Spring Boot's default parsing behavior differs substantially from Jetty’s
preferred set of secure defaults, implement a Jetty “Spring Boot compliance
mode” and make it the default for users configuring Jetty as a Spring Boot
servlet container.

e Consider providing a default Jetty SBOM that Jetty deployers and administrators can
add to as needed, and consider signing Jetty artifacts for later verification. Refer to
the following resources for more information:

o

Trail of Bits
PUBLIC

GitHub Actions: SBOM generation and usage documentation
GitLab: Ultimate guide to SBOMs

Project Sigstore, a Linux Foundation project (that Trail of Bits participates in),
which maintains tooling for signing software artifacts and Git commits, as
well as verification tooling that Maven Central endorses as an upcoming
integration alternative to PGP

m Sigstore blog post on using Sigstore in Java environments

m Sigstore Maven plugin

28 OSTIF Eclipse: Jetty Security Assessment

https://www.eclipse.org/jetty/javadoc/jetty-12/org/eclipse/jetty/server/ForwardedRequestCustomizer.html#setForwardedOnly(boolean)
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html#java
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html#java
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/using-the-dependency-submission-api#generating-and-submitting-a-software-bill-of-materials-sbom
https://about.gitlab.com/blog/2022/10/25/the-ultimate-guide-to-sboms/
https://docs.sigstore.dev/
https://blog.trailofbits.com/2022/11/08/sigstore-code-signing-verification-software-supply-chain/
https://central.sonatype.org/news/20220310_sigstore/
https://central.sonatype.org/news/20220310_sigstore/
https://blog.sigstore.dev/towards-easier-more-secure-signature-technology-for-the-java-ecosystem-with-sigstore-60d6a02490a8/
https://github.com/sigstore/sigstore-maven

e When remediating a CVE or other security vulnerability, do not rely on purposefully
generic commit messages or vague PR discussions to try to hide code differences
that patch an exploit, as they will still be findable via tools such as static analyzers
and runtime data flow taint analyzers.

e Consider crawling the links between Eclipse Jetty documentation sections to ensure
they are still valid. Some links to specific sections of the documentation simply
redirect to the Eclipse homepage or point to unavailable prior web locations for the
documentation.

e Finish the following security-related sections in the programming guide that are
incomplete and marked as “TODO.” Once complete, these sections will help ensure
that users can set up secure Jetty instances:

o The “Securing HTTP Server Applications” section

m Evenifitincludes only simple recommendations for common web
application security issues, this section could be a valuable resource
for developers writing applications served via Jetty or incorporating
Jetty components.

m Use OWASP Top 10 and CWE Top 25 as a basis for the
recommendations included in this section, or direct users to the CWE
list and the 2017 and 2020 OWASP Top 10 lists for further reference.

m Additionally, consider pointing users to Java-specific CWEs that
capture the reason(s) for each recommended configuration setting or
programming practice.

o The “HttpClient TLS TrustStore Configuration” section

o The “HttpClient TLS Client Certificates Configuration” section

Trail of Bits 29 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

https://www.eclipse.org/jetty/documentation/jetty-12/programming-guide/index.html#pg-server-http-security
https://owasp.org/www-project-top-ten/
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://www.eclipse.org/jetty/documentation/jetty-12/programming-guide/index.html#pg-client-http-configuration-tls-truststore
https://www.eclipse.org/jetty/documentation/jetty-12/programming-guide/index.html#pg-client-http-configuration-tls-client-certs

Automated Testing

Trail of Bits uses automated techniques to extensively test the security properties of
software. We use both open-source static analysis and fuzzing utilities, along with tools
developed in house, to perform automated testing of source code and compiled software.

Tool Description

Semgrep An open-source static analysis tool for finding bugs and enforcing code
standards when editing or committing code and during build time

CodeQL A code analysis engine developed by GitHub to automate security checks
Cl Fuzz A fuzzing engine used to create fuzz tests for Java applications
Trail of Bits 30 OSTIF Eclipse: Jetty Security Assessment

PUBLIC

https://github.com/returntocorp/semgrep
https://codeql.github.com/
https://github.com/CodeIntelligenceTesting/cifuzz

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic The codebase contains several arithmetic-related issues Moderate
that create vulnerabilities, including the risk of an integer
overflow (TOB-JETTY-1), the use of incorrect integer types
(TOB-JETTY-6), and missing checks for negative input
values (TOB-JETTY-7, TOB-JETTY-10).

Auditing The default logging level produces logs of basic system Satisfactory
life cycle events, including server startup and application
deployment events, and the debug logs provide greater

detail.
Authentication / We identified no bugs or vulnerabilities in Jetty's Strong
Access Controls implementations of authentication protocols.
Complexity The codebase contains a significant amount of Satisfactory
Management indirection and multiple layers of abstraction, but these

design choices are a reasonable way to enable code
reuse and interoperation between disparate system
components.

Configuration The Java XML parser is not configured to disable Moderate
document type definitions when parsing Maven package
metadata (TOB-JETTY-19). Additionally, the code permits
some unsafe filesystem operations without checking for
symbolic links (TOB-JETTY-13).

Cryptography Jetty's lack of support for JDKs earlier than version 17 Moderate
and Key helps support good TLS configuration practices.
Management However, the QUIC implementation writes the SSL

certificate’s private key to the filesystem in a temporary
plaintext file while passing it through to the underlying
quiche library (TOB-JETTY-21).

Trail of Bits 31 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

Data Handling

Documentation

Low-Level
Manipulation

Maintenance

Memory Safety
and Error
Handling

Testing and
Verification

Trail of Bits
PUBLIC

There are multiple issues related to data parsing
(TOB-JETTY-2) and quoting (TOB-JETTY-3, TOB-JETTY-5);
the issue described in finding 3 could enable arbitrary
command execution in legacy systems.

Available documentation provides thorough coverage of
common use cases for system administrators and
programmers, as well as available configuration options.

The low-level packet parsing and memory buffer
management routines contain bugs that result in
exceptions when parsing malformed traffic
(TOB-JETTY-15) and possibly DoS due to excessive
resource consumption (TOB-JETTY-8).

Some of Jetty's test cases have not been updated to
match recent changes to Jetty Core (see the “Testing and
Verification” section below). There are also some
instances of code duplication (TOB-JETTY-22).

Some classes allocate buffers of excessive and incorrect
sizes (TOB-JETTY-8, TOB-JETTY-11), and the HTTP/2 server
fails to appropriately detect and handle errors as
required by RFC 9113 (TOB-JETTY-18).

Overall, tests appear to achieve reasonable coverage of
major system components. However, some tests are
outdated and have not been updated to account for
recent changes to class interfaces. Additionally, some
tests validate basic system functionality but do not cover
error conditions that must be handled in ways specified
by applicable standards.

Moderate

Strong

Moderate

Satisfactory

Moderate

Moderate

32 OSTIF Eclipse: Jetty Security Assessment

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title

1 Risk of integer overflow that could allow
HpackDecoder to exceed maxHeaderSize

2 Cookie parser accepts unmatched quotation
marks

3 Errant command quoting in CGI servlet

4 Symlink-allowed alias checker ignores protected
targets list

5 Missing check for malformed Unicode escape
sequences in QuotedStringTokenizer.unquote

6 WebSocket frame length represented with 32-bit
integer

7 WebSocket parser does not check for negative
payload lengths

8 WebSocket parser greedily allocates ByteBuffers
for large frames

9 Risk of integer overflow in HPACK's
NBitinteger.decode

10 MetaDataBuilder.checkSize accepts headers of
negative lengths

11 Insufficient space allocated when encoding
QPACK instructions and entries

Trail of Bits 33

PUBLIC

Type

Denial of Service

Error Reporting

Data Validation

Access Controls

Data Validation

Data Validation

Data Validation

Denial of Service

Data Validation

Denial of Service

Denial of Service

OSTIF Eclipse: Jetty Security Assessment

Severity

Medium

Informational

High

High

Low

High

Low

Medium

Informational

Medium

Low

12 LiteralNameEntrylnstruction incorrectly encodes
value length

13 Filelnitializer does not check for symlinks

14 Filelnitializer permits downloading files via
plaintext HTTP

15 NullPointerException thrown by FastCGlI parser on
invalid frame type

16 ~ Documentation does not specify that request
contents and other user data can be exposed in
debug logs

17 HttpStreamOverFCGI internally marks all requests
as plaintext HTTP

18 Excessively permissive and
non-standards-compliant error handling in
HTTP/2 implementation

19 XML external entities and entity expansion in
Maven package metadata parser

20 Use of deprecated AccessController class

21 QUIC server writes SSL private key to temporary
plaintext file

22 Repeated code between HPACK and QPACK

23 Various exceptions in HpackDecoder.decode and
QpackDecoder.decode

24 Incorrect QPACK encoding when multi-byte
characters are used

Trail of Bits 34

PUBLIC

Denial of Service

Data Validation

Data Exposure

Data Validation

Data Exposure

Data Validation

Data Validation

Data Validation

Code Quality

Cryptography

Code Quality

Denial of Service

Data Validation

OSTIF Eclipse: Jetty Security Assessment

Medium

High

High

Medium

Medium

High

Low

High

Informational

High

Informational

Informational

Medium

25 No limits on maximum capacity in QPACK decoder Denial of Service High

Trail of Bits 35 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

Detailed Findings

1. Risk of integer overflow that could allow HpackDecoder to exceed
maxHeaderSize

Severity: Medium Difficulty: High
Type: Denial of Service Finding ID: TOB-JETTY-1

Target: org.eclipse.jetty.http2.hpack.internal.MetaDataBuilder,
org.eclipse.jetty.http2.hpack.HpackDecoder

Description

An integer overflow could occur in the MetaDataBuilder.checkSize function, which
would allow HPACK header values to exceed their size limit.

