
‭Eclipse Jetty‬
‭Threat Model and Code Review with Fix Review‬

‭June 13, 2023‬

‭Prepared for:‬

‭Greg Wilkins‬
‭The Eclipse Foundation‬

‭Organized by the Open Source Technology Improvement Fund, Inc.‬

‭Prepared by:‬‭Cliff Smith, Sam Alws, Kelly Kaoudis,‬‭and Spencer Michaels‬

‭About Trail of Bits‬

‭Founded in 2012 and headquartered in New York, Trail of Bits provides technical security‬
‭assessment and advisory services to some of the world’s most targeted organizations. We‬
‭combine high-end security research with a real-world attacker mentality to reduce risk and‬
‭fortify code. With 100+ employees around the globe, we’ve helped secure critical software‬
‭elements that support billions of end users, including Kubernetes and the Linux kernel.‬

‭We maintain an exhaustive list of publications at‬‭https://github.com/trailofbits/publications‬‭,‬
‭with links to papers, presentations, public audit reports, and podcast appearances.‬

‭In recent years, Trail of Bits consultants have showcased cutting-edge research through‬
‭presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,‬
‭the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.‬

‭We specialize in software testing and code review projects, supporting client organizations‬
‭in the technology, defense, and finance industries, as well as government entities. Notable‬
‭clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.‬

‭Trail of Bits also operates a center of excellence with regard to blockchain security. Notable‬
‭projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,‬
‭MakerDAO, Matic, Uniswap, Web3, and Zcash.‬

‭To keep up to date with our latest news and announcements, please follow‬‭@trailofbits‬‭on‬
‭Twitter and explore our public repositories at‬‭https://github.com/trailofbits‬‭.‬‭To engage us‬
‭directly, visit our “Contact” page at‬‭https://www.trailofbits.com/contact‬‭,‬‭or email us at‬
‭info@trailofbits.com‬‭.‬

‭Trail of Bits, Inc.‬
‭228 Park Ave S #80688‬
‭New York, NY 10003‬
‭https://www.trailofbits.com‬
‭info@trailofbits.com‬

‭Trail of Bits‬ ‭1‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

‭Notices and Remarks‬

‭Copyright and Distribution‬
‭© 2023 by Trail of Bits, Inc.‬

‭All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this‬
‭report in the United Kingdom.‬

‭This report is considered by Trail of Bits to be public information;‬‭it is licensed to the Eclipse‬
‭Foundation under the terms of the project statement of work and has been made public at‬
‭the Eclipse Foundation’s request.‬‭Material within‬‭this report may not be reproduced or‬
‭distributed in part or in whole without the express written permission of Trail of Bits.‬

‭The sole canonical source for Trail of Bits publications is the‬‭Trail of Bits Publications page‬‭.‬
‭Reports accessed through any source other than that page may have been modified and‬
‭should not be considered authentic.‬

‭Test Coverage Disclaimer‬
‭All activities undertaken by Trail of Bits in association with this project were performed in‬
‭accordance with a statement of work and agreed upon project plan.‬

‭Security assessment projects are time-boxed and often reliant on information that may be‬
‭provided by a client, its affiliates, or its partners. As a result, the findings documented in‬
‭this report should not be considered a comprehensive list of security issues, flaws, or‬
‭defects in the target system or codebase.‬

‭Trail of Bits uses automated testing techniques to rapidly test the controls and security‬
‭properties of software. These techniques augment our manual security review work, but‬
‭each has its limitations: for example, a tool may not generate a random edge case that‬
‭violates a property or may not fully complete its analysis during the allotted time. Their use‬
‭is also limited by the time and resource constraints of a project.‬

‭Trail of Bits‬ ‭2‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://github.com/trailofbits/publications

‭Table of Contents‬

‭About Trail of Bits‬ ‭1‬
‭Notices and Remarks‬ ‭2‬
‭Table of Contents‬ ‭3‬
‭Executive Summary‬ ‭5‬
‭Project Summary‬ ‭7‬
‭Project Goals‬ ‭8‬
‭Project Targets‬ ‭9‬
‭Project Coverage‬ ‭10‬
‭Threat Model‬ ‭11‬

‭Data Types‬ ‭11‬
‭Data Flow‬ ‭12‬
‭Components‬ ‭15‬
‭Trust Zones‬ ‭17‬
‭Trust Zone Connections‬ ‭18‬
‭Threat Actors‬ ‭20‬
‭Threat Scenarios‬ ‭22‬
‭Recommendations‬ ‭27‬

‭Automated Testing‬ ‭30‬
‭Codebase Maturity Evaluation‬ ‭31‬
‭Summary of Findings‬ ‭33‬
‭Detailed Findings‬ ‭36‬

‭1. Risk of integer overflow that could allow HpackDecoder to exceed maxHeaderSize‬
‭36‬
‭2. Cookie parser accepts unmatched quotation marks‬ ‭38‬
‭3. Errant command quoting in CGI servlet‬ ‭39‬
‭4. Symlink-allowed alias checker ignores protected targets list‬ ‭41‬
‭5. Missing check for malformed Unicode escape sequences in‬
‭QuotedStringTokenizer.unquote‬ ‭42‬
‭6. WebSocket frame length represented with 32-bit integer‬ ‭44‬
‭7. WebSocket parser does not check for negative payload lengths‬ ‭46‬
‭8. WebSocket parser greedily allocates ByteBuffers for large frames‬ ‭47‬
‭9. Risk of integer overflow in HPACK's NBitInteger.decode‬ ‭49‬
‭10. MetaDataBuilder.checkSize accepts headers of negative lengths‬ ‭51‬
‭11. Insufficient space allocated when encoding QPACK instructions and entries‬ ‭53‬

‭Trail of Bits‬ ‭3‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭12. LiteralNameEntryInstruction incorrectly encodes value length‬ ‭56‬
‭13. FileInitializer does not check for symlinks‬ ‭58‬
‭14. FileInitializer permits downloading files via plaintext HTTP‬ ‭60‬
‭15. NullPointerException thrown by FastCGI parser on invalid frame type‬ ‭61‬
‭16. Documentation does not specify that request contents and other user data can‬
‭be exposed in debug logs‬ ‭63‬
‭17. HttpStreamOverFCGI internally marks all requests as plaintext HTTP‬ ‭65‬
‭18. Excessively permissive and non-standards-compliant error handling in HTTP/2‬
‭implementation‬ ‭67‬
‭19. XML external entities and entity expansion in Maven package metadata parser‬‭69‬
‭20. Use of deprecated AccessController class‬ ‭70‬
‭21. QUIC server writes SSL private key to temporary plaintext file‬ ‭71‬
‭22. Repeated code between HPACK and QPACK‬ ‭73‬
‭23. Various exceptions in HpackDecoder.decode and QpackDecoder.decode‬ ‭74‬
‭24. Incorrect QPACK encoding when multi-byte characters are used‬ ‭75‬
‭25. No limits on maximum capacity in QPACK decoder‬ ‭78‬

‭Summary of Recommendations‬ ‭79‬
‭A. Vulnerability Categories‬ ‭80‬
‭B. Code Maturity Categories‬ ‭82‬
‭C. Fix Review Results‬ ‭84‬

‭Detailed Fix Review Results‬ ‭87‬

‭Trail of Bits‬ ‭4‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭Executive Summary‬

‭Engagement Overview‬
‭OSTIF engaged Trail of Bits to review the security of the Eclipse Foundation’s Jetty project.‬
‭From March 6 to March 30, 2023, a team of two consultants conducted a lightweight threat‬
‭model of the project, and then a separate team of two consultants conducted a security‬
‭review of the client-provided source code; the two reviews took a combined six‬
‭person-weeks of effort. Details of the project’s timeline, test targets, and coverage are‬
‭provided in subsequent sections of this report.‬

‭Project Scope‬
‭Our testing efforts were focused on the identification of flaws that could result in a‬
‭compromise of confidentiality, integrity, or availability of the target system. We conducted‬
‭this audit with full knowledge of the system, including access to the product’s source code‬
‭and documentation. We performed a static code review using both automated and manual‬
‭processes, supplemented by dynamic testing of the target system.‬

‭Summary of Findings‬
‭The audit uncovered significant flaws that could impact system confidentiality, integrity, or‬
‭availability. A summary of the findings and details on notable findings are provided below.‬

‭EXPOSURE ANALYSIS‬

‭Severity‬ ‭Count‬

‭High‬ ‭9‬

‭Medium‬ ‭7‬

‭Low‬ ‭4‬

‭Informational‬ ‭5‬

‭Undetermined‬ ‭0‬

‭CATEGORY BREAKDOWN‬

‭Category‬ ‭Count‬

‭Access Controls‬ ‭1‬

‭Code Quality‬ ‭2‬

‭Cryptography‬ ‭1‬

‭Data Exposure‬ ‭2‬

‭Data Validation‬ ‭11‬

‭Denial of Service‬ ‭7‬

‭Error Reporting‬ ‭1‬

‭Trail of Bits‬ ‭5‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭Notable Findings‬
‭Significant flaws that impact system confidentiality, integrity, or availability are listed below.‬

‭●‬ ‭TOB-JETTY-1‬
‭An integer overflow could occur during the parsing of HPACK headers, which could‬
‭cause excessive resource consumption. A maliciously crafted header will cause Jetty‬
‭to allocate a 1.6 GB buffer while parsing a single message.‬

‭●‬ ‭TOB-JETTY-3‬
‭An error in the quotation mark escaping algorithm used for command line‬
‭arguments in the EE9 and EE10 CGI servlets enables arbitrary command execution.‬

‭●‬ ‭TOB-JETTY-6‬
‭The WebSocket frame parser uses a 32-bit integer to represent the frame’s length‬
‭field, which can contain up to 64 bits. In addition to crashes, this bug can cause Jetty‬
‭to mistakenly split one WebSocket frame into multiple in a manner similar to the‬
‭errors that enable HTTP request smuggling attacks.‬

‭●‬ ‭TOB-JETTY-19‬
‭The Jetty module configuration system supports Maven package downloads from‬
‭maven://‬‭URIs. When the‬‭maven-metadata.xml‬‭file is‬‭parsed, document type‬
‭definitions (DTDs) are parsed, which enables XML external entity (XXE) and XML‬
‭entity expansion (XEE) attacks.‬

‭Trail of Bits‬ ‭6‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭Project Summary‬

‭Contact Information‬
‭The following managers were associated with this project:‬

‭Dan Guido‬‭, Account Manager‬ ‭Jeff Braswell‬‭, Project‬‭Manager‬
‭dan@trailofbits.com‬ ‭jeff.braswell@trailofbits.com‬

‭The following engineers were associated with this project:‬

‭Kelly Kaoudis‬‭, Consultant‬ ‭Spencer Michaels‬‭, Consultant‬
‭kelly.kaoudis@trailofbits.com‬ ‭spencer.michaels@trailofbits.com‬

‭Cliff Smith‬‭, Consultant‬ ‭Sam Alws‬‭, Consultant‬
‭cliff.smith@trailofbits.com‬ ‭sam.alws@trailofbits.com‬

‭Project Timeline‬
‭The significant events and milestones of the project are listed below.‬

‭Date‬ ‭Event‬

‭March 6, 2023‬ ‭Lightweight threat model kickoff‬

‭March 7, 2023‬ ‭Threat model discovery #1‬

‭March 10, 2023‬ ‭Threat model discovery #2 and code‬‭review kickoff‬

‭March 15, 2023‬ ‭Threat model readout meeting‬

‭March 30, 2023‬ ‭Report readout meeting‬

‭May 5, 2023‬ ‭Delivery of final report‬

‭June 13, 2023‬ ‭Delivery of fix review‬

‭Trail of Bits‬ ‭7‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

mailto:dan@trailofbits.com

‭Project Goals‬

‭The engagement was scoped to provide a security assessment of Jetty. Specifically, we‬
‭sought to answer the following non-exhaustive list of questions:‬

‭●‬ ‭Are the header and cookie parsing algorithms for HTTP/1 and HTTP/2 correct and‬
‭standards-compliant?‬

‭●‬ ‭Are the WebSocket, HTTP/2, and HTTP/3 implementations secure and correct,‬
‭including their code for handling parsing, message generation, and connection‬
‭management?‬

‭●‬ ‭Do the Jetty Core, EE9, and EE10 packages securely serve static resources from the‬
‭web server’s filesystem? Can an attacker download files outside the configured root‬
‭directory?‬

‭●‬ ‭Can attackers bypass any of the servlet security configuration settings specified in a‬
‭servlet’s‬‭web.xml‬‭file?‬

‭●‬ ‭Is the alias checking system implemented correctly?‬

‭●‬ ‭Does the application deployment system have any exploitable bugs?‬

‭●‬ ‭Do web application deployment and other features that extract archive files‬
‭correctly validate file paths? Are any such features vulnerable to “zip slip” or other‬
‭directory traversal attacks?‬

‭●‬ ‭Are the cryptography and key management features compliant with best practices?‬

‭●‬ ‭Are memory management operations, including buffer allocation and deallocation‬
‭operations during request generation and parsing, correct and secure?‬

‭Trail of Bits‬ ‭8‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭Project Targets‬

‭The engagement involved a review and testing of the following target.‬

‭Eclipse Jetty‬
‭Repository‬ ‭https://github.com/jetty/jetty.project/tree/jetty-12.0.x‬

‭Version‬ ‭12.0.0‬‭(rev.‬‭bd0186c2f78fb7c87c7bfadf9b0a970657d071f3)‬

‭Type‬ ‭Java‬

‭Platform‬ ‭JVM‬

‭Trail of Bits‬ ‭9‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://github.com/jetty/jetty.project/tree/jetty-12.0.x

‭Project Coverage‬

‭This section provides an overview of the analysis coverage of the review, as determined by‬
‭our high-level engagement goals. Our approaches included the following:‬

‭●‬ ‭A manual review of the parsers and protocol implementations, including HTTP/1.1,‬
‭HTTP/2, HTTP/3, QUIC, HPACK, QPACK, cookies, multipart encoding, and‬
‭WebSockets‬

‭●‬ ‭A manual review of the start, module, and deployment systems‬

‭●‬ ‭Dynamic testing of the module configuration and the start system‬

‭●‬ ‭Static analysis of the entire codebase using Semgrep and CodeQL‬

‭●‬ ‭Fuzzing of the parsers and protocol implementations using libfuzzer‬

‭Coverage Limitations‬
‭Because of the time-boxed nature of testing work, it is common to encounter coverage‬
‭limitations. The following list outlines the coverage limitations of the engagement and‬
‭indicates system elements that may warrant further review:‬

‭●‬ ‭Our code review of the EE9 and EE10 libraries was not comprehensive.‬

‭●‬ ‭The protocol implementations were not compared to and validated against the‬
‭applicable specifications point-by-point.‬

‭Trail of Bits‬ ‭10‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭Threat Model‬

‭As part of the audit, Trail of Bits conducted a lightweight threat model, drawing from‬
‭Mozilla's “Rapid Risk Assessment” methodology‬‭and‬‭the National Institute of Standards and‬
‭Technology’s (NIST) guidance on data-centric threat modeling (‬‭NIST 800-154‬‭). We began our‬
‭assessment of the design of Jetty by reviewing the Eclipse Jetty 11.x and 12.x operations‬
‭and programming guides and Jetty’s in-progress CVE fix discussions.‬

‭Data Types‬
‭Depending on its configuration, a deployed Jetty server or client includes Jetty’s‬
‭implementations of standard web protocols as well as Java-specific protocols, including the‬
‭following:‬

‭●‬ ‭HTTP/1.0, HTTP/1.1, HTTP/2 (cleartext and secure versions), and HTTP/3‬

‭●‬ ‭WebSocket‬

‭●‬ ‭FastCGI‬

‭●‬ ‭SOCKS4‬

‭●‬ ‭PROXY protocol‬

‭Jetty also surfaces TLS- and ALPN-related information to application developers through‬
‭Jetty-provided callbacks connected to the underlying Java development kit (JDK)‬
‭functionality.‬

‭Trail of Bits‬ ‭11‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://infosec.mozilla.org/guidelines/risk/rapid_risk_assessment.html
https://csrc.nist.gov/publications/detail/sp/800-154/draft

‭Data Flow‬
‭Network Data Flow‬
‭The following diagram shows an example of a distributed deployment of Jetty.‬

‭Note that the stack of boxes labeled “Jetty Server Instance” represents a cluster of several‬
‭Jetty instances serving the same application logic, each deployed on its own Java virtual‬
‭machine (JVM), managed by an orchestration system such as Kubernetes.‬

‭Also note that each box labeled “Jetty” in the diagram represents a server coupled with the‬
‭Jetty client component. The client component makes outbound requests on the server’s‬
‭behalf to other servers.‬

‭Figure 1: Example network data flows in a distributed deployment of Jetty‬

‭Trail of Bits‬ ‭12‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭Embedded Data Flow‬
‭The following diagram shows an example deployment of Jetty as the embedded servlet‬
‭container for another Java framework—in this case, Spring Boot. In this example, Spring‬
‭Boot starts Jetty. Then, at runtime, requests pass through Jetty first and then through‬
‭Spring components (here, a security filter and a request filter) before reaching the endpoint‬
‭business logic.‬

‭Figure 2: Example data flows where Jetty is the embedded servlet container for Spring Boot‬

‭Trail of Bits‬ ‭13‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭Component Tree‬
‭The following diagram shows an example component tree of beans that a typical developer‬
‭might use, such as client request filters that accept or reject connections before Jetty‬
‭passes them to the served web applications, various connection factories that create and‬
‭manage client connections, a login service to protect a particular‬‭ConnectionFactory‬‭,‬
‭and several types of logging and monitoring mechanisms, the most common of which is‬
‭Java Management Extensions (JMX)-based. Note that each bean must implicitly trust its‬
‭registered parent.‬

‭Figure 3: An example Jetty component tree‬

‭Trail of Bits‬ ‭14‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭Components‬
‭The following table describes each Jetty component and dependency identified for our‬
‭analysis. It also indicates whether the component or dependency is‬‭not‬‭in scope; an‬
‭asterisk (*) next a component’s name indicates that it was out of scope for this assessment.‬
‭We explored the implications of threats involving out-of-scope components that directly‬
‭affect in-scope components, but we did not consider threats to the out-of-scope‬
‭components themselves.‬

‭Component‬ ‭Description‬

‭Source Control‬ ‭Source control includes the infrastructure that provides version‬
‭control, hosts the Jetty codebase, facilitates the submission of‬
‭pull requests and issues, and allows maintainers to release Jetty‬
‭JARs and security advisories.‬

‭Client Side‬ ‭Components and services on the client side initiate connections‬
‭and requests.‬

‭Jetty Client (*)‬ ‭A client requests data from a Jetty server or from a server built‬
‭with Jetty libraries. Client-side Jetty libraries may optionally be‬
‭used to handle client network connections and parsing. This‬
‭component is out of scope.‬

‭Client-Side Component‬
‭Libraries‬

‭Key client-side components include‬‭ClientConnector‬‭,‬
‭HttpClient‬‭, and‬‭HttpClientTransport‬‭.‬

