
 Eclipse Jetty
 Threat Model and Code Review with Fix Review

 June 13, 2023

 Prepared for:

 Greg Wilkins
 The Eclipse Foundation

 Organized by the Open Source Technology Improvement Fund, Inc.

 Prepared by: Cliff Smith, Sam Alws, Kelly Kaoudis, and Spencer Michaels

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 100+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositories at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” page at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 228 Park Ave S #80688
 New York, NY 10003
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 1 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

 Notices and Remarks

 Copyright and Distribution
 © 2023 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be public information; it is licensed to the Eclipse
 Foundation under the terms of the project statement of work and has been made public at
 the Eclipse Foundation’s request. Material within this report may not be reproduced or
 distributed in part or in whole without the express written permission of Trail of Bits.

 The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page .
 Reports accessed through any source other than that page may have been modified and
 should not be considered authentic.

 Test Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and agreed upon project plan.

 Security assessment projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As a result, the findings documented in
 this report should not be considered a comprehensive list of security issues, flaws, or
 defects in the target system or codebase.

 Trail of Bits uses automated testing techniques to rapidly test the controls and security
 properties of software. These techniques augment our manual security review work, but
 each has its limitations: for example, a tool may not generate a random edge case that
 violates a property or may not fully complete its analysis during the allotted time. Their use
 is also limited by the time and resource constraints of a project.

 Trail of Bits 2 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://github.com/trailofbits/publications

 Table of Contents

 About Trail of Bits 1
 Notices and Remarks 2
 Table of Contents 3
 Executive Summary 5
 Project Summary 7
 Project Goals 8
 Project Targets 9
 Project Coverage 10
 Threat Model 11

 Data Types 11
 Data Flow 12
 Components 15
 Trust Zones 17
 Trust Zone Connections 18
 Threat Actors 20
 Threat Scenarios 22
 Recommendations 27

 Automated Testing 30
 Codebase Maturity Evaluation 31
 Summary of Findings 33
 Detailed Findings 36

 1. Risk of integer overflow that could allow HpackDecoder to exceed maxHeaderSize
 36
 2. Cookie parser accepts unmatched quotation marks 38
 3. Errant command quoting in CGI servlet 39
 4. Symlink-allowed alias checker ignores protected targets list 41
 5. Missing check for malformed Unicode escape sequences in
 QuotedStringTokenizer.unquote 42
 6. WebSocket frame length represented with 32-bit integer 44
 7. WebSocket parser does not check for negative payload lengths 46
 8. WebSocket parser greedily allocates ByteBuffers for large frames 47
 9. Risk of integer overflow in HPACK's NBitInteger.decode 49
 10. MetaDataBuilder.checkSize accepts headers of negative lengths 51
 11. Insufficient space allocated when encoding QPACK instructions and entries 53

 Trail of Bits 3 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 12. LiteralNameEntryInstruction incorrectly encodes value length 56
 13. FileInitializer does not check for symlinks 58
 14. FileInitializer permits downloading files via plaintext HTTP 60
 15. NullPointerException thrown by FastCGI parser on invalid frame type 61
 16. Documentation does not specify that request contents and other user data can
 be exposed in debug logs 63
 17. HttpStreamOverFCGI internally marks all requests as plaintext HTTP 65
 18. Excessively permissive and non-standards-compliant error handling in HTTP/2
 implementation 67
 19. XML external entities and entity expansion in Maven package metadata parser 69
 20. Use of deprecated AccessController class 70
 21. QUIC server writes SSL private key to temporary plaintext file 71
 22. Repeated code between HPACK and QPACK 73
 23. Various exceptions in HpackDecoder.decode and QpackDecoder.decode 74
 24. Incorrect QPACK encoding when multi-byte characters are used 75
 25. No limits on maximum capacity in QPACK decoder 78

 Summary of Recommendations 79
 A. Vulnerability Categories 80
 B. Code Maturity Categories 82
 C. Fix Review Results 84

 Detailed Fix Review Results 87

 Trail of Bits 4 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 Executive Summary

 Engagement Overview
 OSTIF engaged Trail of Bits to review the security of the Eclipse Foundation’s Jetty project.
 From March 6 to March 30, 2023, a team of two consultants conducted a lightweight threat
 model of the project, and then a separate team of two consultants conducted a security
 review of the client-provided source code; the two reviews took a combined six
 person-weeks of effort. Details of the project’s timeline, test targets, and coverage are
 provided in subsequent sections of this report.

 Project Scope
 Our testing efforts were focused on the identification of flaws that could result in a
 compromise of confidentiality, integrity, or availability of the target system. We conducted
 this audit with full knowledge of the system, including access to the product’s source code
 and documentation. We performed a static code review using both automated and manual
 processes, supplemented by dynamic testing of the target system.

 Summary of Findings
 The audit uncovered significant flaws that could impact system confidentiality, integrity, or
 availability. A summary of the findings and details on notable findings are provided below.

 EXPOSURE ANALYSIS

 Severity Count

 High 9

 Medium 7

 Low 4

 Informational 5

 Undetermined 0

 CATEGORY BREAKDOWN

 Category Count

 Access Controls 1

 Code Quality 2

 Cryptography 1

 Data Exposure 2

 Data Validation 11

 Denial of Service 7

 Error Reporting 1

 Trail of Bits 5 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 Notable Findings
 Significant flaws that impact system confidentiality, integrity, or availability are listed below.

 ● TOB-JETTY-1
 An integer overflow could occur during the parsing of HPACK headers, which could
 cause excessive resource consumption. A maliciously crafted header will cause Jetty
 to allocate a 1.6 GB buffer while parsing a single message.

 ● TOB-JETTY-3
 An error in the quotation mark escaping algorithm used for command line
 arguments in the EE9 and EE10 CGI servlets enables arbitrary command execution.

 ● TOB-JETTY-6
 The WebSocket frame parser uses a 32-bit integer to represent the frame’s length
 field, which can contain up to 64 bits. In addition to crashes, this bug can cause Jetty
 to mistakenly split one WebSocket frame into multiple in a manner similar to the
 errors that enable HTTP request smuggling attacks.

 ● TOB-JETTY-19
 The Jetty module configuration system supports Maven package downloads from
 maven:// URIs. When the maven-metadata.xml file is parsed, document type
 definitions (DTDs) are parsed, which enables XML external entity (XXE) and XML
 entity expansion (XEE) attacks.

 Trail of Bits 6 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 Project Summary

 Contact Information
 The following managers were associated with this project:

 Dan Guido , Account Manager Jeff Braswell , Project Manager
 dan@trailofbits.com jeff.braswell@trailofbits.com

 The following engineers were associated with this project:

 Kelly Kaoudis , Consultant Spencer Michaels , Consultant
 kelly.kaoudis@trailofbits.com spencer.michaels@trailofbits.com

 Cliff Smith , Consultant Sam Alws , Consultant
 cliff.smith@trailofbits.com sam.alws@trailofbits.com

 Project Timeline
 The significant events and milestones of the project are listed below.

 Date Event

 March 6, 2023 Lightweight threat model kickoff

 March 7, 2023 Threat model discovery #1

 March 10, 2023 Threat model discovery #2 and code review kickoff

 March 15, 2023 Threat model readout meeting

 March 30, 2023 Report readout meeting

 May 5, 2023 Delivery of final report

 June 13, 2023 Delivery of fix review

 Trail of Bits 7 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

mailto:dan@trailofbits.com

 Project Goals

 The engagement was scoped to provide a security assessment of Jetty. Specifically, we
 sought to answer the following non-exhaustive list of questions:

 ● Are the header and cookie parsing algorithms for HTTP/1 and HTTP/2 correct and
 standards-compliant?

 ● Are the WebSocket, HTTP/2, and HTTP/3 implementations secure and correct,
 including their code for handling parsing, message generation, and connection
 management?

 ● Do the Jetty Core, EE9, and EE10 packages securely serve static resources from the
 web server’s filesystem? Can an attacker download files outside the configured root
 directory?

 ● Can attackers bypass any of the servlet security configuration settings specified in a
 servlet’s web.xml file?

 ● Is the alias checking system implemented correctly?

 ● Does the application deployment system have any exploitable bugs?

 ● Do web application deployment and other features that extract archive files
 correctly validate file paths? Are any such features vulnerable to “zip slip” or other
 directory traversal attacks?

 ● Are the cryptography and key management features compliant with best practices?

 ● Are memory management operations, including buffer allocation and deallocation
 operations during request generation and parsing, correct and secure?

 Trail of Bits 8 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 Project Targets

 The engagement involved a review and testing of the following target.

 Eclipse Jetty
 Repository https://github.com/jetty/jetty.project/tree/jetty-12.0.x

 Version 12.0.0 (rev. bd0186c2f78fb7c87c7bfadf9b0a970657d071f3)

 Type Java

 Platform JVM

 Trail of Bits 9 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://github.com/jetty/jetty.project/tree/jetty-12.0.x

 Project Coverage

 This section provides an overview of the analysis coverage of the review, as determined by
 our high-level engagement goals. Our approaches included the following:

 ● A manual review of the parsers and protocol implementations, including HTTP/1.1,
 HTTP/2, HTTP/3, QUIC, HPACK, QPACK, cookies, multipart encoding, and
 WebSockets

 ● A manual review of the start, module, and deployment systems

 ● Dynamic testing of the module configuration and the start system

 ● Static analysis of the entire codebase using Semgrep and CodeQL

 ● Fuzzing of the parsers and protocol implementations using libfuzzer

 Coverage Limitations
 Because of the time-boxed nature of testing work, it is common to encounter coverage
 limitations. The following list outlines the coverage limitations of the engagement and
 indicates system elements that may warrant further review:

 ● Our code review of the EE9 and EE10 libraries was not comprehensive.

 ● The protocol implementations were not compared to and validated against the
 applicable specifications point-by-point.

 Trail of Bits 10 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 Threat Model

 As part of the audit, Trail of Bits conducted a lightweight threat model, drawing from
 Mozilla's “Rapid Risk Assessment” methodology and the National Institute of Standards and
 Technology’s (NIST) guidance on data-centric threat modeling (NIST 800-154). We began our
 assessment of the design of Jetty by reviewing the Eclipse Jetty 11.x and 12.x operations
 and programming guides and Jetty’s in-progress CVE fix discussions.

 Data Types
 Depending on its configuration, a deployed Jetty server or client includes Jetty’s
 implementations of standard web protocols as well as Java-specific protocols, including the
 following:

 ● HTTP/1.0, HTTP/1.1, HTTP/2 (cleartext and secure versions), and HTTP/3

 ● WebSocket

 ● FastCGI

 ● SOCKS4

 ● PROXY protocol

 Jetty also surfaces TLS- and ALPN-related information to application developers through
 Jetty-provided callbacks connected to the underlying Java development kit (JDK)
 functionality.

 Trail of Bits 11 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://infosec.mozilla.org/guidelines/risk/rapid_risk_assessment.html
https://csrc.nist.gov/publications/detail/sp/800-154/draft

 Data Flow
 Network Data Flow
 The following diagram shows an example of a distributed deployment of Jetty.

 Note that the stack of boxes labeled “Jetty Server Instance” represents a cluster of several
 Jetty instances serving the same application logic, each deployed on its own Java virtual
 machine (JVM), managed by an orchestration system such as Kubernetes.

 Also note that each box labeled “Jetty” in the diagram represents a server coupled with the
 Jetty client component. The client component makes outbound requests on the server’s
 behalf to other servers.

 Figure 1: Example network data flows in a distributed deployment of Jetty

 Trail of Bits 12 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 Embedded Data Flow
 The following diagram shows an example deployment of Jetty as the embedded servlet
 container for another Java framework—in this case, Spring Boot. In this example, Spring
 Boot starts Jetty. Then, at runtime, requests pass through Jetty first and then through
 Spring components (here, a security filter and a request filter) before reaching the endpoint
 business logic.

 Figure 2: Example data flows where Jetty is the embedded servlet container for Spring Boot

 Trail of Bits 13 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 Component Tree
 The following diagram shows an example component tree of beans that a typical developer
 might use, such as client request filters that accept or reject connections before Jetty
 passes them to the served web applications, various connection factories that create and
 manage client connections, a login service to protect a particular ConnectionFactory ,
 and several types of logging and monitoring mechanisms, the most common of which is
 Java Management Extensions (JMX)-based. Note that each bean must implicitly trust its
 registered parent.

 Figure 3: An example Jetty component tree

 Trail of Bits 14 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 Components
 The following table describes each Jetty component and dependency identified for our
 analysis. It also indicates whether the component or dependency is not in scope; an
 asterisk (*) next a component’s name indicates that it was out of scope for this assessment.
 We explored the implications of threats involving out-of-scope components that directly
 affect in-scope components, but we did not consider threats to the out-of-scope
 components themselves.

 Component Description

 Source Control Source control includes the infrastructure that provides version
 control, hosts the Jetty codebase, facilitates the submission of
 pull requests and issues, and allows maintainers to release Jetty
 JARs and security advisories.

 Client Side Components and services on the client side initiate connections
 and requests.

 Jetty Client (*) A client requests data from a Jetty server or from a server built
 with Jetty libraries. Client-side Jetty libraries may optionally be
 used to handle client network connections and parsing. This
 component is out of scope.

 Client-Side Component
 Libraries

 Key client-side components include ClientConnector ,
 HttpClient , and HttpClientTransport .

 The deployer or administrator can add client-side component
 libraries to the Jetty server to form a microservice that can both
 receive and initiate connections and requests.

 JMX Console (*) The JMX console is a console application (e.g., JMC, Nagios) that
 can connect to the JMX API to consume information regarding
 the server-side JVM, Jetty server, Jetty server components, and
 potentially also application logic. It may run remotely or on the
 same host as the Jetty server. This component is out of scope.

 Server Side Components on the server side receive and handle connections
 and requests.

 Application-Specific Logic Developer-provided business logic connects with Jetty (and
 clients) via the application logic base APIs. This component is out
 of scope.

