
 Eclipse JKube
 Security Assessment

 September 14, 2023

 Prepared for:

 Marc Nuri San Felix
 The Eclipse Foundation

 Organized by the Open Source Technology Improvement Fund, Inc.

 Prepared by: Artur Cygan, Kelly Kaoudis, and Emilio López

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 100+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositories at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” page at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 228 Park Ave S #80688
 New York, NY 10003
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 1 Eclipse JKube Security Assessment
 PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

 Notices and Remarks

 Copyright and Distribution
 © 2023 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be public information; it is licensed to the Eclipse
 Foundation under the terms of the project statement of work and has been made public at
 the Eclipse Foundation’s request. Material within this report may not be reproduced or
 distributed in part or in whole without the express written permission of Trail of Bits.

 The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page .
 Reports accessed through any source other than that page may have been modified and
 should not be considered authentic.

 Test Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and agreed upon project plan.

 Security assessment projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As a result, the findings documented in
 this report should not be considered a comprehensive list of security issues, flaws, or
 defects in the target system or codebase.

 Trail of Bits uses automated testing techniques to rapidly test the controls and security
 properties of software. These techniques augment our manual security review work, but
 each has its limitations: for example, a tool may not generate a random edge case that
 violates a property or may not fully complete its analysis during the allotted time. Their use
 is also limited by the time and resource constraints of a project.

 Trail of Bits 2 Eclipse JKube Security Assessment
 PUBLIC

https://github.com/trailofbits/publications

 Table of Contents

 About Trail of Bits 1
 Notices and Remarks 2
 Table of Contents 3
 Executive Summary 5
 Project Summary 7
 Project Goals 8
 Project Targets 9
 Project Coverage 10
 Threat Model 11

 Data Types 11
 Data Flow 12
 Components 13
 Trust Zones 16
 Trust Zone Connections 17
 Threat Actors 20
 Threat Scenarios 21
 Recommendations 25

 Automated Testing 28
 Codebase Maturity Evaluation 29
 Summary of Findings 31
 Detailed Findings 32

 1. Insecure defaults in generated artifacts 32
 2. Risk of command line injection from secret 34

 A. Vulnerability Categories 36
 B. Code Maturity Categories 38
 C. Non-Security-Related Findings 40
 D. Docker Recommendations 43
 E. Hardening Containers Run via Kubernetes 47

 Root Inside Container 47
 Dropping Linux Capabilities 47
 NoNewPrivs Flag 48
 Seccomp Policies 48
 Linux Security Module (AppArmor) 48

 Trail of Bits 3 Eclipse JKube Security Assessment
 PUBLIC

 F. Fix Review Results 49
 Detailed Fix Review Results 50

 G. Fix Review Status Categories 51

 Trail of Bits 4 Eclipse JKube Security Assessment
 PUBLIC

 Executive Summary

 Engagement Overview
 The Open Source Technology Improvement Fund engaged Trail of Bits to review the
 security of Eclipse JKube. JKube is a collection of plugins and libraries that are used for
 building, containerizing, and deploying Java applications to Kubernetes or OpenShift. It also
 provides a set of tools to improve the development experience of such cloud applications.

 One consultant conducted a lightweight threat modeling exercise from March 20 to March
 24, 2023. Two consultants performed a secure code review from May 1 to May 10, 2023, for
 a total of four engineer-weeks of effort. Our threat modeling exercises focused on
 examining the documentation, design, and specification of JKube to identify the system’s
 trust boundaries, control flows, and any architecture-level weaknesses that could threaten
 the system. Our testing efforts focused on reviewing the JKube codebase and the artifacts
 that JKube produces when deploying an application. With full access to the source code and
 documentation, we performed static and dynamic testing of the JKube codebase and
 provided examples, using automated and manual processes.

 Observations and Impact
 The testing portion of this assessment uncovered only two findings. The first one concerns
 the security of the default configuration for produced artifacts. The second is a weakness in
 data validation that could be used to execute unwanted code.

 In general, we observed that JKube has a generally positive development and security
 posture, despite a few minor issues. The code maturity evaluation scores reflect this fact.
 However, there is significant room for improvement in the default configuration artifacts
 produced by JKube. Work in that area will help improve the security posture of the
 ecosystem in general and JKube users in particular.

 Recommendations
 Based on the codebase maturity evaluation and findings identified during the security
 review, Trail of Bits recommends that the Eclipse JKube team take the following steps:

 ● Remediate the findings disclosed in this report. These findings should be
 addressed as part of a direct remediation or as part of any refactor that may occur
 when addressing other recommendations.

 ● Implement additional static analysis in the CI/CD process. Tools such as
 CodeQL, Semgrep, and Checkov allow developers to spot issues early on in the
 development process. Integrate these tools not just on the JKube codebase itself,
 but also on the resulting artifacts produced by JKube.

 Trail of Bits 5 Eclipse JKube Security Assessment
 PUBLIC

 ● Review the recommendations from the threat model and appendices. The
 threat model recommendations and appendices D and E contain additional
 recommendations to improve the security posture of JKube and applications
 deployed with JKube.

 The following tables provide the number of findings by severity and category:

 EXPOSURE ANALYSIS

 Severity Count

 High 0

 Medium 0

 Low 1

 Informational 1

 Undetermined 0

 CATEGORY BREAKDOWN

 Category Count

 Configuration 1

 Data Validation 1

 Trail of Bits 6 Eclipse JKube Security Assessment
 PUBLIC

 Project Summary

 Contact Information
 The following managers were associated with this project:

 Dan Guido , Account Manager Jeff Braswell , Project Manager
 dan@trailofbits.com jeff.braswell@trailofbits.com

 The following engineers were associated with this project:

 Artur Cygan , Consultant Kelly Kaoudis , Consultant
 artur.cygan@trailofbits.com kelly.kaoudis@trailofbits.com

 Emilio López , Consultant
 emilio.lopez@trailofbits.com

 Project Timeline
 The significant events and milestones of the project are listed below.

 Date Event

 March 20, 2023 Lightweight threat model kickoff call

 March 23, 2023 Discovery call

 March 28, 2023 Lightweight threat model readout meeting

 May 2, 2023 Code review kickoff call

 May 15, 2023 Delivery of report draft; report readout meeting

 August 1, 2023 Delivery of fix review appendix

 September 14, 2023 Delivery of comprehensive report

 Trail of Bits 7 Eclipse JKube Security Assessment
 PUBLIC

mailto:dan@trailofbits.com
mailto:jeff.braswell@trailofbits.com
mailto:artur.cygan@trailofbits.com
mailto:kelly.kaoudis@trailofbits.com
mailto:emilio.lopez@trailofbits.com

 Project Goals

 The engagement was scoped to provide a security assessment of the Eclipse Foundation’s
 JKube project. Specifically, we sought to answer the following non-exhaustive list of
 questions:

 ● Are the artifacts produced by the JKube software correct and secure?

 ● Are secrets managed securely?

 ● Does the software consume external input securely? Are all inputs and system
 parameters properly validated?

 ● Could the system experience a denial of service?

 ● Does the codebase conform to industry best practices?

 ● Are there any identifiable areas of improvement for the JKube CI/CD or SDLC?

 ● Is the existing test suite sufficient? Can additional testing be added that will improve
 the security of the project?

 Trail of Bits 8 Eclipse JKube Security Assessment
 PUBLIC

 Project Targets

 The engagement involved a review and testing of the following target.

 Eclipse JKube
 Repository https://github.com/eclipse/jkube

 Version cfe5ee5eafd50c9b0ce2fd3a84b273a38ca680e1 (threat model)

 c013e41cc7916719f2f4b54c58600a52141461b9 (code review)

 Type Java

 Platform JVM

 Trail of Bits 9 Eclipse JKube Security Assessment
 PUBLIC

https://github.com/eclipse/jkube

 Project Coverage

 This section provides an overview of the analysis coverage of the review, as determined by
 our high-level engagement goals. Our approaches included the following:

 ● Documentation review: We reviewed the documentation prepared during the
 threat modeling exercise.

 ● Static analysis: We performed static analysis of the JKube codebase using CodeQL
 and Semgrep. We also used Checkov to analyze artifacts generated by JKube.

 ● Manual review: We reviewed the JKube source code, focusing on the code paths
 that generate artifacts and manage secrets.

 Coverage Limitations
 Because of the time-boxed nature of testing work, it is common to encounter coverage
 limitations. During this project, we were unable to perform comprehensive testing of the
 following system elements, which may warrant further review:

 ● The third-party dependencies used by JKube

 ● The base Docker images and the CEKit tool used to build them

 ● The build and release pipelines

 Trail of Bits 10 Eclipse JKube Security Assessment
 PUBLIC

 Threat Model

 As part of the OSTIF-organized Eclipse JKube audit, Trail of Bits conducted a lightweight
 threat model, drawing from Mozilla’s “Rapid Risk Assessment" methodology and the
 National Institute of Standards and Technology’s (NIST) guidance on data-centric threat
 modeling (NIST 800-154). We began our assessment of the design of JKube by reviewing the
 documentation of the current JKube release and the examples in the GitHub repository.