‭The deployer or administrator can add client-side component‬
‭libraries to the Jetty server to form a microservice that can both‬
‭receive and initiate connections and requests.‬

‭JMX Console (*)‬ ‭The JMX console is a console application (e.g., JMC, Nagios) that‬
‭can connect to the JMX API to consume information regarding‬
‭the server-side JVM, Jetty server, Jetty server components, and‬
‭potentially also application logic. It may run remotely or on the‬
‭same host as the Jetty server. This component is out of scope.‬

‭Server Side‬ ‭Components on the server side receive and handle connections‬
‭and requests.‬

‭Application-Specific Logic‬ ‭Developer-provided business logic connects with Jetty (and‬
‭clients) via the application logic base APIs. This component is out‬
‭of scope.‬

‭Trail of Bits‬ ‭15‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭Application‬
‭Logic Base‬
‭APIs‬

‭Handler‬
‭APIs‬

‭APIs connect application-specific business logic to Jetty; they are‬
‭an alternative to servlet APIs.‬

‭Servlet APIs‬ ‭Servlet APIs are an alternative to the Jetty handler APIs; they‬
‭expose more in-depth functionality, including session‬
‭management.‬

‭JMX API (*)‬ ‭The‬‭MBeanServer‬‭platform (if included in a deployment)‬
‭exposes an API to access and monitor the JVM, Jetty‬
‭components, and application-specific components. Registering a‬
‭bean with the JMX server creates a corresponding MBean and‬
‭surfaces its status and other metadata via the API. This‬
‭component is out of scope.‬

‭Server-Side Component‬
‭Libraries‬

‭Server-side component libraries are used to build Jetty-based‬
‭web servers. These component libraries provide server-side‬
‭connection and request handling and parsing support for‬
‭protocols such as HTTP/1.1, HTTP/2, HTTP/3, WebSocket, and‬
‭FastCGI.‬

‭Bean‬ ‭A bean is a serializable class instance at runtime, registered as‬
‭part of the Jetty server’s component tree. Beans added to a‬
‭component tree must inherit functionality for event listening and‬
‭life cycle handling. Beans in a component tree can communicate‬
‭via‬‭EventListener‬‭APIs. Each bean in a component tree‬‭trusts‬
‭its parent and any other beans with which it can communicate‬
‭via‬‭EventListener‬‭events. A bean’s parent can optionally‬
‭manage its activity (start and stop it via‬‭LifeCycle‬‭).‬

‭Reverse Proxy (*)‬ ‭The reverse proxy is a server that advertises the location or‬
‭name of an application served via Jetty. The reverse proxy‬
‭handles the conveyance and distribution of client requests‬
‭across instances of the Jetty-served application, “fronting” the‬
‭Jetty-served application so that multiple Jetty instances can‬
‭handle requests directed to the same endpoint and so that no‬
‭Jetty instance needs be exposed to a public network directly. The‬
‭reverse proxy can also handle TLS termination on behalf of a‬
‭Jetty-served application. This component is out of scope.‬

‭Trail of Bits‬ ‭16‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭Trust Zones‬
‭Trust zones capture logical boundaries where controls should or could be enforced by the‬
‭system, and allow developers to implement controls and policies between zones.‬

‭Zone‬ ‭Description‬ ‭Included Components‬

‭Public Network‬ ‭The public network is the wider‬
‭external-facing internet zone.‬

‭●‬ ‭Clients‬

‭●‬ ‭Certificate authority‬

‭Application‬
‭Network‬

‭The application network is the‬
‭(private) datacenter network in‬
‭which one or more clusters of‬
‭Jetty server instances (or‬
‭standalone Jetty servers) and‬
‭additional related services‬
‭reside.‬

‭●‬ ‭Jetty server instances‬

‭●‬ ‭Reverse proxy‬

‭●‬ ‭Non-Jetty services‬

‭○‬ ‭Logging‬

‭○‬ ‭Data stores‬

‭○‬ ‭LDAP or other identity stores‬

‭○‬ ‭Jetty cluster management‬
‭(e.g., Kubernetes)‬

‭Private‬
‭Network‬

‭The private network is an‬
‭intranet or internal network that‬
‭is inaccessible from the public‬
‭network and has access to the‬
‭application network. It is‬
‭generally administrative in‬
‭nature.‬

‭●‬ ‭Administrators‬

‭○‬ ‭Server administrator‬

‭○‬ ‭Server deployer‬

‭●‬ ‭Clients‬

‭●‬ ‭Remote JMX console application‬
‭(JMC, Nagios, etc., potentially‬
‭accessed via SSH bastion)‬

‭Localhost‬ ‭The localhost is the host or‬
‭container within which the JVM‬
‭(running the Jetty server) runs.‬

‭●‬ ‭JVM‬

‭●‬ ‭Local JMX console application‬

‭JVM‬ ‭This is the local Java runtime.‬ ‭●‬ ‭Jetty instance‬

‭●‬ ‭JDK‬

‭●‬ ‭Jakarta EE‬

‭●‬ ‭Java ME (embedded deployments)‬

‭●‬ ‭Spring Boot‬

‭Trail of Bits‬ ‭17‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭Trust Zone Connections‬
‭This table describes the connections that occur between trust zones.‬

‭Originating‬
‭Zone‬

‭Destination‬
‭Zone‬

‭Description‬ ‭Connection‬
‭Types‬

‭Authentication‬
‭Types‬

‭Public‬
‭Network‬

‭Public‬
‭Network‬

‭A client on the‬
‭internet makes a‬
‭network request to a‬
‭public endpoint of the‬
‭application served by‬
‭Jetty.‬

‭In this case, Jetty can‬
‭also be the‬
‭embedded servlet‬
‭container for another‬
‭framework, such as‬
‭Spring Boot.‬

‭●‬ ‭HTTP‬

‭●‬ ‭FastCGI‬

‭●‬ ‭WebSocket‬

‭●‬ ‭Stateless;‬
‭delegated to‬
‭application‬
‭logic‬

‭●‬ ‭Stateful‬
‭(connection‬
‭based);‬
‭delegated to‬
‭JDK (e.g., TLS‬
‭1.2, TLS 1.3)‬

‭●‬ ‭None‬

‭Public‬
‭Network‬

‭Application‬
‭Network‬

‭A client on the public‬
‭network connects to a‬
‭reverse proxy fronting‬
‭an application served‬
‭by Jetty.‬

‭This reverse proxy‬
‭may handle TLS‬
‭termination.‬

‭●‬ ‭HTTP‬

‭●‬ ‭WebSocket‬

‭●‬ ‭FastCGI‬

‭●‬ ‭TLS 1.2‬

‭●‬ ‭TLS 1.3‬

‭●‬ ‭None‬

‭Application‬
‭Network‬

‭Public‬
‭Network‬

‭A Jetty server is‬
‭configured to export‬
‭logs or JMX API‬
‭information to a‬
‭remote service with a‬
‭public endpoint (e.g.,‬
‭Datadog).‬

‭●‬ ‭HTTP‬

‭●‬ ‭RMI‬

‭●‬ ‭Varies‬

‭Public‬
‭Network‬

‭Application‬
‭Network‬

‭The host of a Jetty‬
‭server is (perhaps‬
‭accidentally)‬

‭●‬ ‭RMI‬

‭●‬ ‭RMI over TLS‬

‭●‬ ‭Username and‬
‭password‬

‭●‬ ‭None‬

‭Trail of Bits‬ ‭18‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭configured to allow‬
‭public access to the‬
‭JMX API port.‬

‭Application‬
‭Network‬

‭Application‬
‭Network‬

‭A Jetty server instance‬
‭makes a connection‬
‭to an internal service‬
‭(e.g., an LDAP data‬
‭store or another‬
‭microservice).‬

‭●‬ ‭LDAP‬

‭●‬ ‭HTTP‬

‭●‬ ‭Custom‬
‭protocol‬
‭(e.g., RPC)‬

‭●‬ ‭TLS‬

‭●‬ ‭Application-‬
‭specific‬
‭request‬
‭authentication‬

‭●‬ ‭None‬

‭Application‬
‭Network‬

‭Application‬
‭Network‬

‭A reverse proxy‬
‭forwards a request to‬
‭a Jetty server‬
‭instance.‬

‭●‬ ‭RPC‬

‭●‬ ‭HTTP‬

‭●‬ ‭TLS‬

‭●‬ ‭Application-‬
‭specific‬
‭request‬
‭authentication‬

‭●‬ ‭None‬

‭Private‬
‭Network‬

‭Application‬
‭Network‬

‭A test client connects‬
‭to a hard-coded (IP or‬
‭DNS) instance that is‬
‭part of a cluster. All‬
‭cluster instances‬
‭serve the same‬
‭application via Jetty.‬

‭●‬ ‭HTTP‬ ‭●‬ ‭None‬

‭Private‬
‭Network‬

‭Application‬
‭Network‬

‭An administrator‬
‭connects via SSH to‬
‭the machine on which‬
‭Jetty is running.‬

‭●‬ ‭SSH‬ ‭●‬ ‭Username and‬
‭password‬

‭●‬ ‭Public key‬

‭Localhost‬ ‭JVM‬ ‭A local user makes‬
‭changes to the JVM’s‬
‭configuration or‬
‭environment or sends‬
‭signals to a running‬
‭JVM process.‬

‭●‬ ‭Filesystem‬

‭●‬ ‭UNIX sockets‬

‭●‬ ‭IPC signals‬

‭●‬ ‭Java‬
‭reflection‬

‭●‬ ‭System user‬
‭authentication‬
‭and access‬
‭controls‬

‭Trail of Bits‬ ‭19‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭Threat Actors‬
‭When conducting a threat model, we define the types of actors that could threaten the‬
‭security of the system. We also define other “users” of the system who may be impacted by‬
‭or induced to undertake an attack. Establishing the types of actors that use and/or could‬
‭threaten the system is useful in determining which protections, if any, are necessary to‬
‭mitigate or remediate vulnerabilities.‬

‭Actor‬ ‭Description‬

‭External Attacker‬ ‭An external attacker is an attacker on the public network (internet)‬
‭from which at least one Jetty instance is accessible.‬

‭This attacker can observe and analyze Jetty source commits as they‬
‭land in the public repository for exploitable features.‬

‭Internal Attacker‬ ‭This refers to an attacker on a private or application network from‬
‭which at least one Jetty instance is accessible.‬

‭Client‬ ‭“Client” refers to either a client of a Jetty server instance that can‬
‭integrate the Jetty client libraries or a wholly distinct networked‬
‭application.‬

‭Local Attacker‬ ‭A local attacker is an attacker who controls a process or user‬
‭account on the same host as the Jetty instance and can affect the‬
‭system environment, including the filesystem.‬

‭Jetty Contributor‬ ‭This refers to a non-maintainer Jetty contributor.‬

‭Jetty Maintainer‬ ‭This refers to a core Jetty contributor. Maintainers must review and‬
‭approve pull requests prior to merging them.‬

‭Application Developer‬ ‭An application developer creates, maintains, and updates‬
‭applications deployed via Jetty.‬

‭Server Administrator‬ ‭A server administrator administers a networked application that is‬
‭either built with Jetty components, served via a Jetty instance‬
‭embedded as a servlet container in another framework, or served‬
‭via a standalone Jetty instance.‬

‭Server Deployer‬ ‭A server deployer releases an application served via Jetty or built‬
‭with Jetty components into the running environment. The deployer‬

‭Trail of Bits‬ ‭20‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭may not be a separate individual from the server administrator‬
‭and application developer.‬

‭Trail of Bits‬ ‭21‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭Threat Scenarios‬
‭The following table describes possible threat scenarios that the system could be vulnerable‬
‭to, given the design, architecture, and risk profile of Jetty.‬

‭Threat‬ ‭Scenario‬ ‭Actors‬ ‭Components‬

‭Excessive resource‬
‭consumption‬
‭during parsing‬

‭Insufficient exceptional-case header or‬
‭cookie parsing and exception handling‬
‭in a Jetty server could allow an‬
‭attacker-controlled client to cause a‬
‭DoS of the Jetty server instance’s other‬
‭connections by sending a request‬
‭containing duplicate, potentially‬
‭conflicting headers; a header with an‬
‭excessive number of parameters; or a‬
‭header that itself contains malformed‬
‭parameters crafted to pin the server to‬
‭its JVM resource limits.‬

‭●‬ ‭Malicious‬
‭client‬

‭●‬ ‭Jetty server‬

‭●‬ ‭Client‬

‭Excessive file‬
‭descriptor and/or‬
‭memory‬
‭consumption‬

‭If a Jetty server (re)authenticates users‬
‭each time a new authenticated channel‬
‭opens (likely to prevent spoofing) but‬
‭does not also enforce (by default) a‬
‭sufficiently strict dynamic global‬
‭per-user rate limit proportional to‬
‭Jetty’s system resource limit(s) when‬
‭stateful channel-based authentication‬
‭is in use, a malicious client could cause‬
‭a DoS of other Jetty instance‬
‭connections, especially in‬
‭resource-limited or embedded use‬
‭cases, by attempting to open many‬
‭authenticated channels (under a‬
‭mechanism such as SPNEGO).‬

‭●‬ ‭Malicious‬
‭client‬

‭●‬ ‭Jetty server‬

‭●‬ ‭Client‬

‭Trail of Bits‬ ‭22‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭Attacker-controlled‬
‭application logic‬

‭The lack of served application‬
‭allowlisting coupled with the lack of‬
‭third-party content tracking and/or‬
‭allowlisting in a Jetty server instance‬
‭configured for web application “hot‬
‭reloading” could allow an attacker who‬
‭gains sufficient local filesystem access‬
‭privileges (or who merely exploits a‬
‭vulnerable servlet) to subvert that‬
‭servlet or to force the Jetty server‬
‭instance to serve a malicious servlet‬
‭added to‬‭$JETTY_BASE/webapps‬‭.‬

‭●‬ ‭Local‬
‭attacker‬

‭●‬ ‭Jetty server‬

‭Unsafe‬
‭deserialization‬

‭The potential lack of‬‭safeguards on the‬
‭deserialization‬‭of request, connection,‬
‭and/or user data could allow an‬
‭external attacker to exfiltrate other‬
‭users’ data or execute malicious code‬
‭within a Jetty server process by‬
‭sending a request to the Jetty server‬
‭containing a payload that must be‬
‭deserialized‬‭by either Jetty or the‬
‭application-specific logic running on‬
‭top of Jetty. The use of‬‭JPMS‬‭may‬
‭reduce (but not eliminate) the impact‬
‭of such an attack by reducing the‬
‭accessible code in the running‬
‭environment.‬

‭●‬ ‭Client‬ ‭●‬ ‭Jetty server‬

‭Sensitivity to‬
‭unexpected‬
‭changes in the‬
‭underlying‬
‭implementation‬
‭due to JVM or JDK‬
‭“‬‭rootkits‬‭”‬

‭If a core part of the local JVM, JDK, or‬
‭EE functionality called from the Jetty‬
‭server is augmented or fully replaced,‬
‭a local attacker could exfiltrate‬
‭sensitive data from locations such as‬
‭Jetty’s‬‭TrustStore‬‭or‬‭JKS‬‭, place‬
‭malicious data in the‬‭TrustStore‬‭or‬
‭JKS‬‭, or intercept and modify sensitive‬
‭data sent over (client) connections via‬
‭a local user account with sufficient‬
‭system privileges.‬

‭●‬ ‭Local‬
‭attacker‬

‭●‬ ‭Localhost‬

‭●‬ ‭JVM‬

‭●‬ ‭JDK‬

‭●‬ ‭Jakarta EE‬

‭●‬ ‭Jetty server‬

‭Trail of Bits‬ ‭23‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html
https://www.csoonline.com/article/3629311/java-deserialization-vulnerabilities-explained-and-how-to-defend-against-them.html
https://openjdk.org/projects/jigsaw/spec/sotms/
https://www.ece.iastate.edu/kcsl/defcon24-talk/

‭Insecure default‬
‭connection‬
‭encryption‬
‭configuration‬

‭The lack of default connection‬
‭encryption (TLS) or the use of weak‬
‭default cipher suites could allow‬
‭a malicious intermediary with sufficient‬
‭system-user permissions and access to‬
‭either the client system or Jetty server‬
‭instance host system to intercept and‬
‭modify client (or Jetty client‬
‭component) connections to the Jetty‬
‭server.‬

‭●‬ ‭Local‬
‭attacker‬

‭●‬ ‭Remote‬
‭attacker‬

‭●‬ ‭Jetty server‬

‭●‬ ‭Client‬

‭Request smuggling‬
‭via HTTP/2‬
‭downgrade,‬
‭duplicate header‬
‭allowance, or‬
‭similar issues‬

‭Inconsistent header parsing and‬
‭handling could allow a remote attacker‬
‭to force Jetty to pass unexpected and‬
‭potentially malicious additional‬
‭requests to application logic or further‬
‭services within the distributed system‬
‭via a single crafted request.‬

‭The following are examples of‬
‭situations to consider mitigating where‬
‭request smuggling can occur:‬

‭●‬ ‭Improper HTTP/2-to-HTTP/1.1‬
‭downgrade header handling‬

‭●‬ ‭Improper handling of duplicate‬
‭headers in the same request‬
‭(e.g.,‬‭Content-Length‬‭)‬

‭●‬ ‭Allowing for conflicting‬
‭headers’ presence in the same‬
‭request (e.g., a short‬
‭Content-Length‬‭value along‬
‭with‬‭Transfer-Encoding:‬
‭chunked‬‭)‬

‭●‬ ‭Remote‬
‭attacker‬

‭●‬ ‭Jetty server‬

‭Trail of Bits‬ ‭24‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭HTTP or header‬
‭parsing mismatch‬
‭between Jetty and‬
‭Spring Boot, or‬
‭similar frameworks‬

‭Potential discrepancies between‬
‭protocol, header, or cookie parsing‬
‭done by Spring Boot (or a similar Java‬
‭framework) and by Jetty itself could‬
‭allow a remote attacker to smuggle‬
‭unexpected requests into the served‬
‭web application when Jetty runs as the‬
‭embedded servlet container within‬
‭another Java framework such as Spring‬
‭Boot.‬

‭●‬ ‭Remote‬
‭attacker‬

‭●‬ ‭Jetty‬

‭●‬ ‭Spring Boot‬

‭Request smuggling‬
‭due to‬
‭discrepancies‬
‭between parsing‬
‭done by other‬
‭servers (e.g., a‬
‭reverse proxy) and‬
‭Jetty‬

‭If a Jetty instance is run in a particular‬
‭compliance mode, but it is fronted by a‬
‭reverse proxy whose HTTP or header‬
‭parsing capabilities are not fully‬
‭consistent with Jetty configured with‬
‭the compliance mode in question, a‬
‭remote attacker could conduct request‬
‭smuggling.‬