MetaDataBuilder.checkSize determines whether a header name or value exceeds the
size limit and throws an exception if the limit is exceeded:

291 public void checkSize(int length, boolean huffman) throws SessionException
292 {

293 // Apply a huffman fudge factor

294 if (huffman)

295 length = (length * 4) / 3;

296 if ((_size + length) > _maxSize)

297 throw new HpackException.SessionException("Header too large %d > %d",
_size + length, _maxSize);

298 ¥

Figure 1.1: MetaDataBuilder.checkSize

However, when the value of 1ength is very large and huffman is true, the multiplication
of 1length by 4 in line 295 will overflow, and 1length will become negative. This will cause
the result of the sum of _size and length to be negative, and the check on line 296 will
not be triggered.

Exploit Scenario

An attacker repeatedly sends HTTP messages with the HPACK header exeoffffffffffo2.
Each time this header is decoded, the following occurs:

e HpackDecode.decode determines that a Huffman-coded value of length
805306494 needs to be decoded.

Trail of Bits 36 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http2/jetty-http2-hpack/src/main/java/org/eclipse/jetty/http2/hpack/internal/MetaDataBuilder.java#L291-L298

e MetaDataBuilder.checkSize approves this length.
e Huffman.decode allocates a 1.6 GB string array.

e Huffman.decode experiences a buffer overflow error, and the array is deallocated
the next time garbage collection happens. (Note that this deallocation can be
delayed by appending valid Huffman-coded characters to the end of the header.)

Depending on the timing of garbage collection, the number of threads, and the amount of
memory available on the server, this may cause the server to run out of memory.

Recommendations
Short term, have MetaDataBuilder.checkSize check that 1length is below a threshold
before performing the multiplication.

Long term, use fuzzing to check for similar errors; we found this issue by fuzzing
HpackDecode.

Trail of Bits 37 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

2. Cookie parser accepts unmatched quotation marks
Severity: Informational Difficulty: High
Type: Error Reporting Finding ID: TOB-JETTY-2

Target: org.eclipse.jetty.http.RFC6265CookieParser

Description

The RFC6265CookieParser.parseField function does not check for unmatched
quotation marks. For example, parseField(“\"” ") will execute without raising an
exception. This issue is unlikely to lead to any vulnerabilities, but it could lead to problems
if users or developers expect the function to accept only valid strings.

Recommendations
Short term, modify the function to check that the state at the end of the given string is not
IN_QUOTED_VALUE.

Long term, when using a state machine, ensure that the code always checks that the state
is valid before exiting.

Trail of Bits 38 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

3. Errant command quoting in CGl servlet
Severity: High Difficulty: High
Type: Data Validation Finding ID: TOB-JETTY-3

Target: org.eclipse. jetty.eel1@.servlets.CGI,
org.eclipse.jetty.ee9.servlets.CGI

Description

If a user sends a request to a CGl servlet for a binary with a space in its name, the servlet
will escape the command by wrapping it in quotation marks. This wrapped command, plus
an optional command prefix, will then be executed through a call to Runtime.exec. If the
original binary name provided by the user contains a quotation mark followed by a space,
the resulting command line will contain multiple tokens instead of one. For example, if a
request references a binary called file” name “here, the escaping algorithm will generate
the command line string “file” name “here”, which will invoke the binary named file,
not the one that the user requested.

if (execCmd.length() > @ & execCmd.charAt(8) '= '"' && execCmd.contains(" "))
execCmd = "\"" + execCmd + "\"";

Figure 3.1: CGI. java#L337-L338

Exploit Scenario

The cgi-bin directory contains a binary named exec and a subdirectory named exec”
commands, which contains a file called bin1. A user sends to the CGl servlet a request for
the filename exec” commands/bin1. This request passes the file existence check on lines
194 through 205 in CGI . java. The servlet adds quotation marks around this filename,
resulting in the command line string “exec” commands/bin1”. When this string is passed
to Runtime.exec, instead of executing the bin1 binary, the server executes the exec
binary with the argument commands/bin1”.

This behavior is incorrect and could bypass alias checks; it could also cause other
unintended behaviors if a command prefix is configured. Additionally, if the useFullPath
configuration setting is off, the command would not need to pass the existence check.
Without this setting, an attacker exploiting this issue would not have to rely on a binary and
subdirectory with similar names, and the attack could succeed on a much wider variety of
directory structures.

Trail of Bits 39 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-ee10/jetty-ee10-servlets/src/main/java/org/eclipse/jetty/ee10/servlets/CGI.java#L337-L338

Recommendations

Short term, update line 346 in CGI. java to replace the call to exec(String command,
String[] env, File dir) with a call to exec(String[] cmdarray, String[] env,
File dir) so that the quotation mark escaping algorithm does not create new tokens in
the command line string.

Long term, update the quotation mark escaping algorithm so that any unescaped
qguotation marks in the original name of the command are properly escaped, resulting in
one double-quoted token instead of multiple adjacent quoted strings. Additionally, the
expression execCmd.charAt(0) !'=""" on line 337 of CGI. java is intended to avoid
adding additional quotation marks to an already-quoted command string. If this check is
unnecessary, it should be removed. If it is necessary, it should be replaced by a more
robust check that accurately detects properly formatted double-quoted strings.

Trail of Bits 40 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

4. Symlink-allowed alias checker ignores protected targets list
Severity: High Difficulty: Medium
Type: Access Controls Finding ID: TOB-JETTY-4

Target: org.eclipse. jetty.server.SymlinkAllowedResourceAliasChecker

Description

The class SymlinkAllowedResourceAliasChecker is an alias checker that permits users
to access a symlink as long as the symlink is stored within an allowed directory. The
following comment appears on line 76 of this class:

// TODO: return !getContextHandler().isProtectedTarget(realURI.toString());

Figure 4.1: SymlinkAllowedResourceAliasChecker. java#L76

As this comment suggests, the alias checker does not yet enforce the context handler's
protected resource list. That is, if a symlink is contained in an allowed directory but points
to a target on the protected resource list, the alias checker will return a positive match.

During our review, we found that some other modules, but not all, independently enforce
the protected resource list and will decline to serve resources on the list even if the alias
checker returns a positive result. But the modules that do not independently enforce the
protected resource list could serve protected resources to attackers conducting symlink
attacks.

Exploit Scenario

An attacker induces the creation of a symlink (or a system administrator accidentally
creates one) in a web-accessible directory that points to a protected resource (e.g., a child
of WEB-INF). By requesting this symlink through a servlet that uses the
SymlinkAllowedResourceAliasChecker class, the attacker bypasses the protected
resource list and accesses the sensitive files.

Recommendations
Short term, implement the check referenced in the comment so that the alias checker
rejects symlinks that point to a protected resource or a child of a protected resource.

Long term, consider clarifying and documenting the responsibilities of different
components for enforcing protected resource lists. Consider implementing redundant
checks in multiple modules for purposes of layered security.

Trail of Bits 41 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-server/src/main/java/org/eclipse/jetty/server/SymlinkAllowedResourceAliasChecker.java#L76

5. Missing check for malformed Unicode escape sequences in
QuotedStringTokenizer.unquote

Severity: Low Difficulty: High
Type: Data Validation Finding ID: TOB-JETTY-5

Target: org.eclipse.jetty.util.QuotedStringTokenizer

Description

The QuotedStringTokenizer class's unquote method parses \u#### Unicode escape
sequences, but it does not first check that the escape sequence is properly formatted or
that the string is of a sufficient length:

case 'u':
b.append((char)(

(TypeUtil.convertHexDigit((byte)s.charAt(i++)) << 24) +
(TypeUtil.convertHexDigit((byte)s.charAt(i++)) << 16) +
(TypeUtil.convertHexDigit((byte)s.charAt(i++)) << 8) +

(TypeUtil.convertHexDigit((byte)s.charAt(i++)))

)

break;

Figure 5.1: QuotedStringTokenizer. java#L547-L555

Any calls to this function with an argument ending in an incomplete Unicode escape
sequence, such as “str\u@”, will cause the code to throw a
java.lang.NumberFormatException exception. The only known execution path that will
cause this method to be called with a parameter ending in an invalid Unicode escape
sequence is to induce the processing of an ETag Matches header by the
ResourceService class, which calls EtagUtils.matches, which calls
QuotedStringTokenizer.unquote.

Exploit Scenario

An attacker introduces a maliciously crafted ETag into a browser’s cache. Each subsequent
request for the affected resource causes a server-side exception, preventing the server
from producing a valid response so long as the cached ETag remains in place.

Recommendations
Short term, add a try-catch block around the affected code that drops malformed
escape sequences.

Trail of Bits 42 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-util/src/main/java/org/eclipse/jetty/util/QuotedStringTokenizer.java#L547-L555

Long term, implement a suitable workaround for lenient mode that passes the raw bytes of
the malformed escape sequence into the output.

Trail of Bits 43 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

6. WebSocket frame length represented with 32-bit integer
Severity: High Difficulty: Medium
Type: Data Validation Finding ID: TOB-JETTY-6

Target: org.eclipse.jetty.websocket.core.internal.Parser

Description
The WebSocket standard (RFC 6455) allows for frames with a size of up to 2* bytes.
However, the WebSocket parser represents the frame length with a 32-bit integer:

private int payloadLength;

// ...[snip]...
case PAYLOAD_LEN_BYTES:
{
byte b = buffer.get();
--cursor;
payloadLength |= (b & OxFF) << (8 * cursor);
// ...[snip]...