 Trail of Bits 15 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 Application
 Logic Base
 APIs

 Handler
 APIs

 APIs connect application-specific business logic to Jetty; they are
 an alternative to servlet APIs.

 Servlet APIs Servlet APIs are an alternative to the Jetty handler APIs; they
 expose more in-depth functionality, including session
 management.

 JMX API (*) The MBeanServer platform (if included in a deployment)
 exposes an API to access and monitor the JVM, Jetty
 components, and application-specific components. Registering a
 bean with the JMX server creates a corresponding MBean and
 surfaces its status and other metadata via the API. This
 component is out of scope.

 Server-Side Component
 Libraries

 Server-side component libraries are used to build Jetty-based
 web servers. These component libraries provide server-side
 connection and request handling and parsing support for
 protocols such as HTTP/1.1, HTTP/2, HTTP/3, WebSocket, and
 FastCGI.

 Bean A bean is a serializable class instance at runtime, registered as
 part of the Jetty server’s component tree. Beans added to a
 component tree must inherit functionality for event listening and
 life cycle handling. Beans in a component tree can communicate
 via EventListener APIs. Each bean in a component tree trusts
 its parent and any other beans with which it can communicate
 via EventListener events. A bean’s parent can optionally
 manage its activity (start and stop it via LifeCycle).

 Reverse Proxy (*) The reverse proxy is a server that advertises the location or
 name of an application served via Jetty. The reverse proxy
 handles the conveyance and distribution of client requests
 across instances of the Jetty-served application, “fronting” the
 Jetty-served application so that multiple Jetty instances can
 handle requests directed to the same endpoint and so that no
 Jetty instance needs be exposed to a public network directly. The
 reverse proxy can also handle TLS termination on behalf of a
 Jetty-served application. This component is out of scope.

 Trail of Bits 16 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 Trust Zones
 Trust zones capture logical boundaries where controls should or could be enforced by the
 system, and allow developers to implement controls and policies between zones.

 Zone Description Included Components

 Public Network The public network is the wider
 external-facing internet zone.

 ● Clients

 ● Certificate authority

 Application
 Network

 The application network is the
 (private) datacenter network in
 which one or more clusters of
 Jetty server instances (or
 standalone Jetty servers) and
 additional related services
 reside.

 ● Jetty server instances

 ● Reverse proxy

 ● Non-Jetty services

 ○ Logging

 ○ Data stores

 ○ LDAP or other identity stores

 ○ Jetty cluster management
 (e.g., Kubernetes)

 Private
 Network

 The private network is an
 intranet or internal network that
 is inaccessible from the public
 network and has access to the
 application network. It is
 generally administrative in
 nature.

 ● Administrators

 ○ Server administrator

 ○ Server deployer

 ● Clients

 ● Remote JMX console application
 (JMC, Nagios, etc., potentially
 accessed via SSH bastion)

 Localhost The localhost is the host or
 container within which the JVM
 (running the Jetty server) runs.

 ● JVM

 ● Local JMX console application

 JVM This is the local Java runtime. ● Jetty instance

 ● JDK

 ● Jakarta EE

 ● Java ME (embedded deployments)

 ● Spring Boot

 Trail of Bits 17 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 Trust Zone Connections
 This table describes the connections that occur between trust zones.

 Originating
 Zone

 Destination
 Zone

 Description Connection
 Types

 Authentication
 Types

 Public
 Network

 Public
 Network

 A client on the
 internet makes a
 network request to a
 public endpoint of the
 application served by
 Jetty.

 In this case, Jetty can
 also be the
 embedded servlet
 container for another
 framework, such as
 Spring Boot.

 ● HTTP

 ● FastCGI

 ● WebSocket

 ● Stateless;
 delegated to
 application
 logic

 ● Stateful
 (connection
 based);
 delegated to
 JDK (e.g., TLS
 1.2, TLS 1.3)

 ● None

 Public
 Network

 Application
 Network

 A client on the public
 network connects to a
 reverse proxy fronting
 an application served
 by Jetty.

 This reverse proxy
 may handle TLS
 termination.

 ● HTTP

 ● WebSocket

 ● FastCGI

 ● TLS 1.2

 ● TLS 1.3

 ● None

 Application
 Network

 Public
 Network

 A Jetty server is
 configured to export
 logs or JMX API
 information to a
 remote service with a
 public endpoint (e.g.,
 Datadog).

 ● HTTP

 ● RMI

 ● Varies

 Public
 Network

 Application
 Network

 The host of a Jetty
 server is (perhaps
 accidentally)

 ● RMI

 ● RMI over TLS

 ● Username and
 password

 ● None

 Trail of Bits 18 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 configured to allow
 public access to the
 JMX API port.

 Application
 Network

 Application
 Network

 A Jetty server instance
 makes a connection
 to an internal service
 (e.g., an LDAP data
 store or another
 microservice).

 ● LDAP

 ● HTTP

 ● Custom
 protocol
 (e.g., RPC)

 ● TLS

 ● Application-
 specific
 request
 authentication

 ● None

 Application
 Network

 Application
 Network

 A reverse proxy
 forwards a request to
 a Jetty server
 instance.

 ● RPC

 ● HTTP

 ● TLS

 ● Application-
 specific
 request
 authentication

 ● None

 Private
 Network

 Application
 Network

 A test client connects
 to a hard-coded (IP or
 DNS) instance that is
 part of a cluster. All
 cluster instances
 serve the same
 application via Jetty.

 ● HTTP ● None

 Private
 Network

 Application
 Network

 An administrator
 connects via SSH to
 the machine on which
 Jetty is running.

 ● SSH ● Username and
 password

 ● Public key

 Localhost JVM A local user makes
 changes to the JVM’s
 configuration or
 environment or sends
 signals to a running
 JVM process.

 ● Filesystem

 ● UNIX sockets

 ● IPC signals

 ● Java
 reflection

 ● System user
 authentication
 and access
 controls

 Trail of Bits 19 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 Threat Actors
 When conducting a threat model, we define the types of actors that could threaten the
 security of the system. We also define other “users” of the system who may be impacted by
 or induced to undertake an attack. Establishing the types of actors that use and/or could
 threaten the system is useful in determining which protections, if any, are necessary to
 mitigate or remediate vulnerabilities.

 Actor Description

 External Attacker An external attacker is an attacker on the public network (internet)
 from which at least one Jetty instance is accessible.

 This attacker can observe and analyze Jetty source commits as they
 land in the public repository for exploitable features.

 Internal Attacker This refers to an attacker on a private or application network from
 which at least one Jetty instance is accessible.

 Client “Client” refers to either a client of a Jetty server instance that can
 integrate the Jetty client libraries or a wholly distinct networked
 application.

 Local Attacker A local attacker is an attacker who controls a process or user
 account on the same host as the Jetty instance and can affect the
 system environment, including the filesystem.

 Jetty Contributor This refers to a non-maintainer Jetty contributor.

 Jetty Maintainer This refers to a core Jetty contributor. Maintainers must review and
 approve pull requests prior to merging them.

 Application Developer An application developer creates, maintains, and updates
 applications deployed via Jetty.

 Server Administrator A server administrator administers a networked application that is
 either built with Jetty components, served via a Jetty instance
 embedded as a servlet container in another framework, or served
 via a standalone Jetty instance.

 Server Deployer A server deployer releases an application served via Jetty or built
 with Jetty components into the running environment. The deployer

 Trail of Bits 20 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 may not be a separate individual from the server administrator
 and application developer.

 Trail of Bits 21 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 Threat Scenarios
 The following table describes possible threat scenarios that the system could be vulnerable
 to, given the design, architecture, and risk profile of Jetty.

 Threat Scenario Actors Components

 Excessive resource
 consumption
 during parsing

 Insufficient exceptional-case header or
 cookie parsing and exception handling
 in a Jetty server could allow an
 attacker-controlled client to cause a
 DoS of the Jetty server instance’s other
 connections by sending a request
 containing duplicate, potentially
 conflicting headers; a header with an
 excessive number of parameters; or a
 header that itself contains malformed
 parameters crafted to pin the server to
 its JVM resource limits.

 ● Malicious
 client

 ● Jetty server

 ● Client

 Excessive file
 descriptor and/or
 memory
 consumption

 If a Jetty server (re)authenticates users
 each time a new authenticated channel
 opens (likely to prevent spoofing) but
 does not also enforce (by default) a
 sufficiently strict dynamic global
 per-user rate limit proportional to
 Jetty’s system resource limit(s) when
 stateful channel-based authentication
 is in use, a malicious client could cause
 a DoS of other Jetty instance
 connections, especially in
 resource-limited or embedded use
 cases, by attempting to open many
 authenticated channels (under a
 mechanism such as SPNEGO).

 ● Malicious
 client

 ● Jetty server

 ● Client

 Trail of Bits 22 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 Attacker-controlled
 application logic

 The lack of served application
 allowlisting coupled with the lack of
 third-party content tracking and/or
 allowlisting in a Jetty server instance
 configured for web application “hot
 reloading” could allow an attacker who
 gains sufficient local filesystem access
 privileges (or who merely exploits a
 vulnerable servlet) to subvert that
 servlet or to force the Jetty server
 instance to serve a malicious servlet
 added to $JETTY_BASE/webapps .

 ● Local
 attacker

 ● Jetty server

 Unsafe
 deserialization

 The potential lack of safeguards on the
 deserialization of request, connection,
 and/or user data could allow an
 external attacker to exfiltrate other
 users’ data or execute malicious code
 within a Jetty server process by
 sending a request to the Jetty server
 containing a payload that must be
 deserialized by either Jetty or the
 application-specific logic running on
 top of Jetty. The use of JPMS may
 reduce (but not eliminate) the impact
 of such an attack by reducing the
 accessible code in the running
 environment.

 ● Client ● Jetty server

 Sensitivity to
 unexpected
 changes in the
 underlying
 implementation
 due to JVM or JDK
 “ rootkits ”

 If a core part of the local JVM, JDK, or
 EE functionality called from the Jetty
 server is augmented or fully replaced,
 a local attacker could exfiltrate
 sensitive data from locations such as
 Jetty’s TrustStore or JKS , place
 malicious data in the TrustStore or
 JKS , or intercept and modify sensitive
 data sent over (client) connections via
 a local user account with sufficient
 system privileges.

 ● Local
 attacker

 ● Localhost

 ● JVM

 ● JDK

 ● Jakarta EE

 ● Jetty server

 Trail of Bits 23 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html
https://www.csoonline.com/article/3629311/java-deserialization-vulnerabilities-explained-and-how-to-defend-against-them.html
https://openjdk.org/projects/jigsaw/spec/sotms/
https://www.ece.iastate.edu/kcsl/defcon24-talk/

 Insecure default
 connection
 encryption
 configuration

 The lack of default connection
 encryption (TLS) or the use of weak
 default cipher suites could allow
 a malicious intermediary with sufficient
 system-user permissions and access to
 either the client system or Jetty server
 instance host system to intercept and
 modify client (or Jetty client
 component) connections to the Jetty
 server.

 ● Local
 attacker

 ● Remote
 attacker

 ● Jetty server

 ● Client

 Request smuggling
 via HTTP/2
 downgrade,
 duplicate header
 allowance, or
 similar issues

 Inconsistent header parsing and
 handling could allow a remote attacker
 to force Jetty to pass unexpected and
 potentially malicious additional
 requests to application logic or further
 services within the distributed system
 via a single crafted request.

 The following are examples of
 situations to consider mitigating where
 request smuggling can occur:

 ● Improper HTTP/2-to-HTTP/1.1
 downgrade header handling

 ● Improper handling of duplicate
 headers in the same request
 (e.g., Content-Length)

 ● Allowing for conflicting
 headers’ presence in the same
 request (e.g., a short
 Content-Length value along
 with Transfer-Encoding:
 chunked)

 ● Remote
 attacker

 ● Jetty server

 Trail of Bits 24 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 HTTP or header
 parsing mismatch
 between Jetty and
 Spring Boot, or
 similar frameworks

 Potential discrepancies between
 protocol, header, or cookie parsing
 done by Spring Boot (or a similar Java
 framework) and by Jetty itself could
 allow a remote attacker to smuggle
 unexpected requests into the served
 web application when Jetty runs as the
 embedded servlet container within
 another Java framework such as Spring
 Boot.

 ● Remote
 attacker

 ● Jetty

 ● Spring Boot

 Request smuggling
 due to
 discrepancies
 between parsing
 done by other
 servers (e.g., a
 reverse proxy) and
 Jetty

 If a Jetty instance is run in a particular
 compliance mode, but it is fronted by a
 reverse proxy whose HTTP or header
 parsing capabilities are not fully
 consistent with Jetty configured with
 the compliance mode in question, a
 remote attacker could conduct request
 smuggling.

 ● Remote
 attacker

 ● Jetty

 ● Reverse
 proxy

 Access to or
 modification of
 temporary data

 An attacker with filesystem access to
 the Jetty temporary directory or an
 application-specific temporary
 directory could read sensitive data
 mistakenly stored there or modify files
 that will later be read back into the
 application.

 ● Local
 attacker

 ● Localhost

 ● Jetty server

 Security through
 obscurity

 A remote attacker monitoring pull
 requests and commits to the Jetty
 repository could infer the presence of
 a vulnerability from static analysis over
 changes made to the codebase (or
 in-progress pull requests) to fix a
 security issue prior to its official
 announcement. The attacker could
 exploit vulnerabilities identified in this
 way before updates are released.

 ● Jetty
 contributor

 ● Remote
 attacker

 ● Source
 control

 Trail of Bits 25 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 Administrator
 misconfiguration
 of the underlying
 system

 A misconfigured JVM that exposes the
 JMX API on a publicly accessible port
 could allow an external attacker to
 exfiltrate sensitive Jetty/system
 information or to modify the running
 Jetty instance or JVM (e.g., shut down
 the running Jetty instance—denying
 service to other users—or shrink
 resource allocations to starve
 legitimate connections) by connecting
 a JMX console application to the port.