‭●‬ ‭Remote‬
‭attacker‬

‭●‬ ‭Jetty‬

‭●‬ ‭Reverse‬
‭proxy‬

‭Access to or‬
‭modification of‬
‭temporary data‬

‭An attacker with filesystem access to‬
‭the Jetty temporary directory or an‬
‭application-specific temporary‬
‭directory could read sensitive data‬
‭mistakenly stored there or modify files‬
‭that will later be read back into the‬
‭application.‬

‭●‬ ‭Local‬
‭attacker‬

‭●‬ ‭Localhost‬

‭●‬ ‭Jetty server‬

‭Security through‬
‭obscurity‬

‭A remote attacker monitoring pull‬
‭requests and commits to the Jetty‬
‭repository could infer the presence of‬
‭a vulnerability from static analysis over‬
‭changes made to the codebase (or‬
‭in-progress pull requests) to fix a‬
‭security issue prior to its official‬
‭announcement. The attacker could‬
‭exploit vulnerabilities identified in this‬
‭way before updates are released.‬

‭●‬ ‭Jetty‬
‭contributor‬

‭●‬ ‭Remote‬
‭attacker‬

‭●‬ ‭Source‬
‭control‬

‭Trail of Bits‬ ‭25‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭Administrator‬
‭misconfiguration‬
‭of the underlying‬
‭system‬

‭A misconfigured JVM that exposes the‬
‭JMX API on a publicly accessible port‬
‭could allow an external attacker to‬
‭exfiltrate sensitive Jetty/system‬
‭information or to modify the running‬
‭Jetty instance or JVM (e.g., shut down‬
‭the running Jetty instance—denying‬
‭service to other users—or shrink‬
‭resource allocations to starve‬
‭legitimate connections) by connecting‬
‭a JMX console application to the port.‬

‭●‬ ‭External‬
‭attacker‬

‭●‬ ‭Server‬
‭administrat‬
‭or‬

‭●‬ ‭Jetty server‬

‭●‬ ‭JMX API‬

‭●‬ ‭Remote JMX‬
‭console‬

‭Trail of Bits‬ ‭26‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭Recommendations‬
‭●‬ ‭Jetty should check for a minimal set of safe(r) default security configuration practices‬

‭during the server startup process.‬

‭○‬ ‭Prefer the strictest default configuration overall that common Jetty use cases‬
‭(such as deployment with Spring Boot and/or as part of a distributed system)‬
‭can accommodate.‬

‭○‬ ‭Log (likely to the user-configured Jetty error log location at the‬‭INFO‬‭level)‬
‭brief information about any unsafe security practices in use. Consider also‬
‭including links to documentation on mitigating such unsafe practices.‬

‭○‬ ‭Document the safe server configurations for each of the most common types‬
‭of Jetty deployments and indicate the types of attacks that such‬
‭configurations will prevent. For example, configuring a Jetty server with a‬
‭stricter header parsing compliance mode may decrease the likelihood of‬
‭exploits of header parser differentials, such as request smuggling.‬

‭○‬ ‭A Jetty instance that sources web apps from (or allows delegated web app‬
‭usage from) any other system or symlinked location should log a message‬
‭directing users to install web apps solely in‬‭${jetty.base}/webapps‬‭.‬

‭■‬ ‭Also consider logging a warning if the‬‭${jetty.base}‬‭(or‬
‭${jetty.base}‬‭subdirectory) access permissions are‬‭overbroad (i.e.,‬
‭allow read or write access from users other than the account that Jetty‬
‭runs under).‬

‭○‬ ‭When run with a default configuration, a Jetty instance should fail to start‬
‭without a configured‬‭TrustStore‬‭,‬‭JKS‬‭,‬‭and‬‭ssl‬‭module.‬

‭■‬ ‭The server administrator or deployer should have to purposefully set‬
‭a configuration option (whose name contains the word “unsafe”) to‬
‭“true” or a similar setting to allow cleartext connections.‬

‭■‬ ‭Throw an exception with a sufficiently explanatory name and message‬
‭pointing to documentation on how to configure‬‭TrustStore‬‭,‬‭JKS‬‭,‬
‭and the‬‭ssl‬‭module and on how to alternatively allow‬
‭unsafe/cleartext connections.‬

‭○‬ ‭By default, a Jetty instance should not allow‬‭X-Forwarded-*‬‭(e.g.,‬
‭X-Forwarded-For‬‭) headers since their directives’ interpretations‬‭vary‬
‭between servers, and such headers are frequently‬‭spoofed‬‭.‬

‭Trail of Bits‬ ‭27‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Forwarded-For#security_and_privacy_concerns

‭■‬ ‭Jetty instances should use‬‭setForwardedOnly()‬‭by default so that‬
‭Jetty administrators must explicitly configure the allowance of‬
‭X-Forwarded-*‬‭headers; this should be documented in‬‭the‬
‭programming and operations guides.‬

‭●‬ ‭Ensure that frameworks that can embed Jetty, such as Spring Boot, recommend and‬
‭use the most up-to-date Jetty release version so that “second-degree” Jetty users can‬
‭also benefit from security-related fixes.‬

‭●‬ ‭Check that all implementations and uses of the‬‭Serializable‬‭interface in Jetty‬
‭both properly sanitize input prior to deserialization operations and‬‭override the‬
‭ObjectInputStream#resolveClass()‬‭method to prevent‬‭arbitrary class‬
‭deserialization in all Jetty modes of operation.‬

‭●‬ ‭Ensure that Jetty’s default functionality for parsing headers, cookies, and request‬
‭bodies received over HTTP/1.1, HTTP/2, and WebSocket is consistent with Spring‬
‭Boot’s functionality, as a common use case for Jetty is as the servlet container‬
‭embedded within a Spring Boot deployment.‬

‭○‬ ‭When Jetty is configured as the Spring Boot servlet container, prevent users‬
‭from applying parsing functionality in Jetty that is not consistent with that of‬
‭Spring Boot (which could result in unexpected/exploitable server-layer‬
‭behavior inconsistencies).‬

‭○‬ ‭If Spring Boot’s default parsing behavior differs substantially from Jetty’s‬
‭preferred set of secure defaults, implement a Jetty “Spring Boot compliance‬
‭mode” and make it the default for users configuring Jetty as a Spring Boot‬
‭servlet container.‬

‭●‬ ‭Consider providing a default Jetty SBOM that Jetty deployers and administrators can‬
‭add to as needed, and consider signing Jetty artifacts for later verification. Refer to‬
‭the following resources for more information:‬

‭○‬ ‭GitHub Actions:‬‭SBOM generation and usage documentation‬

‭○‬ ‭GitLab:‬‭Ultimate guide to SBOMs‬

‭○‬ ‭Project Sigstore‬‭, a Linux Foundation project (that‬‭Trail of Bits participates in‬‭),‬
‭which maintains tooling for signing software artifacts and Git commits, as‬
‭well as verification tooling that‬‭Maven Central endorses‬‭as an upcoming‬
‭integration alternative to PGP‬

‭■‬ ‭Sigstore blog post on using Sigstore in Java environments‬

‭■‬ ‭Sigstore Maven plugin‬

‭Trail of Bits‬ ‭28‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://www.eclipse.org/jetty/javadoc/jetty-12/org/eclipse/jetty/server/ForwardedRequestCustomizer.html#setForwardedOnly(boolean)
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html#java
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html#java
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/using-the-dependency-submission-api#generating-and-submitting-a-software-bill-of-materials-sbom
https://about.gitlab.com/blog/2022/10/25/the-ultimate-guide-to-sboms/
https://docs.sigstore.dev/
https://blog.trailofbits.com/2022/11/08/sigstore-code-signing-verification-software-supply-chain/
https://central.sonatype.org/news/20220310_sigstore/
https://central.sonatype.org/news/20220310_sigstore/
https://blog.sigstore.dev/towards-easier-more-secure-signature-technology-for-the-java-ecosystem-with-sigstore-60d6a02490a8/
https://github.com/sigstore/sigstore-maven

‭●‬ ‭When remediating a CVE or other security vulnerability, do not rely on purposefully‬
‭generic commit messages or vague PR discussions to try to hide code differences‬
‭that patch an exploit, as they will still be findable via tools such as static analyzers‬
‭and runtime data flow taint analyzers.‬

‭●‬ ‭Consider crawling the links between Eclipse Jetty documentation sections to ensure‬
‭they are still valid. Some links to specific sections of the documentation simply‬
‭redirect to the Eclipse homepage or point to unavailable prior web locations for the‬
‭documentation.‬

‭●‬ ‭Finish the following security-related sections in the programming guide that are‬
‭incomplete and marked as “TODO.” Once complete, these sections will help ensure‬
‭that users can set up secure Jetty instances:‬

‭○‬ ‭The‬‭“‬‭Securing HTTP Server Applications‬‭” section‬

‭■‬ ‭Even if it includes only simple recommendations for common web‬
‭application security issues, this section could be a valuable resource‬
‭for developers writing applications served via Jetty or incorporating‬
‭Jetty components.‬

‭■‬ ‭Use‬‭OWASP Top 10‬‭and‬‭CWE Top 25‬‭as a basis for the‬
‭recommendations included in this section, or direct users to the CWE‬
‭list and the 2017 and 2020 OWASP Top 10 lists for further reference.‬

‭■‬ ‭Additionally, consider pointing users to Java-specific CWEs that‬
‭capture the reason(s) for each recommended configuration setting or‬
‭programming practice.‬

‭○‬ ‭The “‬‭HttpClient TLS TrustStore Configuration‬‭” section‬

‭○‬ ‭The “‬‭HttpClient TLS Client Certificates Configuration‬‭”‬‭section‬

‭Trail of Bits‬ ‭29‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://www.eclipse.org/jetty/documentation/jetty-12/programming-guide/index.html#pg-server-http-security
https://owasp.org/www-project-top-ten/
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://www.eclipse.org/jetty/documentation/jetty-12/programming-guide/index.html#pg-client-http-configuration-tls-truststore
https://www.eclipse.org/jetty/documentation/jetty-12/programming-guide/index.html#pg-client-http-configuration-tls-client-certs

‭Automated Testing‬

‭Trail of Bits uses automated techniques to extensively test the security properties of‬
‭software. We use both open-source static analysis and fuzzing utilities, along with tools‬
‭developed in house, to perform automated testing of source code and compiled software.‬

‭Tool‬ ‭Description‬

‭Semgrep‬ ‭An open-source static analysis tool for finding bugs and enforcing code‬
‭standards when editing or committing code and during build time‬

‭CodeQL‬ ‭A code analysis engine developed by GitHub to automate security checks‬

‭CI Fuzz‬ ‭A fuzzing engine used to create fuzz tests for Java applications‬

‭Trail of Bits‬ ‭30‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://github.com/returntocorp/semgrep
https://codeql.github.com/
https://github.com/CodeIntelligenceTesting/cifuzz

‭Codebase Maturity Evaluation‬

‭Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of‬
‭the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies‬
‭identified here often stem from root causes within the software development life cycle that‬
‭should be addressed through standardization measures (e.g., the use of common libraries,‬
‭functions, or frameworks) or training and awareness programs.‬

‭Category‬ ‭Summary‬ ‭Result‬

‭Arithmetic‬ ‭The codebase contains several arithmetic-related issues‬
‭that create vulnerabilities, including the risk of an integer‬
‭overflow (‬‭TOB-JETTY-1‬‭), the use of incorrect integer‬‭types‬
‭(‬‭TOB-JETTY-6‬‭), and missing checks for negative input‬
‭values (‬‭TOB-JETTY-7‬‭,‬‭TOB-JETTY-10‬‭).‬

‭Moderate‬

‭Auditing‬ ‭The default logging level produces logs of basic system‬
‭life cycle events, including server startup and application‬
‭deployment events, and the debug logs provide greater‬
‭detail.‬

‭Satisfactory‬

‭Authentication /‬
‭Access Controls‬

‭We identified no bugs or vulnerabilities in Jetty’s‬
‭implementations of authentication protocols.‬

‭Strong‬

‭Complexity‬
‭Management‬

‭The codebase contains a significant amount of‬
‭indirection and multiple layers of abstraction, but these‬
‭design choices are a reasonable way to enable code‬
‭reuse and interoperation between disparate system‬
‭components.‬

‭Satisfactory‬

‭Configuration‬ ‭The Java XML parser is not configured to disable‬
‭document type definitions when parsing Maven package‬
‭metadata‬‭(‬‭TOB-JETTY-19‬‭). Additionally, the code permits‬
‭some unsafe filesystem operations without checking for‬
‭symbolic links (‬‭TOB-JETTY-13‬‭).‬

‭Moderate‬

‭Cryptography‬
‭and Key‬
‭Management‬

‭Jetty’s lack of support for JDKs earlier than version 17‬
‭helps support good TLS configuration practices.‬
‭However, the QUIC implementation writes the SSL‬
‭certificate’s private key to the filesystem in a temporary‬
‭plaintext file while passing it through to the underlying‬
‭quiche library (‬‭TOB-JETTY-21‬‭).‬

‭Moderate‬

‭Trail of Bits‬ ‭31‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭Data Handling‬ ‭There are multiple issues related to data parsing‬
‭(‬‭TOB-JETTY-2‬‭) and quoting (‬‭TOB-JETTY-3‬‭,‬‭TOB-JETTY-5‬‭);‬
‭the issue described in finding 3 could enable arbitrary‬
‭command execution in legacy systems.‬

‭Moderate‬

‭Documentation‬ ‭Available documentation provides thorough coverage of‬
‭common use cases for system administrators and‬
‭programmers, as well as available configuration options.‬

‭Strong‬

‭Low-Level‬
‭Manipulation‬

‭The low-level packet parsing and memory buffer‬
‭management routines contain bugs that result in‬
‭exceptions when parsing malformed traffic‬
‭(‬‭TOB-JETTY-15‬‭) and possibly DoS due to excessive‬
‭resource consumption (‬‭TOB-JETTY-8‬‭).‬

‭Moderate‬

‭Maintenance‬ ‭Some of Jetty’s test cases have not been updated to‬
‭match recent changes to Jetty Core (see the “Testing and‬
‭Verification” section below). There are also some‬
‭instances of code duplication (‬‭TOB-JETTY-22‬‭).‬

‭Satisfactory‬

‭Memory Safety‬
‭and Error‬
‭Handling‬

‭Some classes allocate buffers of excessive and incorrect‬
‭sizes (‬‭TOB-JETTY-8‬‭,‬‭TOB-JETTY-11‬‭), and the HTTP/2‬‭server‬
‭fails to appropriately detect and handle errors as‬
‭required by RFC 9113 (‬‭TOB-JETTY-18‬‭).‬

‭Moderate‬

‭Testing and‬
‭Verification‬

‭Overall, tests appear to achieve reasonable coverage of‬
‭major system components. However, some tests are‬
‭outdated and have not been updated to account for‬
‭recent changes to class interfaces. Additionally, some‬
‭tests validate basic system functionality but do not cover‬
‭error conditions that must be handled in ways specified‬
‭by applicable standards.‬

‭Moderate‬

‭Trail of Bits‬ ‭32‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭Summary of Findings‬

‭The table below summarizes the findings of the review, including type and severity details.‬

‭ID‬ ‭Title‬ ‭Type‬ ‭Severity‬

‭1‬ ‭Risk of integer overflow that could allow‬
‭HpackDecoder to exceed maxHeaderSize‬

‭Denial of Service‬ ‭Medium‬

‭2‬ ‭Cookie parser accepts unmatched quotation‬
‭marks‬

‭Error Reporting‬ ‭Informational‬

‭3‬ ‭Errant command quoting in CGI servlet‬ ‭Data Validation‬ ‭High‬

‭4‬ ‭Symlink-allowed alias checker ignores protected‬
‭targets list‬

‭Access Controls‬ ‭High‬

‭5‬ ‭Missing check for malformed Unicode escape‬
‭sequences in QuotedStringTokenizer.unquote‬

‭Data Validation‬ ‭Low‬

‭6‬ ‭WebSocket frame length represented with 32-bit‬
‭integer‬

‭Data Validation‬ ‭High‬

‭7‬ ‭WebSocket parser does not check for negative‬
‭payload lengths‬

‭Data Validation‬ ‭Low‬

‭8‬ ‭WebSocket parser greedily allocates ByteBuffers‬
‭for large frames‬

‭Denial of Service‬ ‭Medium‬

‭9‬ ‭Risk of integer overflow in HPACK's‬
‭NBitInteger.decode‬

‭Data Validation‬ ‭Informational‬

‭10‬ ‭MetaDataBuilder.checkSize accepts headers of‬
‭negative lengths‬

‭Denial of Service‬ ‭Medium‬

‭11‬ ‭Insufficient space allocated when encoding‬
‭QPACK instructions and entries‬

‭Denial of Service‬ ‭Low‬

‭Trail of Bits‬ ‭33‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭12‬ ‭LiteralNameEntryInstruction incorrectly encodes‬
‭value length‬

‭Denial of Service‬ ‭Medium‬

‭13‬ ‭FileInitializer does not check for symlinks‬ ‭Data Validation‬ ‭High‬

‭14‬ ‭FileInitializer permits downloading files via‬
‭plaintext HTTP‬

‭Data Exposure‬ ‭High‬

‭15‬ ‭NullPointerException thrown by FastCGI parser on‬
‭invalid frame type‬

‭Data Validation‬ ‭Medium‬

‭16‬ ‭Documentation does not specify that request‬
‭contents and other user data can be exposed in‬
‭debug logs‬

‭Data Exposure‬ ‭Medium‬

‭17‬ ‭HttpStreamOverFCGI internally marks all requests‬
‭as plaintext HTTP‬

‭Data Validation‬ ‭High‬

‭18‬ ‭Excessively permissive and‬
‭non-standards-compliant error handling in‬
‭HTTP/2 implementation‬

‭Data Validation‬ ‭Low‬

‭19‬ ‭XML external entities and entity expansion in‬
‭Maven package metadata parser‬

‭Data Validation‬ ‭High‬

‭20‬ ‭Use of deprecated AccessController class‬ ‭Code Quality‬ ‭Informational‬

‭21‬ ‭QUIC server writes SSL private key to temporary‬
‭plaintext file‬

‭Cryptography‬ ‭High‬

‭22‬ ‭Repeated code between HPACK and QPACK‬ ‭Code Quality‬ ‭Informational‬

‭23‬ ‭Various exceptions in HpackDecoder.decode and‬
‭QpackDecoder.decode‬

‭Denial of Service‬ ‭Informational‬

‭24‬ ‭Incorrect QPACK encoding when multi-byte‬
‭characters are used‬

‭Data Validation‬ ‭Medium‬

‭Trail of Bits‬ ‭34‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭25‬ ‭No limits on maximum capacity in QPACK decoder‬ ‭Denial of Service‬ ‭High‬

‭Trail of Bits‬ ‭35‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭Detailed Findings‬

‭1. Risk of integer overflow that could allow HpackDecoder to exceed‬
‭maxHeaderSize‬

‭Severity:‬‭Medium‬ ‭Difficulty:‬‭High‬

‭Type: Denial of Service‬ ‭Finding ID: TOB-JETTY-1‬

‭Target:‬‭org.eclipse.jetty.http2.hpack.internal.MetaDataBuilder‬‭,‬
‭org.eclipse.jetty.http2.hpack.HpackDecoder‬