Figure 6.1: Parser. java, lines 57 and 147-151

As a result, this parsing algorithm will incorrectly parse some length fields as negative
integers, causing a java.lang.IllegalArgumentException exception to be thrown
when the parser tries to set the limit of a Buffer object to a negative number (refer to
TOB-JETTY-7). Consequently, Jetty's WebSocket implementation cannot properly process
frames with certain lengths that are compliant with RFC 6455.

Even if no exception results, this logic error will cause the parser to incorrectly identify the
sizes of WebSocket frames and the boundaries between them. If the server passes these
frames to another WebSocket connection, this bug could enable attacks similar to HTTP
request smuggling, resulting in bypasses of security controls.

Exploit Scenario

A Jetty WebSocket server is deployed in a reverse proxy configuration in which both Jetty
and another web server parse the same stream of WebSocket frames. An attacker sends a
frame with a length that the Jetty parser incorrectly truncates to a 32-bit integer. Jetty and
the other server interpret the frames differently, which causes errors in the
implementation of security controls, such as WAF filters.

Trail of Bits 44 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

https://www.rfc-editor.org/rfc/rfc6455#section-5.2
https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-websocket/jetty-websocket-core-common/src/main/java/org/eclipse/jetty/websocket/core/internal/Parser.java#L147-L151

Recommendations
Short term, change the payloadLength variable to use the 1long data type instead of an

int.

Long term, audit all arithmetic operations performed on this payloadLength variable to
ensure that it is always used as an unsigned integer instead of a signed one. The standard
library's Integer class can provide this functionality.

Trail of Bits 45 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

7. WebSocket parser does not check for negative payload lengths
Severity: Low Difficulty: Low
Type: Data Validation Finding ID: TOB-JETTY-7

Target: org.eclipse.jetty.websocket.core.internal.Parser

Description

The WebSocket parser's checkFrameSize method checks for payload lengths that exceed
the current configuration’s maximum, but it does not check for payload lengths that are
lower than zero. If the payload length is lower than zero, the code will throw an exception
when the payload length is passed to a call to buffer.limit.

Exploit Scenario

An attacker sends a WebSocket payload with a length field that parses to a negative signed
integer (refer to TOB-JETTY-6). This payload causes an exception to be thrown and possibly
the server process to crash.

Recommendations

Short term, update checkFrameSize to throw an
org.eclipse.jetty.websocket.core.exception.ProtocolException exception if
the frame’s length field is less than zero.

Trail of Bits 46 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

8. WebSocket parser greedily allocates ByteBuffers for large frames
Severity: Medium Difficulty: Low
Type: Denial of Service Finding ID: TOB-JETTY-8

Target: org.eclipse.jetty.websocket.core.internal.Parser

Description

When the WebSocket parser receives a partial frame in a ByteBuffer object and
auto-fragmenting is disabled, the parser allocates a buffer of a size sufficient to store the
entire frame at once:

if (aggregate == null)
{
if (available < payloadLength)

{
// not enough to complete this frame
// Can we auto-fragment
if (configuration.isAutoFragment() && isDataFrame)
return autoFragment(buffer, available);

// No space in the buffer, so we have to copy the partial payload
aggregate = bufferPool.acquire(payloadlLength, false);
BufferUtil.append(aggregate.getByteBuffer(), buffer);

return null;

}
//...[snip]...

Figure 8.1: Parser. java, lines 323-336

An attacker could send a WebSocket frame with a large payload length field, causing the
server to allocate a buffer of a size equal to the specified payload length, without ever
sending the entire frame contents. Therefore, an attacker can induce the consumption of
gigabytes (or potentially exabytes; refer to TOB-JETTY-6) of memory by sending only
hundreds or thousands of bytes over the wire.

Exploit Scenario

An attacker crafts a malicious WebSocket frame with a large payload length field but
incomplete payload contents. The server then allocates a buffer of a size equal to the
payload length field, causing an excessive consumption of RAM. To ensure that the
connection is not promptly dropped, the attacker continues sending parts of this payload a
few seconds apart, conducting a slow HTTP attack.

Trail of Bits 47 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-websocket/jetty-websocket-core-common/src/main/java/org/eclipse/jetty/websocket/core/internal/Parser.java#L323-L336

Recommendations
Short term, ensure that the default maximum payload size remains at a low value that is
sufficient for most purposes (such as the current default of 64 KB).

Long term, to better support large WebSocket frames, update the use of ByteBuffer
objects in the WebSocket parser so that the parser does not allocate the entire buffer as
soon as it parses the first fragment. Instead, the buffer should be expanded in relatively
small increments (e.g., 10 MB or 100 MB at a time) and then written to only once the data
sent by the client exceeds the length of the current buffer. That way, in order to induce the
consumption of a large amount of RAM, an attacker would need to send a commensurate
number of bytes over the wire.

Trail of Bits 48 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

9. Risk of integer overflow in HPACK's NBitinteger.decode
Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-JETTY-9

Target: org.eclipse.jetty.http2.hpack.internal .NBitInteger

Description

The static function NBitInteger .decode is used to decode bytestrings in HPACK's integer
format. It should return only positive integers since HPACK's integer format is not intended
to support negative numbers. However, the following loop in NBitInteger .decode is
susceptible to integer overflows in its multiplication and addition operations:

public static int decode(ByteBuffer buffer, int n)

{
if (n == 8)
{
}
int nbits = OxFF >>> (8 - n);
int i = buffer.get(buffer.position() - 1) & nbits;
if (i == nbits)
{
intm=1;
int b;
do
{
b = oxff & buffer.get();
i=1i+ (b & 127) * m;
m=m* 128;
}
while ((b & 128) == 128);
}
return i;
}

Figure 9.1: NBitInteger. java, lines 105-145
For example, NBitInteger.decode(OxFF8080OFFFFOF, 7) returns -16257.

Any overflow that occurs in the function would not be a problem on its own since, in
general, the output of this function ought to be validated before it is used; however, when
coupled with other issues (refer to TOB-JETTY-10), an overflow can cause vulnerabilities.

Trail of Bits 49 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http2/jetty-http2-hpack/src/main/java/org/eclipse/jetty/http2/hpack/internal/NBitInteger.java#L105-L145

Recommendations
Short term, modify NBitInteger.decode to check that its result is nonnegative before

returning it.

Long term, consider merging the QPACK and HPACK implementations for NBitInteger,
since they perform the same functionality; the QPACK implementation of NBitInteger
checks for overflows.

Trail of Bits 50 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

10. MetaDataBuilder.checkSize accepts headers of negative lengths
Severity: Medium Difficulty: High
Type: Denial of Service Finding ID: TOB-JETTY-10

Target: org.eclipse.jetty.http2.hpack.internal.MetaDataBuilder

Description

The MetaDataBuilder.checkSize function accepts user-entered HPACK header values
of negative sizes, which could cause a very large buffer to be allocated later when the
user-entered size is multiplied by 2.

MetaDataBuilder.checkSize determines whether a header name or value exceeds the
size limit and throws an exception if the limit is exceeded:

public void checkSize(int length, boolean huffman) throws SessionException

{
// Apply a huffman fudge factor

if (huffman)
length = (length * 4) / 3;
if ((_size + length) > _maxSize)
throw new HpackException.SessionException("Header too large %d > %d", _size
+ length, _maxSize);

}
Figure 10.1: MetaDataBuilder. java, lines 291-298

However, it does not throw an exception if the size is negative.

Later, the Huffman . decode function multiplies the user-entered length by 2 before
allocating a buffer:

public static String decode(ByteBuffer buffer, int length) throws
HpackException.CompressionException

{
Utf8StringBuilder utf8 = new Utf8StringBuilder(length * 2);

/...
Figure 10.2: Huffman. java, lines 357-359

This means that if a user provides a negative length value (or, more precisely, a length
value that becomes negative when multiplied by the 4/3 fudge factor), and this length value
becomes a very large positive number when multiplied by 2, then the user can cause a very
large buffer to be allocated on the server.

Trail of Bits 51 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http2/jetty-http2-hpack/src/main/java/org/eclipse/jetty/http2/hpack/internal/MetaDataBuilder.java#L291-L298
https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http2/jetty-http2-hpack/src/main/java/org/eclipse/jetty/http2/hpack/internal/Huffman.java#L357-L359

Exploit Scenario
An attacker repeatedly sends HTTP messages with the HPACK header 6x00ff8080ffffab.
Each time this header is decoded, the following occurs:

e HpackDecode.decode determines that a Huffman-coded value of length
-1073758081 needs to be decoded.

e MetaDataBuilder.checkSize approves this length.

e The number is multiplied by 2, resulting in 2147451134, and Huffman.decode
allocates a 2.1 GB string array.

e Huffman.decode experiences a buffer overflow error, and the array is deallocated
the next time garbage collection happens. (Note that this deallocation can be
delayed by adding valid Huffman-coded characters to the end of the header.)

Depending on the timing of garbage collection, the number of threads, and the amount of
memory available on the server, this may cause the server to run out of memory.

Recommendations
Short term, have MetaDataBuilder.checkSize check that the given length is positive
directly before adding it to _size and comparing it with _maxSize.

Long term, add checks for integer overflows in Huffman.decode and in
NBitInteger .decode (refer to TOB-JETTY-9) for added redundancy.