 ● External
 attacker

 ● Server
 administrat
 or

 ● Jetty server

 ● JMX API

 ● Remote JMX
 console

 Trail of Bits 26 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 Recommendations
 ● Jetty should check for a minimal set of safe(r) default security configuration practices

 during the server startup process.

 ○ Prefer the strictest default configuration overall that common Jetty use cases
 (such as deployment with Spring Boot and/or as part of a distributed system)
 can accommodate.

 ○ Log (likely to the user-configured Jetty error log location at the INFO level)
 brief information about any unsafe security practices in use. Consider also
 including links to documentation on mitigating such unsafe practices.

 ○ Document the safe server configurations for each of the most common types
 of Jetty deployments and indicate the types of attacks that such
 configurations will prevent. For example, configuring a Jetty server with a
 stricter header parsing compliance mode may decrease the likelihood of
 exploits of header parser differentials, such as request smuggling.

 ○ A Jetty instance that sources web apps from (or allows delegated web app
 usage from) any other system or symlinked location should log a message
 directing users to install web apps solely in ${jetty.base}/webapps .

 ■ Also consider logging a warning if the ${jetty.base} (or
 ${jetty.base} subdirectory) access permissions are overbroad (i.e.,
 allow read or write access from users other than the account that Jetty
 runs under).

 ○ When run with a default configuration, a Jetty instance should fail to start
 without a configured TrustStore , JKS , and ssl module.

 ■ The server administrator or deployer should have to purposefully set
 a configuration option (whose name contains the word “unsafe”) to
 “true” or a similar setting to allow cleartext connections.

 ■ Throw an exception with a sufficiently explanatory name and message
 pointing to documentation on how to configure TrustStore , JKS ,
 and the ssl module and on how to alternatively allow
 unsafe/cleartext connections.

 ○ By default, a Jetty instance should not allow X-Forwarded-* (e.g.,
 X-Forwarded-For) headers since their directives’ interpretations vary
 between servers, and such headers are frequently spoofed .

 Trail of Bits 27 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Forwarded-For#security_and_privacy_concerns

 ■ Jetty instances should use setForwardedOnly() by default so that
 Jetty administrators must explicitly configure the allowance of
 X-Forwarded-* headers; this should be documented in the
 programming and operations guides.

 ● Ensure that frameworks that can embed Jetty, such as Spring Boot, recommend and
 use the most up-to-date Jetty release version so that “second-degree” Jetty users can
 also benefit from security-related fixes.

 ● Check that all implementations and uses of the Serializable interface in Jetty
 both properly sanitize input prior to deserialization operations and override the
 ObjectInputStream#resolveClass() method to prevent arbitrary class
 deserialization in all Jetty modes of operation.

 ● Ensure that Jetty’s default functionality for parsing headers, cookies, and request
 bodies received over HTTP/1.1, HTTP/2, and WebSocket is consistent with Spring
 Boot’s functionality, as a common use case for Jetty is as the servlet container
 embedded within a Spring Boot deployment.

 ○ When Jetty is configured as the Spring Boot servlet container, prevent users
 from applying parsing functionality in Jetty that is not consistent with that of
 Spring Boot (which could result in unexpected/exploitable server-layer
 behavior inconsistencies).

 ○ If Spring Boot’s default parsing behavior differs substantially from Jetty’s
 preferred set of secure defaults, implement a Jetty “Spring Boot compliance
 mode” and make it the default for users configuring Jetty as a Spring Boot
 servlet container.

 ● Consider providing a default Jetty SBOM that Jetty deployers and administrators can
 add to as needed, and consider signing Jetty artifacts for later verification. Refer to
 the following resources for more information:

 ○ GitHub Actions: SBOM generation and usage documentation

 ○ GitLab: Ultimate guide to SBOMs

 ○ Project Sigstore , a Linux Foundation project (that Trail of Bits participates in),
 which maintains tooling for signing software artifacts and Git commits, as
 well as verification tooling that Maven Central endorses as an upcoming
 integration alternative to PGP

 ■ Sigstore blog post on using Sigstore in Java environments

 ■ Sigstore Maven plugin

 Trail of Bits 28 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://www.eclipse.org/jetty/javadoc/jetty-12/org/eclipse/jetty/server/ForwardedRequestCustomizer.html#setForwardedOnly(boolean)
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html#java
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html#java
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/using-the-dependency-submission-api#generating-and-submitting-a-software-bill-of-materials-sbom
https://about.gitlab.com/blog/2022/10/25/the-ultimate-guide-to-sboms/
https://docs.sigstore.dev/
https://blog.trailofbits.com/2022/11/08/sigstore-code-signing-verification-software-supply-chain/
https://central.sonatype.org/news/20220310_sigstore/
https://central.sonatype.org/news/20220310_sigstore/
https://blog.sigstore.dev/towards-easier-more-secure-signature-technology-for-the-java-ecosystem-with-sigstore-60d6a02490a8/
https://github.com/sigstore/sigstore-maven

 ● When remediating a CVE or other security vulnerability, do not rely on purposefully
 generic commit messages or vague PR discussions to try to hide code differences
 that patch an exploit, as they will still be findable via tools such as static analyzers
 and runtime data flow taint analyzers.

 ● Consider crawling the links between Eclipse Jetty documentation sections to ensure
 they are still valid. Some links to specific sections of the documentation simply
 redirect to the Eclipse homepage or point to unavailable prior web locations for the
 documentation.

 ● Finish the following security-related sections in the programming guide that are
 incomplete and marked as “TODO.” Once complete, these sections will help ensure
 that users can set up secure Jetty instances:

 ○ The “ Securing HTTP Server Applications ” section

 ■ Even if it includes only simple recommendations for common web
 application security issues, this section could be a valuable resource
 for developers writing applications served via Jetty or incorporating
 Jetty components.

 ■ Use OWASP Top 10 and CWE Top 25 as a basis for the
 recommendations included in this section, or direct users to the CWE
 list and the 2017 and 2020 OWASP Top 10 lists for further reference.

 ■ Additionally, consider pointing users to Java-specific CWEs that
 capture the reason(s) for each recommended configuration setting or
 programming practice.

 ○ The “ HttpClient TLS TrustStore Configuration ” section

 ○ The “ HttpClient TLS Client Certificates Configuration ” section

 Trail of Bits 29 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://www.eclipse.org/jetty/documentation/jetty-12/programming-guide/index.html#pg-server-http-security
https://owasp.org/www-project-top-ten/
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://www.eclipse.org/jetty/documentation/jetty-12/programming-guide/index.html#pg-client-http-configuration-tls-truststore
https://www.eclipse.org/jetty/documentation/jetty-12/programming-guide/index.html#pg-client-http-configuration-tls-client-certs

 Automated Testing

 Trail of Bits uses automated techniques to extensively test the security properties of
 software. We use both open-source static analysis and fuzzing utilities, along with tools
 developed in house, to perform automated testing of source code and compiled software.

 Tool Description

 Semgrep An open-source static analysis tool for finding bugs and enforcing code
 standards when editing or committing code and during build time

 CodeQL A code analysis engine developed by GitHub to automate security checks

 CI Fuzz A fuzzing engine used to create fuzz tests for Java applications

 Trail of Bits 30 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://github.com/returntocorp/semgrep
https://codeql.github.com/
https://github.com/CodeIntelligenceTesting/cifuzz

 Codebase Maturity Evaluation

 Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
 the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
 identified here often stem from root causes within the software development life cycle that
 should be addressed through standardization measures (e.g., the use of common libraries,
 functions, or frameworks) or training and awareness programs.

 Category Summary Result

 Arithmetic The codebase contains several arithmetic-related issues
 that create vulnerabilities, including the risk of an integer
 overflow (TOB-JETTY-1), the use of incorrect integer types
 (TOB-JETTY-6), and missing checks for negative input
 values (TOB-JETTY-7 , TOB-JETTY-10).

 Moderate

 Auditing The default logging level produces logs of basic system
 life cycle events, including server startup and application
 deployment events, and the debug logs provide greater
 detail.

 Satisfactory

 Authentication /
 Access Controls

 We identified no bugs or vulnerabilities in Jetty’s
 implementations of authentication protocols.

 Strong

 Complexity
 Management

 The codebase contains a significant amount of
 indirection and multiple layers of abstraction, but these
 design choices are a reasonable way to enable code
 reuse and interoperation between disparate system
 components.

 Satisfactory

 Configuration The Java XML parser is not configured to disable
 document type definitions when parsing Maven package
 metadata (TOB-JETTY-19). Additionally, the code permits
 some unsafe filesystem operations without checking for
 symbolic links (TOB-JETTY-13).

 Moderate

 Cryptography
 and Key
 Management

 Jetty’s lack of support for JDKs earlier than version 17
 helps support good TLS configuration practices.
 However, the QUIC implementation writes the SSL
 certificate’s private key to the filesystem in a temporary
 plaintext file while passing it through to the underlying
 quiche library (TOB-JETTY-21).

 Moderate

 Trail of Bits 31 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 Data Handling There are multiple issues related to data parsing
 (TOB-JETTY-2) and quoting (TOB-JETTY-3 , TOB-JETTY-5);
 the issue described in finding 3 could enable arbitrary
 command execution in legacy systems.

 Moderate

 Documentation Available documentation provides thorough coverage of
 common use cases for system administrators and
 programmers, as well as available configuration options.

 Strong

 Low-Level
 Manipulation

 The low-level packet parsing and memory buffer
 management routines contain bugs that result in
 exceptions when parsing malformed traffic
 (TOB-JETTY-15) and possibly DoS due to excessive
 resource consumption (TOB-JETTY-8).

 Moderate

 Maintenance Some of Jetty’s test cases have not been updated to
 match recent changes to Jetty Core (see the “Testing and
 Verification” section below). There are also some
 instances of code duplication (TOB-JETTY-22).

 Satisfactory

 Memory Safety
 and Error
 Handling

 Some classes allocate buffers of excessive and incorrect
 sizes (TOB-JETTY-8 , TOB-JETTY-11), and the HTTP/2 server
 fails to appropriately detect and handle errors as
 required by RFC 9113 (TOB-JETTY-18).

 Moderate

 Testing and
 Verification

 Overall, tests appear to achieve reasonable coverage of
 major system components. However, some tests are
 outdated and have not been updated to account for
 recent changes to class interfaces. Additionally, some
 tests validate basic system functionality but do not cover
 error conditions that must be handled in ways specified
 by applicable standards.

 Moderate

 Trail of Bits 32 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 Summary of Findings

 The table below summarizes the findings of the review, including type and severity details.

 ID Title Type Severity

 1 Risk of integer overflow that could allow
 HpackDecoder to exceed maxHeaderSize

 Denial of Service Medium

 2 Cookie parser accepts unmatched quotation
 marks

 Error Reporting Informational

 3 Errant command quoting in CGI servlet Data Validation High

 4 Symlink-allowed alias checker ignores protected
 targets list

 Access Controls High

 5 Missing check for malformed Unicode escape
 sequences in QuotedStringTokenizer.unquote

 Data Validation Low

 6 WebSocket frame length represented with 32-bit
 integer

 Data Validation High

 7 WebSocket parser does not check for negative
 payload lengths

 Data Validation Low

 8 WebSocket parser greedily allocates ByteBuffers
 for large frames

 Denial of Service Medium

 9 Risk of integer overflow in HPACK's
 NBitInteger.decode

 Data Validation Informational

 10 MetaDataBuilder.checkSize accepts headers of
 negative lengths

 Denial of Service Medium

 11 Insufficient space allocated when encoding
 QPACK instructions and entries

 Denial of Service Low

 Trail of Bits 33 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 12 LiteralNameEntryInstruction incorrectly encodes
 value length

 Denial of Service Medium

 13 FileInitializer does not check for symlinks Data Validation High

 14 FileInitializer permits downloading files via
 plaintext HTTP

 Data Exposure High

 15 NullPointerException thrown by FastCGI parser on
 invalid frame type

 Data Validation Medium

 16 Documentation does not specify that request
 contents and other user data can be exposed in
 debug logs

 Data Exposure Medium

 17 HttpStreamOverFCGI internally marks all requests
 as plaintext HTTP

 Data Validation High

 18 Excessively permissive and
 non-standards-compliant error handling in
 HTTP/2 implementation

 Data Validation Low

 19 XML external entities and entity expansion in
 Maven package metadata parser

 Data Validation High

 20 Use of deprecated AccessController class Code Quality Informational

 21 QUIC server writes SSL private key to temporary
 plaintext file

 Cryptography High

 22 Repeated code between HPACK and QPACK Code Quality Informational

 23 Various exceptions in HpackDecoder.decode and
 QpackDecoder.decode

 Denial of Service Informational

 24 Incorrect QPACK encoding when multi-byte
 characters are used

 Data Validation Medium

 Trail of Bits 34 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 25 No limits on maximum capacity in QPACK decoder Denial of Service High

 Trail of Bits 35 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 Detailed Findings

 1. Risk of integer overflow that could allow HpackDecoder to exceed
 maxHeaderSize

 Severity: Medium Difficulty: High

 Type: Denial of Service Finding ID: TOB-JETTY-1

 Target: org.eclipse.jetty.http2.hpack.internal.MetaDataBuilder ,
 org.eclipse.jetty.http2.hpack.HpackDecoder

 Description
 An integer overflow could occur in the MetaDataBuilder.checkSize function, which
 would allow HPACK header values to exceed their size limit.

 MetaDataBuilder.checkSize determines whether a header name or value exceeds the
 size limit and throws an exception if the limit is exceeded:

 291 public void checkSize (int length, boolean huffman) throws SessionException
 292 {
 293 // Apply a huffman fudge factor
 294 if (huffman)
 295 length = (length * 4) / 3 ;
 296 if ((_size + length) > _maxSize)
 297 throw new HpackException.SessionException("Header too large %d > %d" ,
 _size + length, _maxSize);
 298 }

 Figure 1.1: MetaDataBuilder.checkSize

 However, when the value of length is very large and huffman is true , the multiplication
 of length by 4 in line 295 will overflow, and length will become negative. This will cause
 the result of the sum of _size and length to be negative, and the check on line 296 will
 not be triggered.