‭Description‬
‭An integer overflow could occur in the‬‭MetaDataBuilder.checkSize‬‭function, which‬
‭would allow HPACK header values to exceed their size limit.‬

‭MetaDataBuilder.checkSize‬‭determines whether a header‬‭name or value exceeds the‬
‭size limit and throws an exception if the limit is exceeded:‬

‭291‬ ‭public‬‭void‬‭checkSize‬‭(‬‭int‬‭length,‬‭boolean‬‭huffman)‬‭throws‬‭SessionException‬
‭292‬ ‭{‬
‭293‬ ‭// Apply a huffman fudge factor‬
‭294‬ ‭if‬‭(huffman)‬
‭295‬ ‭length‬‭=‬‭(length‬‭*‬‭4‬‭)‬‭/‬‭3‬‭;‬
‭296‬ ‭if‬‭((_size‬‭+‬‭length)‬‭>‬‭_maxSize)‬
‭297‬ ‭throw‬‭new‬‭HpackException.SessionException(‬‭"Header‬‭too large %d > %d"‬‭,‬
‭_size‬‭+‬‭length,‬‭_maxSize);‬
‭298‬ ‭}‬

‭Figure 1.1:‬‭MetaDataBuilder.checkSize‬

‭However, when the value of‬‭length‬‭is very large and‬‭huffman‬‭is‬‭true‬‭, the multiplication‬
‭of‬‭length‬‭by‬‭4‬‭in line 295 will overflow, and‬‭length‬‭will become negative. This will cause‬
‭the result of the sum of‬‭_size‬‭and‬‭length‬‭to be negative,‬‭and the check on line 296 will‬
‭not be triggered.‬

‭Exploit Scenario‬
‭An attacker repeatedly sends HTTP messages with the HPACK header‬‭0x00ffffffffff02‬‭.‬
‭Each time this header is decoded, the following occurs:‬

‭●‬ ‭HpackDecode.decode‬‭determines that a Huffman-coded‬‭value of length‬
‭805306494‬‭needs to be decoded.‬

‭Trail of Bits‬ ‭36‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http2/jetty-http2-hpack/src/main/java/org/eclipse/jetty/http2/hpack/internal/MetaDataBuilder.java#L291-L298

‭●‬ ‭MetaDataBuilder.checkSize‬‭approves this length.‬

‭●‬ ‭Huffman.decode‬‭allocates a 1.6 GB string array.‬

‭●‬ ‭Huffman.decode‬‭experiences a buffer overflow error,‬‭and the array is deallocated‬
‭the next time garbage collection happens. (Note that this deallocation can be‬
‭delayed by appending valid Huffman-coded characters to the end of the header.)‬

‭Depending on the timing of garbage collection, the number of threads, and the amount of‬
‭memory available on the server, this may cause the server to run out of memory.‬

‭Recommendations‬
‭Short term, have‬‭MetaDataBuilder.checkSize‬‭check that‬‭length‬‭is below a threshold‬
‭before performing the multiplication.‬

‭Long term, use fuzzing to check for similar errors; we found this issue by fuzzing‬
‭HpackDecode‬‭.‬

‭Trail of Bits‬ ‭37‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭2. Cookie parser accepts unmatched quotation marks‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Error Reporting‬ ‭Finding ID: TOB-JETTY-2‬

‭Target:‬‭org.eclipse.jetty.http.RFC6265CookieParser‬

‭Description‬
‭The‬‭RFC6265CookieParser.parseField‬‭function does not‬‭check for unmatched‬
‭quotation marks. For example,‬‭parseField(“\””)‬‭will‬‭execute without raising an‬
‭exception. This issue is unlikely to lead to any vulnerabilities, but it could lead to problems‬
‭if users or developers expect the function to accept only valid strings.‬

‭Recommendations‬
‭Short term, modify the function to check that the state at the end of the given string is not‬
‭IN_QUOTED_VALUE‬‭.‬

‭Long term, when using a state machine, ensure that the code always checks that the state‬
‭is valid before exiting.‬

‭Trail of Bits‬ ‭38‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭3. Errant command quoting in CGI servlet‬

‭Severity:‬‭High‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-JETTY-3‬

‭Target:‬‭org.eclipse.jetty.ee10.servlets.CGI‬‭,‬
‭org.eclipse.jetty.ee9.servlets.CGI‬

‭Description‬
‭If a user sends a request to a CGI servlet for a binary with a space in its name, the servlet‬
‭will escape the command by wrapping it in quotation marks. This wrapped command, plus‬
‭an optional command prefix, will then be executed through a call to‬‭Runtime.exec‬‭. If the‬
‭original binary name provided by the user contains a quotation mark followed by a space,‬
‭the resulting command line will contain multiple tokens instead of one. For example, if a‬
‭request references a binary called‬‭file”‬‭name‬‭“here‬‭,‬‭the escaping algorithm will generate‬
‭the command line string‬‭“file”‬‭name‬‭“here”‬‭, which‬‭will invoke the binary named‬‭file‬‭,‬
‭not the one that the user requested.‬

‭if‬‭(execCmd.length()‬‭>‬‭0‬‭&&‬‭execCmd.charAt(‬‭0‬‭)‬‭!=‬‭'"'‬‭&&‬‭execCmd.contains(‬‭" "‬‭))‬
‭execCmd‬‭=‬‭"\""‬‭+‬‭execCmd‬‭+‬‭"\""‬‭;‬

‭Figure 3.1:‬‭CGI.java#L337–L338‬

‭Exploit Scenario‬
‭The‬‭cgi-bin‬‭directory contains a binary named‬‭exec‬‭and a subdirectory named‬‭exec”‬
‭commands‬‭, which contains a file called‬‭bin1‬‭. A user‬‭sends to the CGI servlet a request for‬
‭the filename‬‭exec”‬‭commands/bin1‬‭. This request passes‬‭the file existence check on lines‬
‭194 through 205 in‬‭CGI.java‬‭. The servlet adds quotation‬‭marks around this filename,‬
‭resulting in the command line string‬‭“exec”‬‭commands/bin1”‬‭.‬‭When this string is passed‬
‭to‬‭Runtime.exec‬‭, instead of executing the‬‭bin1‬‭binary,‬‭the server executes the‬‭exec‬
‭binary with the argument‬‭commands/bin1”‬‭.‬

‭This behavior is incorrect and could bypass alias checks; it could also cause other‬
‭unintended behaviors if a command prefix is configured. Additionally, if the‬‭useFullPath‬
‭configuration setting is off, the command would not need to pass the existence check.‬
‭Without this setting, an attacker exploiting this issue would not have to rely on a binary and‬
‭subdirectory with similar names, and the attack could succeed on a much wider variety of‬
‭directory structures.‬

‭Trail of Bits‬ ‭39‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-ee10/jetty-ee10-servlets/src/main/java/org/eclipse/jetty/ee10/servlets/CGI.java#L337-L338

‭Recommendations‬
‭Short term, update line 346 in‬‭CGI.java‬‭to replace‬‭the call to‬‭exec(String‬‭command,‬
‭String[]‬‭env,‬‭File‬‭dir)‬‭with a call to‬‭exec(String[]‬‭cmdarray,‬‭String[]‬‭env,‬
‭File‬‭dir)‬‭so that the quotation mark escaping algorithm‬‭does not create new tokens in‬
‭the command line string.‬

‭Long term, update the quotation mark escaping algorithm so that any unescaped‬
‭quotation marks in the original name of the command are properly escaped, resulting in‬
‭one double-quoted token instead of multiple adjacent quoted strings. Additionally, the‬
‭expression‬‭execCmd.charAt(0)‬‭!=‬‭'"'‬‭on line 337 of‬‭CGI.java‬‭is intended to avoid‬
‭adding additional quotation marks to an already-quoted command string. If this check is‬
‭unnecessary, it should be removed. If it is necessary, it should be replaced by a more‬
‭robust check that accurately detects properly formatted double-quoted strings.‬

‭Trail of Bits‬ ‭40‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭4. Symlink-allowed alias checker ignores protected targets list‬

‭Severity:‬‭High‬ ‭Difficulty:‬‭Medium‬

‭Type: Access Controls‬ ‭Finding ID: TOB-JETTY-4‬

‭Target:‬‭org.eclipse.jetty.server.SymlinkAllowedResourceAliasChecker‬

‭Description‬
‭The class‬‭SymlinkAllowedResourceAliasChecker‬‭is an‬‭alias checker that permits users‬
‭to access a symlink as long as the symlink is stored within an allowed directory. The‬
‭following comment appears on line 76 of this class:‬

‭// TODO: return !getContextHandler().isProtectedTarget(realURI.toString());‬

‭Figure 4.1:‬‭SymlinkAllowedResourceAliasChecker.java#L76‬

‭As this comment suggests, the alias checker does not yet enforce the context handler’s‬
‭protected resource list. That is, if a symlink is contained in an allowed directory but points‬
‭to a target on the protected resource list, the alias checker will return a positive match.‬

‭During our review, we found that some other modules, but not all, independently enforce‬
‭the protected resource list and will decline to serve resources on the list even if the alias‬
‭checker returns a positive result. But the modules that do not independently enforce the‬
‭protected resource list could serve protected resources to attackers conducting symlink‬
‭attacks.‬

‭Exploit Scenario‬
‭An attacker induces the creation of a symlink (or a system administrator accidentally‬
‭creates one) in a web-accessible directory that points to a protected resource (e.g., a child‬
‭of‬‭WEB-INF‬‭). By requesting this symlink through a‬‭servlet that uses the‬
‭SymlinkAllowedResourceAliasChecker‬‭class, the attacker‬‭bypasses the protected‬
‭resource list and accesses the sensitive files.‬

‭Recommendations‬
‭Short term, implement the check referenced in the comment so that the alias checker‬
‭rejects symlinks that point to a protected resource or a child of a protected resource.‬

‭Long term, consider clarifying and documenting the responsibilities of different‬
‭components for enforcing protected resource lists. Consider implementing redundant‬
‭checks in multiple modules for purposes of layered security.‬

‭Trail of Bits‬ ‭41‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-server/src/main/java/org/eclipse/jetty/server/SymlinkAllowedResourceAliasChecker.java#L76

‭5. Missing check for malformed Unicode escape sequences in‬
‭QuotedStringTokenizer.unquote‬

‭Severity:‬‭Low‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-JETTY-5‬

‭Target:‬‭org.eclipse.jetty.util.QuotedStringTokenizer‬

‭Description‬
‭The‬‭QuotedStringTokenizer‬‭class’s‬‭unquote‬‭method parses‬‭\u####‬‭Unicode escape‬
‭sequences, but it does not first check that the escape sequence is properly formatted or‬
‭that the string is of a sufficient length:‬

‭case‬‭'u'‬‭:‬
‭b.append((‬‭char‬‭)(‬

‭(TypeUtil.convertHexDigit((‬‭byte‬‭)s.charAt(i++))‬‭<<‬‭24‬‭)‬‭+‬
‭(TypeUtil.convertHexDigit((‬‭byte‬‭)s.charAt(i++))‬‭<<‬‭16‬‭)‬‭+‬
‭(TypeUtil.convertHexDigit((‬‭byte‬‭)s.charAt(i++))‬‭<<‬‭8‬‭)‬‭+‬
‭(TypeUtil.convertHexDigit((‬‭byte‬‭)s.charAt(i++)))‬

‭)‬
‭);‬
‭break‬‭;‬

‭Figure 5.1:‬‭QuotedStringTokenizer.java#L547–L555‬

‭Any calls to this function with an argument ending in an incomplete Unicode escape‬
‭sequence, such as‬‭“str\u0”‬‭, will cause the code to‬‭throw a‬
‭java.lang.NumberFormatException‬‭exception. The only‬‭known execution path that will‬
‭cause this method to be called with a parameter ending in an invalid Unicode escape‬
‭sequence is to induce the processing of an ETag‬‭Matches‬‭header by the‬
‭ResourceService‬‭class, which calls‬‭EtagUtils.matches‬‭,‬‭which calls‬
‭QuotedStringTokenizer.unquote‬‭.‬

‭Exploit Scenario‬
‭An attacker introduces a maliciously crafted ETag into a browser’s cache. Each subsequent‬
‭request for the affected resource causes a server-side exception, preventing the server‬
‭from producing a valid response so long as the cached ETag remains in place.‬

‭Recommendations‬
‭Short term, add a‬‭try-catch‬‭block around the affected‬‭code that drops malformed‬
‭escape sequences.‬

‭Trail of Bits‬ ‭42‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-util/src/main/java/org/eclipse/jetty/util/QuotedStringTokenizer.java#L547-L555

‭Long term, implement a suitable workaround for lenient mode that passes the raw bytes of‬
‭the malformed escape sequence into the output.‬

‭Trail of Bits‬ ‭43‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭6. WebSocket frame length represented with 32-bit integer‬

‭Severity:‬‭High‬ ‭Difficulty:‬‭Medium‬

‭Type: Data Validation‬ ‭Finding ID: TOB-JETTY-6‬

‭Target:‬‭org.eclipse.jetty.websocket.core.internal.Parser‬

‭Description‬
‭The‬‭WebSocket standard‬‭(RFC 6455) allows for frames‬‭with a size of up to 2‬‭64‬ ‭bytes.‬
‭However, the WebSocket parser represents the frame length with a 32-bit integer:‬

‭private‬‭int‬‭payloadLength;‬
‭// ...[snip]...‬
‭case‬‭PAYLOAD_LEN_BYTES:‬

‭{‬
‭byte‬‭b‬‭=‬‭buffer.get();‬
‭--cursor;‬
‭payloadLength‬‭|=‬‭(b‬‭&‬‭0xFF‬‭)‬‭<<‬‭(‬‭8‬‭*‬‭cursor);‬
‭// ...[snip]...‬

‭}‬

‭Figure 6.1:‬‭Parser.java‬‭, lines 57 and 147–151‬

‭As a result, this parsing algorithm will incorrectly parse some length fields as negative‬
‭integers, causing a‬‭java.lang.IllegalArgumentException‬‭exception to be thrown‬
‭when the parser tries to set the limit of a‬‭Buffer‬‭object to a negative number (refer to‬
‭TOB-JETTY-7‬‭). Consequently, Jetty’s WebSocket implementation‬‭cannot properly process‬
‭frames with certain lengths that are compliant with RFC 6455.‬

‭Even if no exception results, this logic error will cause the parser to incorrectly identify the‬
‭sizes of WebSocket frames and the boundaries between them. If the server passes these‬
‭frames to another WebSocket connection, this bug could enable attacks similar to HTTP‬
‭request smuggling, resulting in bypasses of security controls.‬

‭Exploit Scenario‬
‭A Jetty WebSocket server is deployed in a reverse proxy configuration in which both Jetty‬
‭and another web server parse the same stream of WebSocket frames. An attacker sends a‬
‭frame with a length that the Jetty parser incorrectly truncates to a 32-bit integer. Jetty and‬
‭the other server interpret the frames differently, which causes errors in the‬
‭implementation of security controls, such as WAF filters.‬

‭Trail of Bits‬ ‭44‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://www.rfc-editor.org/rfc/rfc6455#section-5.2
https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-websocket/jetty-websocket-core-common/src/main/java/org/eclipse/jetty/websocket/core/internal/Parser.java#L147-L151

‭Recommendations‬
‭Short term, change the‬‭payloadLength‬‭variable to use‬‭the‬‭long‬‭data type instead of an‬
‭int‬‭.‬

‭Long term, audit all arithmetic operations performed on this‬‭payloadLength‬‭variable to‬
‭ensure that it is always used as an unsigned integer instead of a signed one. The standard‬
‭library’s‬‭Integer‬‭class can provide this functionality.‬

‭Trail of Bits‬ ‭45‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭7. WebSocket parser does not check for negative payload lengths‬

‭Severity:‬‭Low‬ ‭Difficulty:‬‭Low‬

‭Type: Data Validation‬ ‭Finding ID: TOB-JETTY-7‬

‭Target:‬‭org.eclipse.jetty.websocket.core.internal.Parser‬

‭Description‬
‭The WebSocket parser’s‬‭checkFrameSize‬‭method checks‬‭for payload lengths that exceed‬
‭the current configuration’s maximum, but it does not check for payload lengths that are‬
‭lower than zero. If the payload length is lower than zero, the code will throw an exception‬
‭when the payload length is passed to a call to‬‭buffer.limit‬‭.‬

‭Exploit Scenario‬
‭An attacker sends a WebSocket payload with a length field that parses to a negative signed‬
‭integer (refer to‬‭TOB-JETTY-6‬‭). This payload causes‬‭an exception to be thrown and possibly‬
‭the server process to crash.‬

‭Recommendations‬
‭Short term, update‬‭checkFrameSize‬‭to throw an‬
‭org.eclipse.jetty.websocket.core.exception.ProtocolException‬‭exception if‬
‭the frame’s length field is less than zero.‬

‭Trail of Bits‬ ‭46‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭8. WebSocket parser greedily allocates ByteBuffers for large frames‬

‭Severity:‬‭Medium‬ ‭Difficulty:‬‭Low‬

‭Type: Denial of Service‬ ‭Finding ID: TOB-JETTY-8‬

‭Target:‬‭org.eclipse.jetty.websocket.core.internal.Parser‬

‭Description‬
‭When the WebSocket parser receives a partial frame in a‬‭ByteBuffer‬‭object and‬
‭auto-fragmenting is disabled, the parser allocates a buffer of a size sufficient to store the‬
‭entire frame at once:‬

‭if‬‭(aggregate‬‭==‬‭null‬‭)‬
‭{‬

‭if‬‭(available‬‭<‬‭payloadLength)‬
‭{‬

‭// not enough to complete this frame‬
‭// Can we auto-fragment‬
‭if‬‭(configuration.isAutoFragment()‬‭&&‬‭isDataFrame)‬

‭return‬‭autoFragment(buffer,‬‭available);‬

‭// No space in the buffer, so we have‬‭to copy the partial payload‬
‭aggregate‬‭=‬‭bufferPool.acquire(payloadLength,‬‭false‬‭);‬
‭BufferUtil.append(aggregate.getByteBuffer(),‬‭buffer);‬
‭return‬‭null‬‭;‬
‭}‬

‭//...[snip]...‬
‭}‬

‭Figure 8.1:‬‭Parser.java‬‭, lines 323–336‬

‭An attacker could send a WebSocket frame with a large payload length field, causing the‬
‭server to allocate a buffer of a size equal to the specified payload length, without ever‬
‭sending the entire frame contents. Therefore, an attacker can induce the consumption of‬
‭gigabytes (or potentially exabytes; refer to‬‭TOB-JETTY-6‬‭)‬‭of memory by sending only‬
‭hundreds or thousands of bytes over the wire.‬

‭Exploit Scenario‬
‭An attacker crafts a malicious WebSocket frame with a large payload length field but‬
‭incomplete payload contents. The server then allocates a buffer of a size equal to the‬
‭payload length field, causing an excessive consumption of RAM. To ensure that the‬
‭connection is not promptly dropped, the attacker continues sending parts of this payload a‬
‭few seconds apart, conducting a slow HTTP attack.‬