 Data Types
 Depending on its configuration, JKube accepts input in the following formats:

 ● XML (POMs, XML fragments)

 ● JSON

 ● YAML (Helm charts, other Kubernetes or OpenShift configurations)

 ● Dockerfile

 ● Java, .properties files

 Depending on its configuration, JKube produces output locally or remotely in the following
 formats:

 ● XML

 ● JSON

 ● YAML

 Protocols over which JKube and/or its dependencies can communicate with the cluster
 include the following:

 ● HTTP

 ● HTTPS

 Trail of Bits 11 Eclipse JKube Security Assessment
 PUBLIC

https://infosec.mozilla.org/guidelines/risk/rapid_risk_assessment.html
https://csrc.nist.gov/publications/detail/sp/800-154/draft

 Data Flow
 The following diagram presents common data flows that can occur during JKube usage. The
 box labeled “dockerd” refers to the use of either the literal Docker daemon or of dockerd
 via minikube for interacting with the cluster. JKube can run as a Maven or Gradle plugin, or
 it can interact with dockerd in a standalone fashion. JKube can also use Jib, podman, or the
 fabric8 Kubernetes client instead of dockerd and/or minikube to interact with the remote
 cluster. JKube can read provided application files and generate a Dockerfile or image
 configuration, or it can add to a provided XML configuration or Dockerfile. Profile
 fragments and other application files may be sourced locally or remotely. The JVM may
 resolve file references to remote locations; authentication/authorization are not currently
 required for such remote connections.

 Figure 1: Common JKube usage data flows

 Trail of Bits 12 Eclipse JKube Security Assessment
 PUBLIC

 Components
 The following table describes each JKube component and relevant dependency identified
 for our analysis. It also indicates whether the component or dependency is not in scope; an
 asterisk (*) next a component’s name indicates that it was out of scope for this assessment.
 We explored the implications of threats involving out-of-scope components that directly
 affect in-scope components, but we did not consider threats to out-of-scope components
 themselves.

 Component Description

 JKube Kit This represents the core logic of JKube.

 Enricher API An enricher API provides a Java interface for integrating tools and
 services such as Prometheus, Service Discovery, and health checks
 into containers built or deployed via JKube-created configurations.
 Enrichers can be combined in a profile or profile fragment(s).

 Generator API A Generator API provides a Java interface for consuming application
 source code and full or fragmentary configuration files to create
 special-purpose images/containers, charts, or manifests. It can create
 production container images or containers that allow administrators
 and application developers to conduct remote debugging. Generators
 can be combined in a profile or profile fragment(s).

 Watcher The JKube Watcher allows for hot reloading of image configurations
 and resources.

 Remote Dev The JKube Remote Dev module allows developers to configure
 deployments for later remote SSH connections.

 Kit API The Kit API is the standalone public API for building and deploying
 container images or configurations without using Maven or Gradle.

 Docker API The Docker API is a bespoke API that allows users to integrate JKube
 with dockerd directly or through a tool such as minikube.

 Fabric8 Kubernetes
 Client (*)

 JKube can integrate with the fabric8 Kubernetes client to produce
 resource files and deployments and to interact with the remote
 cluster. This component is out of scope.

 Jib (*) Jib is a Google library that JKube integrates with to build optimized

 Trail of Bits 13 Eclipse JKube Security Assessment
 PUBLIC

 Docker and OCI images without a Docker daemon or Dockerfiles. Jib
 also integrates with Maven and Gradle. This component is out of
 scope.

 Gradle (*) Gradle is an open-source build tool for JVM languages. This component
 is out of scope.

 JKube Kubernetes
 Gradle Plugin

 This plugin surfaces core JKube functionality for building Docker
 images, creating Kubernetes resources, and deploying JKube through
 Gradle.

 JKube OpenShift
 Gradle Plugin

 This plugin surfaces core JKube functionality for building S2I images,
 creating OpenShift resources, and deployment through Gradle.

 Maven (*) Maven is an open-source build tool for JVM languages. This component
 is out of scope.

 JKube Kubernetes
 Maven Plugin

 This plugin surfaces core JKube functionality for building Docker
 images, creating Kubernetes resources, and deployment through
 Maven.

 JKube OpenShift
 Maven Plugin

 This plugin surfaces core JKube functionality for building S2I images,
 creating OpenShift resources, and deployment through Maven.

 Supporting
 Infrastructure (*)

 This represents additional out-of-scope dependencies and
 components, noted here for completeness purposes.

 Cluster (*) This is the remote cluster, orchestrated by Kubernetes or OpenShift.
 This component is out of scope.

 Docker, dockerd (*) Docker (and its daemon, dockerd) is a local container management
 system that can integrate with minikube (an optional Kubernetes
 component). This component is out of scope.

 Remote Registry (*) JKube can push container images using delegated credentials to
 registries such as Docker Hub and Quay. Maven or Gradle can source
 packages from tools such as JFrog and Maven Central.

 This component is out of scope.

 Application Files (*) These files include developer-provided code, configurations, and

 Trail of Bits 14 Eclipse JKube Security Assessment
 PUBLIC

 Dockerfiles. JKube can identify certain types of configuration files and
 choose to build a particular type of image; alternatively, JKube can
 extend a provided Dockerfile. This component is out of scope.

 Source Control (*) Source control is the infrastructure providing version control, hosting
 the codebase, facilitating the submission of pull requests and issues,
 and allowing maintainers to release security advisories. This
 component is out of scope.

 Trail of Bits 15 Eclipse JKube Security Assessment
 PUBLIC

 Trust Zones
 Trust zones capture logical boundaries where controls should or could be enforced by the
 system and allow developers to implement controls and policies between components’
 zones.

 Zone Description Included Components

 Public Network The public network is the
 broader internet.

 ● Remote registry (Docker Hub, Quay)

 ● Remote profile fragments or
 resources

 Local/Internal
 Network

 The local/internal network is an
 internally administered zone.
 This zone could be hosted
 remotely in AWS, Azure, or a
 similar platform.

 ● Remote registry (JFrog, etc.)

 ● Cluster (OpenShift, Kubernetes)

 ● Remote profile fragments or
 resources

 Localhost The localhost is the machine on
 which JKube runs.

 ● SSH

 ● Minikube

 ● Docker, dockerd

 ● Podman

 ● Local test cluster

 JVM The JVM is the local runtime. ● Maven

 ● Gradle

 ● JKube

 ● JDK

 ● Other JKube dependencies

 Trail of Bits 16 Eclipse JKube Security Assessment
 PUBLIC

 Trust Zone Connections
 At a design level, trust zones are delineated by the security controls that enforce the
 differing levels of trust within each zone. Therefore, it is necessary to ensure that data
 cannot move between trust zones without first satisfying the intended trust requirements
 of its destination. We enumerate such connections between trust zones below.

 Origin Zone Destination
 Zone

 Description Connection
 Types

 Authentication
 Types

 JVM Local
 Network

 A JKube user connects
 to the remote cluster
 via the fabric8
 Kubernetes client.

 ● HTTP ● TLS

 ● Cluster
 service
 account
 token

 JVM Local
 Network

 A JKube user connects
 to the remote cluster
 via Jib.

 ● HTTP ● TLS

 ● Cluster
 service
 account
 token

 JVM Localhost A JKube user connects
 to dockerd, optionally
 via minikube.

 ● HTTP ● TLS

 ● System user
 access
 controls

 JVM Local
 Network

 A JKube user connects
 to a remote dockerd,
 optionally via
 minikube.

 ● HTTP ● TLS

 ● Cluster
 service
 account
 token

 Localhost Local
 Network

 dockerd, optionally
 via minikube,
 connects to the
 remote cluster on
 behalf of the JKube
 user.

 ● HTTP ● TLS

 ● System user
 access
 controls

 ● Cluster
 service
 account
 token

 Trail of Bits 17 Eclipse JKube Security Assessment
 PUBLIC

 Localhost Local
 Network

 The local user
 connects to the
 remote cluster for
 debugging or remote
 development.

 ● SSH

 ● SCP

 ● HTTP

 ● Asymmetric
 cryptography

 ● TLS

 ● System user
 access
 controls

 ● Cluster user
 account

 JVM Localhost A JKube user starts a
 container in a test
 cluster locally.

 ● UNIX sockets

 ● HTTP

 ● TLS

 ● Username
 and
 password

 ● System user
 access
 controls

 Localhost JVM A local user makes
 changes to the JVM’s
 configuration or
 environment, or
 sends signals to a
 running JVM process.

 ● Filesystem

 ● UNIX sockets

 ● IPC signals

 ● Java
 reflection

 ● System user
 access
 controls

 Local
 Network

 JVM A JKube user provides
 profile fragments or
 resource URLs that
 resolve to external
 sources.

 ● java.net.URL

 ● HTTP

 ● TLS

 JVM Public
 Network

 A JKube user sources
 a base image from a
 public remote
 registry.

 Alternatively, a JKube
 user pushes updates
 to an image stored in
 a public remote
 registry.

 ● HTTP ● TLS

 ● Username
 and
 password

 Trail of Bits 18 Eclipse JKube Security Assessment
 PUBLIC

 JVM Local
 Network

 A JKube user sources
 a base image from an
 internally
 administered remote
 registry.