 Exploit Scenario
 An attacker repeatedly sends HTTP messages with the HPACK header 0x00ffffffffff02 .
 Each time this header is decoded, the following occurs:

 ● HpackDecode.decode determines that a Huffman-coded value of length
 805306494 needs to be decoded.

 Trail of Bits 36 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http2/jetty-http2-hpack/src/main/java/org/eclipse/jetty/http2/hpack/internal/MetaDataBuilder.java#L291-L298

 ● MetaDataBuilder.checkSize approves this length.

 ● Huffman.decode allocates a 1.6 GB string array.

 ● Huffman.decode experiences a buffer overflow error, and the array is deallocated
 the next time garbage collection happens. (Note that this deallocation can be
 delayed by appending valid Huffman-coded characters to the end of the header.)

 Depending on the timing of garbage collection, the number of threads, and the amount of
 memory available on the server, this may cause the server to run out of memory.

 Recommendations
 Short term, have MetaDataBuilder.checkSize check that length is below a threshold
 before performing the multiplication.

 Long term, use fuzzing to check for similar errors; we found this issue by fuzzing
 HpackDecode .

 Trail of Bits 37 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 2. Cookie parser accepts unmatched quotation marks

 Severity: Informational Difficulty: High

 Type: Error Reporting Finding ID: TOB-JETTY-2

 Target: org.eclipse.jetty.http.RFC6265CookieParser

 Description
 The RFC6265CookieParser.parseField function does not check for unmatched
 quotation marks. For example, parseField(“\””) will execute without raising an
 exception. This issue is unlikely to lead to any vulnerabilities, but it could lead to problems
 if users or developers expect the function to accept only valid strings.

 Recommendations
 Short term, modify the function to check that the state at the end of the given string is not
 IN_QUOTED_VALUE .

 Long term, when using a state machine, ensure that the code always checks that the state
 is valid before exiting.

 Trail of Bits 38 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 3. Errant command quoting in CGI servlet

 Severity: High Difficulty: High

 Type: Data Validation Finding ID: TOB-JETTY-3

 Target: org.eclipse.jetty.ee10.servlets.CGI ,
 org.eclipse.jetty.ee9.servlets.CGI

 Description
 If a user sends a request to a CGI servlet for a binary with a space in its name, the servlet
 will escape the command by wrapping it in quotation marks. This wrapped command, plus
 an optional command prefix, will then be executed through a call to Runtime.exec . If the
 original binary name provided by the user contains a quotation mark followed by a space,
 the resulting command line will contain multiple tokens instead of one. For example, if a
 request references a binary called file” name “here , the escaping algorithm will generate
 the command line string “file” name “here” , which will invoke the binary named file ,
 not the one that the user requested.

 if (execCmd.length() > 0 && execCmd.charAt(0) != '"' && execCmd.contains(" "))
 execCmd = "\"" + execCmd + "\"" ;

 Figure 3.1: CGI.java#L337–L338

 Exploit Scenario
 The cgi-bin directory contains a binary named exec and a subdirectory named exec”
 commands , which contains a file called bin1 . A user sends to the CGI servlet a request for
 the filename exec” commands/bin1 . This request passes the file existence check on lines
 194 through 205 in CGI.java . The servlet adds quotation marks around this filename,
 resulting in the command line string “exec” commands/bin1” . When this string is passed
 to Runtime.exec , instead of executing the bin1 binary, the server executes the exec
 binary with the argument commands/bin1” .

 This behavior is incorrect and could bypass alias checks; it could also cause other
 unintended behaviors if a command prefix is configured. Additionally, if the useFullPath
 configuration setting is off, the command would not need to pass the existence check.
 Without this setting, an attacker exploiting this issue would not have to rely on a binary and
 subdirectory with similar names, and the attack could succeed on a much wider variety of
 directory structures.

 Trail of Bits 39 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-ee10/jetty-ee10-servlets/src/main/java/org/eclipse/jetty/ee10/servlets/CGI.java#L337-L338

 Recommendations
 Short term, update line 346 in CGI.java to replace the call to exec(String command,
 String[] env, File dir) with a call to exec(String[] cmdarray, String[] env,
 File dir) so that the quotation mark escaping algorithm does not create new tokens in
 the command line string.

 Long term, update the quotation mark escaping algorithm so that any unescaped
 quotation marks in the original name of the command are properly escaped, resulting in
 one double-quoted token instead of multiple adjacent quoted strings. Additionally, the
 expression execCmd.charAt(0) != '"' on line 337 of CGI.java is intended to avoid
 adding additional quotation marks to an already-quoted command string. If this check is
 unnecessary, it should be removed. If it is necessary, it should be replaced by a more
 robust check that accurately detects properly formatted double-quoted strings.

 Trail of Bits 40 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 4. Symlink-allowed alias checker ignores protected targets list

 Severity: High Difficulty: Medium

 Type: Access Controls Finding ID: TOB-JETTY-4

 Target: org.eclipse.jetty.server.SymlinkAllowedResourceAliasChecker

 Description
 The class SymlinkAllowedResourceAliasChecker is an alias checker that permits users
 to access a symlink as long as the symlink is stored within an allowed directory. The
 following comment appears on line 76 of this class:

 // TODO: return !getContextHandler().isProtectedTarget(realURI.toString());

 Figure 4.1: SymlinkAllowedResourceAliasChecker.java#L76

 As this comment suggests, the alias checker does not yet enforce the context handler’s
 protected resource list. That is, if a symlink is contained in an allowed directory but points
 to a target on the protected resource list, the alias checker will return a positive match.

 During our review, we found that some other modules, but not all, independently enforce
 the protected resource list and will decline to serve resources on the list even if the alias
 checker returns a positive result. But the modules that do not independently enforce the
 protected resource list could serve protected resources to attackers conducting symlink
 attacks.

 Exploit Scenario
 An attacker induces the creation of a symlink (or a system administrator accidentally
 creates one) in a web-accessible directory that points to a protected resource (e.g., a child
 of WEB-INF). By requesting this symlink through a servlet that uses the
 SymlinkAllowedResourceAliasChecker class, the attacker bypasses the protected
 resource list and accesses the sensitive files.

 Recommendations
 Short term, implement the check referenced in the comment so that the alias checker
 rejects symlinks that point to a protected resource or a child of a protected resource.

 Long term, consider clarifying and documenting the responsibilities of different
 components for enforcing protected resource lists. Consider implementing redundant
 checks in multiple modules for purposes of layered security.

 Trail of Bits 41 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-server/src/main/java/org/eclipse/jetty/server/SymlinkAllowedResourceAliasChecker.java#L76

 5. Missing check for malformed Unicode escape sequences in
 QuotedStringTokenizer.unquote

 Severity: Low Difficulty: High

 Type: Data Validation Finding ID: TOB-JETTY-5

 Target: org.eclipse.jetty.util.QuotedStringTokenizer

 Description
 The QuotedStringTokenizer class’s unquote method parses \u#### Unicode escape
 sequences, but it does not first check that the escape sequence is properly formatted or
 that the string is of a sufficient length:

 case 'u' :
 b.append((char)(

 (TypeUtil.convertHexDigit((byte)s.charAt(i++)) << 24) +
 (TypeUtil.convertHexDigit((byte)s.charAt(i++)) << 16) +
 (TypeUtil.convertHexDigit((byte)s.charAt(i++)) << 8) +
 (TypeUtil.convertHexDigit((byte)s.charAt(i++)))

)
);
 break ;

 Figure 5.1: QuotedStringTokenizer.java#L547–L555

 Any calls to this function with an argument ending in an incomplete Unicode escape
 sequence, such as “str\u0” , will cause the code to throw a
 java.lang.NumberFormatException exception. The only known execution path that will
 cause this method to be called with a parameter ending in an invalid Unicode escape
 sequence is to induce the processing of an ETag Matches header by the
 ResourceService class, which calls EtagUtils.matches , which calls
 QuotedStringTokenizer.unquote .

 Exploit Scenario
 An attacker introduces a maliciously crafted ETag into a browser’s cache. Each subsequent
 request for the affected resource causes a server-side exception, preventing the server
 from producing a valid response so long as the cached ETag remains in place.

 Recommendations
 Short term, add a try-catch block around the affected code that drops malformed
 escape sequences.

 Trail of Bits 42 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-util/src/main/java/org/eclipse/jetty/util/QuotedStringTokenizer.java#L547-L555

 Long term, implement a suitable workaround for lenient mode that passes the raw bytes of
 the malformed escape sequence into the output.

 Trail of Bits 43 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 6. WebSocket frame length represented with 32-bit integer

 Severity: High Difficulty: Medium

 Type: Data Validation Finding ID: TOB-JETTY-6

 Target: org.eclipse.jetty.websocket.core.internal.Parser

 Description
 The WebSocket standard (RFC 6455) allows for frames with a size of up to 2 64 bytes.
 However, the WebSocket parser represents the frame length with a 32-bit integer:

 private int payloadLength;
 // ...[snip]...
 case PAYLOAD_LEN_BYTES:

 {
 byte b = buffer.get();
 --cursor;
 payloadLength |= (b & 0xFF) << (8 * cursor);
 // ...[snip]...

 }

 Figure 6.1: Parser.java , lines 57 and 147–151

 As a result, this parsing algorithm will incorrectly parse some length fields as negative
 integers, causing a java.lang.IllegalArgumentException exception to be thrown
 when the parser tries to set the limit of a Buffer object to a negative number (refer to
 TOB-JETTY-7). Consequently, Jetty’s WebSocket implementation cannot properly process
 frames with certain lengths that are compliant with RFC 6455.

 Even if no exception results, this logic error will cause the parser to incorrectly identify the
 sizes of WebSocket frames and the boundaries between them. If the server passes these
 frames to another WebSocket connection, this bug could enable attacks similar to HTTP
 request smuggling, resulting in bypasses of security controls.

 Exploit Scenario
 A Jetty WebSocket server is deployed in a reverse proxy configuration in which both Jetty
 and another web server parse the same stream of WebSocket frames. An attacker sends a
 frame with a length that the Jetty parser incorrectly truncates to a 32-bit integer. Jetty and
 the other server interpret the frames differently, which causes errors in the
 implementation of security controls, such as WAF filters.

 Trail of Bits 44 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://www.rfc-editor.org/rfc/rfc6455#section-5.2
https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-websocket/jetty-websocket-core-common/src/main/java/org/eclipse/jetty/websocket/core/internal/Parser.java#L147-L151

 Recommendations
 Short term, change the payloadLength variable to use the long data type instead of an
 int .

 Long term, audit all arithmetic operations performed on this payloadLength variable to
 ensure that it is always used as an unsigned integer instead of a signed one. The standard
 library’s Integer class can provide this functionality.

 Trail of Bits 45 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 7. WebSocket parser does not check for negative payload lengths

 Severity: Low Difficulty: Low

 Type: Data Validation Finding ID: TOB-JETTY-7

 Target: org.eclipse.jetty.websocket.core.internal.Parser

 Description
 The WebSocket parser’s checkFrameSize method checks for payload lengths that exceed
 the current configuration’s maximum, but it does not check for payload lengths that are
 lower than zero. If the payload length is lower than zero, the code will throw an exception
 when the payload length is passed to a call to buffer.limit .

 Exploit Scenario
 An attacker sends a WebSocket payload with a length field that parses to a negative signed
 integer (refer to TOB-JETTY-6). This payload causes an exception to be thrown and possibly
 the server process to crash.

 Recommendations
 Short term, update checkFrameSize to throw an
 org.eclipse.jetty.websocket.core.exception.ProtocolException exception if
 the frame’s length field is less than zero.

 Trail of Bits 46 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 8. WebSocket parser greedily allocates ByteBu�ers for large frames

 Severity: Medium Difficulty: Low

 Type: Denial of Service Finding ID: TOB-JETTY-8

 Target: org.eclipse.jetty.websocket.core.internal.Parser

 Description
 When the WebSocket parser receives a partial frame in a ByteBuffer object and
 auto-fragmenting is disabled, the parser allocates a buffer of a size sufficient to store the
 entire frame at once:

 if (aggregate == null)
 {

 if (available < payloadLength)
 {

 // not enough to complete this frame
 // Can we auto-fragment
 if (configuration.isAutoFragment() && isDataFrame)

 return autoFragment(buffer, available);

 // No space in the buffer, so we have to copy the partial payload
 aggregate = bufferPool.acquire(payloadLength, false);
 BufferUtil.append(aggregate.getByteBuffer(), buffer);
 return null ;
 }

 //...[snip]...
 }

 Figure 8.1: Parser.java , lines 323–336

 An attacker could send a WebSocket frame with a large payload length field, causing the
 server to allocate a buffer of a size equal to the specified payload length, without ever
 sending the entire frame contents. Therefore, an attacker can induce the consumption of
 gigabytes (or potentially exabytes; refer to TOB-JETTY-6) of memory by sending only
 hundreds or thousands of bytes over the wire.

 Exploit Scenario
 An attacker crafts a malicious WebSocket frame with a large payload length field but
 incomplete payload contents. The server then allocates a buffer of a size equal to the
 payload length field, causing an excessive consumption of RAM. To ensure that the
 connection is not promptly dropped, the attacker continues sending parts of this payload a
 few seconds apart, conducting a slow HTTP attack.

 Trail of Bits 47 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-websocket/jetty-websocket-core-common/src/main/java/org/eclipse/jetty/websocket/core/internal/Parser.java#L323-L336

 Recommendations
 Short term, ensure that the default maximum payload size remains at a low value that is
 sufficient for most purposes (such as the current default of 64 KB).