Trail of Bits 52 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

11. Insufficient space allocated when encoding QPACK instructions and
entries

Severity: Low Difficulty: High
Type: Denial of Service Finding ID: TOB-JETTY-11
Target:
e org.eclipse.jetty.http3.qpack.internal.instruction.IndexedName
EntryInstruction
e org.eclipse.jetty.http3.qpack.internal.instruction.LiteralName
EntryInstruction
e org.eclipse.jetty.http3.qgpack.internal.instruction.EncodableEn
try
Description

Multiple expressions do not allocate enough buffer space when encoding QPACK
instructions and entries, which could result in a buffer overflow exception.

In IndexedNameEntry, the following expression determines how much space to allocate
when encoding the instruction:

int size = NBitIntegerEncoder.octetsNeeded(6, _index) + (_huffman ?
HuffmanEncoder.octetsNeeded(_value) : _value.length()) + 2;

Figure 11.1: IndexedNameEntry. java, line 58

Later, the following two lines encode the value size for Huffman-coded and
non-Huffman-coded strings, respectively:

NBitIntegerEncoder.encode(byteBuffer, 7, HuffmanEncoder.octetsNeeded(_value));
/...
NBitIntegerEncoder.encode(byteBuffer, 7, _value.length());

Figure 11.2: IndexedNameEntry. java, lines 71 and 77
These encodings can take up more than 1 byte if the value’s length is over 126 because the
number will fill up the 7 bits given to it in the first byte. However, the int size expression

in figure 11.1 assumes that it will take up only 1 byte. Thus, if the value’s length is over 126,
too few bytes may be allocated for the instruction, causing a buffer overflow.

The same problem occurs in LiteralNameEntryInstruction:

Trail of Bits 53 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http3/jetty-http3-qpack/src/main/java/org/eclipse/jetty/http3/qpack/internal/instruction/IndexedNameEntryInstruction.java#L58
https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http3/jetty-http3-qpack/src/main/java/org/eclipse/jetty/http3/qpack/internal/instruction/IndexedNameEntryInstruction.java

int size = (_huffmanName ? HuffmanEncoder.octetsNeeded(_name) : _name.length()

0) +
(_huffmanvValue ? HuffmanEncoder.octetsNeeded(_value) : _value.length()) + 2;

Figure 11.3: LiteralNameEntryInstruction. java, lines 59-60

This expression assumes that the name's length will fit into 5 bits and that the value’s
length will fit into 7 bits. If the name’s length is over 30 bytes or the value’s length is over
126 bytes, these assumptions will be false and too little space may be allocated for the
instruction, which could cause a buffer overflow.

A similar problem occurs in EncodableEntry.ReferencedNameEntry. The
getRequiredSize method in this file calculates how much space should be allocated for
its encoding:

public int getRequiredSize(int base)

{
String value = getValue();
int relativeIndex = _nameEntry.getIndex() - base;
int valueLength = _huffman ? HuffmanEncoder.octetsNeeded(value)

value.length();

return 1 + NBitIntegerEncoder.octetsNeeded(4, relativeIndex) + 1 +
NBitIntegerEncoder.octetsNeeded(7, valuelLength) + valuelLength;
}

Figure 11.4: EncodableEntry. java, lines 181-187

The method returns the wrong size if the value is longer than 126 bytes. Additionally, it
assumes that the name will use a post-base reference rather than a normal one, which may
be incorrect.

An additional problem is present in this method. It assumes that value’s length in bytes
will be returned by value.length(). However, value.length() measures the number
of characters in value, not the number of bytes, so if value contains multibyte characters
(e.g., UTF-8), too few bytes will be allocated. The length of value should be calculated by
using value.getBytes() instead of value.length().

The getRequiredSize method in EncodableEntry.LiteralEntry also incorrectly uses
value.length():

public int getRequiredSize(int base)
{
String name = getName();
String value = getValue();
int nameLength = _huffman ? HuffmanEncoder.octetsNeeded(name) : name.length();
int valueLength = _huffman ? HuffmanEncoder.octetsNeeded(value)
value.length();
return 2 + NBitIntegerEncoder.octetsNeeded(3, nameLength) + namelLength +
NBitIntegerEncoder.octetsNeeded(7, valuelLength) + valuelLength;

Trail of Bits 54 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http3/jetty-http3-qpack/src/main/java/org/eclipse/jetty/http3/qpack/internal/instruction/LiteralNameEntryInstruction.java#L59-L60
https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http3/jetty-http3-qpack/src/main/java/org/eclipse/jetty/http3/qpack/internal/EncodableEntry.java#L181-L187

Figure 11.5: EncodableEntry. java, lines 243-250

Note that name . length() is used to measure the byte length of name, and
value.length() is used to measure the byte length of value.

Jetty’s HTTP/3 code is still considered experimental, so this issue should not affect
production code, but it should be fixed before announcing HTTP/3 support to be
production-ready.

Recommendations
Short term, change the relevant expressions to account for the extra length.

Long term, build out additional test cases for QPACK and other parsers used in HTTP/3 to
test for the correct handling of edge cases and identify memory handling exceptions.

Trail of Bits 55 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http3/jetty-http3-qpack/src/main/java/org/eclipse/jetty/http3/qpack/internal/EncodableEntry.java#L243-L250

12. LiteralNameEntrylnstruction incorrectly encodes value length

Severity: Medium Difficulty: Medium
Type: Denial of Service Finding ID: TOB-JETTY-12
Target:

org.eclipse.jetty.http3.qgpack.internal.instruction.LiteralNameEntryI
nstruction

Description

QPACK instructions for inserting entries with literal names and non-Huffman-coded values
will be encoded incorrectly when the value’s length is over 30, which could cause values to
be sent incorrectly or errors to occur during decoding.

The following snippet of the LiteralNameEntryInstruction.encode functionis
responsible for encoding the header value:

78 if (_huffmanValue)

79 {

80 byteBuffer.put((byte)(0x80));

81 NBitIntegerEncoder.encode(byteBuffer, 7,
HuffmanEncoder.octetsNeeded(_value));

82 HuffmanEncoder.encode(byteBuffer, _value);
83 }

84 else

85 {

86 byteBuffer.put((byte) (0x00));

87 NBitIntegerEncoder.encode(byteBuffer, 5, _value.length());
88 byteBuffer.put(_value.getBytes());

89 }

Figure 12.1: LiteralNameEntryInstruction. java, lines 78-89

On line 87, 5 is the second parameter to NBitIntegerEncoder.encode, indicating that
the number will take up 5 bits in the first encoded byte; however, the second parameter
should be 7 instead. This means that when _value.length() is over 30, it will be
incorrectly encoded.

Jetty’s HTTP/3 code is still considered experimental, so this issue should not affect
production code, but it should be fixed before announcing HTTP/3 support to be
production-ready.

Trail of Bits 56 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http3/jetty-http3-qpack/src/main/java/org/eclipse/jetty/http3/qpack/internal/instruction/LiteralNameEntryInstruction.java#L78-L89

Recommendations
Short term, change the second parameter of the NBitIntegerEncoder.encode function

from 5 to 7 in order to reflect that the number will take up 7 bits.

Long term, write more tests to catch similar encoding/decoding problems.

Trail of Bits 57 OSTIF Eclipse: Jetty Security Assessment

PUBLIC

13. Filelnitializer does not check for symlinks
Severity: High Difficulty: High
Type: Data Validation Finding ID: TOB-JETTY-13

Target: org.eclipse.jetty.start.FileInitializer

Description

Module configuration files can direct Jetty to download a remote file and save it in the local
filesystem while initializing the module. During this process, the FileInitializer class
validates the destination path and throws an IOException exception if the destination is
outside the ${jetty.base} directory. However, this validation routine does not check for
symlinks:

// now on copy/download paths (be safe above all else)

if (destination !'= null && !destination.startsWith(_basehome.getBasePath()))
throw new IOException("For security reasons, Jetty start is unable to process

file resource not in ${jetty.base} - " + location);

Figure 13.1: FileInitializer. java, lines 112-114

None of the subclasses of FileInitializer check for symlinks either. Thus, if the
${jetty.base} directory contains a symlink, a file path in a module’s .ini file beginning
with the symlink name will pass the validation check, and the file will be written to a
subdirectory of the symlink’s destination.

Exploit Scenario

A system’'s S${jetty.base} directory contains a symlink called dir, which points to /etc.
The system administrator enables a Jetty module whose .ini file contains a [files] entry
that downloads a remote file and writes it to the relative path dir/config.conf. The
filesystem follows the symlink and writes a new configuration file to /etc/config.conf,
which impacts the server's system configuration. Additionally, since the FileInitializer
class uses the REPLACE_EXISTING flag, this behavior overwrites an existing system
configuration file.

Recommendations

Short term, rewrite all path checks in FileInitializer and its subclasses to include a call
to the Path. toRealPath function, which, by default, will resolve symlinks and produce the
real filesystem path pointed to by the Path object. If this real path is outside
S{jetty.base}, the file write operation should fail.

Trail of Bits 58 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-start/src/main/java/org/eclipse/jetty/start/FileInitializer.java#L112-L114

Long term, consolidate all filesystem operations involving the ${jetty.base} or
S${jetty.home} directories into a single centralized class that automatically performs
symlink resolution and rejects operations that attempt to read from or write to an
unauthorized directory. This class should catch and handle the IOException exception
that is thrown in the event of a link loop or a large number of nested symlinks.

Trail of Bits 59 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

14. Filelnitializer permits downloading files via plaintext HTTP
Severity: High Difficulty: High
Type: Data Exposure Finding ID: TOB-JETTY-14

Target: org.eclipse.jetty.start.FileInitializer

Description

Module configuration files can direct Jetty to download a remote file and save it in the local
filesystem while initializing the module. If the specified URL is a plaintext HTTP URL, Jetty
does not raise an error or warn the user. Transmitting files over plaintext HTTP is
intrinsically unsecure and exposes sensitive data to tampering and eavesdropping in
transit.