 Alternatively, a JKube
 user pushes an image
 to an internal remote
 registry.

 ● HTTP ● TLS

 ● Username
 and
 password

 Local
 Network

 Public
 Network

 Internally
 administered services,
 such as a JFrog
 Artifactory
 deployment on the
 internal network, can
 proxy access to
 remote resources
 located in public
 repositories (e.g.,
 Maven Central, NPM,
 Docker Hub).

 ● HTTP ● TLS

 ● Username
 and
 password

 Trail of Bits 19 Eclipse JKube Security Assessment
 PUBLIC

 Threat Actors
 When conducting a threat model, we define the types of actors that could threaten the
 security of the system. We also define other “users” of the system who may be impacted by,
 or induced to undertake, an attack. For example, in a confused deputy attack such as
 cross-site request forgery, a normal user who is induced by a third party to take a malicious
 action against the system would be both the victim and the direct attacker. Establishing the
 types of actors that could threaten the system is useful in determining which protections, if
 any, are necessary to mitigate or remediate vulnerabilities. We will refer to these actors in
 descriptions of the security findings that we uncovered through the threat modeling
 exercise.

 Actor Description

 External Cluster User External cluster users can access deployed components or
 endpoints available on the public internet.

 Internal Cluster User Internal cluster users can access deployed application resources,
 endpoints, or components that are not available on the public
 internet.

 Namespace User A namespace user is a developer and deployer of Kubernetes- or
 OpenShift-orchestrated applications with access to some, but
 perhaps not all, namespaces in the data plane.

 Infrastructure
 Administrator

 An infrastructure administrator can perform tasks on Kubernetes
 and OpenShift control and data plane components either locally or
 via SSH through a bastion host. They can also control related cloud
 resources.

 Application Developer An application developer is a contributor to the application logic,
 configuration, and other resources deployed in a container created
 with or managed via a configuration created with JKube.

 Local User Local users control a process or user account on the same host as
 the running JKube instance and can affect the local system
 environment, including the filesystem.

 JKube Developer A JKube developer is a contributor who has merged at least one
 commit to the main repository branch.

 Trail of Bits 20 Eclipse JKube Security Assessment
 PUBLIC

 Threat Scenarios
 The following table describes possible threat scenarios given the design, architecture, and
 risk profile of JKube.

 Threat Scenario Actors Components

 Unsafe or missing
 default security
 options

 JKube lacks commonly supportable
 security defaults and supports
 unsafe default configuration
 settings. An attacker could gain
 unauthorized access to many users’
 applications that are configured or
 deployed with JKube by exploiting
 standard insecure settings.

 ● External
 user

 ● Internal
 user

 ● Namespace
 user

 ● Cluster

 ● JKube Kit

 ○ Remote
 Dev

 ○ Enricher

 ○ Generator

 Cluster client
 denial of service

 JKube’s unsuitable general defaults
 and failure to warn users about the
 risks of selecting conflicting settings
 for remote cluster access or
 resource consumption could result
 in throttling or denial of service for
 remote cluster clients.

 ● External
 user

 ● Internal
 user

 ● Application
 developer

 ● Local user

 ● JKube Kit

 ○ Generator

 ○ Enricher

 Insecure remote
 file sourcing

 The use of java.net.URL (e.g., in
 jkube/kit/common/util classes
 and in enrichers such as
 DependencyEnricher) to
 represent likely local files, and
 allowing remote file sourcing in
 JKube with neither remote location
 allowlisting nor requiring connection
 encryption are insecure practices.
 For example, they could allow an
 attacker to include a malicious
 configuration file in other JKube
 users’ deployments or to replace
 another user’s known required file
 with a malicious remote redirect or
 file.

 ● Application
 developer

 ● External
 user

 ● Local user

 ● Cluster

 ● JKube Kit

 ○ Generator

 ○ Enricher

 Trail of Bits 21 Eclipse JKube Security Assessment
 PUBLIC

https://github.com/eclipse/jkube/blob/cfe5ee5eafd50c9b0ce2fd3a84b273a38ca680e1/jkube-kit/enricher/generic/src/main/java/org/eclipse/jkube/enricher/generic/DependencyEnricher.java

 Malicious remote
 configuration
 download, leading
 to local machine
 takeover

 A user who unintentionally
 downloads a disguised malicious
 remote file to their local machine via
 JKube could allow a remote attacker
 to execute code on the user’s local
 machine, possibly by exploiting
 JKube’s ExternalCommand class,
 which allows the execution of an
 arbitrary child process in the
 runtime , or via ClassLoader
 manipulation.

 ● Application
 developer

 ● External
 user

 ● Local user

 ● Local system

 ● JKube Kit

 ○ Generator

 ○ Enricher

 Insufficient
 hand-written user
 input sanitization

 JKube’s codebase has a pattern of
 insufficient user input sanitization,
 escaping, and other safeguards
 across multiple user input formats
 (XML, YAML, JSON, Java classes, etc.)
 in parsing utility classes and
 elsewhere. As a result, users who
 attempt to download and parse
 malicious or poorly written
 configuration or application files via
 JKube could allow an attacker to
 consume excessive local system
 resources (e.g., via an XML
 bomb/exponential entity expansion
 attack).

 Alternatively, an attacker could craft
 malicious input to bypass
 case-by-case safeguards or input
 escape routines in order to attack a
 user’s remote cluster.

 ● Application
 developer

 ● External
 user

 ● Local user

 ● Local system

 ● JKube Kit

 ○ Generator

 ○ Enricher

 Unsafe
 deserialization

 JKube’s codebase has a general
 pattern of unsafe deserialization of
 Serializable objects in JKube
 (e.g., DeepCopy). As a result, an
 attacker could execute arbitrary
 code from JKube on a user’s local
 machine.

 ● Application
 developer

 ● External
 user

 ● Local user

 ● Local system

 ● JKube Kit

 ○ Generator

 ○ Enricher

 Trail of Bits 22 Eclipse JKube Security Assessment
 PUBLIC

https://github.com/eclipse/jkube/blob/cfe5ee5eafd50c9b0ce2fd3a84b273a38ca680e1/jkube-kit/common/src/main/java/org/eclipse/jkube/kit/common/ExternalCommand.java#L112
https://github.com/eclipse/jkube/blob/cfe5ee5eafd50c9b0ce2fd3a84b273a38ca680e1/jkube-kit/common/src/main/java/org/eclipse/jkube/kit/common/ExternalCommand.java#L112
https://github.com/eclipse/jkube/blob/cfe5ee5eafd50c9b0ce2fd3a84b273a38ca680e1/jkube-kit/common/src/main/java/org/eclipse/jkube/kit/common/ExternalCommand.java#L112
https://github.com/eclipse/jkube/tree/cfe5ee5eafd50c9b0ce2fd3a84b273a38ca680e1/jkube-kit/common/src/main/java/org/eclipse/jkube/kit/common/util
https://docs.oracle.com/en/java/javase/20/security/java-api-xml-processing-jaxp-security-guide.html
https://docs.oracle.com/en/java/javase/20/security/java-api-xml-processing-jaxp-security-guide.html
https://docs.oracle.com/en/java/javase/20/security/java-api-xml-processing-jaxp-security-guide.html
https://portswigger.net/web-security/deserialization/exploiting
https://github.com/eclipse/jkube/blob/cfe5ee5eafd50c9b0ce2fd3a84b273a38ca680e1/jkube-kit/build/service/docker/src/main/java/org/eclipse/jkube/kit/build/service/docker/helper/DeepCopy.java#L50

 Attacker-
 controlled
 application files

 JKube does not enforce access
 permission requirements for the
 JKube project workspace and
 included configuration files. As a
 result, a local attacker with sufficient
 system permissions could edit or
 overwrite a benign Dockerfile or
 Spring Boot configuration in a user’s
 JKube project workspace or other
 configuration locations to add
 malicious content. Then, if
 configured, the appropriate Watcher
 would “hot” build the new content
 and deploy the content to the
 remote cluster.

 ● Local user

 ● Application
 developer

 ● External
 user

 ● Internal
 user

 ● Namespace
 user

 ● Local system

 ● JKube Kit

 ○ Watchers

 Lack of
 opinionated
 secure defaults

 JKube does not provide users the
 ability to set token expiry for
 JKube-created or JKube-replaced
 service account tokens. As a result,
 an attacker could obtain indefinite
 access to the namespace and
 application pod(s) that a service
 account can access in a user’s
 cluster by either accidentally
 discovering or brute-forcing the
 token and then authenticating to
 the remote cluster API.

