
OSS Fuzzing Improvements
for Envoy Proxy

Final Report and Management Summary

2023-08-10

X41 D-SEC GmbH
Krefelder Str. 123
D-52070 Aachen

Amtsgericht Aachen: HRB19989
https://x41-dsec.de/

info@x41-dsec.de

Funded by Google LLC
Organized by the Open Source Technology Improvement Fund

https://x41-dsec.de/
info@x41-dsec.de

OSS Fuzzing Improvements Envoy Proxy

Revision Date Change Editor

1 2023-07-13 Final Report and Management Summary R. Femmer, A. Vehreschild
2 2023-08-16 Public Report L. Gommans

X41 D-Sec GmbH PUBLIC Page 1 of 23

OSS Fuzzing Improvements Envoy Proxy

Contents

1 Executive Summary 3

2 Terminology 4
2.1 Unit And Integration Testing . 4
2.2 Fuzz Testing . 4

3 Fuzz Testing In Envoy 6
3.1 Starting Point And Previous Efforts . 6
3.2 Generation of Valid Input . 10
3.3 Improved Fuzzing Strategy . 11
3.4 Reducing Binary Size . 12
3.5 Network Readfilter Fuzzer . 13
3.6 HTTP Codec Fuzzers . 14
3.7 HTTP Connection Manager and Router Fuzzer . 14

4 Conclusions and future Work 16

5 About X41 D-Sec GmbH 17

A Appendix 19

X41 D-Sec GmbH PUBLIC Page 2 of 23

OSS Fuzzing Improvements Envoy Proxy

1 Executive Summary

X41 was engaged to asses and improve the fuzzing efforts of Envoy Proxy. In the first phase of
this project, numerous issues discovered by the existing fuzzers were addressed and fixed. The
insight revealed that the fuzzers found lots of non-issues (noise) and suffered from low perfor-
mance.

The aim of the second phase is to identify and mitigate the reasons for the low performance for
a selected set of fuzzers deemed high priority. Guarding the Envoy code base from erroneous
code additions is a key objective. This report describes the efforts of the second phase.

We attribute the low performance of current fuzzers to the necessity of validating input due to
how the fuzzers were designed, leading to a low utilization of processing time. The current design
also leads to inefficiencies regarding achievable coverage, which result in a high number of issues
with no or low impact. In the following chapters, we detail the design deficiencies and describe
how they were remedied.

In the course of the second phase, four new fuzzers and an improvedmethod for input generation
were added. Existing fuzzers were altered to benefit from the approach.

Chapter 2 introduces concepts of software testing and fuzzing. The definitions given are not
authoritative and only aim to give the reader the ability to follow our chosen terminology.
Chapter 3 describes the state of fuzz testing in Envoy and describes the issues identified by X41
as well as the methods employed to remedy these issues.
The report concludes with recommendations for future work in chapter 4.
The Appendix gives a short summary of the results of the first phase and lists some issues discov-
ered in the second phase.

X41 D-Sec GmbH PUBLIC Page 3 of 23

OSS Fuzzing Improvements Envoy Proxy

2 Terminology

2.1 Unit And Integration Testing

The goal of unit and integration testing is to exercise a selected path of code with a set of chosen
input data and assert that the data is mutated or interpreted correctly. Unit tests usually refer
to tests of small units of code, whereas integration tests integrate multiple units to test their col-
lective behavior. These tests can ensure that the intended functionality has been achieved and
executing them after committing changes to the code base can ensure that the functionality is
not lost due to the changes.

The test behavior, input, and output of these tests are tailored to exercise one specific path
through the code.

2.2 Fuzz Testing

In fuzz testing, an attack surface is defined and exercised by feeding semi-random data to it and
observing the program for consistency. The program is modeled as a state graph with a defined
entry state. The state directly translates to the state of CPU and memory. It is assumed that the
entry state can be partially controlled by a potential attacker, who is able to control the contents
of a buffer in memory. By letting the CPU execute the code the state graph is traversed. By ob-
serving edges that are traversed and reporting clearly erroneous conditions, the security auditor
can identify problematic inputs which allow for unintended state changes of the program under
test. These edges are often what allow exploit authors to deviate the program behavior from the
intended state to a state of their choosing1.