‭Trail of Bits‬ ‭47‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-websocket/jetty-websocket-core-common/src/main/java/org/eclipse/jetty/websocket/core/internal/Parser.java#L323-L336

‭Recommendations‬
‭Short term, ensure that the default maximum payload size remains at a low value that is‬
‭sufficient for most purposes (such as the current default of 64 KB).‬

‭Long term, to better support large WebSocket frames, update the use of‬‭ByteBuffer‬
‭objects in the WebSocket parser so that the parser does not allocate the entire buffer as‬
‭soon as it parses the first fragment. Instead, the buffer should be expanded in relatively‬
‭small increments (e.g., 10 MB or 100 MB at a time) and then written to only once the data‬
‭sent by the client exceeds the length of the current buffer. That way, in order to induce the‬
‭consumption of a large amount of RAM, an attacker would need to send a commensurate‬
‭number of bytes over the wire.‬

‭Trail of Bits‬ ‭48‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭9. Risk of integer overflow in HPACK's NBitInteger.decode‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-JETTY-9‬

‭Target:‬‭org.eclipse.jetty.http2.hpack.internal.NBitInteger‬

‭Description‬
‭The static function‬‭NBitInteger.decode‬‭is used to‬‭decode bytestrings in HPACK's integer‬
‭format. It should return only positive integers since HPACK’s integer format is not intended‬
‭to support negative numbers. However, the following loop in‬‭NBitInteger.decode‬‭is‬
‭susceptible to integer overflows in its multiplication and addition operations:‬

‭public‬‭static‬‭int‬‭decode‬‭(ByteBuffer‬‭buffer,‬‭int‬‭n)‬
‭{‬

‭if‬‭(n‬‭==‬‭8‬‭)‬
‭{‬
‭// ...‬

‭}‬

‭int‬‭nbits‬‭=‬‭0xFF‬‭>>>‬‭(‬‭8‬‭-‬‭n);‬

‭int‬‭i‬‭=‬‭buffer.get(buffer.position()‬‭-‬‭1‬‭)‬‭&‬‭nbits;‬

‭if‬‭(i‬‭==‬‭nbits)‬
‭{‬

‭int‬‭m‬‭=‬‭1‬‭;‬
‭int‬‭b;‬
‭do‬
‭{‬

‭b‬‭=‬‭0xff‬‭&‬‭buffer.get();‬
‭i‬‭=‬‭i‬‭+‬‭(b‬‭&‬‭127‬‭)‬‭*‬‭m;‬
‭m‬‭=‬‭m‬‭*‬‭128‬‭;‬

‭}‬
‭while‬‭((b‬‭&‬‭128‬‭)‬‭==‬‭128‬‭);‬

‭}‬
‭return‬‭i;‬

‭}‬

‭Figure 9.1:‬‭NBitInteger.java‬‭, lines 105–145‬

‭For example,‬‭NBitInteger.decode(0xFF8080FFFF0F,‬‭7)‬‭returns‬‭-16257‬‭.‬

‭Any overflow that occurs in the function would not be a problem on its own since, in‬
‭general, the output of this function ought to be validated before it is used; however, when‬
‭coupled with other issues (refer to‬‭TOB-JETTY-10‬‭),‬‭an overflow can cause vulnerabilities.‬

‭Trail of Bits‬ ‭49‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http2/jetty-http2-hpack/src/main/java/org/eclipse/jetty/http2/hpack/internal/NBitInteger.java#L105-L145

‭Recommendations‬
‭Short term, modify‬‭NBitInteger.decode‬‭to check that‬‭its result is nonnegative before‬
‭returning it.‬

‭Long term, consider merging the QPACK and HPACK implementations for‬‭NBitInteger‬‭,‬
‭since they perform the same functionality; the QPACK implementation of‬‭NBitInteger‬
‭checks for overflows.‬

‭Trail of Bits‬ ‭50‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭10. MetaDataBuilder.checkSize accepts headers of negative lengths‬

‭Severity:‬‭Medium‬ ‭Difficulty:‬‭High‬

‭Type: Denial of Service‬ ‭Finding ID: TOB-JETTY-10‬

‭Target:‬‭org.eclipse.jetty.http2.hpack.internal.MetaDataBuilder‬

‭Description‬
‭The‬‭MetaDataBuilder.checkSize‬‭function accepts user-entered‬‭HPACK header values‬
‭of negative sizes, which could cause a very large buffer to be allocated later when the‬
‭user-entered size is multiplied by 2.‬

‭MetaDataBuilder.checkSize‬‭determines whether a header‬‭name or value exceeds the‬
‭size limit and throws an exception if the limit is exceeded:‬

‭public‬‭void‬‭checkSize‬‭(‬‭int‬‭length,‬‭boolean‬‭huffman)‬‭throws‬‭SessionException‬
‭{‬

‭// Apply a huffman fudge factor‬
‭if‬‭(huffman)‬

‭length‬‭=‬‭(length‬‭*‬‭4‬‭)‬‭/‬‭3‬‭;‬
‭if‬‭((_size‬‭+‬‭length)‬‭>‬‭_maxSize)‬

‭throw‬‭new‬‭HpackException.SessionException(‬‭"Header‬‭too large %d > %d"‬‭,‬‭_size‬
‭+‬‭length,‬‭_maxSize);‬
‭}‬

‭Figure 10.1:‬‭MetaDataBuilder.java‬‭, lines 291–298‬

‭However, it does not throw an exception if the size is negative.‬

‭Later, the‬‭Huffman.decode‬‭function multiplies the‬‭user-entered length by 2 before‬
‭allocating a buffer:‬

‭public‬‭static‬‭String‬‭decode‬‭(ByteBuffer‬‭buffer,‬‭int‬‭length)‬‭throws‬
‭HpackException.CompressionException‬
‭{‬

‭Utf8StringBuilder‬‭utf8‬‭=‬‭new‬‭Utf8StringBuilder(length‬‭*‬‭2‬‭);‬
‭// ...‬

‭Figure 10.2:‬‭Huffman.java‬‭, lines 357–359‬

‭This means that if a user provides a negative length value (or, more precisely, a length‬
‭value that becomes negative when multiplied by the 4/3 fudge factor), and this length value‬
‭becomes a very large positive number when multiplied by 2, then the user can cause a very‬
‭large buffer to be allocated on the server.‬

‭Trail of Bits‬ ‭51‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http2/jetty-http2-hpack/src/main/java/org/eclipse/jetty/http2/hpack/internal/MetaDataBuilder.java#L291-L298
https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http2/jetty-http2-hpack/src/main/java/org/eclipse/jetty/http2/hpack/internal/Huffman.java#L357-L359

‭Exploit Scenario‬
‭An attacker repeatedly sends HTTP messages with the HPACK header‬‭0x00ff8080ffff0b‬‭.‬
‭Each time this header is decoded, the following occurs:‬

‭●‬ ‭HpackDecode.decode‬‭determines that a Huffman-coded‬‭value of length‬
‭-1073758081‬‭needs to be decoded.‬

‭●‬ ‭MetaDataBuilder.checkSize‬‭approves this length.‬

‭●‬ ‭The number is multiplied by 2, resulting in‬‭2147451134‬‭,‬‭and‬‭Huffman.decode‬
‭allocates a 2.1 GB string array.‬

‭●‬ ‭Huffman.decode‬‭experiences a buffer overflow error,‬‭and the array is deallocated‬
‭the next time garbage collection happens. (Note that this deallocation can be‬
‭delayed by adding valid Huffman-coded characters to the end of the header.)‬

‭Depending on the timing of garbage collection, the number of threads, and the amount of‬
‭memory available on the server, this may cause the server to run out of memory.‬

‭Recommendations‬
‭Short term, have‬‭MetaDataBuilder.checkSize‬‭check that‬‭the given length is positive‬
‭directly before adding it to‬‭_size‬‭and comparing it‬‭with‬‭_maxSize‬‭.‬

‭Long term, add checks for integer overflows in‬‭Huffman.decode‬‭and in‬
‭NBitInteger.decode‬‭(refer to‬‭TOB-JETTY-9‬‭) for added‬‭redundancy.‬

‭Trail of Bits‬ ‭52‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭11. Insufficient space allocated when encoding QPACK instructions and‬
‭entries‬

‭Severity:‬‭Low‬ ‭Difficulty:‬‭High‬

‭Type: Denial of Service‬ ‭Finding ID: TOB-JETTY-11‬

‭Target:‬
‭●‬ ‭org.eclipse.jetty.http3.qpack.internal.instruction.IndexedName‬

‭EntryInstruction‬
‭●‬ ‭org.eclipse.jetty.http3.qpack.internal.instruction.LiteralName‬

‭EntryInstruction‬
‭●‬ ‭org.eclipse.jetty.http3.qpack.internal.instruction.EncodableEn‬

‭try‬

‭Description‬
‭Multiple expressions do not allocate enough buffer space when encoding QPACK‬
‭instructions and entries, which could result in a buffer overflow exception.‬

‭In‬‭IndexedNameEntry‬‭, the following expression determines‬‭how much space to allocate‬
‭when encoding the instruction:‬

‭int‬‭size‬‭=‬‭NBitIntegerEncoder.octetsNeeded(‬‭6‬‭,‬‭_index)‬‭+‬‭(_huffman‬‭?‬
‭HuffmanEncoder.octetsNeeded(_value)‬‭:‬‭_value.length())‬‭+‬‭2‬‭;‬

‭Figure 11.1:‬‭IndexedNameEntry.java‬‭, line 58‬

‭Later, the following two lines encode the value size for Huffman-coded and‬
‭non-Huffman-coded strings, respectively:‬

‭NBitIntegerEncoder.encode(byteBuffer,‬‭7‬‭,‬‭HuffmanEncoder.octetsNeeded(_value));‬
‭// ...‬
‭NBitIntegerEncoder.encode(byteBuffer,‬‭7‬‭,‬‭_value.length());‬

‭Figure 11.2:‬‭IndexedNameEntry.java‬‭, lines 71 and 77‬

‭These encodings can take up more than 1 byte if the value’s length is over 126 because the‬
‭number will fill up the 7 bits given to it in the first byte. However, the‬‭int‬‭size‬‭expression‬
‭in figure 11.1 assumes that it will take up only 1 byte. Thus, if the value’s length is over 126,‬
‭too few bytes may be allocated for the instruction, causing a buffer overflow.‬

‭The same problem occurs in‬‭LiteralNameEntryInstruction‬‭:‬

‭Trail of Bits‬ ‭53‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http3/jetty-http3-qpack/src/main/java/org/eclipse/jetty/http3/qpack/internal/instruction/IndexedNameEntryInstruction.java#L58
https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http3/jetty-http3-qpack/src/main/java/org/eclipse/jetty/http3/qpack/internal/instruction/IndexedNameEntryInstruction.java

‭int‬‭size‬‭=‬‭(_huffmanName‬‭?‬‭HuffmanEncoder.octetsNeeded(_name)‬‭:‬‭_name.length())‬‭+‬
‭(_huffmanValue‬‭?‬‭HuffmanEncoder.octetsNeeded(_value)‬‭:‬‭_value.length())‬‭+‬‭2‬‭;‬

‭Figure 11.3:‬‭LiteralNameEntryInstruction.java‬‭, lines‬‭59–60‬

‭This expression assumes that the name's length will fit into 5 bits and that the value’s‬
‭length will fit into 7 bits. If the name’s length is over 30 bytes or the value’s length is over‬
‭126 bytes, these assumptions will be false and too little space may be allocated for the‬
‭instruction, which could cause a buffer overflow.‬

‭A similar problem occurs in‬‭EncodableEntry.ReferencedNameEntry‬‭.‬‭The‬
‭getRequiredSize‬‭method in this file calculates how‬‭much space should be allocated for‬
‭its encoding:‬

‭public‬‭int‬‭getRequiredSize‬‭(‬‭int‬‭base)‬
‭{‬

‭String‬‭value‬‭=‬‭getValue();‬
‭int‬‭relativeIndex‬‭=‬ ‭_nameEntry.getIndex()‬‭-‬‭base;‬
‭int‬‭valueLength‬‭=‬‭_huffman‬‭?‬‭HuffmanEncoder.octetsNeeded(value)‬‭:‬

‭value.length();‬
‭return‬‭1‬‭+‬‭NBitIntegerEncoder.octetsNeeded(‬‭4‬‭,‬‭relativeIndex)‬‭+‬‭1‬‭+‬

‭NBitIntegerEncoder.octetsNeeded(‬‭7‬‭,‬‭valueLength)‬‭+‬‭valueLength;‬
‭}‬

‭Figure 11.4:‬‭EncodableEntry.java‬‭, lines 181–187‬

‭The method returns the wrong size if the value is longer than 126 bytes. Additionally, it‬
‭assumes that the name will use a post-base reference rather than a normal one, which may‬
‭be incorrect.‬

‭An additional problem is present in this method. It assumes that‬‭value‬‭’s length in bytes‬
‭will be returned by‬‭value.length()‬‭. However,‬‭value.length()‬‭measures the number‬
‭of‬‭characters‬‭in‬‭value‬‭, not the number of bytes, so‬‭if‬‭value‬‭contains multibyte characters‬
‭(e.g., UTF-8), too few bytes will be allocated. The length of‬‭value‬‭should be calculated by‬
‭using‬‭value.getBytes()‬‭instead of‬‭value.length()‬‭.‬

‭The‬‭getRequiredSize‬‭method in‬‭EncodableEntry.LiteralEntry‬‭also incorrectly uses‬
‭value.length()‬‭:‬

‭public‬‭int‬‭getRequiredSize‬‭(‬‭int‬‭base)‬
‭{‬

‭String‬‭name‬‭=‬‭getName();‬
‭String‬‭value‬‭=‬‭getValue();‬
‭int‬‭nameLength‬‭=‬‭_huffman‬‭?‬‭HuffmanEncoder.octetsNeeded(name)‬‭:‬‭name.length();‬
‭int‬‭valueLength‬‭=‬‭_huffman‬‭?‬‭HuffmanEncoder.octetsNeeded(value)‬‭:‬

‭value.length();‬
‭return‬‭2‬‭+‬‭NBitIntegerEncoder.octetsNeeded(‬‭3‬‭,‬‭nameLength)‬‭+‬‭nameLength‬‭+‬

‭NBitIntegerEncoder.octetsNeeded(‬‭7‬‭,‬‭valueLength)‬‭+‬‭valueLength;‬

‭Trail of Bits‬ ‭54‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http3/jetty-http3-qpack/src/main/java/org/eclipse/jetty/http3/qpack/internal/instruction/LiteralNameEntryInstruction.java#L59-L60
https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http3/jetty-http3-qpack/src/main/java/org/eclipse/jetty/http3/qpack/internal/EncodableEntry.java#L181-L187

‭}‬

‭Figure 11.5:‬‭EncodableEntry.java‬‭, lines 243–250‬

‭Note that‬‭name.length()‬‭is used to measure the byte‬‭length of‬‭name‬‭, and‬
‭value.length()‬‭is used to measure the byte length‬‭of‬‭value‬‭.‬

‭Jetty’s HTTP/3 code is still considered experimental, so this issue should not affect‬
‭production code, but it should be fixed before announcing HTTP/3 support to be‬
‭production-ready.‬

‭Recommendations‬
‭Short term, change the relevant expressions to account for the extra length.‬

‭Long term, build out additional test cases for QPACK and other parsers used in HTTP/3 to‬
‭test for the correct handling of edge cases and identify memory handling exceptions.‬

‭Trail of Bits‬ ‭55‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http3/jetty-http3-qpack/src/main/java/org/eclipse/jetty/http3/qpack/internal/EncodableEntry.java#L243-L250

‭12. LiteralNameEntryInstruction incorrectly encodes value length‬

‭Severity:‬‭Medium‬ ‭Difficulty:‬‭Medium‬

‭Type: Denial of Service‬ ‭Finding ID: TOB-JETTY-12‬

‭Target:‬
‭org.eclipse.jetty.http3.qpack.internal.instruction.LiteralNameEntryI‬
‭nstruction‬

‭Description‬
‭QPACK instructions for inserting entries with literal names and non-Huffman-coded values‬
‭will be encoded incorrectly when the value’s length is over 30, which could cause values to‬
‭be sent incorrectly or errors to occur during decoding.‬

‭The following snippet of the‬‭LiteralNameEntryInstruction.encode‬‭function is‬
‭responsible for encoding the header value:‬

‭78‬ ‭if‬‭(_huffmanValue)‬
‭79 {‬
‭80‬ ‭byteBuffer.put((‬‭byte‬‭)(‬‭0x80‬‭));‬
‭81‬ ‭NBitIntegerEncoder.encode(byteBuffer,‬‭7‬‭,‬
‭HuffmanEncoder.octetsNeeded(_value));‬
‭82‬ ‭HuffmanEncoder.encode(byteBuffer,‬‭_value);‬
‭83 }‬
‭84‬ ‭else‬
‭85 {‬
‭86‬ ‭byteBuffer.put((‬‭byte‬‭)(‬‭0x00‬‭));‬
‭87‬ ‭NBitIntegerEncoder.encode(byteBuffer,‬‭5‬‭,‬‭_value.length());‬
‭88‬ ‭byteBuffer.put(_value.getBytes());‬
‭89 }‬

‭Figure 12.1:‬‭LiteralNameEntryInstruction.java‬‭, lines‬‭78–89‬

‭On line 87,‬‭5‬‭is the second parameter to‬‭NBitIntegerEncoder.encode‬‭,‬‭indicating that‬
‭the number will take up 5 bits in the first encoded byte; however, the second parameter‬
‭should be‬‭7‬‭instead. This means that when‬‭_value.length()‬‭is over 30, it will be‬
‭incorrectly encoded.‬

‭Jetty’s HTTP/3 code is still considered experimental, so this issue should not affect‬
‭production code, but it should be fixed before announcing HTTP/3 support to be‬
‭production-ready.‬

‭Trail of Bits‬ ‭56‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http3/jetty-http3-qpack/src/main/java/org/eclipse/jetty/http3/qpack/internal/instruction/LiteralNameEntryInstruction.java#L78-L89

‭Recommendations‬
‭Short term, change the second parameter of the‬‭NBitIntegerEncoder.encode‬‭function‬
‭from‬‭5‬‭to‬‭7‬‭in order to reflect that the number will‬‭take up 7 bits.‬

‭Long term, write more tests to catch similar encoding/decoding problems.‬

‭Trail of Bits‬ ‭57‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭13. FileInitializer does not check for symlinks‬

‭Severity:‬‭High‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-JETTY-13‬

‭Target:‬‭org.eclipse.jetty.start.FileInitializer‬

‭Description‬
‭Module configuration files can direct Jetty to download a remote file and save it in the local‬
‭filesystem while initializing the module. During this process, the‬‭FileInitializer‬‭class‬
‭validates the destination path and throws an‬‭IOException‬‭exception if the destination is‬
‭outside the‬‭${jetty.base}‬‭directory. However, this‬‭validation routine does not check for‬
‭symlinks:‬