 Long term, to better support large WebSocket frames, update the use of ByteBuffer
 objects in the WebSocket parser so that the parser does not allocate the entire buffer as
 soon as it parses the first fragment. Instead, the buffer should be expanded in relatively
 small increments (e.g., 10 MB or 100 MB at a time) and then written to only once the data
 sent by the client exceeds the length of the current buffer. That way, in order to induce the
 consumption of a large amount of RAM, an attacker would need to send a commensurate
 number of bytes over the wire.

 Trail of Bits 48 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 9. Risk of integer overflow in HPACK's NBitInteger.decode

 Severity: Informational Difficulty: High

 Type: Data Validation Finding ID: TOB-JETTY-9

 Target: org.eclipse.jetty.http2.hpack.internal.NBitInteger

 Description
 The static function NBitInteger.decode is used to decode bytestrings in HPACK's integer
 format. It should return only positive integers since HPACK’s integer format is not intended
 to support negative numbers. However, the following loop in NBitInteger.decode is
 susceptible to integer overflows in its multiplication and addition operations:

 public static int decode (ByteBuffer buffer, int n)
 {

 if (n == 8)
 {
 // ...

 }

 int nbits = 0xFF >>> (8 - n);

 int i = buffer.get(buffer.position() - 1) & nbits;

 if (i == nbits)
 {

 int m = 1 ;
 int b;
 do
 {

 b = 0xff & buffer.get();
 i = i + (b & 127) * m;
 m = m * 128 ;

 }
 while ((b & 128) == 128);

 }
 return i;

 }

 Figure 9.1: NBitInteger.java , lines 105–145

 For example, NBitInteger.decode(0xFF8080FFFF0F, 7) returns -16257 .

 Any overflow that occurs in the function would not be a problem on its own since, in
 general, the output of this function ought to be validated before it is used; however, when
 coupled with other issues (refer to TOB-JETTY-10), an overflow can cause vulnerabilities.

 Trail of Bits 49 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http2/jetty-http2-hpack/src/main/java/org/eclipse/jetty/http2/hpack/internal/NBitInteger.java#L105-L145

 Recommendations
 Short term, modify NBitInteger.decode to check that its result is nonnegative before
 returning it.

 Long term, consider merging the QPACK and HPACK implementations for NBitInteger ,
 since they perform the same functionality; the QPACK implementation of NBitInteger
 checks for overflows.

 Trail of Bits 50 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 10. MetaDataBuilder.checkSize accepts headers of negative lengths

 Severity: Medium Difficulty: High

 Type: Denial of Service Finding ID: TOB-JETTY-10

 Target: org.eclipse.jetty.http2.hpack.internal.MetaDataBuilder

 Description
 The MetaDataBuilder.checkSize function accepts user-entered HPACK header values
 of negative sizes, which could cause a very large buffer to be allocated later when the
 user-entered size is multiplied by 2.

 MetaDataBuilder.checkSize determines whether a header name or value exceeds the
 size limit and throws an exception if the limit is exceeded:

 public void checkSize (int length, boolean huffman) throws SessionException
 {

 // Apply a huffman fudge factor
 if (huffman)

 length = (length * 4) / 3 ;
 if ((_size + length) > _maxSize)

 throw new HpackException.SessionException("Header too large %d > %d" , _size
 + length, _maxSize);
 }

 Figure 10.1: MetaDataBuilder.java , lines 291–298

 However, it does not throw an exception if the size is negative.

 Later, the Huffman.decode function multiplies the user-entered length by 2 before
 allocating a buffer:

 public static String decode (ByteBuffer buffer, int length) throws
 HpackException.CompressionException
 {

 Utf8StringBuilder utf8 = new Utf8StringBuilder(length * 2);
 // ...

 Figure 10.2: Huffman.java , lines 357–359

 This means that if a user provides a negative length value (or, more precisely, a length
 value that becomes negative when multiplied by the 4/3 fudge factor), and this length value
 becomes a very large positive number when multiplied by 2, then the user can cause a very
 large buffer to be allocated on the server.

 Trail of Bits 51 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http2/jetty-http2-hpack/src/main/java/org/eclipse/jetty/http2/hpack/internal/MetaDataBuilder.java#L291-L298
https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http2/jetty-http2-hpack/src/main/java/org/eclipse/jetty/http2/hpack/internal/Huffman.java#L357-L359

 Exploit Scenario
 An attacker repeatedly sends HTTP messages with the HPACK header 0x00ff8080ffff0b .
 Each time this header is decoded, the following occurs:

 ● HpackDecode.decode determines that a Huffman-coded value of length
 -1073758081 needs to be decoded.

 ● MetaDataBuilder.checkSize approves this length.

 ● The number is multiplied by 2, resulting in 2147451134 , and Huffman.decode
 allocates a 2.1 GB string array.

 ● Huffman.decode experiences a buffer overflow error, and the array is deallocated
 the next time garbage collection happens. (Note that this deallocation can be
 delayed by adding valid Huffman-coded characters to the end of the header.)

 Depending on the timing of garbage collection, the number of threads, and the amount of
 memory available on the server, this may cause the server to run out of memory.

 Recommendations
 Short term, have MetaDataBuilder.checkSize check that the given length is positive
 directly before adding it to _size and comparing it with _maxSize .

 Long term, add checks for integer overflows in Huffman.decode and in
 NBitInteger.decode (refer to TOB-JETTY-9) for added redundancy.

 Trail of Bits 52 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 11. Insu�cient space allocated when encoding QPACK instructions and
 entries

 Severity: Low Difficulty: High

 Type: Denial of Service Finding ID: TOB-JETTY-11

 Target:
 ● org.eclipse.jetty.http3.qpack.internal.instruction.IndexedName

 EntryInstruction
 ● org.eclipse.jetty.http3.qpack.internal.instruction.LiteralName

 EntryInstruction
 ● org.eclipse.jetty.http3.qpack.internal.instruction.EncodableEn

 try

 Description
 Multiple expressions do not allocate enough buffer space when encoding QPACK
 instructions and entries, which could result in a buffer overflow exception.

 In IndexedNameEntry , the following expression determines how much space to allocate
 when encoding the instruction:

 int size = NBitIntegerEncoder.octetsNeeded(6 , _index) + (_huffman ?
 HuffmanEncoder.octetsNeeded(_value) : _value.length()) + 2 ;

 Figure 11.1: IndexedNameEntry.java , line 58

 Later, the following two lines encode the value size for Huffman-coded and
 non-Huffman-coded strings, respectively:

 NBitIntegerEncoder.encode(byteBuffer, 7 , HuffmanEncoder.octetsNeeded(_value));
 // ...
 NBitIntegerEncoder.encode(byteBuffer, 7 , _value.length());

 Figure 11.2: IndexedNameEntry.java , lines 71 and 77

 These encodings can take up more than 1 byte if the value’s length is over 126 because the
 number will fill up the 7 bits given to it in the first byte. However, the int size expression
 in figure 11.1 assumes that it will take up only 1 byte. Thus, if the value’s length is over 126,
 too few bytes may be allocated for the instruction, causing a buffer overflow.

 The same problem occurs in LiteralNameEntryInstruction :

 Trail of Bits 53 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http3/jetty-http3-qpack/src/main/java/org/eclipse/jetty/http3/qpack/internal/instruction/IndexedNameEntryInstruction.java#L58
https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http3/jetty-http3-qpack/src/main/java/org/eclipse/jetty/http3/qpack/internal/instruction/IndexedNameEntryInstruction.java

 int size = (_huffmanName ? HuffmanEncoder.octetsNeeded(_name) : _name.length()) +
 (_huffmanValue ? HuffmanEncoder.octetsNeeded(_value) : _value.length()) + 2 ;

 Figure 11.3: LiteralNameEntryInstruction.java , lines 59–60

 This expression assumes that the name's length will fit into 5 bits and that the value’s
 length will fit into 7 bits. If the name’s length is over 30 bytes or the value’s length is over
 126 bytes, these assumptions will be false and too little space may be allocated for the
 instruction, which could cause a buffer overflow.

 A similar problem occurs in EncodableEntry.ReferencedNameEntry . The
 getRequiredSize method in this file calculates how much space should be allocated for
 its encoding:

 public int getRequiredSize (int base)
 {

 String value = getValue();
 int relativeIndex = _nameEntry.getIndex() - base;
 int valueLength = _huffman ? HuffmanEncoder.octetsNeeded(value) :

 value.length();
 return 1 + NBitIntegerEncoder.octetsNeeded(4 , relativeIndex) + 1 +

 NBitIntegerEncoder.octetsNeeded(7 , valueLength) + valueLength;
 }

 Figure 11.4: EncodableEntry.java , lines 181–187

 The method returns the wrong size if the value is longer than 126 bytes. Additionally, it
 assumes that the name will use a post-base reference rather than a normal one, which may
 be incorrect.

 An additional problem is present in this method. It assumes that value ’s length in bytes
 will be returned by value.length() . However, value.length() measures the number
 of characters in value , not the number of bytes, so if value contains multibyte characters
 (e.g., UTF-8), too few bytes will be allocated. The length of value should be calculated by
 using value.getBytes() instead of value.length() .

 The getRequiredSize method in EncodableEntry.LiteralEntry also incorrectly uses
 value.length() :

 public int getRequiredSize (int base)
 {

 String name = getName();
 String value = getValue();
 int nameLength = _huffman ? HuffmanEncoder.octetsNeeded(name) : name.length();
 int valueLength = _huffman ? HuffmanEncoder.octetsNeeded(value) :

 value.length();
 return 2 + NBitIntegerEncoder.octetsNeeded(3 , nameLength) + nameLength +

 NBitIntegerEncoder.octetsNeeded(7 , valueLength) + valueLength;

 Trail of Bits 54 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http3/jetty-http3-qpack/src/main/java/org/eclipse/jetty/http3/qpack/internal/instruction/LiteralNameEntryInstruction.java#L59-L60
https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http3/jetty-http3-qpack/src/main/java/org/eclipse/jetty/http3/qpack/internal/EncodableEntry.java#L181-L187

 }

 Figure 11.5: EncodableEntry.java , lines 243–250

 Note that name.length() is used to measure the byte length of name , and
 value.length() is used to measure the byte length of value .

 Jetty’s HTTP/3 code is still considered experimental, so this issue should not affect
 production code, but it should be fixed before announcing HTTP/3 support to be
 production-ready.

 Recommendations
 Short term, change the relevant expressions to account for the extra length.

 Long term, build out additional test cases for QPACK and other parsers used in HTTP/3 to
 test for the correct handling of edge cases and identify memory handling exceptions.

 Trail of Bits 55 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http3/jetty-http3-qpack/src/main/java/org/eclipse/jetty/http3/qpack/internal/EncodableEntry.java#L243-L250

 12. LiteralNameEntryInstruction incorrectly encodes value length

 Severity: Medium Difficulty: Medium

 Type: Denial of Service Finding ID: TOB-JETTY-12

 Target:
 org.eclipse.jetty.http3.qpack.internal.instruction.LiteralNameEntryI
 nstruction

 Description
 QPACK instructions for inserting entries with literal names and non-Huffman-coded values
 will be encoded incorrectly when the value’s length is over 30, which could cause values to
 be sent incorrectly or errors to occur during decoding.

 The following snippet of the LiteralNameEntryInstruction.encode function is
 responsible for encoding the header value:

 78 if (_huffmanValue)
 79 {
 80 byteBuffer.put((byte)(0x80));
 81 NBitIntegerEncoder.encode(byteBuffer, 7 ,
 HuffmanEncoder.octetsNeeded(_value));
 82 HuffmanEncoder.encode(byteBuffer, _value);
 83 }
 84 else
 85 {
 86 byteBuffer.put((byte)(0x00));
 87 NBitIntegerEncoder.encode(byteBuffer, 5 , _value.length());
 88 byteBuffer.put(_value.getBytes());
 89 }

 Figure 12.1: LiteralNameEntryInstruction.java , lines 78–89

 On line 87, 5 is the second parameter to NBitIntegerEncoder.encode , indicating that
 the number will take up 5 bits in the first encoded byte; however, the second parameter
 should be 7 instead. This means that when _value.length() is over 30, it will be
 incorrectly encoded.

 Jetty’s HTTP/3 code is still considered experimental, so this issue should not affect
 production code, but it should be fixed before announcing HTTP/3 support to be
 production-ready.

 Trail of Bits 56 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http3/jetty-http3-qpack/src/main/java/org/eclipse/jetty/http3/qpack/internal/instruction/LiteralNameEntryInstruction.java#L78-L89

 Recommendations
 Short term, change the second parameter of the NBitIntegerEncoder.encode function
 from 5 to 7 in order to reflect that the number will take up 7 bits.

 Long term, write more tests to catch similar encoding/decoding problems.

 Trail of Bits 57 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 13. FileInitializer does not check for symlinks

 Severity: High Difficulty: High

 Type: Data Validation Finding ID: TOB-JETTY-13

 Target: org.eclipse.jetty.start.FileInitializer

 Description
 Module configuration files can direct Jetty to download a remote file and save it in the local
 filesystem while initializing the module. During this process, the FileInitializer class
 validates the destination path and throws an IOException exception if the destination is
 outside the ${jetty.base} directory. However, this validation routine does not check for
 symlinks:

 // now on copy/download paths (be safe above all else)
 if (destination != null && !destination.startsWith(_basehome.getBasePath()))

 throw new IOException("For security reasons, Jetty start is unable to process
 file resource not in ${jetty.base} - " + location);

 Figure 13.1: FileInitializer.java , lines 112–114

 None of the subclasses of FileInitializer check for symlinks either. Thus, if the
 ${jetty.base} directory contains a symlink, a file path in a module’s .ini file beginning
 with the symlink name will pass the validation check, and the file will be written to a
 subdirectory of the symlink’s destination.