1 Dullien, 2017. Weird Machines, Exploitability, and Provable Unexploitability

X41 D-Sec GmbH PUBLIC Page 4 of 23

OSS Fuzzing Improvements Envoy Proxy

In this report, we call the fuzzer the compiled unit of code including the harness, but excluding
the driving library, which may either be Hongfuzz 2 or libFuzzer3.

2 https://github.com/google/honggfuzz3 https://llvm.org/docs/LibFuzzer.html

X41 D-Sec GmbH PUBLIC Page 5 of 23

https://github.com/google/honggfuzz
https://llvm.org/docs/LibFuzzer.html

OSS Fuzzing Improvements Envoy Proxy

3 Fuzz Testing In Envoy

3.1 Starting Point And Previous Efforts

Envoy implements more than 65 fuzzers where 19 are considered high priority. The high priority
fuzzers exercise code paths that are exposed to potentially malicious input by being exposed to
Internet traffic. As Envoy is offered as a service, the configuration interface is also considered
exposed. Within the first phase, circa 60 issues found by fuzzers were analyzed and evaluated
for their security impact and nearly 30 were fixed by X41. We learned that the fuzzers

1. validate the input generated by the mutator and valid input is generated rarely
2. cover configuration and data plane simultaneously
3. use debug assertions that may end runs prematurely
4. are big in size and part of their low performance can be attributed to this
5. are sometimes designed as randomized unit tests.

The following sections describe the issues and their consequences in detail.

3.1.1 Validating Input

Envoy is configured using Protobufmessages. Fuzzers that also target the configuration interface
receive input generated by libprotobuf-mutator 1. The input is extended by mutated input for
the target data plane. The Protobuf message descriptions in Envoy are extended by validation
rules, which generate additional code that can be used to check that a given message adheres to
these rules. This code is used to validate configuration options at runtime but is also employed
in the fuzzers. As a consequence most randomly generated input is rejected before the fuzz run,

1 https://github.com/google/libprotobuf-mutator

X41 D-Sec GmbH PUBLIC Page 6 of 23

https://github.com/google/libprotobuf-mutator

OSS Fuzzing Improvements Envoy Proxy

since it is unlikely that random input satisfies a set of validation rules.

3.1.2 Fuzzing Control Plane And Data Plane

Envoy is heavily configurable and parses configuration files to Protobuf messages, which config-
ure the individual functional parts of Envoy. Whereas for traditional server infrastructures the
configuration is conducted by a trusted administrator, modern cloud-based infrastructures often
expose the configuration to their customers. This necessitates to expand the traditional threat
model: Risks arise not only from exposing the data plane of a software to untrusted input from
the internet, but also from exposing the configuration plane to a (potentially malicious) customer.
In addition to exploitable vulnerabilities, any crashes that may impact business metrics agreed
to with the customer become risk factors. This poses a challenge to the security auditor, as the
inclusion of the configuration plane as attack surface opens up another dimension in the state
space of the program under testing: Fuzz testing the data plane in isolation attempts to explore
all reachable memory states of the program for all possible CPU states. For complex software like
Envoy this alone is impossible due to the large range of possible states. Taking into account the
configuration plane multiplies the amount of possible states with the amount of configurations
that enable new code paths or memory states.

Fuzzing the configuration plane poses further challenges, as the range of possible configurations
is usually limited due to validation, but is still too vast to enumerate. To explore the set of pos-
sible (valid) configurations, a generator is necessary that is able to produce valid configurations
efficiently. However, at the time no such technology exists for Protobuf messages. As a result, a
randomly generated configuration is likely to be rejected and no attempt at fuzzing the data plane
for the generated configuration is made. In fact, fuzzers that randomly generate configurations
and are forced to abort when they fail to validate, suffer from poor performance and therefore
stand no chance in finding any issues in the code under testing.

Fuzzing configuration and data simultaneously reduces the coverage of the code examined, be-
cause the fuzzer may steer away from a configuration that it should explore more deeply.
X41 proposed the following process:

1. Devise an efficient method to generate valid configuration files by introspecting the valida-
tor.

2. Set up a two-stepped fuzzing process, generating a valid configuration file first which is
then re-used for fuzzing the data plane for a chosen number of iterations.