‭// now on copy/download paths (be safe above all else)‬
‭if‬‭(destination‬‭!=‬‭null‬‭&&‬‭!destination.startsWith(_basehome.getBasePath()))‬

‭throw‬‭new‬‭IOException(‬‭"For security reasons, Jetty‬‭start is unable to process‬
‭file resource not in ${jetty.base} - "‬‭+‬‭location);‬

‭Figure 13.1:‬‭FileInitializer.java‬‭, lines 112–114‬

‭None of the subclasses of‬‭FileInitializer‬‭check for‬‭symlinks either. Thus, if the‬
‭${jetty.base}‬‭directory contains a symlink, a file‬‭path in a module’s .ini file beginning‬
‭with the symlink name will pass the validation check, and the file will be written to a‬
‭subdirectory of the symlink’s destination.‬

‭Exploit Scenario‬
‭A system’s‬‭${jetty.base}‬‭directory contains a symlink‬‭called‬‭dir‬‭, which points to‬‭/etc‬‭.‬
‭The system administrator enables a Jetty module whose .ini file contains a‬‭[files]‬‭entry‬
‭that downloads a remote file and writes it to the relative path‬‭dir/config.conf‬‭. The‬
‭filesystem follows the symlink and writes a new configuration file to‬‭/etc/config.conf‬‭,‬
‭which impacts the server’s system configuration. Additionally, since the‬‭FileInitializer‬
‭class uses the‬‭REPLACE_EXISTING‬‭flag, this behavior‬‭overwrites an existing system‬
‭configuration file.‬

‭Recommendations‬
‭Short term, rewrite all path checks in‬‭FileInitializer‬‭and its subclasses to include a call‬
‭to the‬‭Path.toRealPath‬‭function, which, by default,‬‭will resolve symlinks and produce the‬
‭real filesystem path pointed to by the‬‭Path‬‭object.‬‭If this real path is outside‬
‭${jetty.base}‬‭, the file write operation should fail.‬

‭Trail of Bits‬ ‭58‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-start/src/main/java/org/eclipse/jetty/start/FileInitializer.java#L112-L114

‭Long term, consolidate all filesystem operations involving the‬‭${jetty.base}‬‭or‬
‭${jetty.home}‬‭directories into a single centralized class that automatically performs‬
‭symlink resolution and rejects operations that attempt to read from or write to an‬
‭unauthorized directory. This class should catch and handle the‬‭IOException‬‭exception‬
‭that is thrown in the event of a link loop or a large number of nested symlinks.‬

‭Trail of Bits‬ ‭59‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭14. FileInitializer permits downloading files via plaintext HTTP‬

‭Severity:‬‭High‬ ‭Difficulty:‬‭High‬

‭Type: Data Exposure‬ ‭Finding ID: TOB-JETTY-14‬

‭Target:‬‭org.eclipse.jetty.start.FileInitializer‬

‭Description‬
‭Module configuration files can direct Jetty to download a remote file and save it in the local‬
‭filesystem while initializing the module. If the specified URL is a plaintext HTTP URL, Jetty‬
‭does not raise an error or warn the user. Transmitting files over plaintext HTTP is‬
‭intrinsically unsecure and exposes sensitive data to tampering and eavesdropping in‬
‭transit.‬

‭Exploit Scenario‬
‭A system administrator enables a Jetty module that downloads a remote file over plaintext‬
‭HTTP during initialization. An attacker with a network intermediary position sniffs the traffic‬
‭and infers sensitive information about the design and configuration of the Jetty system‬
‭under configuration. Alternatively, the attacker actively tampers with the file during‬
‭transmission from the remote server to the Jetty installation, which enables the attacker to‬
‭alter the module’s behavior and launch other attacks against the targeted system.‬

‭Recommendations‬
‭Short term, add a check to the‬‭FileInitializer‬‭class‬‭and its subclasses to prohibit‬
‭downloads over plaintext HTTP. Additionally, add a validation check to the module .ini file‬
‭parser to reject any configuration that includes a plaintext HTTP URL in the‬‭[files]‬
‭section.‬

‭Long term, consolidate all remote file downloads conducted during module configuration‬
‭operations into a single centralized class that automatically rejects plaintext HTTP URLs.‬

‭If current use cases require support of plaintext HTTP URLs, then at a minimum, have Jetty‬
‭display a prominent warning message and prompt the user for manual confirmation‬
‭before performing the unencrypted download.‬

‭Trail of Bits‬ ‭60‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭15. NullPointerException thrown by FastCGI parser on invalid frame type‬

‭Severity:‬‭Medium‬ ‭Difficulty:‬‭Low‬

‭Type: Data Validation‬ ‭Finding ID: TOB-JETTY-15‬

‭Target:‬‭org.eclipse.jetty.fcgi.parser.Parser‬

‭Description‬
‭Because of a missing‬‭null‬‭check, the Jetty FastCGI‬‭client’s‬‭Parser‬‭class throws a‬
‭NullPointerException‬‭exception when parsing a frame‬‭with an invalid frame type field.‬
‭This exception occurs because the‬‭findContentParser‬‭function returns‬‭null‬‭when it‬
‭does not have a‬‭ContentParser‬‭object matching the‬‭specified frame type, and the caller‬
‭never checks the‬‭findContentParser‬‭return value for‬‭null‬‭before dereferencing it.‬

‭case‬‭CONTENT:‬
‭{‬

‭ContentParser‬‭contentParser‬‭=‬‭findContentParser(headerParser.getFrameType());‬
‭if‬‭(headerParser.getContentLength()‬‭==‬‭0‬‭)‬
‭{‬

‭padding‬‭=‬‭headerParser.getPaddingLength();‬
‭state‬‭=‬‭State.PADDING;‬
‭if‬‭(contentParser.noContent())‬

‭return‬‭true‬‭;‬
‭}‬
‭else‬
‭{‬

‭ContentParser.Result‬‭result‬‭=‬‭contentParser.parse(buffer);‬
‭// ...[snip]...‬

‭}‬
‭break‬‭;‬

‭}‬

‭Figure 15.1:‬‭Parser.java‬‭, lines 82–114‬

‭Exploit Scenario‬
‭An attacker operates a malicious web server that supports FastCGI. A Jetty application‬
‭communicates with this server by using Jetty’s built-in FastCGI client. The remote server‬
‭transmits a frame with an invalid frame type, causing a‬‭NullPointerException‬‭exception‬
‭and a crash in the Jetty application.‬

‭Recommendations‬
‭Short term, add a‬‭null‬‭check to the‬‭parse‬‭function‬‭to abort the parsing process before‬
‭dereferencing a‬‭null‬‭return value from‬‭findContentParser‬‭.‬‭If a‬‭null‬‭value is detected,‬

‭Trail of Bits‬ ‭61‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-fcgi/jetty-fcgi-client/src/main/java/org/eclipse/jetty/fcgi/parser/Parser.java#L82-L114

‭parse‬‭should throw an appropriate exception, such as‬‭IllegalStateException‬‭, that‬
‭Jetty can catch and handle safely.‬

‭Long term, build out a larger suite of test cases that ensures graceful handling of‬
‭malformed traffic and data.‬

‭Trail of Bits‬ ‭62‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭16. Documentation does not specify that request contents and other user‬
‭data can be exposed in debug logs‬

‭Severity:‬‭Medium‬ ‭Difficulty:‬‭High‬

‭Type: Data Exposure‬ ‭Finding ID: TOB-JETTY-16‬

‭Target: Jetty 12 Operations Guide; numerous locations throughout the codebase‬

‭Description‬
‭Over 100 times, the system calls‬‭LOG.debug‬‭with a‬‭parameter of the format‬
‭BufferUtil.toDetailString(buffer)‬‭, which outputs up‬‭to 56 bytes of the buffer into‬
‭the log file. Jetty’s implementations of various protocols and encodings, including GZIP,‬
‭WebSocket, multipart encoding, and HTTP/2, output user data received over the network to‬
‭the debug log using this type of call.‬

‭An example instance from Jetty’s WebSocket implementation appears in figure 16.1.‬

‭public‬‭Frame.Parsed‬‭parse‬‭(ByteBuffer‬‭buffer)‬‭throws‬‭WebSocketException‬
‭{‬

‭try‬
‭{‬

‭// parse through‬
‭while‬‭(buffer.hasRemaining())‬
‭{‬

‭if‬‭(LOG.isDebugEnabled())‬
‭LOG.debug(‬‭"{} Parsing {}"‬‭,‬‭this‬‭,‬‭BufferUtil.toDetailString(buffer));‬

‭// ...[snip]...‬
‭}‬
‭// ...[snip]...‬

‭}‬
‭// ...[snip]...‬

‭}‬

‭Figure 16.1:‬‭Parser.java‬‭, lines 88–96‬

‭Although the Jetty 12 Operations Guide does state that Jetty debugging logs can quickly‬
‭consume massive amounts of disk space, it does not advise system administrators that the‬
‭logs can contain sensitive user data, such as personally identifiable information. Thus, the‬
‭possibility of raw traffic being captured from debug logs is undocumented.‬

‭Exploit Scenario‬
‭A Jetty system administrator turns on debug logging in a production environment. During‬
‭the normal course of operation, a user sends traffic containing sensitive information, such‬
‭as personally identifiable information or financial data, and this data is recorded to the‬

‭Trail of Bits‬ ‭63‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-websocket/jetty-websocket-core-common/src/main/java/org/eclipse/jetty/websocket/core/internal/Parser.java#L88-L96

‭debug log. An attacker who gains access to this log can then read the user data,‬
‭compromising data confidentiality and the user’s privacy rights.‬

‭Recommendations‬
‭Short term, update the Jetty Operations Guide to state that in addition to being extremely‬
‭large, debug logs can contain sensitive user data and should be treated as sensitive.‬

‭Long term, consider moving all debugging messages that contain buffer excerpts into a‬
‭high-detail debug log that is enabled only for debug builds of the application.‬

‭Trail of Bits‬ ‭64‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭17. HttpStreamOverFCGI internally marks all requests as plaintext HTTP‬

‭Severity:‬‭High‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-JETTY-17‬

‭Target:‬‭org.eclipse.jetty.fcgi.server.internal.HttpStreamOverFCGI‬

‭Description‬
‭The‬‭HttpStreamOverFCGI‬‭class processes FastCGI messages‬‭in a format that can be‬
‭processed by other system components that use the‬‭HttpStream‬‭interface. This class’s‬
‭onHeaders‬‭callback mistakenly marks each‬‭MetaData.Request‬‭object as a plaintext HTTP‬
‭request, as the “TODO” comment shown in figure 17.1 indicates:‬

‭public‬‭void‬‭onHeaders‬‭()‬
‭{‬

‭String‬‭pathQuery‬‭=‬‭URIUtil.addPathQuery(_path,‬‭_query);‬
‭// TODO https?‬
‭MetaData.Request‬‭request‬‭=‬‭new‬‭MetaData.Request(_method,‬

‭HttpScheme.HTTP.asString(),‬‭hostPort,‬‭pathQuery,‬‭HttpVersion.fromString(_version),‬
‭_headers,‬‭Long.MIN_VALUE);‬

‭// ...[snip]...‬
‭}‬

‭Figure 17.1:‬‭HttpStreamOverFCGI.java‬‭, lines 108–119‬

‭In some configurations, other Jetty components could misinterpret a message received‬
‭over FCGI as a plaintext HTTP message, which could cause a request to be incorrectly‬
‭rejected, redirected in an infinite loop, or forwarded to another system over a plaintext‬
‭HTTP channel instead of HTTPS.‬

‭Exploit Scenario‬
‭A Jetty instance runs an FCGI server and uses the‬‭HttpStream‬‭interface to process‬
‭messages. The‬‭MetaData.Request‬‭class’s‬‭getURI‬‭method‬‭is used to check the incoming‬
‭request’s URI. This method mistakenly returns a plaintext HTTP URL due to the bug in‬
‭HttpStreamOverFCGI.java‬‭. One of the following takes‬‭place during the processing of‬
‭this request:‬

‭●‬ ‭An application-level security control checks the incoming request’s URI to ensure it‬
‭was received over a TLS-encrypted channel. Since this check fails, the application‬
‭rejects the request and refuses to process it, causing a denial of service.‬

‭●‬ ‭An application-level security control checks the incoming request’s URI to ensure it‬
‭was received over a TLS-encrypted channel. Since this check fails, the application‬

‭Trail of Bits‬ ‭65‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-fcgi/jetty-fcgi-server/src/main/java/org/eclipse/jetty/fcgi/server/internal/HttpStreamOverFCGI.java#L108-L119

‭attempts to redirect the user to a suitable HTTPS URL. The check fails on this‬
‭redirected request as well, causing an infinite redirect loop and a denial of service.‬

‭●‬ ‭An application processing FCGI messages acts as a proxy, forwarding certain‬
‭requests to a third HTTP server. It uses‬‭MetaData.Request.getURI‬‭to check the‬
‭request’s original URI and mistakenly sends a request over plaintext HTTP.‬

‭Recommendations‬
‭Short term, correct the bug in‬‭HttpStreamOverFCGI.java‬‭to generate the correct URI for‬
‭the incoming request.‬

‭Long term, consider streamlining the HTTP implementation to minimize the need for‬
‭different classes to generate URIs from request data.‬

‭Trail of Bits‬ ‭66‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭18. Excessively permissive and non-standards-compliant error handling in‬
‭HTTP/2 implementation‬

‭Severity:‬‭Low‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-JETTY-18‬

‭Target: The‬‭org.eclipse.jetty.http2.parser‬‭and‬
‭org.eclipse.jetty.http2.parser‬‭packages‬

‭Description‬
‭Jetty’s HTTP/2 implementation violates RFC 9113 in that it fails to terminate a connection‬
‭with an appropriate error code when the remote peer sends a frame with one of the‬
‭following protocol violations:‬

‭●‬ ‭A‬‭SETTINGS‬‭frame with the‬‭ACK‬‭flag set and a nonzero‬‭payload length‬

‭●‬ ‭A‬‭PUSH_PROMISE‬‭frame in a stream with push disabled‬

‭●‬ ‭A‬‭GOAWAY‬‭frame with its stream ID not set to zero‬

‭None of these situations creates an exploitable vulnerability. However, noncompliant‬
‭protocol implementations can create compatibility problems and could cause‬
‭vulnerabilities when deployed in combination with other misconfigured systems.‬

‭Exploit Scenario‬
‭A Jetty instance connects to an HTTP/2 server, or serves a connection from an HTTP/2‬
‭client, and the remote peer sends traffic that should cause Jetty to terminate the‬
‭connection. Instead, Jetty keeps the connection alive, in violation of RFC 9113. If the remote‬
‭peer is programmed to handle the noncompliant traffic differently than Jetty, further‬
‭problems could result, as the two implementations interpret protocol messages differently.‬

‭Recommendations‬
‭Short term, update the HTTP/2 implementation to check for the following error conditions‬
‭and terminate the connection with an error code that complies with RFC 9113:‬

‭●‬ ‭A peer receives a‬‭SETTINGS‬‭frame with the‬‭ACK‬‭flag‬‭set and a payload length‬
‭greater than zero.‬

‭●‬ ‭A client receives a‬‭PUSH_PROMISE‬‭frame after having‬‭sent, and received an‬
‭acknowledgement for, a‬‭SETTINGS‬‭frame with‬‭SETTINGS_ENABLE_PUSH‬‭equal to‬
‭zero.‬

‭Trail of Bits‬ ‭67‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭●‬ ‭A peer receives a‬‭GOAWAY‬‭frame with the stream identifier field not set to zero.‬

‭Long term, audit Jetty’s implementation of HTTP/2 and other protocols to ensure that Jetty‬
‭handles errors in a standards-compliant manner and terminates connections as required‬
‭by the applicable specifications.‬

‭Trail of Bits‬ ‭68‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭19. XML external entities and entity expansion in Maven package metadata‬
‭parser‬

‭Severity:‬‭High‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-JETTY-19‬

‭Target:‬‭org.eclipse.jetty.start.fileinits.MavenMetadata‬

‭Description‬
‭During module initialization, the‬‭MavenMetadata‬‭class‬‭parses‬‭maven-metadata.xml‬‭files‬
‭when the module configuration includes a‬‭maven://‬‭URI in its‬‭[files]‬‭section. The‬
‭DocumentBuilderFactory‬‭class is used with its default‬‭settings, meaning that document‬
‭type definitions (DTD) are allowed and are applied. This behavior leaves the‬
‭MavenMetadata‬‭class vulnerable to XML external entity‬‭(XXE) and XML entity expansion‬
‭(XEE) attacks. These vulnerabilities could enable a variety of exploits, including server-side‬
‭request forgery on the server’s local network and arbitrary file reads from the server’s‬
‭filesystem.‬

‭Exploit Scenario‬
‭An attacker causes a Jetty installation to parse a maliciously crafted‬‭maven-metadata.xml‬
‭file, such as by uploading a malicious package to a Maven repository, inducing an‬
‭out-of-band download of the malicious package through social engineering, or by placing‬
‭the‬‭maven-metadata.xml‬‭file on the server’s filesystem‬‭through other means. When the‬
‭XML file is parsed, the XML-based attack is launched. The attacker could leverage this‬
‭vector to do any of the following:‬

‭●‬ ‭Induce HTTP requests to servers on the server’s local network‬

‭●‬ ‭Read and exfiltrate arbitrary files on the server’s filesystem‬

‭●‬ ‭Consume excessive system resources with an XEE, causing a denial of service‬

‭Recommendations‬
‭Short term, disable parsing of DTDs in‬‭MavenMetadata‬‭so that‬‭maven-metadata.xml‬‭files‬
‭cannot be used as a vector for XML-based attacks. Disabling DTDs may require knowledge‬
‭of the underlying XML parser implementation returned by the‬‭DocumentBuilderFactory‬
‭class.‬

‭Long term, review default configurations and attributes supported by XML parsers that‬
‭may be returned by the‬‭DocumentBuilderFactory‬‭to ensure‬‭that DTDs are properly‬
‭disabled.‬

‭Trail of Bits‬ ‭69‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭20. Use of deprecated AccessController class‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭N/A‬

‭Type: Code Quality‬ ‭Finding ID: TOB-JETTY-20‬

‭Target:‬
‭●‬ ‭org.eclipse.jetty.logging.JettyLoggerConfiguration‬
‭●‬ ‭org.eclipse.jetty.util.MemoryUtils‬
‭●‬ ‭org.eclipse.jetty.util.TypeUtil‬
‭●‬ ‭org.eclipse.jetty.util.thread.PrivilegedThreadFactory‬
‭●‬ ‭org.eclipse.jetty.ee10.servlet.ServletContextHandler‬
‭●‬ ‭org.eclipse.jetty.ee9.nested.ContextHandler‬

‭Description‬
‭The classes listed in the “Target” cell above use the‬‭java.security.AccessController‬
‭class, which is a deprecated class slated to be removed in a future Java release. The‬
‭java.security‬‭library documentation‬‭states that the‬‭AccessController‬‭class “is only‬
‭useful in conjunction with the Security Manager,” which is also deprecated. Thus, the use of‬
‭AccessController‬‭no longer serves any beneficial purpose.‬