 ● Application
 developer

 ● External
 user

 ● Internal
 user

 ● Namespace
 user

 ● Local user

 ● JKube Kit

 ● Cluster

 Hard-coded
 secrets and
 sensitive
 information
 allowed in user
 input

 JKube has insufficient user input
 validation for JKube configuration
 and application files in the
 SecretEnricher and similar
 enrichers. As a result, users could
 take actions such as the following:

 ● Check keys or secrets in
 configuration files, resource
 fragments, and similar locations
 into source control

 ● Unintentionally deploy such data
 along with their application to
 the remote cluster

 ● Local user

 ● Application
 developer

 ● External
 user

 ● Cluster

 ● Source
 control

 ● JKube Kit

 ○ Generator

 ○ Enricher

 Trail of Bits 23 Eclipse JKube Security Assessment
 PUBLIC

https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/#manual-secret-management-for-serviceaccounts
https://github.com/eclipse/jkube/blob/cfe5ee5eafd50c9b0ce2fd3a84b273a38ca680e1/jkube-kit/enricher/generic/src/main/java/org/eclipse/jkube/enricher/generic/SecretEnricher.java#L75

 ● Push an image with such data to
 a remote registry

 Alternatively, an attacker with
 sufficient local system access
 permissions could locally obtain this
 sensitive hard-coded data.

 Malicious
 commits, leading
 to backdoored or
 modified
 deployments

 JKube pull requests do not require
 maintainer review before they are
 merged into JKube’s master branch.
 As a result, a malicious developer
 could merge commits that pass
 static analysis but allow the
 developer to perform actions like
 the following:

 ● Eavesdrop on JKube user
 communications

 ● Add an open port into generated
 configurations

 ● Harvest cluster locations and
 credentials for later abuse

 ● JKube
 developer

 ● External
 user

 ● Internal
 user

 ● Namespace
 user

 ● Source
 control

 ● JKube Kit

 Sensitive data in
 public GitHub
 issues

 Users are not sufficiently warned
 against including sensitive data like
 keys, secrets, and Authorization
 header values when creating public
 issues and pull requests in the
 JKube GitHub repository, which
 makes it more likely that users will
 mistakenly post sensitive data
 publicly (e.g., this GitHub issue ,
 which includes a Basic
 authentication token). Such publicly
 available data could allow a remote
 attacker scraping GitHub for
 sensitive data to gain unauthorized
 access to JKube users’ clusters.

 ● JKube
 developer

 ● Application
 developer

 ● External
 user

 ● Internal
 user

 ● Namespace
 user

 ● Source
 control

 Trail of Bits 24 Eclipse JKube Security Assessment
 PUBLIC

https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/configuring-issue-templates-for-your-repository
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/configuring-issue-templates-for-your-repository
https://github.com/eclipse/jkube/issues/603

 Recommendations
 ● Implement and document a carefully selected set of security-related default

 configuration settings. Internally or externally audit these security defaults at least
 once a year to make sure that they still apply to the most common JKube
 configuration and deployment patterns and that they do not inadvertently make
 users’ projects less secure.

 ○ The following are examples of good security defaults to consider:

 ■ Allow users to set token expiry for generated Kubernetes service
 accounts.

 ■ Prevent the use of system:admin user or group impersonation .

 ■ Do not allow JKube-facilitated cluster communications without TLS.

 ○ The following references from the OWASP “Cheat Sheet” series could be
 helpful:

 ■ "Input Validation"

 ■ "Web Service Security"

 ■ "XML Security"

 ■ "Secrets Management"

 ■ "Docker Top 10"

 ■ "Kubernetes"

 ○ The following are additional references to consider:

 ■ The NSA/CISA's 2021 "Kubernetes Hardening Guide"

 ● Red Hat's blog post on the guide

 ■ Kubernetes' "Security Checklist"

 ■ OpenShift's "Security and Compliance"

 ■ CVEs and security advisories in JKube dependency projects
 (SnakeYAML , fabric8-kubernetes-client , Spring Boot , etc.) and
 integrator projects (advisories reported by Maven , CVE search results
 for Maven , advisories reported by Gradle , CVE search results for
 Gradle , Kubernetes, OpenShift)

 Trail of Bits 25 Eclipse JKube Security Assessment
 PUBLIC

https://docs.openshift.com/container-platform/4.12/authentication/impersonating-system-admin.html
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Input_Validation_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Web_Service_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/XML_Security_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Secrets_Management_Cheat_Sheet.md
https://github.com/OWASP/Docker-Security/blob/main/dist/owasp-docker-security.pdf
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Kubernetes_Security_Cheat_Sheet.md
https://media.defense.gov/2022/Aug/29/2003066362/-1/-1/0/CTR_KUBERNETES_HARDENING_GUIDANCE_1.2_20220829.PDF
https://cloud.redhat.com/blog/openshift-and-the-nsa-cisa-kubernetes-hardening-guidance
https://kubernetes.io/docs/concepts/security/security-checklist/
https://docs.openshift.com/container-platform/4.9/security/index.html
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=snakeyaml
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=fabric8
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=spring+java
https://maven.apache.org/security.html#security-vulnerabilities
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=maven+apache
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=maven+apache
https://security.gradle.com/
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=gradle
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=gradle

 ■ "Kubernetes Failure Stories" : A collection of talks and blog posts about
 Kubernetes failures

 ■ Red Hat: "12 Kubernetes Configuration Best Practices"

 ■ MITRE: "Weaknesses in Software Written in Java"

 ● Either prevent remote file reference and resolution within JKube, or implement
 Origin or domain allowlisting and file-content sanitization.

 ○ If remote file reference and resolution is not a desired JKube feature, prefer
 using non-network-capable file resolution methods rather than java.net.URL.
 This will significantly reduce JKube’s attack surface.

 ○ However, if JKube intentionally supports remote file reference and
 resolution, require TLS for these connections, implement a user- or
 administrator-editable reference allowlist, and implement stringent
 download sanitization to better enable users to build and deploy secure
 applications.

 ● Prevent insecure deserialization.

 ○ Disallow unsafe reflection and arbitrary class loading or casting, which can
 lead to arbitrary local code execution.

 ○ In each class that implements Serializable , especially if user input
 (including previously saved JKube output) is deserialized, override
 ObjectInputStream#resolveClass() , and be generally cautious with
 uses of ObjectInputStream#readObject() to prevent unintentional
 deserialization of arbitrary classes.

 ○ Refer to the following resources for more information on unsafe reflection,
 deserialization, and class casting:

 ■ CWE-470: “Unsafe Reflection”

 ■ OWASP: “Deserialization Cheat Sheet”

 ■ PortSwigger: “Exploiting insecure deserialization vulnerabilities”

 ■ Ysoserial : A proof-of-concept tool for generating payloads that exploit
 unsafe Java object deserialization

 ■ CODE WHITE: Java Exploitation Restrictions in Modern JDK Times

 ■ Fortify Taxonomy: “Unsafe Reflection”

 Trail of Bits 26 Eclipse JKube Security Assessment
 PUBLIC

https://k8s.af/
https://cloud.redhat.com/blog/12-kubernetes-configuration-best-practices
https://cwe.mitre.org/data/definitions/660.html
https://cwe.mitre.org/data/definitions/470.html
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html#java
https://portswigger.net/web-security/deserialization/exploiting
https://github.com/frohoff/ysoserial
https://codewhitesec.blogspot.com/2023/04/java-exploitation-restrictions-in.html
https://vulncat.fortify.com/en/detail?id=desc.dataflow.java.unsafe_reflection

 ● One-off exceptional-case parsing sanitization regular expression uses for parsing
 and sanitizing user input (such as XML, JSON, YAML, and .properties files) can be
 brittle. If possible, replace such one-offs with more rigorous and reusable user input
 parsing and sanitation.

 ● For each received bug or security report, configure regression rules for JKube’s
 Sonar static analysis pull request scans. That way, accidental or purposeful
 regressions will be easy to detect.

 ● Do not require (preferably, do not allow) developers or administrators using JKube
 to save plaintext passwords or sensitive data such as Authorization header
 values in stored configuration or .properties files.

 ○ Add support for the use of secret interpolation from services such as AWS
 Secrets Manager , HashiCorp Vault , and 1Password at runtime so that
 developers and administrators using JKube are not required to hard-code
 sensitive data in cleartext.

 ● Do not allow potentially sensitive data to be included in public GitHub issues or pull
 requests.

 ○ For example, issue #603 in the JKube repository includes the Basic
 authentication value of the Authorization header, which could be
 sensitive.

 ○ Use an issue template to gently remind contributors and question askers
 that GitHub issue and pull request content is public, and no sensitive or
 personally identifiable information such as usernames, tokens, and
 passwords should be submitted.

 ● Keep dependencies as updated as possible to ensure that upstream security fixes
 are applied.

 ○ If possible, use the most recent version of a single well-supported
 serialization/deserialization library such as Jackson for YAML , JSON , and XML,
 rather than allowing multiple versions of several libraries on the classpath
 that introduce duplicate functionality (e.g., Jackson, Google GSON,
 SnakeYAML, and JAXP). That way, only one library will need to be updated
 when new dependency releases come out. This is important because such
 libraries help to safeguard (but cannot completely protect) JKube and
 user-generated JKube output from the potential effects of malicious input.

 ○ Bump bouncycastle and other cryptographic dependencies to 1 . 8on if
 possible so that the most modern TLS cipher suites are supported.