X41 D-Sec GmbH PUBLIC Page 7 of 23

OSS Fuzzing Improvements Envoy Proxy

The results of these efforts are described in sec. 3.2.

3.1.3 Fuzzing Debug Builds

One of the issues X41 identified was that fuzzers are compiled with debug flags in place. This
means that assertions that are violated trigger an abort() preventing the fuzzer to proceed. The
debug assertion being violated may hint at a possible problem with the code. However, this also
may not be the case or the impact of a violated assertion is negligible. The software project may
decide to fix the bug leading to the violated assert or fix the assertion acknowleding that the
assertion actually does not hold in all cases. However, even if all debug asserts in the project
would only protect against serious problems, this may not be the case for libraries in use and
compiled into the project. Changing an assertion in a 3rd party library for the benefit of a fuzzer
is a problematic proposal.

The greater issuewith debug assertions however is, that it stops the fuzzer from exploring deeper
parts of the code unless the assertion is removed or the bug is fixed. Until then, issues that may
arise after the assertion are being shadowed. An example could be found in the http2 codec
implementation. In a getter for the stream handle an assert enforced that the result is non-null.
However, at most call-sites the streamwas checked for being non-null and then execution would
branch appropriately. I.e., the call-site was able to a handle getting no stream at all. By introduc-
ing a new getter getStreamUnchecked() that omitted the assert the fuzzer is now able to continue
investigating the code paths previously blocked.

Fuzzers set up this way may repeatedly abort() on assertions that are not issues with high impact.
This can hurt the performance of the fuzzer and blocks improvement of the fuzzer on low prior-
ity bugs. Lastly, having to work around asserts while developing a fuzzer may lead to arbitrarily
validating parts of the input, therefore encouraging to fix the issue in the fuzzer, rather than in
the program.

X41 recommends to disable debug assertions as fuzzers with assertions tend to produce noise
and shadow real issues.

3.1.4 Large executable size

Envoy generates executable files with very large sizes stemming from the approach of linking all
kinds of components, like filters or extensions, to the executable instead of only the ones that
are addressed by the test. This resulted in two peculiarities. Sometimes the compiler was not
X41 D-Sec GmbH PUBLIC Page 8 of 23

OSS Fuzzing Improvements Envoy Proxy

even able to use relative jumps anymore, i.e. the destination of a jump was more then 231 − 1

bytes away from the jump instruction. The other issue was that due to the target address being
farther away than what would fit into the cache lines, a lot of cache misses occurred, which of
course impacted the overall performance.

Large executable sizes have further consequences in the context of fuzzing. These have been
identified previously and described elsewhere2.

3.1.5 Integration Testing and Fuzzing

Various fuzzers that were designed to take structured input modeled to the state of some class.
The fuzzer then validates that the structured input can be encoded to the state of the class under
test and the state is then used to instantiate the class according to the input. The target code unit
proceeds then to encode the state to e.g. bytes to be sent over the wire (e.g. HTTP or base64).
The result is then subsequently decoded by the counterpart code unit, effectively testing one
narrow code path with various inputs.

This approach has multiple issues:
1. The fuzzer needs to validate if the structured input can be encoded to the target unit or

class. Input that fails this validation has to be rejected resulting in low performance as only
a fraction of generated inputs can be used.

2. The fuzzer is prone to generating noise due to the fact that the state of some instance of
a complex data structure is artificially set by the fuzzer and not by the program under test
itself. The fuzzer may not set the state consistently for all values of the input or changes in
the code may break the fuzzer in various ways.

3. The fuzzer misses the often more important attack surface of the decoder, as the decoder
is only exercised with correctly encoded data.

X41 has addressed these issues by adding new dedicated fuzzers for high priority fuzzers, specif-
ically for the HTTP codec libraries, c.f. sec. 3.6.