Exploit Scenario

A system administrator enables a Jetty module that downloads a remote file over plaintext
HTTP during initialization. An attacker with a network intermediary position sniffs the traffic
and infers sensitive information about the design and configuration of the Jetty system
under configuration. Alternatively, the attacker actively tampers with the file during
transmission from the remote server to the Jetty installation, which enables the attacker to
alter the module’s behavior and launch other attacks against the targeted system.

Recommendations

Short term, add a check to the FileInitializer class and its subclasses to prohibit
downloads over plaintext HTTP. Additionally, add a validation check to the module .ini file
parser to reject any configuration that includes a plaintext HTTP URL in the [files]
section.

Long term, consolidate all remote file downloads conducted during module configuration
operations into a single centralized class that automatically rejects plaintext HTTP URLs.

If current use cases require support of plaintext HTTP URLs, then at a minimum, have Jetty
display a prominent warning message and prompt the user for manual confirmation
before performing the unencrypted download.

Trail of Bits 60 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

15. NullPointerException thrown by FastCGl parser on invalid frame type
Severity: Medium Difficulty: Low
Type: Data Validation Finding ID: TOB-JETTY-15

Target: org.eclipse.jetty.fcgi.parser.Parser

Description

Because of a missing null check, the Jetty FastCGl client's Parser class throws a
NullPointerException exception when parsing a frame with an invalid frame type field.
This exception occurs because the findContentParser function returns null when it
does not have a ContentParser object matching the specified frame type, and the caller
never checks the findContentParser return value for null before dereferencing it.

case CONTENT:

{
ContentParser contentParser = findContentParser(headerParser.getFrameType());
if (headerParser.getContentLength() == 0)
{
padding = headerParser.getPaddinglLength();
state = State.PADDING;
if (contentParser.noContent())
return true;
}
else
{
ContentParser.Result result = contentParser.parse(buffer);
// ...[snip]...
}
break;
}

Figure 15.1: Parser. java, lines 82-114

Exploit Scenario

An attacker operates a malicious web server that supports FastCGlI. A Jetty application
communicates with this server by using Jetty’s built-in FastCGI client. The remote server
transmits a frame with an invalid frame type, causing a NullPointerException exception
and a crash in the Jetty application.

Recommendations
Short term, add a null check to the parse function to abort the parsing process before
dereferencing a null return value from findContentParser. If a null value is detected,

Trail of Bits 61 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-fcgi/jetty-fcgi-client/src/main/java/org/eclipse/jetty/fcgi/parser/Parser.java#L82-L114

parse should throw an appropriate exception, such as I1legalStateException, that
Jetty can catch and handle safely.

Long term, build out a larger suite of test cases that ensures graceful handling of
malformed traffic and data.

Trail of Bits 62 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

16. Documentation does not specify that request contents and other user
data can be exposed in debug logs

Severity: Medium Difficulty: High
Type: Data Exposure Finding ID: TOB-JETTY-16

Target: Jetty 12 Operations Guide; numerous locations throughout the codebase

Description

Over 100 times, the system calls LOG.debug with a parameter of the format
BufferUtil.toDetailString(buffer), which outputs up to 56 bytes of the buffer into
the log file. Jetty's implementations of various protocols and encodings, including GZIP,
WebSocket, multipart encoding, and HTTP/2, output user data received over the network to
the debug log using this type of call.

An example instance from Jetty’s WebSocket implementation appears in figure 16.1.

public Frame.Parsed parse(ByteBuffer buffer) throws WebSocketException

{
try
{
// parse through
while (buffer.hasRemaining())

{
if (LOG.isDebugEnabled())
LOG.debug("{} Parsing {}", this, BufferUtil.toDetailString(buffer));
// ...[snip]...
}
// ...[snip]...
}
// ...[snip]...

Figure 16.1: Parser. java, lines 88-96

Although the Jetty 12 Operations Guide does state that Jetty debugging logs can quickly
consume massive amounts of disk space, it does not advise system administrators that the
logs can contain sensitive user data, such as personally identifiable information. Thus, the
possibility of raw traffic being captured from debug logs is undocumented.

Exploit Scenario

A Jetty system administrator turns on debug logging in a production environment. During
the normal course of operation, a user sends traffic containing sensitive information, such
as personally identifiable information or financial data, and this data is recorded to the

Trail of Bits 63 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-websocket/jetty-websocket-core-common/src/main/java/org/eclipse/jetty/websocket/core/internal/Parser.java#L88-L96

debug log. An attacker who gains access to this log can then read the user data,
compromising data confidentiality and the user’s privacy rights.

Recommendations
Short term, update the Jetty Operations Guide to state that in addition to being extremely
large, debug logs can contain sensitive user data and should be treated as sensitive.

Long term, consider moving all debugging messages that contain buffer excerpts into a
high-detail debug log that is enabled only for debug builds of the application.

Trail of Bits 64 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

17. HttpStreamOverFCGI internally marks all requests as plaintext HTTP
Severity: High Difficulty: High
Type: Data Validation Finding ID: TOB-JETTY-17

Target: org.eclipse. jetty.fcgi.server.internal.HttpStreamOverFCGI

Description

The HttpStreamOverFCGI class processes FastCGl messages in a format that can be
processed by other system components that use the HttpStream interface. This class's
onHeaders callback mistakenly marks each MetaData.Request object as a plaintext HTTP
request, as the “TODO” comment shown in figure 17.1 indicates:

public void onHeaders()

{

String pathQuery = URIUtil.addPathQuery(_path, _query);

// TODO https?

MetaData.Request request = new MetaData.Request(_method,
HttpScheme .HTTP.asString(), hostPort, pathQuery, HttpVersion.fromString(_version),
_headers, Long.MIN_VALUE);

// ...[snip]...

}
Figure 17.1: HttpStreamOverFCGI. java, lines 108-119

In some configurations, other Jetty components could misinterpret a message received
over FCGI as a plaintext HTTP message, which could cause a request to be incorrectly
rejected, redirected in an infinite loop, or forwarded to another system over a plaintext
HTTP channel instead of HTTPS.

Exploit Scenario

A Jetty instance runs an FCGI server and uses the HttpStream interface to process
messages. The MetaData.Request class’'s getURI method is used to check the incoming
request’s URI. This method mistakenly returns a plaintext HTTP URL due to the bug in
HttpStreamOverFCGI. java. One of the following takes place during the processing of
this request:

e An application-level security control checks the incoming request’'s URI to ensure it
was received over a TLS-encrypted channel. Since this check fails, the application
rejects the request and refuses to process it, causing a denial of service.

e An application-level security control checks the incoming request’s URI to ensure it
was received over a TLS-encrypted channel. Since this check fails, the application

Trail of Bits 65 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-fcgi/jetty-fcgi-server/src/main/java/org/eclipse/jetty/fcgi/server/internal/HttpStreamOverFCGI.java#L108-L119

attempts to redirect the user to a suitable HTTPS URL. The check fails on this
redirected request as well, causing an infinite redirect loop and a denial of service.

e An application processing FCGI messages acts as a proxy, forwarding certain
requests to a third HTTP server. It uses MetaData.Request.getURI to check the
request’s original URI and mistakenly sends a request over plaintext HTTP.

Recommendations
Short term, correct the bug in HttpStreamOverFCGI. java to generate the correct URI for
the incoming request.

Long term, consider streamlining the HTTP implementation to minimize the need for
different classes to generate URIs from request data.

Trail of Bits 66 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

18. Excessively permissive and non-standards-compliant error handling in
HTTP/2 implementation

Severity: Low Difficulty: High
Type: Data Validation Finding ID: TOB-JETTY-18

Target: The org.eclipse.jetty.http2.parser and
org.eclipse.jetty.http2.parser packages

Description

Jetty’s HTTP/2 implementation violates RFC 9113 in that it fails to terminate a connection
with an appropriate error code when the remote peer sends a frame with one of the
following protocol violations:

e A SETTINGS frame with the ACK flag set and a nonzero payload length
e A PUSH_PROMISE frame in a stream with push disabled
e A GOAWAY frame with its stream ID not set to zero

None of these situations creates an exploitable vulnerability. However, noncompliant
protocol implementations can create compatibility problems and could cause
vulnerabilities when deployed in combination with other misconfigured systems.

Exploit Scenario

A Jetty instance connects to an HTTP/2 server, or serves a connection from an HTTP/2
client, and the remote peer sends traffic that should cause Jetty to terminate the
connection. Instead, Jetty keeps the connection alive, in violation of RFC 9113. If the remote
peer is programmed to handle the noncompliant traffic differently than Jetty, further
problems could result, as the two implementations interpret protocol messages differently.

Recommendations
Short term, update the HTTP/2 implementation to check for the following error conditions
and terminate the connection with an error code that complies with RFC 9113:

e A peerreceives a SETTINGS frame with the ACK flag set and a payload length
greater than zero.

e Aclient receives a PUSH_PROMISE frame after having sent, and received an
acknowledgement for, a SETTINGS frame with SETTINGS_ENABLE_PUSH equal to
zero.

Trail of Bits 67 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

e A peerreceives a GOAWAY frame with the stream identifier field not set to zero.

Long term, audit Jetty's implementation of HTTP/2 and other protocols to ensure that Jetty
handles errors in a standards-compliant manner and terminates connections as required
by the applicable specifications.