 Trail of Bits 27 Eclipse JKube Security Assessment
 PUBLIC

https://docs.aws.amazon.com/secretsmanager/latest/userguide/retrieving-secrets_cache-java.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/retrieving-secrets_cache-java.html
https://developer.hashicorp.com/vault/tutorials/encryption-as-a-service/eaas-spring-demo#eaas-spring-demo
https://developer.1password.com/docs/cli/secret-references
https://github.com/eclipse/jkube/issues/603
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/about-issue-and-pull-request-templates
https://github.com/FasterXML/jackson/blob/master/README.md?plain=1#L35
https://github.com/FasterXML/jackson/blob/master/README.md?plain=1#L23

 Automated Testing

 Trail of Bits uses automated techniques to extensively test the security properties of
 software. We use both open-source static analysis and fuzzing utilities, along with tools
 developed in house, to perform automated testing of source code and compiled software.

 We used the following tools in the automated testing phase of this project:

 ● Semgrep : An open-source static analysis tool for finding bugs and enforcing code
 standards when editing or committing code and during build time

 ● CodeQL : A code analysis engine developed by GitHub to automate security checks

 ● Checkov : An open-source static code analysis tool for detecting security
 misconfigurations in infrastructure as code (IaC)

 Trail of Bits 28 Eclipse JKube Security Assessment
 PUBLIC

https://github.com/returntocorp/semgrep
https://codeql.github.com/
https://github.com/bridgecrewio/checkov

 Codebase Maturity Evaluation

 Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
 the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
 identified here often stem from root causes within the software development life cycle that
 should be addressed through standardization measures (e.g., the use of common libraries,
 functions, or frameworks) or training and awareness programs.

 Category Summary Result

 Arithmetic The code does not perform many arithmetic operations;
 we did not find any issues concerning the operations it
 does perform.

 Strong

 Auditing The project consistently uses a lightweight logging
 framework developed in-house (KitLogger,
 PrefixedLogger).

 We did not identify any attempt at performing structured
 logging that could be useful for integrating with JKube.

 Satisfactory

 Complexity
 Management

 The code is organized in reasonably sized modules and
 functions. We found occasional code duplication. JKube
 uses newer Java features such as lambdas that help to
 reduce the complexity.

 Satisfactory

 Configuration We found that some defaults in generated artifacts can
 be insecure (TOB-JKUBE-1).

 Moderate

 Cryptography
 and Key
 Management

 JKube performs very little cryptography and uses a few
 keys to authenticate to the third-party services. We did
 not identify any issues that could cause those keys to be
 exposed.

 Satisfactory

 Data Handling The data is validated consistently; however, we found
 minor cases of insufficient validation, detailed in finding
 TOB-JKUBE-2 and in appendix C , which lists
 non-security-related findings.

 Moderate

 Documentation Most of the functions are documented in code, but we
 found class documentation to be scarce. There is

 Satisfactory

 Trail of Bits 29 Eclipse JKube Security Assessment
 PUBLIC

 extensive documentation external to the code, which
 lives in the doc/ directory and is accessible on Eclipse’s
 website.

 Maintenance The project can be easily built and tested. The repository
 has a CI process set up and includes prepared
 contribution templates.

 Strong

 Memory Safety
 and Error
 Handling

 The project uses memory-safe Java language and does
 not interface with native code through JNI. Errors appear
 to be handled correctly.

 Satisfactory

 Testing and
 Verification

 The majority of the code is tested with unit tests, and
 most of the critical logic appears to be covered.

 Satisfactory

 Trail of Bits 30 Eclipse JKube Security Assessment
 PUBLIC

https://www.eclipse.org/jkube/docs

 Summary of Findings

 The table below summarizes the findings of the review, including type and severity details.

 ID Title Type Severity

 1 Insecure defaults in generated artifacts Configuration Informational

 2 Risk of command line injection from secret Data Validation Low

 Trail of Bits 31 Eclipse JKube Security Assessment
 PUBLIC

 Detailed Findings

 1. Insecure defaults in generated artifacts

 Severity: Informational Difficulty: Undetermined

 Type: Configuration Finding ID: TOB-JKUBE-1

 Target: Artifacts generated by JKube

 Description
 JKube can generate Kubernetes deployment artifacts and deploy applications using those
 artifacts. By default, many of the security features offered by Kubernetes are not enabled
 in these artifacts. This can cause the deployed applications to have more permissions than
 their workload requires. If such an application were compromised, the permissions would
 enable the attacker to perform further attacks against the container or host.

 Kubernetes provides several ways to further limit these permissions, some of which are
 documented in appendix E .

 Similarly, the generated artifacts do not employ some best practices, such as referencing
 container images by hash, which could help prevent certain supply chain attacks.

 We compiled several of the examples contained in the quickstarts folder and analyzed
 them. We observed instances of the following problems in the artifacts produced by JKube:

 ● Pods have no associated network policies .

 ● Dockerfiles have base image references that use the latest tag.

 ● Container image references use the latest tag, or no tag, instead of a named tag
 or a digest.

 ● Resource (CPU, memory) limits are not set.

 ● Containers do not have the allowPrivilegeEscalation setting set.

 ● Containers are not configured to use a read-only filesystem.

 ● Containers run as the root user and have privileged capabilities.

 ● Seccomp profiles are not enabled on containers.

 Trail of Bits 32 Eclipse JKube Security Assessment
 PUBLIC

https://kubernetes.io/docs/concepts/services-networking/network-policies/

 ● Service account tokens are mounted on pods where they may not be needed.

 Exploit Scenario
 An attacker compromises one application running on a Kubernetes cluster. The attacker
 takes advantage of the lax security configuration to move laterally and attack other system
 components.

 Recommendations
 Short term, improve the default generated configuration to enhance the security posture of
 applications deployed using JKube, while maintaining compatibility with most common
 scenarios. Apply automatic tools such as Checkov during development to review the
 configuration generated by JKube and identify areas for improvement.

 Long term, implement mechanisms in JKube to allow users to configure more advanced
 security features in a convenient way.

 References
 ● Appendix D: Docker Recommendations

 ● Appendix E: Hardening Containers Run via Kubernetes

 Trail of Bits 33 Eclipse JKube Security Assessment
 PUBLIC

https://github.com/bridgecrewio/checkov

 2. Risk of command line injection from secret

 Severity: Low Difficulty: Medium

 Type: Data Validation Finding ID: TOB-JKUBE-2

 Target:
 jkube-kit/jkube-kit-spring-boot/src/main/java/org/eclipse/jkube/spri
 ngboot/watcher/SpringBootWatcher.java

 Description
 As part of the Spring Boot watcher functionality, JKube executes a second Java process. The
 command line for this process interpolates an arbitrary secret, making it unsafe. This
 command line is then tokenized by separating on spaces. If the secret contains spaces, this
 process could allow an attacker to add arbitrary arguments and command-line flags and
 modify the behavior of this command execution.

 StringBuilder buffer = new StringBuilder("java -cp ");
 (...)
 buffer.append(" -Dspring.devtools.remote.secret=");
 buffer.append(remoteSecret);
 buffer.append(" org.springframework.boot.devtools.RemoteSpringApplication ");
 buffer.append(url);

 try {
 String command = buffer.toString();
 log.debug("Running: " + command);
 final Process process = Runtime.getRuntime().exec(command) ;

 Figure 2.1: A secret is used without sanitization on a command string that is then executed.
 (jkube/jkube-kit/jkube-kit-spring-boot/src/main/java/org/eclipse/jkube/sp

 ringboot/watcher/SpringBootWatcher.java#136–171)

 Exploit Scenario
 An attacker forks an open source project that uses JKube and Spring Boot, improves it in
 some useful way, and introduces a malicious spring.devtools.remote.secret secret
 in application.properties . A user then finds this forked project and sets it up locally.
 When the user runs mvn k8s:watch , JKube invokes a command that includes
 attacker-controlled content, compromising the user’s machine.

 Recommendations
 Short term, rewrite the command-line building code to use an array of arguments instead
 of a single command-line string. Java provides several variants of the exec method, such as
 exec(String[]) , which are safer to use when user-provided input is involved.

 Trail of Bits 34 Eclipse JKube Security Assessment
 PUBLIC

https://github.com/eclipse/jkube/blob/c013e41cc7916719f2f4b54c58600a52141461b9/jkube-kit/jkube-kit-spring-boot/src/main/java/org/eclipse/jkube/springboot/watcher/SpringBootWatcher.java#L136-L171
https://github.com/eclipse/jkube/blob/c013e41cc7916719f2f4b54c58600a52141461b9/jkube-kit/jkube-kit-spring-boot/src/main/java/org/eclipse/jkube/springboot/watcher/SpringBootWatcher.java#L136-L171

 Long term, integrate static analysis tools in the development process and CI/CD pipelines,
 such as Semgrep and CodeQL, to detect instances of similar problems early on. Review
 uses of user-controlled input to ensure they are sanitized if necessary and processed
 safely.

 Trail of Bits 35 Eclipse JKube Security Assessment
 PUBLIC

 A. Vulnerability Categories

 The following tables describe the vulnerability categories, severity levels, and difficulty
 levels used in this document.