2 Ada Logics, 2021. "Envoy fuzzing improvements"

X41 D-Sec GmbH PUBLIC Page 9 of 23

OSS Fuzzing Improvements Envoy Proxy

3.2 Generation of Valid Input

The input to fuzz tests in Envoy usually is represented as structured text. YAML3 is used to
encode it. The structure of the YAML is defined using Google’s protobuf4 library. The structure
definition is augmented by validation rules that can be interpreted by the protoc-gen-validate5
package.
The validation rules may for example add constraints on the values of a member of a message,
its cardinality, or whether a member is required:

1 message AdvanceTime {
2 // member is valid only when between 0 < milliseconds < 86400000
3 uint32 milliseconds = 1 [(validate.rules).uint32 = {gt: 0 lt: 86400000}];
4 }
5

6 message Action {
7 oneof action_selector {
8 // Ensure that exactly one of the alternatives is initialized
9 option (validate.required) = true;

10 OnData on_data = 1;
11 AdvanceTime advance_time = 2;
12 }
13 }

Listing 3.1: Example of validation rules

Listing 3.1 shows an example of two validation rules. In line 3 member milliseconds is declared
to be only valid when greater than 0 and less than 86.400.000 ms. The second validation rule in
line 9 formulates the condition, that at least one of the alternatives in the oneof action_selection

needs to be used.
The libprotobuf-mutator being used for creating new input during the fuzzer’smutation phase has
only very limited knowledge about the input’s structure. Libprotobuf-mutator makes no use of
any validation rules present in the protobuf definitions. I.e. the mutator would generate an input
having an Action message with no alternative of the oneof set. The validator then later on rejects
this input, rendering the fuzz run of minor use. The fuzzer/mutator will only seldom compute a
valid input this way.
The fuzzer allows to add a post processor to each fuzz test. The post processor is supplied a
proposed new input for the next fuzz run. In this post processor not only checks can be done,

3 YAML Ain’t Markup Language4 https://protobuf.dev/5 https://github.com/bufbuild/protoc-gen-validate

X41 D-Sec GmbH PUBLIC Page 10 of 23

https://protobuf.dev/
https://github.com/bufbuild/protoc-gen-validate

OSS Fuzzing Improvements Envoy Proxy

but the input can be manipulated, too. Adding a new component to this post processor which
examines the input and corrects it according to the validation rules is promising in reducing the
number of inputs rejected by the validation step.
A prototype is proposed by X41 to handle the most often used validation rules. The validation
rules are protobuf messages themselves. They can be examined using the reflection mechanisms
provided by protobuf messages. A validation rule is added as an extension to a message’s or
member’s type and can be retrieved using protobuf’s access functions. Given the example in
listing 3.1 on the milliseconds, the component would set the member to lower bound +1, if no
value in the valid range is set.
The required option in the oneof of the Action message is implemented by ensuring that at least
one alternative is set. If none has been set yet, one is chosen with uniform distribution over
the available alternatives to allow the fuzzer to examine as many code paths as possible. This
unfortunately had a caveat when a message referencing itself in multiple oneof alternatives was
endeavored. These self-referencing messages are used to model conditions and have dis- and
conjunctive alternatives (and/or operators). Choosing uniformly distributed from them leads to
deeply nested conditions that most of the time produce a stack overflow and are rather sel-
dom used in the wild. In these cases the uniform distribution is discarded and the and- and
or-alternatives are chosen only with a probability of 0.05.
Another interesting construct in the protobuf messages used is a typed_config, where the type of
the data in a value member is defined by a string given as additional input. I.e. the data in the
value member resembles a valid protobuf message. But the type of this message is not defined
when declaring the protobuf message that contains the typed_config. This implements context-
aware polymorphism. For example, the configuration of a header matcher allows the and- and
or-operations mentioned above to logically combine predicates that either match a header name
using an exactmatch string comparison or a regular expression. Choosing one or the other is done
using a typed_config. There are of course more matchers available. Reducing the example to these
two is just for brevity. The typed_config can also be marked as required in the validation rules. To
support this the component proposed uses a table to choose from. The table supplies the type
for the typed_config and a default constructed message for the value member based on limited
context, i.e. its parent type and the member that mandates its use. After that the component is
applied to the default constructed member to ensure its validity.

3.3 Improved Fuzzing Strategy

An improved fuzzing strategy was devised to increase the performance of fuzzers that attempt
to fuzz the configuration and data plane simultaneously: network_readfilter_fuzz_test and net-
work_writefilter_fuzz_test have been modified to separately mutate the configuration and the
X41 D-Sec GmbH PUBLIC Page 11 of 23

OSS Fuzzing Improvements Envoy Proxy

data used for fuzzing. The configuration then was write protected for some number of itera-
tions to allow the fuzzer to dive deeper into the data plane. That is the fuzzer’s main loop now
resembles something like in listing 3.2.