Trail of Bits 68 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

19. XML external entities and entity expansion in Maven package metadata
parser

Severity: High Difficulty: High
Type: Data Validation Finding ID: TOB-JETTY-19

Target: org.eclipse. jetty.start.fileinits.MavenMetadata

Description

During module initialization, the MavenMetadata class parses maven-metadata.xml files
when the module configuration includes amaven:// URlinits [files] section. The
DocumentBuilderFactory class is used with its default settings, meaning that document
type definitions (DTD) are allowed and are applied. This behavior leaves the
MavenMetadata class vulnerable to XML external entity (XXE) and XML entity expansion
(XEE) attacks. These vulnerabilities could enable a variety of exploits, including server-side
request forgery on the server's local network and arbitrary file reads from the server's
filesystem.

Exploit Scenario

An attacker causes a Jetty installation to parse a maliciously crafted maven-metadata.xml
file, such as by uploading a malicious package to a Maven repository, inducing an
out-of-band download of the malicious package through social engineering, or by placing
the maven-metadata.xml file on the server’s filesystem through other means. When the
XML file is parsed, the XML-based attack is launched. The attacker could leverage this
vector to do any of the following;:

e Induce HTTP requests to servers on the server’s local network
e Read and exfiltrate arbitrary files on the server's filesystem
e Consume excessive system resources with an XEE, causing a denial of service

Recommendations

Short term, disable parsing of DTDs in MavenMetadata so that maven-metadata.xml files
cannot be used as a vector for XML-based attacks. Disabling DTDs may require knowledge
of the underlying XML parser implementation returned by the DocumentBuilderFactory
class.

Long term, review default configurations and attributes supported by XML parsers that
may be returned by the DocumentBuilderFactory to ensure that DTDs are properly
disabled.

Trail of Bits 69 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

20. Use of deprecated AccessController class

Severity: Informational Difficulty: N/A
Type: Code Quality Finding ID: TOB-JETTY-20
Target:

e org.eclipse.jetty.logging.JettylLoggerConfiguration
org.eclipse.jetty.util.MemoryUtils
org.eclipse.jetty.util.TypeUtil
org.eclipse.jetty.util.thread.PrivilegedThreadFactory
org.eclipse.jetty.eel0.servlet.ServletContextHandler
org.eclipse.jetty.ee9.nested.ContextHandler

Description

The classes listed in the “Target” cell above use the java.security.AccessController
class, which is a deprecated class slated to be removed in a future Java release. The
java.security library documentation states that the AccessController class “is only
useful in conjunction with the Security Manager,” which is also deprecated. Thus, the use of
AccessController no longer serves any beneficial purpose.

The use of this deprecated class could impact Jetty’s compatibility with future releases of
the Java SDK.

Recommendations
Short term, remove all uses of the AccessController class.

Long term, audit the Jetty codebase for the use of classes in the java.security package
that may not provide any value in Jetty 12, and remove all references to those classes.

Trail of Bits 70 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/security/AccessController.html#class-description

21. QUIC server writes SSL private key to temporary plaintext file
Severity: High Difficulty: High
Type: Cryptography Finding ID: TOB-JETTY-21

Target: org.eclipse.jetty.quic.server.QuicServerConnector

Description

Jetty's QUIC implementation uses quiche, a QUIC and HTTP/3 library maintained by
Cloudflare. When the server's SSL certificate is handed off to quiche, the private key is
extracted from the existing keystore and written to a temporary plaintext PEM file:

protected void doStart() throws Exception
{
// ...[snip]...
char[] keyStorePassword =
sslContextFactory.getKeyStorePassword().toCharArray();
String keyManagerPassword = sslContextFactory.getKeyManagerPassword();
SSLKeyPair keyPair = new SSLKeyPair(
sslContextFactory.getKeyStoreResource().getPath()
sslContextFactory.getKeyStoreType(),
keyStorePassword,
alias,
keyManagerPassword == null ? keyStorePassword :
keyManagerPassword.toCharArray()
);
File[] pemFiles = keyPair.export(new
File(System.getProperty("java.io.tmpdir")));
privateKeyFile = pemFiles[0];
certificateChainFile = pemFiles[1];

Figure 21.1: QuicServerConnector. java, lines 154-179

Storing the private key in this manner exposes it to increased risk of theft. Although the
QuicServerConnector class deletes the private key file upon stopping the server, this
deleted file may not be immediately removed from the physical storage medium, exposing
the file to potential theft by attackers who can access the raw bytes on the disk.

A review of quiche suggests that the library’s APl may not support reading a DES-encrypted
keyfile. If that is true, then remediating this issue would require updates to the underlying
quiche library.

Trail of Bits 71 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-quic/jetty-quic-server/src/main/java/org/eclipse/jetty/quic/server/QuicServerConnector.java#L154-L179

Exploit Scenario

An attacker gains read access to a Jetty HTTP/3 server's temporary directory while the
server is running. The attacker can retrieve the temporary keyfile and read the private key
without needing to obtain or guess the encryption key for the original keystore. With this
private key in hand, the attacker decrypts and tampers with all TLS communications that
use the associated certificate.

Recommendations

Short term, investigate the quiche library’s API to determine whether it can readily support
password-encrypted private keyfiles. If so, update Jetty to save the private key in a
temporary password-protected file and to forward that password to quiche. Alternatively, if
password-encrypted private keyfiles can be supported, have Jetty pass the unencrypted
private key directly to quiche as a function argument. Either option would obviate the need
to store the key in a plaintext file on the server’s filesystem.

If quiche does not support either of these changes, open an issue or pull request for quiche
to implement a fix for this issue.

Trail of Bits 72 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

22. Repeated code between HPACK and QPACK

Severity: Informational Difficulty: N/A
Type: Code Quality Finding ID: TOB-JETTY-22
Target:

e org.eclipse.jetty.http2.hpack.internal.NBitInteger
org.eclipse.jetty.http2.hpack.internal.Huffman
org.eclipse.jetty.http3.qgpack.internal.util.NBitIntegerParser
org.eclipse.jetty.http3.qgpack.internal.util.NBitIntegerEncode
org.eclipse.jetty.http3.qgpack.internal.util.HuffmanDecoder
org.eclipse.jetty.http3.qgpack.internal.util.HuffmanEncoder

Description

Classes for dealing with n-bit integers and Huffman coding are implemented both in the
jetty-http2-hpack andin jetty-http3-qpack libraries. These classes have very
similar functionality but are implemented in two different places, sometimes with identical
code and other times with different implementations. In some cases (TOB-JETTY-9), one
implementation has a bug that the other implementation does not have. The codebase
would be easier to maintain and keep secure if the implementations were merged.

Exploit Scenario

A vulnerability is found in the Huffman encoding implementation, which has identical code
in HPACK and QPACK. The vulnerability is fixed in one implementation but not the other,
leaving one of the implementations vulnerable.

Recommendations
Short term, merge the two implementations of n-bit integers and Huffman coding classes.

Long term, audit the Jetty codebase for other classes with very similar functionality.

Trail of Bits 73 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

23. Various exceptions in HpackDecoder.decode and QpackDecoder.decode
Severity: Informational Difficulty: N/A
Type: Denial of Service Finding ID: TOB-JETTY-23

Target: org.eclipse.jetty.http2.hpack.HpackDecoder,
org.eclipse.jetty.http3.qgpack.QpackDecoder

Description
The HpackDecoder and QpackDecoder classes both throw unexpected Java-level
exceptions:

e HpackDecoder .decode(0x083) throws BufferUnderflowException.

e HpackDecoder .decode(0x4800) throws NumberFormatException.

e HpackDecoder.decode(0x3fff 2e) throws I1legalArgumentException.

e HpackDecoder.decode(0x3fff 81ff ff2e) throws NullPointerException.

e HpackDecoder.decode(0xffff ffff f8ff ffff ffff ffff ffff ffff ffff
ffff ffff ffff 0202 0600) throws ArrayIndexOutOfBoundsException.

e QpackDecoder .decode(..., 8x81, ...) throws
IndexOutOfBoundsException.

e (QpackDecoder .decode(..., oxfff8 ffff f75b, ...) throws
ArithmeticException.

For both HPACK and QPACK, these exceptions appear to be caught higher up in the call
chain by catch (Throwable x) statements every time the decode functions are called.
However, catching them within decode and throwing a Jetty-level exception within the
catch statement would result in cleaner, more robust code.

Exploit Scenario

Jetty developers refactor the codebase, moving function calls around and introducing a
new point in the code where HpackDecoder .decode is called. Assuming that decode will
throw only org. jetty..errors, they forget to wrap this call in a catch (Throwable x)
statement. This results in a DoS vulnerability.

Recommendations
Short term, document in the code that Java-level exceptions can be thrown.

Long term, modify the decode functions so that they throw only Jetty-level exceptions.

Trail of Bits 74 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

24. Incorrect

QPACK encoding when multi-byte characters are used

Severity: Medium Difficulty: Medium

Type: Data Validation Finding ID: TOB-JETTY-24

Target: org.eclipse. jetty.http3.qpack.internal.EncodableEntry

Description

Java's string.length() function returns the number of characters in a string, which can
be different from the number of bytes returned by the string.getBytes() function.
However, QPACK encoding methods assume that they return the same number, which
could cause incorrect encodings.

In EncodableEntry.LiteralEntry, which is used to encode HTTP/3 header fields, the
following method is used for encoding:

214 public

void encode(ByteBuffer buffer, int base)

215 {

216 byte allowIntermediary = 0x00; // TODO: this is 0x10 bit, when should
this be set?