 Vulnerability Categories

 Category Description

 Access Controls Insufficient authorization or assessment of rights

 Auditing and Logging Insufficient auditing of actions or logging of problems

 Authentication Improper identification of users

 Configuration Misconfigured servers, devices, or software components

 Cryptography A breach of system confidentiality or integrity

 Data Exposure Exposure of sensitive information

 Data Validation Improper reliance on the structure or values of data

 Denial of Service A system failure with an availability impact

 Error Reporting Insecure or insufficient reporting of error conditions

 Patching Use of an outdated software package or library

 Session Management Improper identification of authenticated users

 Testing Insufficient test methodology or test coverage

 Timing Race conditions or other order-of-operations flaws

 Undefined Behavior Undefined behavior triggered within the system

 Trail of Bits 36 Eclipse JKube Security Assessment
 PUBLIC

 Severity Levels

 Severity Description

 Informational The issue does not pose an immediate risk but is relevant to security best
 practices.

 Undetermined The extent of the risk was not determined during this engagement.

 Low The risk is small or is not one the client has indicated is important.

 Medium User information is at risk; exploitation could pose reputational, legal, or
 moderate financial risks.

 High The flaw could affect numerous users and have serious reputational, legal,
 or financial implications.

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploitation was not determined during this engagement.

 Low The flaw is well known; public tools for its exploitation exist or can be
 scripted.

 Medium An attacker must write an exploit or will need in-depth knowledge of the
 system.

 High An attacker must have privileged access to the system, may need to know
 complex technical details, or must discover other weaknesses to exploit this
 issue.

 Trail of Bits 37 Eclipse JKube Security Assessment
 PUBLIC

 B. Code Maturity Categories

 The following tables describe the code maturity categories and rating criteria used in this
 document.

 Code Maturity Categories

 Category Description

 Arithmetic The proper use of mathematical operations and semantics

 Auditing The use of event auditing and logging to support monitoring

 Authentication /
 Access Controls

 The use of robust access controls to handle identification and
 authorization and to ensure safe interactions with the system

 Complexity
 Management

 The presence of clear structures designed to manage system complexity,
 including the separation of system logic into clearly defined functions

 Configuration The configuration of system components in accordance with best
 practices

 Cryptography and
 Key Management

 The safe use of cryptographic primitives and functions, along with the
 presence of robust mechanisms for key generation and distribution

 Data Handling The safe handling of user inputs and data processed by the system

 Documentation The presence of comprehensive and readable codebase documentation

 Maintenance The timely maintenance of system components to mitigate risk

 Memory Safety
 and Error Handling

 The presence of memory safety and robust error-handling mechanisms

 Testing and
 Verification

 The presence of robust testing procedures (e.g., unit tests, integration
 tests, and verification methods) and sufficient test coverage

 Trail of Bits 38 Eclipse JKube Security Assessment
 PUBLIC

 Rating Criteria

 Rating Description

 Strong No issues were found, and the system exceeds industry standards.

 Satisfactory Minor issues were found, but the system is compliant with best practices.

 Moderate Some issues that may affect system safety were found.

 Weak Many issues that affect system safety were found.

 Missing A required component is missing, significantly affecting system safety.

 Not Applicable The category is not applicable to this review.

 Not Considered The category was not considered in this review.

 Further
 Investigation
 Required

 Further investigation is required to reach a meaningful conclusion.

 Trail of Bits 39 Eclipse JKube Security Assessment
 PUBLIC

 C. Non-Security-Related Findings

 The following recommendations are not associated with specific vulnerabilities. However,
 implementing them may enhance code readability and may prevent the introduction of
 vulnerabilities in the future.

 ● The following if condition is always true. i is always less than objects.length ;
 otherwise, the for loop would not be executing. The developer likely intended to
 use ++i instead of i++ .

 for (int i = 0 ; i < objects.length;) {
 sb.append(objects[i]);
 if (i++ < objects.length) {

 sb.append(joinWith);
 }

 }

 Figure C.1: This if condition is always true.
 (jkube/kube-kit/build/api/src/test/java/org/eclipse/jkube/kit/build/api/h

 elper/PathTestUtil.java#69–74)

 ● The AssemblyManager singleton may not work as expected on multi-threaded
 environments. Consider making the initialization synchronized.

 public static AssemblyManager getInstance () {
 if (dockerAssemblyManager == null) {

 dockerAssemblyManager = new AssemblyManager();
 }
 return dockerAssemblyManager;

 }

 Figure C.2: This initialization is not thread-safe.
 (jkube/jkube-kit/build/api/src/main/java/org/eclipse/jkube/kit/buil

 d/api/assembly/AssemblyManager.java#81–86)

 ● The following format string call has more arguments than parameters.

 throw new DockerAccessException(e, "Unable to add tag [%s] to image [%s]" ,
 targetImage,

 sourceImage , e);

 Figure C.3: This format string has an extra argument.
 (jkube/jkube-kit/build/service/docker/src/main/java/org/eclipse/jkube/kit
 /build/service/docker/access/hc/DockerAccessWithHcClient.java#476–477)

 Trail of Bits 40 Eclipse JKube Security Assessment
 PUBLIC

https://github.com/eclipse/jkube/blob/c013e41cc7916719f2f4b54c58600a52141461b9/jkube-kit/build/api/src/test/java/org/eclipse/jkube/kit/build/api/helper/PathTestUtil.java#L69-L74
https://github.com/eclipse/jkube/blob/c013e41cc7916719f2f4b54c58600a52141461b9/jkube-kit/build/api/src/test/java/org/eclipse/jkube/kit/build/api/helper/PathTestUtil.java#L69-L74
https://github.com/eclipse/jkube/blob/c013e41cc7916719f2f4b54c58600a52141461b9/jkube-kit/build/api/src/main/java/org/eclipse/jkube/kit/build/api/assembly/AssemblyManager.java#L81-L86
https://github.com/eclipse/jkube/blob/c013e41cc7916719f2f4b54c58600a52141461b9/jkube-kit/build/api/src/main/java/org/eclipse/jkube/kit/build/api/assembly/AssemblyManager.java#L81-L86
https://github.com/eclipse/jkube/blob/c013e41cc7916719f2f4b54c58600a52141461b9/jkube-kit/build/service/docker/src/main/java/org/eclipse/jkube/kit/build/service/docker/access/hc/DockerAccessWithHcClient.java#L476-L477
https://github.com/eclipse/jkube/blob/c013e41cc7916719f2f4b54c58600a52141461b9/jkube-kit/build/service/docker/src/main/java/org/eclipse/jkube/kit/build/service/docker/access/hc/DockerAccessWithHcClient.java#L476-L477

 ● The following issue appears to be fixed upstream. Consider removing the
 workaround or adjusting the comment if it is still desirable to keep Prometheus
 disabled.

 // Switch off Prometheus agent until logging issue with WildFly Swarm is resolved
 // See:
 // - https://github.com/fabric8io/fabric8-maven-plugin/issues/1173
 // - https://issues.jboss.org/browse/THORN-1859
 ret.put("AB_PROMETHEUS_OFF" , "true");
 ret.put("AB_OFF" , "true");

 Figure C.4: The code references an upstream issue that has been resolved.
 (jkube/jkube-kit/jkube-kit-thorntail-v2/src/main/java/org/eclipse/jkube/t

 horntail/v2/generator/ThorntailV2Generator.java#41–46)

 ● The parsedCredentials array is indexed without first being checked to ensure
 that it has enough elements. This may cause the program to fail. This code is
 repeated in
 jkube/jkube-kit/build/api/src/main/java/org/eclipse/jkube/kit/bui
 ld/api/auth/RegistryAuth.java .

 public static AuthConfig fromCredentialsEncoded (String credentialsEncoded, String
 email) {
 final String credentials = new String(Base64.decodeBase64(credentialsEncoded));
 final String[] parsedCredentials = credentials.split(":" , 2) ;
 return AuthConfig.builder()

 .username(parsedCredentials[0])
 .password(parsedCredentials[1])
 .email(email)
 .build();

 }

 Figure C.5: parsedCredentials may have a single element in the array.
 (jkube/jkube-kit/build/api/src/main/java/org/eclipse/jkube/kit/build/api/

 auth/AuthConfig.java#89–97)

 ● The spring.devtools.remote.secret secret is logged as part of the printed
 command. This might not represent a security issue, as this particular secret is also
 stored in plaintext, but as a general practice, privileged information should not be
 logged.

 log.debug("Running: " + command);

 Figure C.6: The command string contains the mentioned secret.
 (jkube/jkube-kit/jkube-kit-spring-boot/src/main/java/org/eclipse/jkube/sp

 ringboot/watcher/SpringBootWatcher.java#170)

 Trail of Bits 41 Eclipse JKube Security Assessment
 PUBLIC

https://github.com/eclipse/jkube/blob/c013e41cc7916719f2f4b54c58600a52141461b9/jkube-kit/jkube-kit-thorntail-v2/src/main/java/org/eclipse/jkube/thorntail/v2/generator/ThorntailV2Generator.java#L41-L46
https://github.com/eclipse/jkube/blob/c013e41cc7916719f2f4b54c58600a52141461b9/jkube-kit/jkube-kit-thorntail-v2/src/main/java/org/eclipse/jkube/thorntail/v2/generator/ThorntailV2Generator.java#L41-L46
https://github.com/eclipse/jkube/blob/c013e41cc7916719f2f4b54c58600a52141461b9/jkube-kit/build/api/src/main/java/org/eclipse/jkube/kit/build/api/auth/AuthConfig.java#L89-L97
https://github.com/eclipse/jkube/blob/c013e41cc7916719f2f4b54c58600a52141461b9/jkube-kit/build/api/src/main/java/org/eclipse/jkube/kit/build/api/auth/AuthConfig.java#L89-L97
https://github.com/eclipse/jkube/blob/c013e41cc7916719f2f4b54c58600a52141461b9/jkube-kit/jkube-kit-spring-boot/src/main/java/org/eclipse/jkube/springboot/watcher/SpringBootWatcher.java#L170
https://github.com/eclipse/jkube/blob/c013e41cc7916719f2f4b54c58600a52141461b9/jkube-kit/jkube-kit-spring-boot/src/main/java/org/eclipse/jkube/springboot/watcher/SpringBootWatcher.java#L170

 ● There are several occurrences across the codebase of parseInt calls on user input
 without adequate error handling. An invalid input on a user-provided property may
 cause JKube to throw an exception.