1 struct FuzzInput {
2 Configuration config;
3 Data data;
4 } input;
5 int count = 0;
6 for(;;) {
7 input.data.mutate();
8 test(input);
9 if (count > SOME_LIMIT) {

10 input.config.mutate();
11 count = 0;
12 }
13 ++count;
14 }

Listing 3.2: New fuzzer main loop

Due to the use of callbacks in the fuzzer driver, the loop in the real code looks completely dif-
ferent. But listing 3.2 gives the general idea. The benefit of this separation is not only that the
fuzzer attacks and therefore tests the data plane more, but also the number of executions per
seconds done increases significantly. The configuration part in the input most of the time is more
complicated and checking and correcting it is therefore expensive. The data on the other hand
usually is just some binary or a command. Interpreting the data in the fuzzer is rather a no-op or
really cheap, so that most of the time is spend in the code under test and no longer in figuring
validity of the input.

3.4 Reducing Binary Size

Keeping the set of dependencies an artifact has on components or libraries small seems natural.
Unfortunately this can get tedious in large projects. Therefore those tend to go for an all inclusive
approach and define build dependencies that comprise all possible components and libraries. Al-
though understandable this does have impacts on the binary size, when the compiler (and linker)
is not clever enough or even told to remove unreachable code. Furthermore it is hard for the
build tools to decide whether some code can never be reached.

X41 D-Sec GmbH PUBLIC Page 12 of 23

OSS Fuzzing Improvements Envoy Proxy

Having a binary that contains more code than is needed on first glance might not be a problem.
But when taking cache lines and followed by that cache misses into account a large binary runs
slower when it has to perform far jumps, that invalidate several layers of caches. Remember that
the farther away from the CPU data has to be fetched from the longer it takes.

The fuzzers network_readfilter_fuzz_test and network_writefilter_fuzz_test already had awhite-list
of the filters to test in them. These lists have been moved into the build system to only add the
filters under test into the binary. The fuzzing routine retrieves a list of the filters to fuzz from an
already present registration mechanism in the code. The changes therefore were quite minimal.
The impact of the change is notable but not huge, i.e. the number of executions per seconds
increased by a factor of 0.1 to 0.5 depending on the filter the fuzzer has chosen to execute.

3.5 Network Readfilter Fuzzer

The network read filter fuzzer targets extensions which filter particular data streams, for instance
database protocols. The filter may be implemented to block requests if they meet certain crite-
ria. For this purpose untrusted data is interpreted (hence "read") and therefore the network read
filters constitute a high priority attack surface. Currently, there are 17 filter extensions present
in Envoy, however only a small subset of 7 filter extensions are being fuzzed. The reason for that
is, that some filter extension have dedicated fuzzers written for them or they need more context
or external services running to function properly. Furthermore, some filters are deemed to be
unstable according to the formulated threat model.

The fuzzer for network readfilter fuzzing targets the configuration as well as the data plane of the
filter as described above. In the input of the fuzzer the first part gives a configuration, including
the type of the filter to test, and the second part selects one of three possible actions. Those
comprise a new connection, given data to process and an advancement of time. The latter is for
example used to check expiration of sessions.

This fuzzer also suffers from the bipartite input, where the configuration is changed too quickly
for the fuzzer being able to explore an arbitrary number of code paths for the specific filter. Fur-
thermore any data being valid for one filter will probably not be applicable to the next filter. X41
therefore proposed to stick to one configuration for a given set of fuzz runs before generating
a new configuration. This fuzzer was also the first candidate for the valid input generator as de-
scribed in sec. 3.2. This accelerated the fuzzing speed by a factor of 4 to 20 depending on the
configuration in use.

X41 D-Sec GmbH PUBLIC Page 13 of 23

OSS Fuzzing Improvements Envoy Proxy

3.6 HTTP Codec Fuzzers

Envoy supports all three major HTTP versions and uses external codec libraries for parsing. At
the time of writing, these are Balsa and a so-called legacy codec for HTTP/1, oghttp, and nghttp
for HTTP/2 and Quiche for HTTP/3. Envoy wraps these libraries using thin wrappers, which
provide an abstract interface generalizing the HTTP version to a set of data structures (headers,
data, trailers). Fuzz tests exist in the Envoy project to target the HTTP/1 and HTTP/2 codecs in
the following way:

1. A set of headers, data, and trailers are generated by a protobuf mutator
2. The set is deserialized into Envoy’s generic data structures
3. The data structures are encoded by the codec to on-the-wire bytes
4. The bytes are decoded by the same codec back to Envoy’s representation.