‭The use of this deprecated class could impact Jetty’s compatibility with future releases of‬
‭the Java SDK.‬

‭Recommendations‬
‭Short term, remove all uses of the‬‭AccessController‬‭class.‬

‭Long term, audit the Jetty codebase for the use of classes in the‬‭java.security‬‭package‬
‭that may not provide any value in Jetty 12, and remove all references to those classes.‬

‭Trail of Bits‬ ‭70‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/security/AccessController.html#class-description

‭21. QUIC server writes SSL private key to temporary plaintext file‬

‭Severity:‬‭High‬ ‭Difficulty:‬‭High‬

‭Type: Cryptography‬ ‭Finding ID: TOB-JETTY-21‬

‭Target:‬‭org.eclipse.jetty.quic.server.QuicServerConnector‬

‭Description‬
‭Jetty’s QUIC implementation uses quiche, a QUIC and HTTP/3 library maintained by‬
‭Cloudflare. When the server’s SSL certificate is handed off to quiche, the private key is‬
‭extracted from the existing keystore and written to a temporary plaintext PEM file:‬

‭protected‬‭void‬‭doStart‬‭()‬‭throws‬‭Exception‬
‭{‬

‭// ...[snip]...‬
‭char‬‭[]‬‭keyStorePassword‬‭=‬

‭sslContextFactory.getKeyStorePassword().toCharArray();‬
‭String‬‭keyManagerPassword‬‭=‬‭sslContextFactory.getKeyManagerPassword();‬
‭SSLKeyPair‬‭keyPair‬‭=‬‭new‬‭SSLKeyPair(‬

‭sslContextFactory.getKeyStoreResource().getPath(),‬
‭sslContextFactory.getKeyStoreType(),‬
‭keyStorePassword,‬
‭alias,‬
‭keyManagerPassword‬‭==‬‭null‬‭?‬‭keyStorePassword‬‭:‬

‭keyManagerPassword.toCharArray()‬
‭);‬
‭File[]‬‭pemFiles‬‭=‬‭keyPair.export(‬‭new‬

‭File(System.getProperty(‬‭"java.io.tmpdir"‬‭)));‬
‭privateKeyFile‬‭=‬‭pemFiles[‬‭0‬‭];‬
‭certificateChainFile‬‭=‬‭pemFiles[‬‭1‬‭];‬

‭}‬

‭Figure 21.1:‬‭QuicServerConnector.java‬‭, lines 154–179‬

‭Storing the private key in this manner exposes it to increased risk of theft. Although the‬
‭QuicServerConnector‬‭class deletes the private key‬‭file upon stopping the server, this‬
‭deleted file may not be immediately removed from the physical storage medium, exposing‬
‭the file to potential theft by attackers who can access the raw bytes on the disk.‬

‭A review of quiche suggests that the library’s API may not support reading a DES-encrypted‬
‭keyfile. If that is true, then remediating this issue would require updates to the underlying‬
‭quiche library.‬

‭Trail of Bits‬ ‭71‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-quic/jetty-quic-server/src/main/java/org/eclipse/jetty/quic/server/QuicServerConnector.java#L154-L179

‭Exploit Scenario‬
‭An attacker gains read access to a Jetty HTTP/3 server’s temporary directory while the‬
‭server is running. The attacker can retrieve the temporary keyfile and read the private key‬
‭without needing to obtain or guess the encryption key for the original keystore. With this‬
‭private key in hand, the attacker decrypts and tampers with all TLS communications that‬
‭use the associated certificate.‬

‭Recommendations‬
‭Short term, investigate the quiche library’s API to determine whether it can readily support‬
‭password-encrypted private keyfiles. If so, update Jetty to save the private key in a‬
‭temporary password-protected file and to forward that password to quiche. Alternatively, if‬
‭password-encrypted private keyfiles can be supported, have Jetty pass the unencrypted‬
‭private key directly to quiche as a function argument. Either option would obviate the need‬
‭to store the key in a plaintext file on the server’s filesystem.‬

‭If quiche does not support either of these changes, open an issue or pull request for quiche‬
‭to implement a fix for this issue.‬

‭Trail of Bits‬ ‭72‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭22. Repeated code between HPACK and QPACK‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭N/A‬

‭Type: Code Quality‬ ‭Finding ID: TOB-JETTY-22‬

‭Target:‬
‭●‬ ‭org.eclipse.jetty.http2.hpack.internal.NBitInteger‬
‭●‬ ‭org.eclipse.jetty.http2.hpack.internal.Huffman‬
‭●‬ ‭org.eclipse.jetty.http3.qpack.internal.util.NBitIntegerParser‬
‭●‬ ‭org.eclipse.jetty.http3.qpack.internal.util.NBitIntegerEncode‬
‭●‬ ‭org.eclipse.jetty.http3.qpack.internal.util.HuffmanDecoder‬
‭●‬ ‭org.eclipse.jetty.http3.qpack.internal.util.HuffmanEncoder‬

‭Description‬
‭Classes for dealing with n-bit integers and Huffman coding are implemented both in the‬
‭jetty-http2-hpack‬‭and in‬‭jetty-http3-qpack‬‭libraries.‬‭These classes have very‬
‭similar functionality but are implemented in two different places, sometimes with identical‬
‭code and other times with different implementations. In some cases (‬‭TOB-JETTY-9‬‭), one‬
‭implementation has a bug that the other implementation does not have. The codebase‬
‭would be easier to maintain and keep secure if the implementations were merged.‬

‭Exploit Scenario‬
‭A vulnerability is found in the Huffman encoding implementation, which has identical code‬
‭in HPACK and QPACK. The vulnerability is fixed in one implementation but not the other,‬
‭leaving one of the implementations vulnerable.‬

‭Recommendations‬
‭Short term, merge the two implementations of n-bit integers and Huffman coding classes.‬

‭Long term, audit the Jetty codebase for other classes with very similar functionality.‬

‭Trail of Bits‬ ‭73‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭23. Various exceptions in HpackDecoder.decode and QpackDecoder.decode‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭N/A‬

‭Type: Denial of Service‬ ‭Finding ID: TOB-JETTY-23‬

‭Target:‬‭org.eclipse.jetty.http2.hpack.HpackDecoder‬‭,‬
‭org.eclipse.jetty.http3.qpack.QpackDecoder‬

‭Description‬
‭The‬‭HpackDecoder‬‭and‬‭QpackDecoder‬‭classes both throw‬‭unexpected Java-level‬
‭exceptions:‬

‭●‬ ‭HpackDecoder.decode(0x03)‬‭throws‬‭BufferUnderflowException‬‭.‬

‭●‬ ‭HpackDecoder.decode(0x4800)‬‭throws‬‭NumberFormatException‬‭.‬

‭●‬ ‭HpackDecoder.decode(0x3fff‬‭2e)‬‭throws‬‭IllegalArgumentException‬‭.‬

‭●‬ ‭HpackDecoder.decode(0x3fff‬‭81ff‬‭ff2e)‬‭throws‬‭NullPointerException‬‭.‬

‭●‬ ‭HpackDecoder.decode(0xffff‬‭ffff‬‭f8ff‬‭ffff‬‭ffff‬‭ffff‬‭ffff‬‭ffff‬‭ffff‬
‭ffff‬‭ffff‬‭ffff‬‭0202‬‭0000)‬‭throws‬‭ArrayIndexOutOfBoundsException‬‭.‬

‭●‬ ‭QpackDecoder.decode(...,‬‭0x81,‬‭...)‬‭throws‬
‭IndexOutOfBoundsException‬‭.‬

‭●‬ ‭QpackDecoder.decode(...,‬‭0xfff8‬‭ffff‬‭f75b,‬‭...)‬‭throws‬
‭ArithmeticException‬‭.‬

‭For both HPACK and QPACK, these exceptions appear to be caught higher up in the call‬
‭chain by‬‭catch‬‭(Throwable‬‭x)‬‭statements every time‬‭the‬‭decode‬‭functions are called.‬
‭However, catching them within‬‭decode‬‭and throwing‬‭a Jetty-level exception within the‬
‭catch‬‭statement would result in cleaner, more robust‬‭code.‬

‭Exploit Scenario‬
‭Jetty developers refactor the codebase, moving function calls around and introducing a‬
‭new point in the code where‬‭HpackDecoder.decode‬‭is‬‭called. Assuming that‬‭decode‬‭will‬
‭throw only‬‭org.jetty…‬‭errors, they forget to wrap‬‭this call in a‬‭catch‬‭(Throwable‬‭x)‬
‭statement. This results in a DoS vulnerability.‬

‭Recommendations‬
‭Short term, document in the code that Java-level exceptions can be thrown.‬

‭Long term, modify the‬‭decode‬‭functions so that they‬‭throw only Jetty-level exceptions.‬

‭Trail of Bits‬ ‭74‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭24. Incorrect QPACK encoding when multi-byte characters are used‬

‭Severity:‬‭Medium‬ ‭Difficulty:‬‭Medium‬

‭Type: Data Validation‬ ‭Finding ID: TOB-JETTY-24‬

‭Target:‬‭org.eclipse.jetty.http3.qpack.internal.EncodableEntry‬

‭Description‬
‭Java’s‬‭string.length()‬‭function returns the number‬‭of characters in a string, which can‬
‭be different from the number of bytes returned by the‬‭string.getBytes()‬‭function.‬
‭However, QPACK encoding methods assume that they return the same number, which‬
‭could cause incorrect encodings.‬

‭In‬‭EncodableEntry.LiteralEntry‬‭, which is used to encode‬‭HTTP/3 header fields, the‬
‭following method is used for encoding:‬

‭214‬ ‭public‬‭void‬‭encode‬‭(ByteBuffer‬‭buffer,‬‭int‬‭base)‬
‭215 {‬
‭216‬ ‭byte‬‭allowIntermediary‬‭=‬‭0x00‬‭;‬‭// TODO:‬‭this is 0x10 bit, when should‬
‭this be set?‬
‭217‬ ‭String‬‭name‬‭=‬‭getName();‬
‭218‬ ‭String‬‭value‬‭=‬‭getValue();‬
‭219‬
‭220‬ ‭// Encode the prefix code and the name.‬
‭221‬ ‭if‬‭(_huffman)‬
‭222‬ ‭{‬
‭223‬ ‭buffer.put((‬‭byte‬‭)(‬‭0x28‬‭|‬‭allowIntermediary));‬
‭224‬ ‭NBitIntegerEncoder.encode(buffer,‬‭3‬‭,‬
‭HuffmanEncoder.octetsNeeded(name));‬
‭225‬ ‭HuffmanEncoder.encode(buffer,‬‭name);‬
‭226‬ ‭buffer.put((‬‭byte‬‭)‬‭0x80‬‭);‬
‭227‬ ‭NBitIntegerEncoder.encode(buffer,‬‭7‬‭,‬
‭HuffmanEncoder.octetsNeeded(value));‬
‭228‬ ‭HuffmanEncoder.encode(buffer,‬‭value);‬
‭229‬ ‭}‬
‭230‬ ‭else‬
‭231‬ ‭{‬
‭232‬ ‭// TODO: What charset should we be‬‭using? (this applies to the‬
‭instruction generators as well).‬
‭233‬ ‭buffer.put((‬‭byte‬‭)(‬‭0x20‬‭|‬‭allowIntermediary));‬
‭234‬ ‭NBitIntegerEncoder.encode(buffer,‬‭3‬‭,‬‭name.length());‬
‭235‬ ‭buffer.put(name.getBytes());‬
‭236‬ ‭buffer.put((‬‭byte‬‭)‬‭0x00‬‭);‬
‭237‬ ‭NBitIntegerEncoder.encode(buffer,‬‭7‬‭,‬‭value.length());‬
‭238‬ ‭buffer.put(value.getBytes());‬

‭Trail of Bits‬ ‭75‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭239‬ ‭}‬
‭240 }‬

‭Figure 24.1:‬‭EncodableEntry.java‬‭, lines 214–240‬

‭Note in particular lines 232–238, which are used to encode literal (non-Huffman-coded)‬
‭names and values. The value returned by‬‭name.length()‬‭is added to the bytestring,‬
‭followed by the value returned by‬‭name.getBytes()‬‭.‬‭Then, the value returned by‬
‭value.length()‬‭is added to the bytestring, followed‬‭by the value returned by‬
‭value.getBytes()‬‭. When this bytestring is decoded,‬‭the decoder will read the name‬
‭length field and then read that many‬‭bytes‬‭as the‬‭name. If multibyte characters were used‬
‭in the name field, the decoder will read too few bytes. The rest of the bytestring will also be‬
‭decoded incorrectly, since the decoder will continue reading at the wrong point in the‬
‭bytestring. The same issue occurs if multibyte characters were used in the value field.‬

‭The same issue appears in‬‭EncodableEntry.ReferencedNameEntry.encode‬‭:‬

‭164 // Encode the value.‬
‭165 String‬‭value‬‭=‬‭getValue();‬
‭166‬ ‭if‬‭(_huffman)‬
‭167 {‬
‭168‬ ‭buffer.put((‬‭byte‬‭)‬‭0x80‬‭);‬
‭169‬ ‭NBitIntegerEncoder.encode(buffer,‬‭7‬‭,‬‭HuffmanEncoder.octetsNeeded(value));‬
‭170‬ ‭HuffmanEncoder.encode(buffer,‬‭value);‬
‭171 }‬
‭172‬ ‭else‬
‭173 {‬
‭174‬ ‭buffer.put((‬‭byte‬‭)‬‭0x00‬‭);‬
‭175‬ ‭NBitIntegerEncoder.encode(buffer,‬‭7‬‭,‬‭value.length());‬
‭176‬ ‭buffer.put(value.getBytes());‬
‭177 }‬

‭Figure 24.2:‬‭EncodableEntry.java‬‭, lines 164–177‬

‭If‬‭value‬‭has multibyte characters, it will be incorrectly‬‭encoded in lines 174–176.‬

‭Jetty’s HTTP/3 code is still considered experimental, so this issue should not affect‬
‭production code, but it should be fixed before announcing HTTP/3 support to be‬
‭production-ready.‬

‭Exploit Scenario‬
‭A Jetty server attempts to add the‬‭Set-Cookie‬‭header,‬‭setting a cookie value to a‬
‭UTF-8-encoded string that contains multibyte characters. This causes an incorrect cookie‬
‭value to be set and the rest of the headers in this message to be parsed incorrectly.‬

‭Trail of Bits‬ ‭76‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http3/jetty-http3-qpack/src/main/java/org/eclipse/jetty/http3/qpack/internal/EncodableEntry.java#L214-L240
https://github.com/jetty/jetty.project/blob/bd0186c2f78fb7c87c7bfadf9b0a970657d071f3/jetty-core/jetty-http3/jetty-http3-qpack/src/main/java/org/eclipse/jetty/http3/qpack/internal/EncodableEntry.java#L164-L177

‭Recommendations‬
‭Short term, have the‬‭encode‬‭function in both‬‭EncodableEntry.LiteralEntry‬‭and‬
‭EncodableEntry.ReferencedNameEntry‬‭encode the length‬‭of the string using‬
‭string.getBytes()‬‭rather than‬‭string.length()‬‭.‬

‭Trail of Bits‬ ‭77‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭25. No limits on maximum capacity in QPACK decoder‬

‭Severity:‬‭High‬ ‭Difficulty:‬‭Medium‬

‭Type: Denial of Service‬ ‭Finding ID: TOB-JETTY-25‬

‭Target:‬
‭●‬ ‭org.eclipse.jetty.http3.qpack.QpackDecoder‬
‭●‬ ‭org.eclipse.jetty.http3.qpack.internal.parser.DecoderInstructi‬

‭onParser‬
‭●‬ ‭org.eclipse.jetty.http3.qpack.internal.table.DynamicTable‬

‭Description‬
‭In QPACK, an encoder can set the dynamic table capacity of the decoder using a “Set‬
‭Dynamic Table Capacity” instruction. The HTTP/3 specification requires that the capacity be‬
‭no larger than the‬‭SETTINGS_QPACK_MAX_TABLE_CAPACITY‬‭limit chosen by the decoder.‬
‭However, nowhere in the QPACK code is this limit checked for. This means that the encoder‬
‭can choose whatever capacity it wants (up to Java’s maximum integer value), allowing it to‬
‭take up large amounts of space on the decoder’s memory.‬

‭Jetty’s HTTP/3 code is still considered experimental, so this issue should not affect‬
‭production code, but it should be fixed before announcing HTTP/3 support to be‬
‭production-ready.‬

‭Exploit Scenario‬
‭A Jetty server supporting QPACK is running. An attacker opens a connection to the server.‬
‭He sends a “Set Dynamic Table Capacity” instruction, setting the dynamic table capacity to‬
‭Java’s maximum integer value, 2‬‭31-1‬ ‭(2.1 GB). He then‬‭repeatedly enters very large values‬
‭into the server’s dynamic table using an “Insert with Literal Name” instruction until the full‬
‭2.1 GB capacity is taken up.‬

‭The attacker repeats this using multiple connections until the server runs out of memory‬
‭and crashes.‬

‭Recommendations‬
‭Short term, enforce the‬‭SETTINGS_QPACK_MAX_TABLE_CAPACITY‬‭limit on the capacity.‬

‭Long term, audit Jetty’s implementation of QPACK and other protocols to ensure that Jetty‬
‭enforces limits as required by the standards.‬

‭Trail of Bits‬ ‭78‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭Summary of Recommendations‬

‭Jetty is an ongoing software project with three major releases in the past three years,‬
‭including Jetty 12. Trail of Bits recommends that the Eclipse Foundation address the‬
‭findings detailed in this report and take the following additional steps:‬

‭●‬ ‭Audit protocol implementations and parsers for fields (e.g., length fields) that are‬
‭defined as unsigned integers in the applicable specifications. Review the relevant‬
‭code for confusion between signed and unsigned integer operations. If necessary,‬
‭use the‬‭Integer‬‭class to ensure that such values are‬‭treated as unsigned and do‬
‭not overflow to negative numbers.‬

‭●‬ ‭Update Jetty’s tests to account for the most recent changes to Jetty Core in version‬
‭12. Expand the test cases for protocol implementations to include error conditions‬
‭that must be handled in a manner specified in the relevant RFC.‬

‭Trail of Bits‬ ‭79‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭A. Vulnerability Categories‬

‭The following tables describe the vulnerability categories, severity levels, and difficulty‬
‭levels used in this document.‬

‭Vulnerability Categories‬

‭Category‬ ‭Description‬

‭Access Controls‬ ‭Insufficient authorization or assessment of rights‬

‭Auditing and Logging‬ ‭Insufficient auditing of actions or logging of problems‬

‭Authentication‬ ‭Improper identification of users‬

‭Code Quality‬ ‭Code antipatterns and other quality issues without security impact‬