 Exploit Scenario
 A system’s ${jetty.base} directory contains a symlink called dir , which points to /etc .
 The system administrator enables a Jetty module whose .ini file contains a [files] entry
 that downloads a remote file and writes it to the relative path dir/config.conf . The
 filesystem follows the symlink and writes a new configuration file to /etc/config.conf ,
 which impacts the server’s system configuration. Additionally, since the FileInitializer
 class uses the REPLACE_EXISTING flag, this behavior overwrites an existing system
 configuration file.

 Recommendations
 Short term, rewrite all path checks in FileInitializer and its subclasses to include a call
 to the Path.toRealPath function, which, by default, will resolve symlinks and produce the
 real filesystem path pointed to by the Path object. If this real path is outside
 ${jetty.base} , the file write operation should fail.

 Trail of Bits 58 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-start/src/main/java/org/eclipse/jetty/start/FileInitializer.java#L112-L114

 Long term, consolidate all filesystem operations involving the ${jetty.base} or
 ${jetty.home} directories into a single centralized class that automatically performs
 symlink resolution and rejects operations that attempt to read from or write to an
 unauthorized directory. This class should catch and handle the IOException exception
 that is thrown in the event of a link loop or a large number of nested symlinks.

 Trail of Bits 59 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 14. FileInitializer permits downloading files via plaintext HTTP

 Severity: High Difficulty: High

 Type: Data Exposure Finding ID: TOB-JETTY-14

 Target: org.eclipse.jetty.start.FileInitializer

 Description
 Module configuration files can direct Jetty to download a remote file and save it in the local
 filesystem while initializing the module. If the specified URL is a plaintext HTTP URL, Jetty
 does not raise an error or warn the user. Transmitting files over plaintext HTTP is
 intrinsically unsecure and exposes sensitive data to tampering and eavesdropping in
 transit.

 Exploit Scenario
 A system administrator enables a Jetty module that downloads a remote file over plaintext
 HTTP during initialization. An attacker with a network intermediary position sniffs the traffic
 and infers sensitive information about the design and configuration of the Jetty system
 under configuration. Alternatively, the attacker actively tampers with the file during
 transmission from the remote server to the Jetty installation, which enables the attacker to
 alter the module’s behavior and launch other attacks against the targeted system.

 Recommendations
 Short term, add a check to the FileInitializer class and its subclasses to prohibit
 downloads over plaintext HTTP. Additionally, add a validation check to the module .ini file
 parser to reject any configuration that includes a plaintext HTTP URL in the [files]
 section.

 Long term, consolidate all remote file downloads conducted during module configuration
 operations into a single centralized class that automatically rejects plaintext HTTP URLs.

 If current use cases require support of plaintext HTTP URLs, then at a minimum, have Jetty
 display a prominent warning message and prompt the user for manual confirmation
 before performing the unencrypted download.

 Trail of Bits 60 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 15. NullPointerException thrown by FastCGI parser on invalid frame type

 Severity: Medium Difficulty: Low

 Type: Data Validation Finding ID: TOB-JETTY-15

 Target: org.eclipse.jetty.fcgi.parser.Parser

 Description
 Because of a missing null check, the Jetty FastCGI client’s Parser class throws a
 NullPointerException exception when parsing a frame with an invalid frame type field.
 This exception occurs because the findContentParser function returns null when it
 does not have a ContentParser object matching the specified frame type, and the caller
 never checks the findContentParser return value for null before dereferencing it.

 case CONTENT:
 {

 ContentParser contentParser = findContentParser(headerParser.getFrameType());
 if (headerParser.getContentLength() == 0)
 {

 padding = headerParser.getPaddingLength();
 state = State.PADDING;
 if (contentParser.noContent())

 return true ;
 }
 else
 {

 ContentParser.Result result = contentParser.parse(buffer);
 // ...[snip]...

 }
 break ;

 }

 Figure 15.1: Parser.java , lines 82–114

 Exploit Scenario
 An attacker operates a malicious web server that supports FastCGI. A Jetty application
 communicates with this server by using Jetty’s built-in FastCGI client. The remote server
 transmits a frame with an invalid frame type, causing a NullPointerException exception
 and a crash in the Jetty application.

 Recommendations
 Short term, add a null check to the parse function to abort the parsing process before
 dereferencing a null return value from findContentParser . If a null value is detected,

 Trail of Bits 61 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-fcgi/jetty-fcgi-client/src/main/java/org/eclipse/jetty/fcgi/parser/Parser.java#L82-L114

 parse should throw an appropriate exception, such as IllegalStateException , that
 Jetty can catch and handle safely.

 Long term, build out a larger suite of test cases that ensures graceful handling of
 malformed traffic and data.

 Trail of Bits 62 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 16. Documentation does not specify that request contents and other user
 data can be exposed in debug logs

 Severity: Medium Difficulty: High

 Type: Data Exposure Finding ID: TOB-JETTY-16

 Target: Jetty 12 Operations Guide; numerous locations throughout the codebase

 Description
 Over 100 times, the system calls LOG.debug with a parameter of the format
 BufferUtil.toDetailString(buffer) , which outputs up to 56 bytes of the buffer into
 the log file. Jetty’s implementations of various protocols and encodings, including GZIP,
 WebSocket, multipart encoding, and HTTP/2, output user data received over the network to
 the debug log using this type of call.

 An example instance from Jetty’s WebSocket implementation appears in figure 16.1.

 public Frame.Parsed parse (ByteBuffer buffer) throws WebSocketException
 {

 try
 {

 // parse through
 while (buffer.hasRemaining())
 {

 if (LOG.isDebugEnabled())
 LOG.debug("{} Parsing {}" , this , BufferUtil.toDetailString(buffer));

 // ...[snip]...
 }
 // ...[snip]...

 }
 // ...[snip]...

 }

 Figure 16.1: Parser.java , lines 88–96

 Although the Jetty 12 Operations Guide does state that Jetty debugging logs can quickly
 consume massive amounts of disk space, it does not advise system administrators that the
 logs can contain sensitive user data, such as personally identifiable information. Thus, the
 possibility of raw traffic being captured from debug logs is undocumented.

 Exploit Scenario
 A Jetty system administrator turns on debug logging in a production environment. During
 the normal course of operation, a user sends traffic containing sensitive information, such
 as personally identifiable information or financial data, and this data is recorded to the

 Trail of Bits 63 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-websocket/jetty-websocket-core-common/src/main/java/org/eclipse/jetty/websocket/core/internal/Parser.java#L88-L96

 debug log. An attacker who gains access to this log can then read the user data,
 compromising data confidentiality and the user’s privacy rights.

 Recommendations
 Short term, update the Jetty Operations Guide to state that in addition to being extremely
 large, debug logs can contain sensitive user data and should be treated as sensitive.

 Long term, consider moving all debugging messages that contain buffer excerpts into a
 high-detail debug log that is enabled only for debug builds of the application.

 Trail of Bits 64 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 17. HttpStreamOverFCGI internally marks all requests as plaintext HTTP

 Severity: High Difficulty: High

 Type: Data Validation Finding ID: TOB-JETTY-17

 Target: org.eclipse.jetty.fcgi.server.internal.HttpStreamOverFCGI

 Description
 The HttpStreamOverFCGI class processes FastCGI messages in a format that can be
 processed by other system components that use the HttpStream interface. This class’s
 onHeaders callback mistakenly marks each MetaData.Request object as a plaintext HTTP
 request, as the “TODO” comment shown in figure 17.1 indicates:

 public void onHeaders ()
 {

 String pathQuery = URIUtil.addPathQuery(_path, _query);
 // TODO https?
 MetaData.Request request = new MetaData.Request(_method,

 HttpScheme.HTTP.asString(), hostPort, pathQuery, HttpVersion.fromString(_version),
 _headers, Long.MIN_VALUE);

 // ...[snip]...
 }

 Figure 17.1: HttpStreamOverFCGI.java , lines 108–119

 In some configurations, other Jetty components could misinterpret a message received
 over FCGI as a plaintext HTTP message, which could cause a request to be incorrectly
 rejected, redirected in an infinite loop, or forwarded to another system over a plaintext
 HTTP channel instead of HTTPS.

 Exploit Scenario
 A Jetty instance runs an FCGI server and uses the HttpStream interface to process
 messages. The MetaData.Request class’s getURI method is used to check the incoming
 request’s URI. This method mistakenly returns a plaintext HTTP URL due to the bug in
 HttpStreamOverFCGI.java . One of the following takes place during the processing of
 this request:

 ● An application-level security control checks the incoming request’s URI to ensure it
 was received over a TLS-encrypted channel. Since this check fails, the application
 rejects the request and refuses to process it, causing a denial of service.

 ● An application-level security control checks the incoming request’s URI to ensure it
 was received over a TLS-encrypted channel. Since this check fails, the application

 Trail of Bits 65 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-fcgi/jetty-fcgi-server/src/main/java/org/eclipse/jetty/fcgi/server/internal/HttpStreamOverFCGI.java#L108-L119

 attempts to redirect the user to a suitable HTTPS URL. The check fails on this
 redirected request as well, causing an infinite redirect loop and a denial of service.

 ● An application processing FCGI messages acts as a proxy, forwarding certain
 requests to a third HTTP server. It uses MetaData.Request.getURI to check the
 request’s original URI and mistakenly sends a request over plaintext HTTP.

 Recommendations
 Short term, correct the bug in HttpStreamOverFCGI.java to generate the correct URI for
 the incoming request.

 Long term, consider streamlining the HTTP implementation to minimize the need for
 different classes to generate URIs from request data.

 Trail of Bits 66 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 18. Excessively permissive and non-standards-compliant error handling in
 HTTP/2 implementation

 Severity: Low Difficulty: High

 Type: Data Validation Finding ID: TOB-JETTY-18

 Target: The org.eclipse.jetty.http2.parser and
 org.eclipse.jetty.http2.parser packages

 Description
 Jetty’s HTTP/2 implementation violates RFC 9113 in that it fails to terminate a connection
 with an appropriate error code when the remote peer sends a frame with one of the
 following protocol violations:

 ● A SETTINGS frame with the ACK flag set and a nonzero payload length

 ● A PUSH_PROMISE frame in a stream with push disabled

 ● A GOAWAY frame with its stream ID not set to zero

 None of these situations creates an exploitable vulnerability. However, noncompliant
 protocol implementations can create compatibility problems and could cause
 vulnerabilities when deployed in combination with other misconfigured systems.

 Exploit Scenario
 A Jetty instance connects to an HTTP/2 server, or serves a connection from an HTTP/2
 client, and the remote peer sends traffic that should cause Jetty to terminate the
 connection. Instead, Jetty keeps the connection alive, in violation of RFC 9113. If the remote
 peer is programmed to handle the noncompliant traffic differently than Jetty, further
 problems could result, as the two implementations interpret protocol messages differently.

 Recommendations
 Short term, update the HTTP/2 implementation to check for the following error conditions
 and terminate the connection with an error code that complies with RFC 9113:

 ● A peer receives a SETTINGS frame with the ACK flag set and a payload length
 greater than zero.

 ● A client receives a PUSH_PROMISE frame after having sent, and received an
 acknowledgement for, a SETTINGS frame with SETTINGS_ENABLE_PUSH equal to
 zero.

 Trail of Bits 67 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 ● A peer receives a GOAWAY frame with the stream identifier field not set to zero.

 Long term, audit Jetty’s implementation of HTTP/2 and other protocols to ensure that Jetty
 handles errors in a standards-compliant manner and terminates connections as required
 by the applicable specifications.

 Trail of Bits 68 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 19. XML external entities and entity expansion in Maven package metadata
 parser

 Severity: High Difficulty: High

 Type: Data Validation Finding ID: TOB-JETTY-19

 Target: org.eclipse.jetty.start.fileinits.MavenMetadata

 Description
 During module initialization, the MavenMetadata class parses maven-metadata.xml files
 when the module configuration includes a maven:// URI in its [files] section. The
 DocumentBuilderFactory class is used with its default settings, meaning that document
 type definitions (DTD) are allowed and are applied. This behavior leaves the
 MavenMetadata class vulnerable to XML external entity (XXE) and XML entity expansion
 (XEE) attacks. These vulnerabilities could enable a variety of exploits, including server-side
 request forgery on the server’s local network and arbitrary file reads from the server’s
 filesystem.

 Exploit Scenario
 An attacker causes a Jetty installation to parse a maliciously crafted maven-metadata.xml
 file, such as by uploading a malicious package to a Maven repository, inducing an
 out-of-band download of the malicious package through social engineering, or by placing
 the maven-metadata.xml file on the server’s filesystem through other means. When the
 XML file is parsed, the XML-based attack is launched. The attacker could leverage this
 vector to do any of the following:

 ● Induce HTTP requests to servers on the server’s local network

 ● Read and exfiltrate arbitrary files on the server’s filesystem

 ● Consume excessive system resources with an XEE, causing a denial of service

 Recommendations
 Short term, disable parsing of DTDs in MavenMetadata so that maven-metadata.xml files
 cannot be used as a vector for XML-based attacks. Disabling DTDs may require knowledge
 of the underlying XML parser implementation returned by the DocumentBuilderFactory
 class.

 Long term, review default configurations and attributes supported by XML parsers that
 may be returned by the DocumentBuilderFactory to ensure that DTDs are properly
 disabled.

 Trail of Bits 69 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 20. Use of deprecated AccessController class

 Severity: Informational Difficulty: N/A

 Type: Code Quality Finding ID: TOB-JETTY-20

 Target:
 ● org.eclipse.jetty.logging.JettyLoggerConfiguration
 ● org.eclipse.jetty.util.MemoryUtils
 ● org.eclipse.jetty.util.TypeUtil
 ● org.eclipse.jetty.util.thread.PrivilegedThreadFactory
 ● org.eclipse.jetty.ee10.servlet.ServletContextHandler
 ● org.eclipse.jetty.ee9.nested.ContextHandler

 Description
 The classes listed in the “Target” cell above use the java.security.AccessController
 class, which is a deprecated class slated to be removed in a future Java release. The
 java.security library documentation states that the AccessController class “is only
 useful in conjunction with the Security Manager,” which is also deprecated. Thus, the use of
 AccessController no longer serves any beneficial purpose.