A fuzzer for the QUIC and HTTP/3 protocol was missing. The structure of the existing fuzzers
resembles randomized unit tests rather than a fuzzer. Since the decoder is only exposed to input
that was generated by an encoder, the fuzzer is artificially constrained and will not be able to
maximize coverage of the decoder. However, it is the decoder that is most exposed to untrusted
input. Targeting both the encoder and decoder this way will not expose critical security vulnera-
bilities and increase the runtime of the fuzzer for no added benefit.

In the scope of this project new fuzzers were contributed changing the approach to let the mu-
tator generate on-the-wire bytes that may be random or represent a structured QUIC or HTTP
message. The fuzzers target the decoder of the library directly and omit the encoder completely.
The new fuzzers triggered several debug assertions that the previous fuzzers were not able to
expose.

3.7 HTTP Connection Manager and Router Fuzzer

In Envoy, the HTTP Connection Manager manages one connection between a server and a client
where exactly one (HTTP/1.0) or multiple HTTP streams are being processed. Simplified, a codec
interprets the raw data sent and passes it to the connection manager, which passes it through a
filter chain. The last filter in this filter chain is the router filter, which decides if the request is to
be sent upstream or if an error or direct response can be generated immediately. The connection

X41 D-Sec GmbH PUBLIC Page 14 of 23

OSS Fuzzing Improvements Envoy Proxy

manager has the responsibility to manage the lifetime of these streams. There have been bugs,
including CVE-2022-29227, in the past, which highlighted a need for coverage of these code
paths. Indeed, a fuzzer that would simulated the generation of various streams with a number
of differently behaving clusters was lacking. For this reason a fuzzer was devised that would be
able to model more complex scenarios around the handling of HTTP streams and exercise some
of Envoy’s features like direct HTTP responses (cached responses) or internal redirects. Covering
the decoding of HTTP has been omitted as this is covered elsewhere.

X41 D-Sec GmbH PUBLIC Page 15 of 23

OSS Fuzzing Improvements Envoy Proxy

4 Conclusions and future Work

In conclusion X41 was able to contribute fuzzers that exercise the largest attack surface more
efficiently and more importantly a method to fuzz both the configuration plane and data plane
separately. An input generator which is able to generate valid configuration files more efficiently
has significantly impacted fuzzing performance. Possible future work may directly be deducted
from this report; Making more fuzzers reap the benefits of the new input generator and rewriting
fuzzers to employ the method of fuzzing configuration and data plane is a natural continuation.

Special fuzzers may be contributed to exercise (possibly still unstable) filters in the read and write
filter fuzzers. There are small details omitted from the current Envoy QUIC and HTTP/3 fuzzers
like the handshake protocol and HTTP/3 header packing. Some of these may be covered already
in their respective project.

X41 would like to thank the corresponding teams at Google, OSTIF, and Envoy for their collabo-
ration and support.

X41 D-Sec GmbH PUBLIC Page 16 of 23

OSS Fuzzing Improvements Envoy Proxy

5 About X41 D-Sec GmbH

X41 D-Sec GmbH is an expert provider for application security and penetration testing services.
Having extensive industry experience and expertise in the area of information security, a strong
core security team of world-class security experts enables X41D-Sec GmbH to perform premium
security services.
X41 has the following references that show their experience in the field:

• Review of the Mozilla Firefox updater1
• X41 Browser Security White Paper2
• Review of Cryptographic Protocols (Wire)3
• Identification of flaws in Fax Machines4,5
• SmartCard Stack Fuzzing6

The testers at X41 have extensive experience with penetration testing and red teaming exercises
in complex environments. This includes enterprise environments with thousands of users and
vendor infrastructures such as the Mozilla Firefox Updater (Balrog).
Fields of expertise in the area of application security encompass security-centered code reviews,
binary reverse-engineering and vulnerability-discovery. Custom research and IT security consult-
ing, as well as support services, are the core competencies of X41. The team has a strong techni-
cal background and performs security reviews of complex and high-profile applications such as
Google Chrome and Microsoft Edge web browsers.
X41 D-Sec GmbH can be reached via https://x41-dsec.de or mailto:info@x41-dsec.de.