 Trail of Bits 42 Eclipse JKube Security Assessment
 PUBLIC

 D. Docker Recommendations

 This appendix provides general recommendations regarding the use of Docker. We
 recommend using the steps listed under the "Basic Security" and "Limiting Container
 Privileges" sections and avoiding the options listed under the "Options to Avoid" section.
 This appendix also describes the Linux features that form the basis of Docker container
 security measures and includes a list of additional references.

 Basic Security
 ● Do not add users to the docker group. Inclusion in the docker group allows a user

 to escalate his or her privileges to root without authentication.

 ● Do not run containers as a root user . If user namespaces are not used, the root user
 within the container will be the real root user on the host. Instead, create another
 user within the Docker image and set the container user by using the USER
 instruction in the image’s Dockerfile specification. Alternatively, pass in the --user
 $UID:$GID flag to the docker run command to set the user and user group.

 ● Do not use the --privileged flag . Using this flag allows the process within the
 container to access all host resources, hijacking the machine.

 ● Do not mount the Docker daemon socket (usually /var/run/docker.sock) into
 the container. A user with access to the Docker daemon socket will be able to spawn
 a privileged container to “escape” the container and access host resources.

 ● Carefully weigh the risks inherent in mounting volumes from special filesystems
 such as /proc or /sys into a container. If a container has write access to the
 mounted paths, a user may be able to gain information about the host machine or
 escalate his or her own privileges.

 Limiting Container Privileges
 ● Pass the --cap-drop=all flag to the docker run command to drop all Linux

 capabilities and enable only those capabilities that are necessary to the process
 within a container using the --cap-add=... flag. Note, though, that adding
 capabilities could allow the process to escalate its privileges and “escape” the
 container.

 ● Pass the --security-opt=no-new-privileges:true flag to the docker run
 command to prevent processes from gaining additional privileges.

 ● Limit the resources provided to a container process to prevent denial-of-service
 scenarios.

 Trail of Bits 43 Eclipse JKube Security Assessment
 PUBLIC

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#user
https://docs.docker.com/engine/reference/builder/#user
https://docs.docker.com/engine/reference/builder/#user
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities
https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-socket-option
https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources

 ● Do not use root (uid=0 or gid=0) in a container if it is not needed. Use USER ... in
 the Dockerfile (or use docker run --user $UID:$GID ...).

 The following recommendations are optional:

 ● Use user namespaces to limit the user and group IDs available in the container to
 only those that are mapped from the host to the container.

 ● Adjust the Seccomp and AppArmor profiles to further limit container privileges.

 ● Consider using SELinux instead of AppArmor to gain additional control over the
 operations a given container can execute.

 Options to Avoid

 Flag Description

 --privileged Gives all kernel capabilities to the container and lifts all
 the limitations enforced by the device cgroup
 controller (i.e., allowing the container to do almost
 everything that the host can do)

 --cap-add=all Adds all Linux capabilities

 --security-opt
 apparmor=unconfined

 Disables AppArmor

 --security-opt
 seccomp=unconfined

 Disables Seccomp

 --device-cgroup-rule='a *:*
 rwm'

 Enables access to all devices (according to this
 documentation)

 --pid=host Uses the host PID namespace

 --uts=host Uses the host UTS namespace

 --network=host Uses the host network namespace, which grants access
 to all network interfaces available on a host

 Trail of Bits 44 Eclipse JKube Security Assessment
 PUBLIC

https://www.kernel.org/doc/Documentation/cgroup-v1/devices.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/devices.txt

 Linux Features Foundational to Docker Container Security

 Feature Description

 Namespaces This feature is used to isolate or limit the view (and therefore the use) of a
 global system resource. There are various namespaces, such as PID ,
 network , mount , UTS , IPC , user , and cgroup , each of which wraps a
 different resource. For example, if a process creates a new PID namespace,
 the process will act as if its PID is 1 and will not be able to send signals to
 processes created in its parent namespace.

 The namespaces to which a process belongs are listed in the
 /proc/$PID/ns/ directory (each with its own ID) and can also be accessed
 by using the lsns tool .

 Control groups
 (cgroups)

 This is a mechanism for grouping processes/tasks into hierarchical groups
 and metering or limiting resources within those groups, such as memory,
 CPUs, I/Os, or networks.

 The cgroups to which a process belongs can be read from the
 /proc/$PID/cgroup file. A cgroup’s entire hierarchy will be indicated in a
 /sys/fs/cgroup/<cgroup controller or hierarchy>/ directory if the
 cgroup controllers are mounted in that directory. (Use the mount | grep
 cgroup command to see whether they are.)

 There are two versions of cgroups, cgroups v1 and cgroups v2 , which can
 be (and often are) used at the same time.

 Linux capabilities This feature splits root privileges into "capabilities." Although this setting is
 primarily related to the actions a privileged user can take, there are
 different process capability sets, some of which are used to calculate the
 user’s effective capabilities (such as after running an SUID binary).
 Therefore, dropping all Linux capabilities from all capability sets will help
 prevent a process from gaining additional privileges (such as through SUID
 binaries).

 The Linux process capability sets for a given process can be read from the
 /proc/$PID/status file, specifically its CapInh , CapPrm , CapEff ,
 CapBnd , and CapAmb values (which correspond to the inherited, permitted,
 effective, bound, and ambient capability sets, respectively). Those values
 can be decoded into meaningful capability names by using the capsh
 --decode=$VALUE tool.

 While the effective capability set is the one that is directly used by the
 kernel to execute permission checks, it is best practice to limit all other sets

 Trail of Bits 45 Eclipse JKube Security Assessment
 PUBLIC

https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/pid_namespaces.7.html
https://man7.org/linux/man-pages/man7/network_namespaces.7.html
https://man7.org/linux/man-pages/man7/mount_namespaces.7.html
https://man7.org/linux/man-pages/man7/uts_namespaces.7.html
https://man7.org/linux/man-pages/man7/ipc_namespaces.7.html
https://man7.org/linux/man-pages/man7/user_namespaces.7.html
https://man7.org/linux/man-pages/man7/cgroup_namespaces.7.html
https://man7.org/linux/man-pages/man8/lsns.8.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html#:~:text=Cgroups%20version%201%20and%20version%202
https://man7.org/linux/man-pages/man7/capabilities.7.html

 too, since they may allow for gaining more effective capabilities, such as
 through SUID binaries or programs that have “ file capabilities ” set.

 The “no new
 privileges” flag

 Enabling this flag for a process will prevent the user who launched the
 process from gaining additional privileges (such as through SUID binaries).

 Seccomp BPF
 syscall filtering

 Seccomp BPF enables the filtering of arguments passed in to a program
 and the syscalls executed by it. It does this by writing a “BPF program” that
 is later run in the kernel.

 Refer to the Docker default Seccomp policy . One can write a similar profile
 and apply it with the --security-opt seccomp=<file> flag.

 AppArmor Linux
 Security Module
 (LSM)

 AppArmor is LSM that limits a container’s access to certain resources by
 enforcing a mandatory access control. AppArmor profiles are loaded into a
 kernel. A profile can be in either “complain” or “enforce” mode. In
 “complain” mode, violation attempts are logged only into the syslog; in
 “enforce” mode, such attempts are blocked.

 To see which profiles are loaded into a kernel, use the aa-status tool . To
 see whether a given process will work under the rules of an AppArmor
 profile, read the /proc/$PID/attr/current file. If AppArmor is not
 enabled for the process, the file will contain an unconfined value. If it is
 enabled, the file will return the name of the policy and its mode (e.g.,
 docker-default (enforce)).

 Refer to the Docker AppArmor profile template and the generated form of
 the profile .