 The use of this deprecated class could impact Jetty’s compatibility with future releases of
 the Java SDK.

 Recommendations
 Short term, remove all uses of the AccessController class.

 Long term, audit the Jetty codebase for the use of classes in the java.security package
 that may not provide any value in Jetty 12, and remove all references to those classes.

 Trail of Bits 70 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/security/AccessController.html#class-description

 21. QUIC server writes SSL private key to temporary plaintext file

 Severity: High Difficulty: High

 Type: Cryptography Finding ID: TOB-JETTY-21

 Target: org.eclipse.jetty.quic.server.QuicServerConnector

 Description
 Jetty’s QUIC implementation uses quiche, a QUIC and HTTP/3 library maintained by
 Cloudflare. When the server’s SSL certificate is handed off to quiche, the private key is
 extracted from the existing keystore and written to a temporary plaintext PEM file:

 protected void doStart () throws Exception
 {

 // ...[snip]...
 char [] keyStorePassword =

 sslContextFactory.getKeyStorePassword().toCharArray();
 String keyManagerPassword = sslContextFactory.getKeyManagerPassword();
 SSLKeyPair keyPair = new SSLKeyPair(

 sslContextFactory.getKeyStoreResource().getPath(),
 sslContextFactory.getKeyStoreType(),
 keyStorePassword,
 alias,
 keyManagerPassword == null ? keyStorePassword :

 keyManagerPassword.toCharArray()
);
 File[] pemFiles = keyPair.export(new

 File(System.getProperty("java.io.tmpdir")));
 privateKeyFile = pemFiles[0];
 certificateChainFile = pemFiles[1];

 }

 Figure 21.1: QuicServerConnector.java , lines 154–179

 Storing the private key in this manner exposes it to increased risk of theft. Although the
 QuicServerConnector class deletes the private key file upon stopping the server, this
 deleted file may not be immediately removed from the physical storage medium, exposing
 the file to potential theft by attackers who can access the raw bytes on the disk.

 A review of quiche suggests that the library’s API may not support reading a DES-encrypted
 keyfile. If that is true, then remediating this issue would require updates to the underlying
 quiche library.

 Trail of Bits 71 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-quic/jetty-quic-server/src/main/java/org/eclipse/jetty/quic/server/QuicServerConnector.java#L154-L179

 Exploit Scenario
 An attacker gains read access to a Jetty HTTP/3 server’s temporary directory while the
 server is running. The attacker can retrieve the temporary keyfile and read the private key
 without needing to obtain or guess the encryption key for the original keystore. With this
 private key in hand, the attacker decrypts and tampers with all TLS communications that
 use the associated certificate.

 Recommendations
 Short term, investigate the quiche library’s API to determine whether it can readily support
 password-encrypted private keyfiles. If so, update Jetty to save the private key in a
 temporary password-protected file and to forward that password to quiche. Alternatively, if
 password-encrypted private keyfiles can be supported, have Jetty pass the unencrypted
 private key directly to quiche as a function argument. Either option would obviate the need
 to store the key in a plaintext file on the server’s filesystem.

 If quiche does not support either of these changes, open an issue or pull request for quiche
 to implement a fix for this issue.

 Trail of Bits 72 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 22. Repeated code between HPACK and QPACK

 Severity: Informational Difficulty: N/A

 Type: Code Quality Finding ID: TOB-JETTY-22

 Target:
 ● org.eclipse.jetty.http2.hpack.internal.NBitInteger
 ● org.eclipse.jetty.http2.hpack.internal.Huffman
 ● org.eclipse.jetty.http3.qpack.internal.util.NBitIntegerParser
 ● org.eclipse.jetty.http3.qpack.internal.util.NBitIntegerEncode
 ● org.eclipse.jetty.http3.qpack.internal.util.HuffmanDecoder
 ● org.eclipse.jetty.http3.qpack.internal.util.HuffmanEncoder

 Description
 Classes for dealing with n-bit integers and Huffman coding are implemented both in the
 jetty-http2-hpack and in jetty-http3-qpack libraries. These classes have very
 similar functionality but are implemented in two different places, sometimes with identical
 code and other times with different implementations. In some cases (TOB-JETTY-9), one
 implementation has a bug that the other implementation does not have. The codebase
 would be easier to maintain and keep secure if the implementations were merged.

 Exploit Scenario
 A vulnerability is found in the Huffman encoding implementation, which has identical code
 in HPACK and QPACK. The vulnerability is fixed in one implementation but not the other,
 leaving one of the implementations vulnerable.

 Recommendations
 Short term, merge the two implementations of n-bit integers and Huffman coding classes.

 Long term, audit the Jetty codebase for other classes with very similar functionality.

 Trail of Bits 73 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 23. Various exceptions in HpackDecoder.decode and QpackDecoder.decode

 Severity: Informational Difficulty: N/A

 Type: Denial of Service Finding ID: TOB-JETTY-23

 Target: org.eclipse.jetty.http2.hpack.HpackDecoder ,
 org.eclipse.jetty.http3.qpack.QpackDecoder

 Description
 The HpackDecoder and QpackDecoder classes both throw unexpected Java-level
 exceptions:

 ● HpackDecoder.decode(0x03) throws BufferUnderflowException .

 ● HpackDecoder.decode(0x4800) throws NumberFormatException .

 ● HpackDecoder.decode(0x3fff 2e) throws IllegalArgumentException .

 ● HpackDecoder.decode(0x3fff 81ff ff2e) throws NullPointerException .

 ● HpackDecoder.decode(0xffff ffff f8ff ffff ffff ffff ffff ffff ffff
 ffff ffff ffff 0202 0000) throws ArrayIndexOutOfBoundsException .

 ● QpackDecoder.decode(..., 0x81, ...) throws
 IndexOutOfBoundsException .

 ● QpackDecoder.decode(..., 0xfff8 ffff f75b, ...) throws
 ArithmeticException .

 For both HPACK and QPACK, these exceptions appear to be caught higher up in the call
 chain by catch (Throwable x) statements every time the decode functions are called.
 However, catching them within decode and throwing a Jetty-level exception within the
 catch statement would result in cleaner, more robust code.

 Exploit Scenario
 Jetty developers refactor the codebase, moving function calls around and introducing a
 new point in the code where HpackDecoder.decode is called. Assuming that decode will
 throw only org.jetty… errors, they forget to wrap this call in a catch (Throwable x)
 statement. This results in a DoS vulnerability.

 Recommendations
 Short term, document in the code that Java-level exceptions can be thrown.

 Long term, modify the decode functions so that they throw only Jetty-level exceptions.

 Trail of Bits 74 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 24. Incorrect QPACK encoding when multi-byte characters are used

 Severity: Medium Difficulty: Medium

 Type: Data Validation Finding ID: TOB-JETTY-24

 Target: org.eclipse.jetty.http3.qpack.internal.EncodableEntry

 Description
 Java’s string.length() function returns the number of characters in a string, which can
 be different from the number of bytes returned by the string.getBytes() function.
 However, QPACK encoding methods assume that they return the same number, which
 could cause incorrect encodings.

 In EncodableEntry.LiteralEntry , which is used to encode HTTP/3 header fields, the
 following method is used for encoding:

 214 public void encode (ByteBuffer buffer, int base)
 215 {
 216 byte allowIntermediary = 0x00 ; // TODO: this is 0x10 bit, when should
 this be set?
 217 String name = getName();
 218 String value = getValue();
 219
 220 // Encode the prefix code and the name.
 221 if (_huffman)
 222 {
 223 buffer.put((byte)(0x28 | allowIntermediary));
 224 NBitIntegerEncoder.encode(buffer, 3 ,
 HuffmanEncoder.octetsNeeded(name));
 225 HuffmanEncoder.encode(buffer, name);
 226 buffer.put((byte) 0x80);
 227 NBitIntegerEncoder.encode(buffer, 7 ,
 HuffmanEncoder.octetsNeeded(value));
 228 HuffmanEncoder.encode(buffer, value);
 229 }
 230 else
 231 {
 232 // TODO: What charset should we be using? (this applies to the
 instruction generators as well).
 233 buffer.put((byte)(0x20 | allowIntermediary));
 234 NBitIntegerEncoder.encode(buffer, 3 , name.length());
 235 buffer.put(name.getBytes());
 236 buffer.put((byte) 0x00);
 237 NBitIntegerEncoder.encode(buffer, 7 , value.length());
 238 buffer.put(value.getBytes());

 Trail of Bits 75 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 239 }
 240 }

 Figure 24.1: EncodableEntry.java , lines 214–240

 Note in particular lines 232–238, which are used to encode literal (non-Huffman-coded)
 names and values. The value returned by name.length() is added to the bytestring,
 followed by the value returned by name.getBytes() . Then, the value returned by
 value.length() is added to the bytestring, followed by the value returned by
 value.getBytes() . When this bytestring is decoded, the decoder will read the name
 length field and then read that many bytes as the name. If multibyte characters were used
 in the name field, the decoder will read too few bytes. The rest of the bytestring will also be
 decoded incorrectly, since the decoder will continue reading at the wrong point in the
 bytestring. The same issue occurs if multibyte characters were used in the value field.

 The same issue appears in EncodableEntry.ReferencedNameEntry.encode :

 164 // Encode the value.
 165 String value = getValue();
 166 if (_huffman)
 167 {
 168 buffer.put((byte) 0x80);
 169 NBitIntegerEncoder.encode(buffer, 7 , HuffmanEncoder.octetsNeeded(value));
 170 HuffmanEncoder.encode(buffer, value);
 171 }
 172 else
 173 {
 174 buffer.put((byte) 0x00);
 175 NBitIntegerEncoder.encode(buffer, 7 , value.length());
 176 buffer.put(value.getBytes());
 177 }

 Figure 24.2: EncodableEntry.java , lines 164–177

 If value has multibyte characters, it will be incorrectly encoded in lines 174–176.

 Jetty’s HTTP/3 code is still considered experimental, so this issue should not affect
 production code, but it should be fixed before announcing HTTP/3 support to be
 production-ready.

 Exploit Scenario
 A Jetty server attempts to add the Set-Cookie header, setting a cookie value to a
 UTF-8-encoded string that contains multibyte characters. This causes an incorrect cookie
 value to be set and the rest of the headers in this message to be parsed incorrectly.

 Trail of Bits 76 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http3/jetty-http3-qpack/src/main/java/org/eclipse/jetty/http3/qpack/internal/EncodableEntry.java#L214-L240
https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http3/jetty-http3-qpack/src/main/java/org/eclipse/jetty/http3/qpack/internal/EncodableEntry.java#L164-L177

 Recommendations
 Short term, have the encode function in both EncodableEntry.LiteralEntry and
 EncodableEntry.ReferencedNameEntry encode the length of the string using
 string.getBytes() rather than string.length() .

 Trail of Bits 77 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 25. No limits on maximum capacity in QPACK decoder

 Severity: High Difficulty: Medium

 Type: Denial of Service Finding ID: TOB-JETTY-25

 Target:
 ● org.eclipse.jetty.http3.qpack.QpackDecoder
 ● org.eclipse.jetty.http3.qpack.internal.parser.DecoderInstructi

 onParser
 ● org.eclipse.jetty.http3.qpack.internal.table.DynamicTable

 Description
 In QPACK, an encoder can set the dynamic table capacity of the decoder using a “Set
 Dynamic Table Capacity” instruction. The HTTP/3 specification requires that the capacity be
 no larger than the SETTINGS_QPACK_MAX_TABLE_CAPACITY limit chosen by the decoder.
 However, nowhere in the QPACK code is this limit checked for. This means that the encoder
 can choose whatever capacity it wants (up to Java’s maximum integer value), allowing it to
 take up large amounts of space on the decoder’s memory.

 Jetty’s HTTP/3 code is still considered experimental, so this issue should not affect
 production code, but it should be fixed before announcing HTTP/3 support to be
 production-ready.

 Exploit Scenario
 A Jetty server supporting QPACK is running. An attacker opens a connection to the server.
 He sends a “Set Dynamic Table Capacity” instruction, setting the dynamic table capacity to
 Java’s maximum integer value, 2 31-1 (2.1 GB). He then repeatedly enters very large values
 into the server’s dynamic table using an “Insert with Literal Name” instruction until the full
 2.1 GB capacity is taken up.

 The attacker repeats this using multiple connections until the server runs out of memory
 and crashes.

 Recommendations
 Short term, enforce the SETTINGS_QPACK_MAX_TABLE_CAPACITY limit on the capacity.

 Long term, audit Jetty’s implementation of QPACK and other protocols to ensure that Jetty
 enforces limits as required by the standards.

 Trail of Bits 78 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 Summary of Recommendations

 Jetty is an ongoing software project with three major releases in the past three years,
 including Jetty 12. Trail of Bits recommends that the Eclipse Foundation address the
 findings detailed in this report and take the following additional steps:

 ● Audit protocol implementations and parsers for fields (e.g., length fields) that are
 defined as unsigned integers in the applicable specifications. Review the relevant
 code for confusion between signed and unsigned integer operations. If necessary,
 use the Integer class to ensure that such values are treated as unsigned and do
 not overflow to negative numbers.

 ● Update Jetty’s tests to account for the most recent changes to Jetty Core in version
 12. Expand the test cases for protocol implementations to include error conditions
 that must be handled in a manner specified in the relevant RFC.

 Trail of Bits 79 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 A. Vulnerability Categories

 The following tables describe the vulnerability categories, severity levels, and difficulty
 levels used in this document.