217 String name = getName();

218 String value = getValue();

219

220 // Encode the prefix code and the name.

221 if (_huffman)

222 {

223 buffer.put((byte)(0x28 | allowIntermediary));
224 NBitIntegerEncoder.encode(buffer, 3,
HuffmanEncoder.octetsNeeded(name)) ;

225 HuffmanEncoder.encode(buffer, name);

226 buffer.put((byte)ox80);

227 NBitIntegerEncoder.encode(buffer, 7,
HuffmanEncoder.octetsNeeded(value));

228 HuffmanEncoder.encode(buffer, value);

229 }

230 else

231 {

232 // TODO: What charset should we be using? (this applies to the

instruction generators as well).

233
234
235
236
237
238

Trail of Bits
PUBLIC

buffer.put((byte)(0x20 | allowIntermediary));
NBitIntegerEncoder.encode(buffer, 3, name.length());
buffer.put(name.getBytes());

buffer.put((byte)oxe0);
NBitIntegerEncoder.encode(buffer, 7, value.length());
buffer.put(value.getBytes());

75 OSTIF Eclipse: Jetty Security Assessment

239 }
240 }

Figure 24.1: EncodableEntry. java, lines 214-240

Note in particular lines 232-238, which are used to encode literal (non-Huffman-coded)
names and values. The value returned by name.length() is added to the bytestring,
followed by the value returned by name.getBytes(). Then, the value returned by
value.length() is added to the bytestring, followed by the value returned by
value.getBytes(). When this bytestring is decoded, the decoder will read the name
length field and then read that many bytes as the name. If multibyte characters were used
in the name field, the decoder will read too few bytes. The rest of the bytestring will also be
decoded incorrectly, since the decoder will continue reading at the wrong point in the
bytestring. The same issue occurs if multibyte characters were used in the value field.

The same issue appears in EncodableEntry.ReferencedNameEntry.encode:

164 // Encode the value.
165 String value = getValue();
166 if (_huffman)

167 {

168 buffer.put((byte)ox80);

169 NBitIntegerEncoder.encode(buffer, 7, HuffmanEncoder.octetsNeeded(value));
170 HuffmanEncoder .encode(buffer, value);

171 }

172 else

173 {

174 buffer.put((byte)0x00) ;

175 NBitIntegerEncoder.encode(buffer, 7, value.length());
176 buffer.put(value.getBytes());

177 }

Figure 24.2: EncodableEntry. java, lines 164-177
If value has multibyte characters, it will be incorrectly encoded in lines 174-176.

Jetty’s HTTP/3 code is still considered experimental, so this issue should not affect
production code, but it should be fixed before announcing HTTP/3 support to be
production-ready.

Exploit Scenario

A Jetty server attempts to add the Set-Cookie header, setting a cookie value to a
UTF-8-encoded string that contains multibyte characters. This causes an incorrect cookie
value to be set and the rest of the headers in this message to be parsed incorrectly.

Trail of Bits 76 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http3/jetty-http3-qpack/src/main/java/org/eclipse/jetty/http3/qpack/internal/EncodableEntry.java#L214-L240
https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http3/jetty-http3-qpack/src/main/java/org/eclipse/jetty/http3/qpack/internal/EncodableEntry.java#L164-L177

Recommendations

Short term, have the encode function in both EncodableEntry.LiteralEntry and
EncodableEntry.ReferencedNameEntry encode the length of the string using
string.getBytes() rather than string.length().

Trail of Bits 77 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

25. No limits on maximum capacity in QPACK decoder

Severity: High Difficulty: Medium
Type: Denial of Service Finding ID: TOB-JETTY-25
Target:

e org.eclipse.jetty.http3.qgpack.QpackDecoder

e org.eclipse.jetty.http3.qgpack.internal.parser.DecoderInstructi
onParser

e org.eclipse.jetty.http3.qpack.internal.table.DynamicTable

Description

In QPACK, an encoder can set the dynamic table capacity of the decoder using a “Set
Dynamic Table Capacity” instruction. The HTTP/3 specification requires that the capacity be
no larger than the SETTINGS_QPACK_MAX_TABLE_CAPACITY limit chosen by the decoder.
However, nowhere in the QPACK code is this limit checked for. This means that the encoder
can choose whatever capacity it wants (up to Java’s maximum integer value), allowing it to
take up large amounts of space on the decoder’'s memory.

Jetty’s HTTP/3 code is still considered experimental, so this issue should not affect
production code, but it should be fixed before announcing HTTP/3 support to be
production-ready.

Exploit Scenario

A Jetty server supporting QPACK is running. An attacker opens a connection to the server.
He sends a “Set Dynamic Table Capacity” instruction, setting the dynamic table capacity to
Java's maximum integer value, 2*'" (2.1 GB). He then repeatedly enters very large values
into the server’'s dynamic table using an “Insert with Literal Name” instruction until the full
2.1 GB capacity is taken up.

The attacker repeats this using multiple connections until the server runs out of memory
and crashes.

Recommendations
Short term, enforce the SETTINGS_QPACK_MAX_TABLE_CAPACITY limit on the capacity.

Long term, audit Jetty's implementation of QPACK and other protocols to ensure that Jetty
enforces limits as required by the standards.

Trail of Bits 78 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

Summary of Recommendations

Jetty is an ongoing software project with three major releases in the past three years,
including Jetty 12. Trail of Bits recommends that the Eclipse Foundation address the
findings detailed in this report and take the following additional steps:

e Audit protocol implementations and parsers for fields (e.g., length fields) that are
defined as unsigned integers in the applicable specifications. Review the relevant
code for confusion between signed and unsigned integer operations. If necessary,
use the Integer class to ensure that such values are treated as unsigned and do
not overflow to negative numbers.

e Update Jetty's tests to account for the most recent changes to Jetty Core in version
12. Expand the test cases for protocol implementations to include error conditions
that must be handled in a manner specified in the relevant RFC.

Trail of Bits 79 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category

Access Controls
Auditing and Logging
Authentication

Code Quality
Configuration
Cryptography

Data Exposure

Data Validation
Denial of Service
Error Reporting
Patching

Session Management
Testing

Timing

Undefined Behavior

Trail of Bits
PUBLIC

Description

Insufficient authorization or assessment of rights
Insufficient auditing of actions or logging of problems
Improper identification of users

Code antipatterns and other quality issues without security impact
Misconfigured servers, devices, or software components
A breach of system confidentiality or integrity

Exposure of sensitive information

Improper reliance on the structure or values of data

A system failure with an availability impact

Insecure or insufficient reporting of error conditions
Use of an outdated software package or library
Improper identification of authenticated users
Insufficient test methodology or test coverage

Race conditions or other order-of-operations flaws

Undefined behavior triggered within the system

80 OSTIF Eclipse: Jetty Security Assessment

Severity Levels
Severity

Informational

Undetermined
Low

Medium

High

Description

The issue does not pose an immediate risk but is relevant to security best
practices.

The extent of the risk was not determined during this engagement.
The risk is small or is not one the client has indicated is important.

User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels
Difficulty
Undetermined

Low
Medium

High

Trail of Bits
PUBLIC

Description
The difficulty of exploitation was not determined during this engagement.

The flaw is well known; public tools for its exploitation exist or can be
scripted.

An attacker must write an exploit or will need in-depth knowledge of the
system.

An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

81 OSTIF Eclipse: Jetty Security Assessment

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category
Arithmetic
Auditing

Authentication /
Access Controls

Complexity
Management

Configuration
Cryptography and
Key Management
Data Handling
Documentation
Maintenance

Memory Safety

and Error Handling

Testing and
Verification

Description
The proper use of mathematical operations and semantics
The use of event auditing and logging to support monitoring

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

The configuration of system components in accordance with best
practices

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

The safe handling of user inputs and data processed by the system
The presence of comprehensive and readable codebase documentation
The timely maintenance of system components to mitigate risk

The presence of memory safety and robust error-handling mechanisms

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Rating Criteria
Rating

Strong
Satisfactory

Moderate

Trail of Bits
PUBLIC

Description
No issues were found, and the system exceeds industry standards.
Minor issues were found, but the system is compliant with best practices.

Some issues that may affect system safety were found.

82 OSTIF Eclipse: Jetty Security Assessment

I Weak Many issues that affect system safety were found.
I Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further Further investigation is required to reach a meaningful conclusion.
Investigation
Required

Trail of Bits 83 OSTIF Eclipse: Jetty Security Assessment

PUBLIC

C. Fix Review Results

When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
identified in the original report. This work involves a review of specific areas of the source
code and system configuration, not comprehensive analysis of the system.

OnJune 5, 2023, Trail of Bits reviewed the fixes and mitigations implemented by the Jetty
team for the issues identified in this report. We reviewed each fix to determine its
effectiveness in resolving the associated issue.

In summary, of the 25 issues described in this report, Jetty has resolved 20, has partially
resolved two, and has not resolved the remaining three. For additional information, please
see the Detailed Fix Review Results below.