 Additional References
 ● Understanding Docker Container Escapes : A Trail of Bits blog post that breaks down

 a container escape technique and explains the constraints required to use that
 technique

 ● Namespaces in Operation, Part 1: Namespaces Overview : A seven-part LWN article
 that provides an overview of Linux namespace features

 ● False Boundaries and Arbitrary Code Execution : An old but thorough post about
 Linux capabilities and the ways that they can be used in privilege escalation
 attempts

 ● Technologies for Container Isolation: A Comparison of AppArmor and SELinux : A
 comparison of AppArmor and SELinux

 Trail of Bits 46 Eclipse JKube Security Assessment
 PUBLIC

https://man7.org/linux/man-pages/man7/capabilities.7.html#:~:text=The%20three%20file%20capability%20sets%20are:
https://www.kernel.org/doc/html/latest/userspace-api/no_new_privs.html
https://www.kernel.org/doc/html/latest/userspace-api/no_new_privs.html
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://github.com/moby/moby/blob/0456e058d2b60606d4374cd975c635dfe7673f17/profiles/seccomp/default.json
https://wiki.ubuntu.com/AppArmor
https://wiki.ubuntu.com/AppArmor
https://wiki.ubuntu.com/AppArmor
https://manpages.ubuntu.com/manpages/bionic/man8/aa-status.8.html
https://github.com/moby/moby/blob/0456e058d2b60606d4374cd975c635dfe7673f17/profiles/apparmor/template.go
https://gist.github.com/disconnect3d/d578af68b09ab56db657854ec03879aa
https://gist.github.com/disconnect3d/d578af68b09ab56db657854ec03879aa
https://blog.trailofbits.com/2019/07/19/understanding-docker-container-escapes/
https://lwn.net/Articles/531114/
https://forums.grsecurity.net/viewtopic.php?f=7&t=2522
https://www.redhat.com/sysadmin/apparmor-selinux-isolation

 E. Hardening Containers Run via Kubernetes

 This appendix gives more context for the hardening of containers spawned by Kubernetes.
 Please note our definitions of the following terms:

 ● Container: This is the isolated “environment” created by Linux features such as
 namespaces, cgroups, Linux capabilities, and AppArmor and secure computing
 (seccomp) profiles. We are specifically concerned with Docker containers since the
 tested environment uses Docker as its container engine.

 ● Host: This is the unconfined environment on the machine running a container (e.g.,
 a process run in global Linux namespaces).

 Root Inside Container
 User namespaces allow for the remapping of user and group IDs between a host and a
 container; unless namespaces are used, the root user inside the container will be the root
 user in the host. In a default configuration of Docker containers, the container features
 limit the actions that the root user can take. However, if a process does not need to be run
 as root, it is best to run it with another user.

 To run a container with another user, use the USER Dockerfile instructions . In Kubernetes,
 one can specify the user ID (UID) and various group IDs (GIDs) (e.g., a primary GID, a file
 system–related GID, and those for supplemental groups) using the runAsUser ,
 runAsGroup , fsGroup , and supplementalGroups attributes of a securityContext field
 of a pod or other objects used to spawn containers.

 Dropping Linux Capabilities
 Linux capabilities split the privileged actions that a root user’s process can perform. Docker
 drops most Linux capabilities for security purposes but leaves others enabled for
 convenience . We recommend dropping all Linux capabilities and then enabling only those
 necessary for the application to function properly.

 Linux capabilities can be dropped in Docker via the --cap-drop=all flag and in
 Kubernetes by specifying capabilities , drop , and --all in the securityContext key
 of the deployment’s container configuration. Then, to restore necessary capabilities, use
 the --cap-add=<cap> flag in a docker run or specify them in capabilities , and use
 add in the securityContext field in the Kubernetes object manifest.

 Trail of Bits 47 Eclipse JKube Security Assessment
 PUBLIC

https://docs.docker.com/engine/reference/builder/#user
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://docs.docker.com/engine/reference/run/#:~:text=The%20following%20table%20lists%20the%20Linux%20capability%20options%20which%20are%20allowed%20by%20default%20and%20can%20be%20dropped.
https://docs.docker.com/engine/reference/run/#:~:text=The%20following%20table%20lists%20the%20Linux%20capability%20options%20which%20are%20allowed%20by%20default%20and%20can%20be%20dropped.

 NoNewPrivs Flag
 The NoNewPrivs flag prevents additional privileges for a process or its children from being
 assigned. For example, it prevents a UID/GID from gaining capabilities or privileges by
 executing setuid binaries.

 The NoNewPrivs flag can be enabled in a docker run via the
 --security-opt=no-new-privileges flag. In a Kubernetes deployment, specify
 allowPrivilegeEscalation: false in the securityContext field to enable it.

 Seccomp Policies
 A seccomp policy limits the available system calls and their arguments. Normally, using
 seccomp requires a call to a prctl syscall with a special structure, but Docker simplifies
 the process and allows a seccomp policy to be specified as a JSON file . Using the default
 Docker profile is a good start for implementing a specific policy. Seccomp is disabled by
 default in Kubernetes .

 The seccomp policy can be specified with a --security-opt seccomp=<filepath> flag
 in Docker. In Kubernetes, the seccomp policy can be set either by using a seccompProfile
 key in the securityContext field of a pod (in Kubernetes v1.19 or later) or by using the
 container.seccomp.security.alpha.kubernetes.io/<container_name>:
 <profile_ref> annotation (in pre-v1.19 versions). The Kubernetes documentation
 includes examples of both methods of setting a specific seccomp policy .

 Linux Security Module (AppArmor)
 The LSM is a mechanism that allows kernel developers to hook various kernel calls.
 AppArmor is an LSM used by default in Docker . Another popular LSM is SELinux, but since it
 is more difficult to set up, it is not discussed here.

 AppArmor limits what a process can do and which resources a process can interact with.
 Docker uses its default AppArmor profile, which is generated from this template . When
 Docker is used as a container engine in Kubernetes, the same profile is often used by
 default, depending on the Kubernetes cluster configuration. One can override the
 AppArmor profile in Kubernetes with the following annotation (which is further described
 here):

 container.apparmor.security.beta.kubernetes.io/<container_name>:
 <profile_ref>

 Trail of Bits 48 Eclipse JKube Security Assessment
 PUBLIC

https://www.kernel.org/doc/html/latest/userspace-api/no_new_privs.html
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#privilege-escalation
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#privilege-escalation
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://docs.docker.com/engine/security/seccomp/
https://github.com/moby/moby/blob/master/profiles/seccomp/default.json
https://github.com/moby/moby/blob/master/profiles/seccomp/default.json
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#seccomp
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#seccomp
https://kubernetes.io/docs/tutorials/clusters/seccomp/#create-a-pod-with-a-seccomp-profile-for-syscall-auditing
https://www.kernel.org/doc/html/v5.6/admin-guide/LSM/index.html
https://docs.docker.com/engine/security/apparmor/
https://github.com/moby/moby/blob/master/profiles/apparmor/template.go
https://kubernetes.io/docs/tutorials/clusters/apparmor/#securing-a-pod

 F. Fix Review Results

 When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
 identified in the original report. This work involves a review of specific areas of the source
 code and system configuration, not comprehensive analysis of the system.

 On July 7, 2023, Trail of Bits reviewed the fixes and mitigations implemented by the JKube
 team for the issues identified in this report. We reviewed each fix to determine its
 effectiveness in resolving the associated issue.

 In summary, of the two issues described in this report, the JKube team has resolved one
 and has partially resolved the other. In addition to fixing the potential command line
 injection issue, the fixes include a new enricher that improves the generated configuration
 for Kubernetes objects, using more secure settings. JKube users must explicitly opt in to
 use this new enricher. For additional information, please see the Detailed Fix Review
 Results below.

 ID Title Severity Status

 1 Insecure defaults in generated artifacts Informational Partially
 resolved

 2 Risk of command line injection from secret Low Resolved

 Trail of Bits 49 Eclipse JKube Security Assessment
 PUBLIC

 Detailed Fix Review Results
 TOB-JKUBE-1: Insecure defaults in generated artifacts
 Partially resolved in PR #2177 and PR #2182 . These pull requests introduce a new enricher
 that enforces several security best practices and recommendations for Kubernetes objects.
 However, this enricher is not enabled in the default configuration, which means that the
 generated deployment artifacts remain insecure by default unless the user enables this
 new feature.

 TOB-JKUBE-2: Risk of command line injection from secret
 Resolved in PR #2169 . Among other changes, this pull request rewrote the command-line
 building code to use an array of arguments instead of a single command-line string. This
 way of invoking external programs does not present the same injection risk that was
 identified in the previous code with string interpolation.

 Trail of Bits 50 Eclipse JKube Security Assessment
 PUBLIC

https://github.com/eclipse/jkube/pull/2177
https://github.com/eclipse/jkube/pull/2182
https://github.com/eclipse/jkube/pull/2169

 G. Fix Review Status Categories

 The following table describes the statuses used to indicate whether an issue has been
 sufficiently addressed.

 Fix Status

 Status Description

 Undetermined The status of the issue was not determined during this engagement.

 Unresolved The issue persists and has not been resolved.

 Partially Resolved The issue persists but has been partially resolved.

 Resolved The issue has been sufficiently resolved.

 Trail of Bits 51 Eclipse JKube Security Assessment
 PUBLIC