 Vulnerability Categories

 Category Description

 Access Controls Insufficient authorization or assessment of rights

 Auditing and Logging Insufficient auditing of actions or logging of problems

 Authentication Improper identification of users

 Code Quality Code antipatterns and other quality issues without security impact

 Configuration Misconfigured servers, devices, or software components

 Cryptography A breach of system confidentiality or integrity

 Data Exposure Exposure of sensitive information

 Data Validation Improper reliance on the structure or values of data

 Denial of Service A system failure with an availability impact

 Error Reporting Insecure or insufficient reporting of error conditions

 Patching Use of an outdated software package or library

 Session Management Improper identification of authenticated users

 Testing Insufficient test methodology or test coverage

 Timing Race conditions or other order-of-operations flaws

 Undefined Behavior Undefined behavior triggered within the system

 Trail of Bits 80 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 Severity Levels

 Severity Description

 Informational The issue does not pose an immediate risk but is relevant to security best
 practices.

 Undetermined The extent of the risk was not determined during this engagement.

 Low The risk is small or is not one the client has indicated is important.

 Medium User information is at risk; exploitation could pose reputational, legal, or
 moderate financial risks.

 High The flaw could affect numerous users and have serious reputational, legal,
 or financial implications.

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploitation was not determined during this engagement.

 Low The flaw is well known; public tools for its exploitation exist or can be
 scripted.

 Medium An attacker must write an exploit or will need in-depth knowledge of the
 system.

 High An attacker must have privileged access to the system, may need to know
 complex technical details, or must discover other weaknesses to exploit this
 issue.

 Trail of Bits 81 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 B. Code Maturity Categories

 The following tables describe the code maturity categories and rating criteria used in this
 document.

 Code Maturity Categories

 Category Description

 Arithmetic The proper use of mathematical operations and semantics

 Auditing The use of event auditing and logging to support monitoring

 Authentication /
 Access Controls

 The use of robust access controls to handle identification and
 authorization and to ensure safe interactions with the system

 Complexity
 Management

 The presence of clear structures designed to manage system complexity,
 including the separation of system logic into clearly defined functions

 Configuration The configuration of system components in accordance with best
 practices

 Cryptography and
 Key Management

 The safe use of cryptographic primitives and functions, along with the
 presence of robust mechanisms for key generation and distribution

 Data Handling The safe handling of user inputs and data processed by the system

 Documentation The presence of comprehensive and readable codebase documentation

 Maintenance The timely maintenance of system components to mitigate risk

 Memory Safety
 and Error Handling

 The presence of memory safety and robust error-handling mechanisms

 Testing and
 Verification

 The presence of robust testing procedures (e.g., unit tests, integration
 tests, and verification methods) and sufficient test coverage

 Rating Criteria

 Rating Description

 Strong No issues were found, and the system exceeds industry standards.

 Satisfactory Minor issues were found, but the system is compliant with best practices.

 Moderate Some issues that may affect system safety were found.

 Trail of Bits 82 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 Weak Many issues that affect system safety were found.

 Missing A required component is missing, significantly affecting system safety.

 Not Applicable The category is not applicable to this review.

 Not Considered The category was not considered in this review.

 Further
 Investigation
 Required

 Further investigation is required to reach a meaningful conclusion.

 Trail of Bits 83 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 C. Fix Review Results

 When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
 identified in the original report. This work involves a review of specific areas of the source
 code and system configuration, not comprehensive analysis of the system.

 On June 5, 2023, Trail of Bits reviewed the fixes and mitigations implemented by the Jetty
 team for the issues identified in this report. We reviewed each fix to determine its
 effectiveness in resolving the associated issue.

 In summary, of the 25 issues described in this report, Jetty has resolved 20, has partially
 resolved two, and has not resolved the remaining three. For additional information, please
 see the Detailed Fix Review Results below.

 ID Title Severity Status

 1 Risk of integer overflow that could allow
 HpackDecoder to exceed maxHeaderSize

 Medium Resolved

 2 Cookie parser accepts unmatched quotation marks Informational Resolved

 3 Errant command quoting in CGI servlet High Resolved

 4 Symlink-allowed alias checker ignores protected
 targets list

 High Resolved

 5 Missing check for malformed Unicode escape
 sequences in QuotedStringTokenizer.unquote

 Low Resolved

 6 WebSocket frame length represented with 32-bit
 integer

 High Resolved

 7 WebSocket parser does not check for negative
 payload lengths

 Low Resolved

 8 WebSocket parser greedily allocates ByteBuffers
 for large frames

 Medium Unresolved

 Trail of Bits 84 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 9 Risk of integer overflow in HPACK's
 NBitInteger.decode

 Informational Resolved

 10 MetaDataBuilder.checkSize accepts headers of
 negative lengths

 Medium Resolved

 11 Insufficient space allocated when encoding QPACK
 instructions and entries

 Low Resolved

 12 LiteralNameEntryInstruction incorrectly encodes
 value length

 Medium Resolved

 13 FileInitializer does not check for symlinks High Unresolved

 14 FileInitializer permits downloading files via
 plaintext HTTP

 High Resolved

 15 NullPointerException thrown by FastCGI parser on
 invalid frame type

 Medium Resolved

 16 Documentation does not specify that request
 contents and other user data can be exposed in
 debug logs

 Medium Unresolved

 17 HttpStreamOverFCGI internally marks all requests
 as plaintext HTTP

 High Resolved

 18 Excessively permissive and
 non-standards-compliant error handling in HTTP/2
 implementation

 Low Resolved

 19 XML external entities and entity expansion in
 Maven package metadata parser

 High Partially
 Resolved

 20 Use of deprecated AccessController class Informational Resolved

 21 QUIC server writes SSL private key to temporary
 plaintext file

 High Partially
 Resolved

 Trail of Bits 85 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 22 Repeated code between HPACK and QPACK Informational Resolved

 23 Various exceptions in HpackDecoder.decode and
 QpackDecoder.decode

 Informational Resolved

 24 Incorrect QPACK encoding when multi-byte
 characters are used

 Medium Resolved

 25 No limits on maximum capacity in QPACK decoder High Resolved

 Trail of Bits 86 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 Detailed Fix Review Results
 TOB-JETTY-1: Risk of integer overflow that could allow HpackDecoder to exceed
 maxHeaderSize
 Resolved in PR #9634. The decoder now checks for negative length values, allowing the
 decoder to detect the integer overflow condition and throw an appropriate condition.

 TOB-JETTY-2: Cookie parser accepts unmatched quotation marks
 Resolved in PR #9339. The cookie parsing logic has been reworked, and dynamic testing
 confirms that unmatched quotation marks are rejected with an appropriate error
 condition.

 TOB-JETTY-3: Errant command quoting in CGI servlet
 Resolved in PR #9516. The affected CGI servlet class has been removed.

 TOB-JETTY-4: Symlink-allowed alias checker ignores protected targets list
 Resolved in PR #9506. The symlink check that was previously commented out has been
 reinserted. Symbolic links are now appropriately checked against the protected targets list.

 TOB-JETTY-5: Missing check for malformed Unicode escape sequences in
 QuotedStringTokenizer.unquote
 Resolved in PR #9729. The string tokenizer logic has been reworked and broken into
 multiple classes. The logic bug leading to the mishandled Unicode escape sequences in the
 QuotedStringTokenizer and RFC9110QuotedStringTokenizer classes have been
 fixed. The LegacyQuotedStringTokenizer class is still vulnerable but is disabled by
 default. The Jetty team indicated during phone calls that this class is included for legacy
 support reasons only.

 TOB-JETTY-6: WebSocket frame length represented with 32-bit integer and
 TOB-JETTY-7: WebSocket parser does not check for negative payload lengths
 Resolved i n PR #9741. Although the 32-bit integer data type remains in place, checks for
 negative payload lengths and integer overflows have been added. The WebSocket parser
 will no longer use a negative frame length for length comparisons, and integer overflows
 will cause the parser to throw an appropriate exception.

 TOB-JETTY-8: WebSocket parser greedily allocates ByteBuffers for large frames
 Unresolved in PR #9741. The greedy buffer allocation is unchanged. Jetty’s bug tracking
 spreadsheet contains the following context for this finding’s fix status:

 Not an issue, added comment to explain why.

 The following comments have been added to the
 org.eclipse.jetty.websocket.core.internal.Parser class:

 Trail of Bits 87 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 // We have already checked payload size in checkFrameSize, so we know we
 can autoFragment if larger than maxFrameSize.

 // The size of this allocation is limited by the maxFrameSize.

 The default maximum frame size is set at 64 KB by the WebSocketConstants class.

 TOB-JETTY-9: Risk of integer overflow in HPACK’s NBitInteger.decode
 Resolved in PR #9634. The integer decoding logic has been moved to common classes in
 the jetty-http package. The HPACK parsing code that invokes this decoding logic makes
 appropriate checks for negative return values, throwing an appropriate exception if a
 negative value is decoded.

 TOB-JETTY-10: MetaDataBuilder.checkSize accepts headers of negative lengths
 Resolved i n PR #9634. The HPACK parsing logic has been reworked, and the affected
 MetaDataBuilder.checkSize function has been replaced with length checks in other
 classes. It is no longer possible for the length value to overflow into a very large positive
 integer, and the length checks are performed against the input buffer’s
 buffer.remaining() value, which can never be negative.

 TOB-JETTY-11: Insufficient space allocated when encoding QPACK instructions and
 entries
 Resolved in PR #9634 . Parsing is now restricted to ISO-8859-1 encoding, which uses only
 single-byte character encodings. Therefore, the logic bug involving multibyte character
 encoding has been eliminated.

 TOB-JETTY-12: LiteralNameEntryInstruction incorrectly encodes value length
 Resolved in PR #9634 . The encoding logic has been reworked and reorganized so that the
 field widths are calculated in a centralized class. Field lengths appear to be correctly
 generated, and integers are no longer encoded using hard-coded fixed widths.

 TOB-JETTY-13: FileInitializer does not check for symlinks
 Unresolved in PR #9555 . The FileInitializer class contains the following comment
 regarding this finding:

 // We restrict our behavior to only modifying what exists in
 ${jetty.base}.
 // If the user decides they want to use advanced setups, such as symlinks
 to point
 // to content outside of ${jetty.base}, that is their decision and we
 will not
 // attempt to save them from themselves.
 // Note: All copy and extract steps will not replace files that already
 exist.

 Trail of Bits 88 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 TOB-JETTY-14: FileInitializer permits downloading files via plaintext HTTP
 Resolved in PR #9555 . The JettyStart class now recognizes the
 --allow-insecure-http-downloads flag, which enables file downloads over plaintext
 HTTP. By default, this flag is disabled, so system administrators must manually specify that
 they wish to enable unencrypted downloads.

 TOB-JETTY-15: NullPointerException thrown by FastCGI parser on invalid frame type
 Resolved in commit e5590a . Broader exception handling has been added to the
 org.eclipse.jetty.fcgi.parser.Parser class so that invalid frame types will invoke
 the normal error handling routines for malformed FastCGI traffic. No
 NullPointerException will be thrown on an invalid frame type.

 TOB-JETTY-16: Documentation does not specify that request contents and other user
 data can be exposed in debug logs
 Unresolved . No commit or pull request addressing this issue was identified, and system
 documentation has not undergone any relevant changes.

 TOB-JETTY-17: HttpStreamOverFCGI internally marks all requests as plaintext HTTP
 Resolved in PR #9733. The FastCGI HTTPS header is now checked appropriately, and each
 FCGI request object’s HTTP scheme is set correctly.

 TOB-JETTY-18: Excessively permissive and non-standards-compliant error handling in
 HTTP/2 implementation
 Resolved in PR #9749 . The HTTP/2 frame parser classes now check for each of the error
 conditions identified in this finding, and the error codes returned comply with the
 requirements of RFC 9113.

 TOB-JETTY-19: XML external entities and entity expansion in Maven package
 metadata parser
 Partially resolved in PR #9555 . Jetty now invokes the XML parser’s secure processing
 feature, which instructs the XML parser to use the most secure settings when parsing
 documents. However, this feature’s behavior is implementation-dependent and may not be
 consistent across Java environments. Therefore, there may be a residual risk of XML-based
 attacks. To mitigate these risks even further, it may be necessary to manually check for and
 remove DTD declarations in the XML input or to use an XML parsing library whose behavior
 is known and consistent.

 TOB-JETTY-20: Use of deprecated AccessController class
 Resolved in PR #9616 . Per documentation provided by the Jetty team, Jetty supports older
 Java environments that differ with respect to their support for the SecurityManager class.
 The use of reflection implemented in the PR is an effective solution to manage these
 requirements.

 Trail of Bits 89 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

 TOB-JETTY-21: QUIC server writes SSL private key to temporary plaintext file
 Partially resolved. As the original finding documents, this finding reflects a weakness in the
 third-party quiche library and cannot be resolved by the Jetty team. However, Jetty
 developers have helped begin the process of resolving this finding by submitting an issue
 to the quiche developers.

 TOB-JETTY-22: Repeated code between HPACK and QPACK
 Resolved in PR #9634 . The common encoding and decoding logic has been moved into the
 jetty-http directory and is reused between the HPACK and QPACK libraries.

 TOB-JETTY-23: Various exceptions in HpackDecoder.decode and
 QpackDecoder.decode
 Resolved in commit fd913a . The HpackDecoder and QpackDecoder classes have
 undergone significant rewrites with improved exception handling; by reviewing the code,
 we found that improved error handling will cause these classes to generate
 protocol-specific error conditions instead of throwing general-purpose Java exceptions.

 TOB-JETTY-24: Incorrect QPACK encoding when multi-byte characters are used
 Resolved in PR #9634 . All QPACK encoding now uses ISO-8859-1 encoding, which is a
 single-byte character encoding scheme. Therefore, there are no longer any multi-byte
 encoding errors in the QPACK implementation.

 TOB-JETTY-25: No limits on maximum capacity in QPACK decoder
 Resolved in PR #9728 . The QpackDecoder and QpackEncoder classes now check the
 maximum table capacity setting and throw an HTTP/3 protocol error if the configured
 capacity exceeds the configured maximum.

 Trail of Bits 90 OSTIF Eclipse: Jetty Security Assessment
 PUBLIC