1 https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/2 https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf3 https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf4 https://www.x41-dsec.de/lab/blog/fax/5 https://2018.zeronights.ru/en/reports/zero-fax-given/6 https://www.x41-dsec.de/lab/blog/smartcards/

X41 D-Sec GmbH PUBLIC Page 17 of 23

https://x41-dsec.de
mailto:info@x41-dsec.de
https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/
https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf
https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf
https://www.x41-dsec.de/lab/blog/fax/
https://2018.zeronights.ru/en/reports/zero-fax-given/
https://www.x41-dsec.de/lab/blog/smartcards/

OSS Fuzzing Improvements Envoy Proxy

Acronyms

YAML YAML Ain’t Markup Language . 10

X41 D-Sec GmbH PUBLIC Page 18 of 23

OSS Fuzzing Improvements Envoy Proxy

A Appendix

First phase

X41 was asked to support in reducing the number of open fuzz issues in the envoy project. The
project already has about 65 fuzzers implemented. Those ran on a regular basis and detected sev-
eral bugs already. The maintainers of the project were somewhat overwhelmed by the number.
That is were X41 stepped in providing expertise in fuzzers and development power to resolve
bugs in fuzzers that were rated critical. The overall goal was to:

• reduce the number of open bugs,
• improve the coverage so fuzzers can explore code paths that were blocked, and
• reduce the signal-to-noise ratio to find actual security issues.

At the start of the project in March 2022 more than 150 issues were detected by the fuzzers and
stored in a bug-tracker. The project partners identified high risk areas where the most impact on
fixing bugs and improving coverage could be gained.
The diagram in figure A.1 shows the number of fuzz issues open at the end of project phase 1
as a blue bar. About 70 issues have been addressed (green bar) and only a small number of high
risk issues were left open that have been present on project start. Note, that the red and the
green bars summed up do not give the blue bars height, because the blue bar also comprises low
priority fuzz issues.

X41 D-Sec GmbH PUBLIC Page 19 of 23

OSS Fuzzing Improvements Envoy Proxy

Figure A.1: Statistics on fuzzing issues before and after phase 1 of the project.

Selected Issues

One of the first issues tackled was about valid or rather invalid characters in header-names or
-values. The fuzzer had generated these invalid headers and the tested routines in envoy then
aborted although the invalid headers in a production environment would never get there. The
fuzzer bypassed a step of the input parsing, that would have rejected the invalid headers ensuring
that the input is fine for the inner components of envoy. The solution to this kind and some sim-
ilar ones, was to add Protobuf validation rules to the input specification and therefore ensuring,
that only valid headers were generated. Adding Protobuf validation rules was in about one third
of all issues the fix.

In another issue an event loop was involved. The loop was not always quick enough to respond
in time. Sometime it was not even configured to be triggered by the configuration chosen by the
fuzzer. This was resolved by removing that filter from the available ones to the generic fuzzer.
Instead the support for the specific fuzzer for this filter was extended.

A rather big class of fuzz issues were due to assert()s being triggered by the fuzzer. Themost likely
cause was that due to mocking and simulation of an environment the conditions for that code
containing the assert() were not met, which could not happen in production. This could only be
resolved, by either completing the environment in the fuzzers or blocking the fuzzer from doing
certain things, like writing to an already closed stream, by tracking state in the fuzzer better.

X41 D-Sec GmbH PUBLIC Page 20 of 23

OSS Fuzzing Improvements Envoy Proxy

Escaping of rare special character and line ending in yaml-cpp

In the yaml-cpp library not all variations of line endings were recognized. A single carriage return,
Mac-style line ending, was not detected as line break character. Only the combination of carriage
return and newline, Windows style, was parsed correctly.
Furthermore was the ampersand character (&), which denotes an anchor in yaml, not correctly
escaped when emitting yaml. X41 proposed fixed for both issues, which have been appreciated.