‭Configuration‬ ‭Misconfigured servers, devices, or software components‬

‭Cryptography‬ ‭A breach of system confidentiality or integrity‬

‭Data Exposure‬ ‭Exposure of sensitive information‬

‭Data Validation‬ ‭Improper reliance on the structure or values of data‬

‭Denial of Service‬ ‭A system failure with an availability impact‬

‭Error Reporting‬ ‭Insecure or insufficient reporting of error conditions‬

‭Patching‬ ‭Use of an outdated software package or library‬

‭Session Management‬ ‭Improper identification of authenticated users‬

‭Testing‬ ‭Insufficient test methodology or test coverage‬

‭Timing‬ ‭Race conditions or other order-of-operations flaws‬

‭Undefined Behavior‬ ‭Undefined behavior triggered within the system‬

‭Trail of Bits‬ ‭80‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭Severity Levels‬

‭Severity‬ ‭Description‬

‭Informational‬ ‭The issue does not pose an immediate risk but is relevant to security best‬
‭practices.‬

‭Undetermined‬ ‭The extent of the risk was not determined during this engagement.‬

‭Low‬ ‭The risk is small or is not one the client has indicated is important.‬

‭Medium‬ ‭User information is at risk; exploitation could pose reputational, legal, or‬
‭moderate financial risks.‬

‭High‬ ‭The flaw could affect numerous users and have serious reputational, legal,‬
‭or financial implications.‬

‭Difficulty Levels‬

‭Difficulty‬ ‭Description‬

‭Undetermined‬ ‭The difficulty of exploitation was not determined during this engagement.‬

‭Low‬ ‭The flaw is well known; public tools for its exploitation exist or can be‬
‭scripted.‬

‭Medium‬ ‭An attacker must write an exploit or will need in-depth knowledge of the‬
‭system.‬

‭High‬ ‭An attacker must have privileged access to the system, may need to know‬
‭complex technical details, or must discover other weaknesses to exploit this‬
‭issue.‬

‭Trail of Bits‬ ‭81‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭B. Code Maturity Categories‬

‭The following tables describe the code maturity categories and rating criteria used in this‬
‭document.‬

‭Code Maturity Categories‬

‭Category‬ ‭Description‬

‭Arithmetic‬ ‭The proper use of mathematical operations and semantics‬

‭Auditing‬ ‭The use of event auditing and logging to support monitoring‬

‭Authentication /‬
‭Access Controls‬

‭The use of robust access controls to handle identification and‬
‭authorization and to ensure safe interactions with the system‬

‭Complexity‬
‭Management‬

‭The presence of clear structures designed to manage system complexity,‬
‭including the separation of system logic into clearly defined functions‬

‭Configuration‬ ‭The configuration of system components in accordance with best‬
‭practices‬

‭Cryptography and‬
‭Key Management‬

‭The safe use of cryptographic primitives and functions, along with the‬
‭presence of robust mechanisms for key generation and distribution‬

‭Data Handling‬ ‭The safe handling of user inputs and data processed by the system‬

‭Documentation‬ ‭The presence of comprehensive and readable codebase documentation‬

‭Maintenance‬ ‭The timely maintenance of system components to mitigate risk‬

‭Memory Safety‬
‭and Error Handling‬

‭The presence of memory safety and robust error-handling mechanisms‬

‭Testing and‬
‭Verification‬

‭The presence of robust testing procedures (e.g., unit tests, integration‬
‭tests, and verification methods) and sufficient test coverage‬

‭Rating Criteria‬

‭Rating‬ ‭Description‬

‭Strong‬ ‭No issues were found, and the system exceeds industry standards.‬

‭Satisfactory‬ ‭Minor issues were found, but the system is compliant with best practices.‬

‭Moderate‬ ‭Some issues that may affect system safety were found.‬

‭Trail of Bits‬ ‭82‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭Weak‬ ‭Many issues that affect system safety were found.‬

‭Missing‬ ‭A required component is missing, significantly affecting system safety.‬

‭Not Applicable‬ ‭The category is not applicable to this review.‬

‭Not Considered‬ ‭The category was not considered in this review.‬

‭Further‬
‭Investigation‬
‭Required‬

‭Further investigation is required to reach a meaningful conclusion.‬

‭Trail of Bits‬ ‭83‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭C. Fix Review Results‬

‭When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues‬
‭identified in the original report. This work involves a review of specific areas of the source‬
‭code and system configuration, not comprehensive analysis of the system.‬

‭On June 5, 2023, Trail of Bits reviewed the fixes and mitigations implemented by the Jetty‬
‭team for the issues identified in this report. We reviewed each fix to determine its‬
‭effectiveness in resolving the associated issue.‬

‭In summary, of the 25 issues described in this report, Jetty has resolved 20, has partially‬
‭resolved two, and has not resolved the remaining three. For additional information, please‬
‭see the Detailed Fix Review Results below.‬

‭ID‬ ‭Title‬ ‭Severity‬ ‭Status‬

‭1‬ ‭Risk of integer overflow that could allow‬
‭HpackDecoder to exceed maxHeaderSize‬

‭Medium‬ ‭Resolved‬

‭2‬ ‭Cookie parser accepts unmatched quotation marks‬ ‭Informational‬ ‭Resolved‬

‭3‬ ‭Errant command quoting in CGI servlet‬ ‭High‬ ‭Resolved‬

‭4‬ ‭Symlink-allowed alias checker ignores protected‬
‭targets list‬

‭High‬ ‭Resolved‬

‭5‬ ‭Missing check for malformed Unicode escape‬
‭sequences in QuotedStringTokenizer.unquote‬

‭Low‬ ‭Resolved‬

‭6‬ ‭WebSocket frame length represented with 32-bit‬
‭integer‬

‭High‬ ‭Resolved‬

‭7‬ ‭WebSocket parser does not check for negative‬
‭payload lengths‬

‭Low‬ ‭Resolved‬

‭8‬ ‭WebSocket parser greedily allocates ByteBuffers‬
‭for large frames‬

‭Medium‬ ‭Unresolved‬

‭Trail of Bits‬ ‭84‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭9‬ ‭Risk of integer overflow in HPACK's‬
‭NBitInteger.decode‬

‭Informational‬ ‭Resolved‬

‭10‬ ‭MetaDataBuilder.checkSize accepts headers of‬
‭negative lengths‬

‭Medium‬ ‭Resolved‬

‭11‬ ‭Insufficient space allocated when encoding QPACK‬
‭instructions and entries‬

‭Low‬ ‭Resolved‬

‭12‬ ‭LiteralNameEntryInstruction incorrectly encodes‬
‭value length‬

‭Medium‬ ‭Resolved‬

‭13‬ ‭FileInitializer does not check for symlinks‬ ‭High‬ ‭Unresolved‬

‭14‬ ‭FileInitializer permits downloading files via‬
‭plaintext HTTP‬

‭High‬ ‭Resolved‬

‭15‬ ‭NullPointerException thrown by FastCGI parser on‬
‭invalid frame type‬

‭Medium‬ ‭Resolved‬

‭16‬ ‭Documentation does not specify that request‬
‭contents and other user data can be exposed in‬
‭debug logs‬

‭Medium‬ ‭Unresolved‬

‭17‬ ‭HttpStreamOverFCGI internally marks all requests‬
‭as plaintext HTTP‬

‭High‬ ‭Resolved‬

‭18‬ ‭Excessively permissive and‬
‭non-standards-compliant error handling in HTTP/2‬
‭implementation‬

‭Low‬ ‭Resolved‬

‭19‬ ‭XML external entities and entity expansion in‬
‭Maven package metadata parser‬

‭High‬ ‭Partially‬
‭Resolved‬

‭20‬ ‭Use of deprecated AccessController class‬ ‭Informational‬ ‭Resolved‬

‭21‬ ‭QUIC server writes SSL private key to temporary‬
‭plaintext file‬

‭High‬ ‭Partially‬
‭Resolved‬

‭Trail of Bits‬ ‭85‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭22‬ ‭Repeated code between HPACK and QPACK‬ ‭Informational‬ ‭Resolved‬

‭23‬ ‭Various exceptions in HpackDecoder.decode and‬
‭QpackDecoder.decode‬

‭Informational‬ ‭Resolved‬

‭24‬ ‭Incorrect QPACK encoding when multi-byte‬
‭characters are used‬

‭Medium‬ ‭Resolved‬

‭25‬ ‭No limits on maximum capacity in QPACK decoder‬ ‭High‬ ‭Resolved‬

‭Trail of Bits‬ ‭86‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭Detailed Fix Review Results‬
‭TOB-JETTY-1: Risk of integer overflow that could allow HpackDecoder to exceed‬
‭maxHeaderSize‬
‭Resolved in‬‭PR #9634. The decoder now checks for negative‬‭length values, allowing the‬
‭decoder to detect the integer overflow condition and throw an appropriate condition.‬

‭TOB-JETTY-2: Cookie parser accepts unmatched quotation marks‬
‭Resolved in‬‭PR #9339. The cookie parsing logic has‬‭been reworked, and dynamic testing‬
‭confirms that unmatched quotation marks are rejected with an appropriate error‬
‭condition.‬

‭TOB-JETTY-3: Errant command quoting in CGI servlet‬
‭Resolved in‬‭PR #9516. The affected CGI servlet class‬‭has been removed.‬

‭TOB-JETTY-4: Symlink-allowed alias checker ignores protected targets list‬
‭Resolved in‬‭PR #9506. The symlink check that was previously‬‭commented out has been‬
‭reinserted. Symbolic links are now appropriately checked against the protected targets list.‬

‭TOB-JETTY-5: Missing check for malformed Unicode escape sequences in‬
‭QuotedStringTokenizer.unquote‬
‭Resolved in‬‭PR #9729. The string tokenizer logic has‬‭been reworked and broken into‬
‭multiple classes. The logic bug leading to the mishandled Unicode escape sequences in the‬
‭QuotedStringTokenizer‬‭and‬‭RFC9110QuotedStringTokenizer‬‭classes have been‬
‭fixed. The‬‭LegacyQuotedStringTokenizer‬‭class is still‬‭vulnerable but is disabled by‬
‭default. The Jetty team indicated during phone calls that this class is included for legacy‬
‭support reasons only.‬

‭TOB-JETTY-6: WebSocket frame length represented with 32-bit integer and‬
‭TOB-JETTY-7: WebSocket parser does not check for negative payload lengths‬
‭Resolved i‬‭n PR #9741. Although the 32-bit integer‬‭data type remains in place, checks for‬
‭negative payload lengths and integer overflows have been added. The WebSocket parser‬
‭will no longer use a negative frame length for length comparisons, and integer overflows‬
‭will cause the parser to throw an appropriate exception.‬

‭TOB-JETTY-8: WebSocket parser greedily allocates ByteBuffers for large frames‬
‭Unresolved‬‭in PR #9741. The greedy buffer allocation‬‭is unchanged. Jetty’s bug tracking‬
‭spreadsheet contains the following context for this finding’s fix status:‬

‭Not an issue, added comment to explain why.‬

‭The following comments have been added to the‬
‭org.eclipse.jetty.websocket.core.internal.Parser‬‭class:‬

‭Trail of Bits‬ ‭87‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭//‬‭We‬‭have‬‭already‬‭checked‬‭payload‬‭size‬‭in‬‭checkFrameSize,‬‭so‬‭we‬‭know‬‭we‬
‭can‬‭autoFragment‬‭if‬‭larger‬‭than‬‭maxFrameSize.‬

‭//‬‭The‬‭size‬‭of‬‭this‬‭allocation‬‭is‬‭limited‬‭by‬‭the‬‭maxFrameSize.‬

‭The default maximum frame size is set at 64 KB by the‬‭WebSocketConstants‬‭class.‬

‭TOB-JETTY-9: Risk of integer overflow in HPACK’s NBitInteger.decode‬
‭Resolved in‬‭PR #9634. The integer decoding logic has‬‭been moved to common classes in‬
‭the‬‭jetty-http‬‭package. The HPACK parsing code that‬‭invokes this decoding logic makes‬
‭appropriate checks for negative return values, throwing an appropriate exception if a‬
‭negative value is decoded.‬

‭TOB-JETTY-10: MetaDataBuilder.checkSize accepts headers of negative lengths‬
‭Resolved i‬‭n PR #9634. The HPACK parsing logic has‬‭been reworked, and the affected‬
‭MetaDataBuilder.checkSize‬‭function has been replaced‬‭with length checks in other‬
‭classes. It is no longer possible for the‬‭length‬‭value‬‭to overflow into a very large positive‬
‭integer, and the length checks are performed against the input buffer’s‬
‭buffer.remaining()‬‭value, which can never be negative.‬

‭TOB-JETTY-11: Insufficient space allocated when encoding QPACK instructions and‬
‭entries‬
‭Resolved in PR #9634‬‭. Parsing is now restricted to‬‭ISO-8859-1 encoding, which uses only‬
‭single-byte character encodings. Therefore, the logic bug involving multibyte character‬
‭encoding has been eliminated.‬

‭TOB-JETTY-12: LiteralNameEntryInstruction incorrectly encodes value length‬
‭Resolved in PR #9634‬‭. The encoding logic has been‬‭reworked and reorganized so that the‬
‭field widths are calculated in a centralized class. Field lengths appear to be correctly‬
‭generated, and integers are no longer encoded using hard-coded fixed widths.‬

‭TOB-JETTY-13: FileInitializer does not check for symlinks‬
‭Unresolved in PR #9555‬‭. The‬‭FileInitializer‬‭class‬‭contains the following comment‬
‭regarding this finding:‬

‭//‬‭We‬‭restrict‬‭our‬‭behavior‬‭to‬‭only‬‭modifying‬‭what‬‭exists‬‭in‬
‭${jetty.base}.‬
‭//‬‭If‬‭the‬‭user‬‭decides‬‭they‬‭want‬‭to‬‭use‬‭advanced‬‭setups,‬‭such‬‭as‬‭symlinks‬
‭to‬‭point‬
‭//‬‭to‬‭content‬‭outside‬‭of‬‭${jetty.base},‬‭that‬‭is‬‭their‬‭decision‬‭and‬‭we‬
‭will‬‭not‬
‭//‬‭attempt‬‭to‬‭save‬‭them‬‭from‬‭themselves.‬
‭//‬‭Note:‬‭All‬‭copy‬‭and‬‭extract‬‭steps‬‭will‬‭not‬‭replace‬‭files‬‭that‬‭already‬
‭exist.‬

‭Trail of Bits‬ ‭88‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭TOB-JETTY-14: FileInitializer permits downloading files via plaintext HTTP‬
‭Resolved in PR #9555‬‭. The‬‭JettyStart‬‭class now recognizes‬‭the‬
‭--allow-insecure-http-downloads‬‭flag, which enables‬‭file downloads over plaintext‬
‭HTTP. By default, this flag is disabled, so system administrators must manually specify that‬
‭they wish to enable unencrypted downloads.‬

‭TOB-JETTY-15: NullPointerException thrown by FastCGI parser on invalid frame type‬
‭Resolved in commit‬‭e5590a‬‭. Broader exception handling‬‭has been added to the‬
‭org.eclipse.jetty.fcgi.parser.Parser‬‭class so that‬‭invalid frame types will invoke‬
‭the normal error handling routines for malformed FastCGI traffic. No‬
‭NullPointerException‬‭will be thrown on an invalid‬‭frame type.‬

‭TOB-JETTY-16: Documentation does not specify that request contents and other user‬
‭data can be exposed in debug logs‬
‭Unresolved‬‭. No commit or pull request addressing this‬‭issue was identified, and system‬
‭documentation has not undergone any relevant changes.‬

‭TOB-JETTY-17: HttpStreamOverFCGI internally marks all requests as plaintext HTTP‬
‭Resolved in PR #9733.‬‭The FastCGI HTTPS header is‬‭now checked appropriately, and each‬
‭FCGI request object’s HTTP scheme is set correctly.‬

‭TOB-JETTY-18: Excessively permissive and non-standards-compliant error handling in‬
‭HTTP/2 implementation‬
‭Resolved in PR #9749‬‭. The HTTP/2 frame parser classes‬‭now check for each of the error‬
‭conditions identified in this finding, and the error codes returned comply with the‬
‭requirements of RFC 9113.‬

‭TOB-JETTY-19: XML external entities and entity expansion in Maven package‬
‭metadata parser‬
‭Partially resolved in PR #9555‬‭. Jetty now invokes‬‭the XML parser’s secure processing‬
‭feature, which instructs the XML parser to use the most secure settings when parsing‬
‭documents. However, this feature’s behavior is implementation-dependent and may not be‬
‭consistent across Java environments. Therefore, there may be a residual risk of XML-based‬
‭attacks. To mitigate these risks even further, it may be necessary to manually check for and‬
‭remove DTD declarations in the XML input or to use an XML parsing library whose behavior‬
‭is known and consistent.‬

‭TOB-JETTY-20: Use of deprecated AccessController class‬
‭Resolved in PR #9616‬‭. Per documentation provided by‬‭the Jetty team, Jetty supports older‬
‭Java environments that differ with respect to their support for the‬‭SecurityManager‬‭class.‬
‭The use of reflection implemented in the PR is an effective solution to manage these‬
‭requirements.‬

‭Trail of Bits‬ ‭89‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

‭TOB-JETTY-21: QUIC server writes SSL private key to temporary plaintext file‬
‭Partially resolved. As the original finding documents, this finding reflects a weakness in the‬
‭third-party quiche library and cannot be resolved by the Jetty team. However, Jetty‬
‭developers have helped begin the process of resolving this finding by submitting an issue‬
‭to the quiche developers.‬

‭TOB-JETTY-22: Repeated code between HPACK and QPACK‬
‭Resolved in PR #9634‬‭.‬‭The common encoding and decoding‬‭logic has been moved into the‬
‭jetty-http‬‭directory and is reused between the HPACK‬‭and QPACK libraries.‬

‭TOB-JETTY-23: Various exceptions in HpackDecoder.decode and‬
‭QpackDecoder.decode‬
‭Resolved in commit‬‭fd913a‬‭.‬‭The‬‭HpackDecoder‬‭and‬‭QpackDecoder‬‭classes have‬
‭undergone significant rewrites with improved exception handling; by reviewing the code,‬
‭we found that improved error handling will cause these classes to generate‬
‭protocol-specific error conditions instead of throwing general-purpose Java exceptions.‬

‭TOB-JETTY-24: Incorrect QPACK encoding when multi-byte characters are used‬
‭Resolved in PR #9634‬‭.‬‭All QPACK encoding now uses‬‭ISO-8859-1 encoding, which is a‬
‭single-byte character encoding scheme. Therefore, there are no longer any multi-byte‬
‭encoding errors in the QPACK implementation.‬

‭TOB-JETTY-25: No limits on maximum capacity in QPACK decoder‬
‭Resolved in PR #9728‬‭.‬‭The‬‭QpackDecoder‬‭and‬‭QpackEncoder‬‭classes now check the‬
‭maximum table capacity setting and throw an HTTP/3 protocol error if the configured‬
‭capacity exceeds the configured maximum.‬

‭Trail of Bits‬ ‭90‬ ‭OSTIF Eclipse: Jetty Security‬‭Assessment‬
‭PUBLIC‬