ID Title Severity Status

1 Risk of integer overflow that could allow Medium Resolved
HpackDecoder to exceed maxHeaderSize

2 Cookie parser accepts unmatched quotation marks | Informational Resolved

3 Errant command quoting in CGl servlet High Resolved

4 Symlink-allowed alias checker ignores protected High Resolved
targets list

5 Missing check for malformed Unicode escape Low Resolved

sequences in QuotedStringTokenizer.unquote

6 WebSocket frame length represented with 32-bit High Resolved
integer
7 WebSocket parser does not check for negative Low Resolved

payload lengths

8 WebSocket parser greedily allocates ByteBuffers Medium Unresolved
for large frames

Trail of Bits 84 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

9 Risk of integer overflow in HPACK's
NBitInteger.decode

10 MetaDataBuilder.checkSize accepts headers of
negative lengths

11 Insufficient space allocated when encoding QPACK
instructions and entries

12 LiteralNameEntrylnstruction incorrectly encodes
value length

13 Filelnitializer does not check for symlinks

14 Filelnitializer permits downloading files via
plaintext HTTP

15 NullPointerException thrown by FastCGl parser on
invalid frame type

16 Documentation does not specify that request
contents and other user data can be exposed in
debug logs

17 HttpStreamOverFCGl internally marks all requests
as plaintext HTTP

18 Excessively permissive and
non-standards-compliant error handling in HTTP/2
implementation

19 XML external entities and entity expansion in
Maven package metadata parser

20 Use of deprecated AccessController class

21 QUIC server writes SSL private key to temporary
plaintext file

Trail of Bits 85

PUBLIC

Informational

Medium

Low

Medium

High

High

Medium

Medium

High

Low

High

Informational

High

OSTIF Eclipse: Jetty Security Assessment

Resolved

Resolved

Resolved

Resolved

Unresolved

Resolved

Resolved

Unresolved

Resolved

Resolved

Partially
Resolved

Resolved

Partially
Resolved

22 Repeated code between HPACK and QPACK Informational Resolved

23 Various exceptions in HpackDecoder.decode and Informational Resolved
QpackDecoder.decode
24 Incorrect QPACK encoding when multi-byte Medium Resolved

characters are used

25 No limits on maximum capacity in QPACK decoder High Resolved

Trail of Bits 86 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

Detailed Fix Review Results

TOB-JETTY-1: Risk of integer overflow that could allow HpackDecoder to exceed
maxHeaderSize

Resolved in PR #9634. The decoder now checks for negative length values, allowing the
decoder to detect the integer overflow condition and throw an appropriate condition.

TOB-JETTY-2: Cookie parser accepts unmatched quotation marks

Resolved in PR #9339. The cookie parsing logic has been reworked, and dynamic testing
confirms that unmatched quotation marks are rejected with an appropriate error
condition.

TOB-JETTY-3: Errant command quoting in CGI serviet
Resolved in PR #9516. The affected CGI servlet class has been removed.

TOB-JETTY-4: Symlink-allowed alias checker ignores protected targets list
Resolved in PR #9506. The symlink check that was previously commented out has been
reinserted. Symbolic links are now appropriately checked against the protected targets list.

TOB-JETTY-5: Missing check for malformed Unicode escape sequences in
QuotedStringTokenizer.unquote

Resolved in PR #9729. The string tokenizer logic has been reworked and broken into
multiple classes. The logic bug leading to the mishandled Unicode escape sequences in the
QuotedStringTokenizer and RFC9110QuotedStringTokenizer classes have been
fixed. The LegacyQuotedStringTokenizer class is still vulnerable but is disabled by
default. The Jetty team indicated during phone calls that this class is included for legacy
support reasons only.

TOB-JETTY-6: WebSocket frame length represented with 32-bit integer and
TOB-JETTY-7: WebSocket parser does not check for negative payload lengths
Resolved in PR #9741. Although the 32-bit integer data type remains in place, checks for
negative payload lengths and integer overflows have been added. The WebSocket parser
will no longer use a negative frame length for length comparisons, and integer overflows
will cause the parser to throw an appropriate exception.

TOB-JETTY-8: WebSocket parser greedily allocates ByteBuffers for large frames
Unresolved in PR #9741. The greedy buffer allocation is unchanged. Jetty’'s bug tracking
spreadsheet contains the following context for this finding's fix status:

Not an issue, added comment to explain why.

The following comments have been added to the
org.eclipse.jetty.websocket.core.internal.Parser class:

Trail of Bits 87 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

// We have already checked payload size in checkFrameSize, so we know we
can autoFragment if larger than maxFrameSize.

// The size of this allocation is 1imited by the maxFrameSize.
The default maximum frame size is set at 64 KB by the WebSocketConstants class.

TOB-JETTY-9: Risk of integer overflow in HPACK's NBitInteger.decode

Resolved in PR #9634. The integer decoding logic has been moved to common classes in
the jetty-http package. The HPACK parsing code that invokes this decoding logic makes
appropriate checks for negative return values, throwing an appropriate exception if a
negative value is decoded.

TOB-JETTY-10: MetaDataBuilder.checkSize accepts headers of negative lengths
Resolved in PR #9634. The HPACK parsing logic has been reworked, and the affected
MetaDataBuilder.checkSize function has been replaced with length checks in other
classes. It is no longer possible for the 1ength value to overflow into a very large positive
integer, and the length checks are performed against the input buffer’s
buffer.remaining() value, which can never be negative.

TOB-JETTY-11: Insufficient space allocated when encoding QPACK instructions and
entries

Resolved in PR #9634. Parsing is now restricted to ISO-8859-1 encoding, which uses only
single-byte character encodings. Therefore, the logic bug involving multibyte character
encoding has been eliminated.

TOB-JETTY-12: LiteralNameEntrylnstruction incorrectly encodes value length
Resolved in PR #9634. The encoding logic has been reworked and reorganized so that the
field widths are calculated in a centralized class. Field lengths appear to be correctly
generated, and integers are no longer encoded using hard-coded fixed widths.

TOB-JETTY-13: Filelnitializer does not check for symlinks
Unresolved in PR #9555. The FileInitializer class contains the following comment
regarding this finding:

// We restrict our behavior to only modifying what exists in
S{jetty.base}.

// If the user decides they want to use advanced setups, such as symlinks
to point

// tocontent outside of S{jetty.base}, that is their decision and we
will not

// attempt to save them from themselves.

// Note: All copy and extract steps will not replace files that already
exist.

Trail of Bits 88 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

TOB-JETTY-14: Filelnitializer permits downloading files via plaintext HTTP

Resolved in PR #9555. The JettyStart class now recognizes the
--allow-insecure-http-downloads flag, which enables file downloads over plaintext
HTTP. By default, this flag is disabled, so system administrators must manually specify that
they wish to enable unencrypted downloads.

TOB-JETTY-15: NullPointerException thrown by FastCGl parser on invalid frame type
Resolved in commit e5590a. Broader exception handling has been added to the
org.eclipse.jetty.fcgi.parser.Parser class so thatinvalid frame types will invoke
the normal error handling routines for malformed FastCGl traffic. No
NullPointerException will be thrown on an invalid frame type.

TOB-JETTY-16: Documentation does not specify that request contents and other user
data can be exposed in debug logs

Unresolved. No commit or pull request addressing this issue was identified, and system
documentation has not undergone any relevant changes.

TOB-JETTY-17: HttpStreamOverFCGI internally marks all requests as plaintext HTTP
Resolved in PR #9733. The FastCGI HTTPS header is now checked appropriately, and each
FCGI request object’'s HTTP scheme is set correctly.

TOB-JETTY-18: Excessively permissive and non-standards-compliant error handling in
HTTP/2 implementation

Resolved in PR #9749. The HTTP/2 frame parser classes now check for each of the error
conditions identified in this finding, and the error codes returned comply with the
requirements of RFC 9113.

TOB-JETTY-19: XML external entities and entity expansion in Maven package
metadata parser

Partially resolved in PR #9555. Jetty now invokes the XML parser’s secure processing
feature, which instructs the XML parser to use the most secure settings when parsing
documents. However, this feature’s behavior is implementation-dependent and may not be
consistent across Java environments. Therefore, there may be a residual risk of XML-based
attacks. To mitigate these risks even further, it may be necessary to manually check for and
remove DTD declarations in the XML input or to use an XML parsing library whose behavior
is known and consistent.

TOB-JETTY-20: Use of deprecated AccessController class

Resolved in PR #9616. Per documentation provided by the Jetty team, Jetty supports older
Java environments that differ with respect to their support for the SecurityManager class.
The use of reflection implemented in the PR is an effective solution to manage these
requirements.

Trail of Bits 89 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

TOB-JETTY-21: QUIC server writes SSL private key to temporary plaintext file

Partially resolved. As the original finding documents, this finding reflects a weakness in the
third-party quiche library and cannot be resolved by the Jetty team. However, Jetty
developers have helped begin the process of resolving this finding by submitting an issue
to the quiche developers.

TOB-JETTY-22: Repeated code between HPACK and QPACK
Resolved in PR #9634. The common encoding and decoding logic has been moved into the
jetty-http directory and is reused between the HPACK and QPACK libraries.

TOB-JETTY-23: Various exceptions in HpackDecoder.decode and
QpackDecoder.decode

Resolved in commit fd913a. The HpackDecoder and QpackDecoder classes have
undergone significant rewrites with improved exception handling; by reviewing the code,
we found that improved error handling will cause these classes to generate
protocol-specific error conditions instead of throwing general-purpose Java exceptions.

TOB-JETTY-24: Incorrect QPACK encoding when multi-byte characters are used
Resolved in PR #9634. All QPACK encoding now uses I1SO-8859-1 encoding, which is a
single-byte character encoding scheme. Therefore, there are no longer any multi-byte
encoding errors in the QPACK implementation.

TOB-JETTY-25: No limits on maximum capacity in QPACK decoder

Resolved in PR #9728. The QpackDecoder and QpackEncoder classes now check the
maximum table capacity setting and throw an HTTP/3 protocol error if the configured
capacity exceeds the configured maximum.

Trail of Bits 90 OSTIF Eclipse: Jetty Security Assessment
PUBLIC