X41 D-Sec GmbH PUBLIC Page 21 of 23

OSS Fuzzing Improvements Envoy Proxy

Second phase

During the second phase new fuzzers were added and these uncovered a number of issues. A
selection is given below.

Integer underflow in oghttp2 codec

An integer underflow was discovered in the oghttp2 decoder library in quiche. Triggering the
issue will crash a debug build of envoy on the assertion that remaining_data_ is greater or
equal than padding_length.

1 bool CallbackVisitor::OnDataPaddingLength(Http2StreamId /*stream_id*/ ,
2 size_t padding_length) {
3 QUICHE_DCHECK_GE(remaining_data_, padding_length);
4 current_frame_.data.padlen = padding_length;
5 remaining_data_ -= padding_length;
6 if (remaining_data_ == 0 &&
7 (current_frame_.hd.flags & NGHTTP2_FLAG_END_STREAM) == 0 &&
8 callbacks_->on_frame_recv_callback != nullptr) {
9 const int result = callbacks_->on_frame_recv_callback(

10 nullptr, ¤t_frame_, user_data_);
11 return result == 0;
12 }
13 return true;
14 }

Listing A.1: Integer underflow

The issue seems to be harmless, as remaining_data_, even when underflowed does not control
critical behaviour and is a private variable to class CallbackVistor and does not get passed to
the session callback interface.

Type confusion in a debug assertion in the oghttp2 codec

A debug assertion could be triggered that hints at a possible type confusion issue in the oghttp2
decoder library in quiche. The assertion assumes that the flags of the current http frame must
not equal kMetadataEndFlag, which can be forced.

1 bool CallbackVisitor::OnMetadataEndForStream(Http2StreamId stream_id) {
2 QUICHE_LOG_IF(DFATAL, current_frame_.hd.flags != kMetadataEndFlag);

X41 D-Sec GmbH PUBLIC Page 22 of 23

OSS Fuzzing Improvements Envoy Proxy

3 QUICHE_VLOG(1) << "OnMetadataEndForStream(stream_id=" << stream_id << ")";
4 if (callbacks_->unpack_extension_callback) {
5 void* payload;
6 int result = callbacks_->unpack_extension_callback(
7 nullptr, &payload, ¤t_frame_.hd, user_data_);
8 if (result == 0 && callbacks_->on_frame_recv_callback) {
9 current_frame_.ext.payload = payload;

10 result = callbacks_->on_frame_recv_callback(nullptr, ¤t_frame_, user_data_);
11 }
12 return (result == 0);
13 }
14 return true;
15 }

Listing A.2: Possible type confusion

The severity of the issue may depend on the implementor of the callbacks_ class, which may
not be part of the quiche library or envoy. Each user of the library must conduct proper input
validation, however, consumers of this API may be tempted to assume that the assertion holds
and rely on it, which may have any number of adverse effects.

Type confusion in a debug assertion in the oghttp2 session handler

A debug assertion could be triggered that hints at a possible type confusion issue in the oghttp2
session handler in quiche. The assertion assumes that the current frame header type is of Header-
Type::REQUEST, which may not hold. The severity of the issue is likely low.

1 HeaderType OgHttp2Session::NextHeaderType(
2 absl::optional<HeaderType> current_type) {
3 if (IsServerSession()) {
4 if (!current_type) {
5 return HeaderType::REQUEST;
6 } else {
7 QUICHE_DCHECK(current_type == HeaderType::REQUEST);
8 return HeaderType::REQUEST_TRAILER;
9 }

10 } else
11 /* ... */
12 }

Listing A.3: Possible type confusion

X41 D-Sec GmbH PUBLIC Page 23 of 23

	Executive Summary
	Terminology
	Unit And Integration Testing
	Fuzz Testing

	Fuzz Testing In Envoy
	Starting Point And Previous Efforts
	Validating Input
	Fuzzing Control Plane And Data Plane
	Fuzzing Debug Builds
	Large executable size
	Integration Testing and Fuzzing

	Generation of Valid Input
	Improved Fuzzing Strategy
	Reducing Binary Size
	Network Readfilter Fuzzer
	HTTP Codec Fuzzers
	HTTP Connection Manager and Router Fuzzer

	Conclusions and future Work
	About X41 D-Sec GmbH
	Appendix

