
PRESENTS

Crossplane security audit
In collaboration with the Crossplane maintainers, Open Source Technology Improvement Fund
and The Linux Foundation

Authors
Adam Korczynski <adam@adalogics.com>
David Korczynski <david@adalogics.com>
Date: 27th July 2023

This report is licensed under Creative Commons 4.0 (CC BY 4.0)

mailto:adam@adalogics.com
mailto:david@adalogics.com

Table of contents
Table of contents 2
Executive summary 3
Audit Scope 5
Threat model formalisation 6
Threat actors 12
Attacker objectives 13
Cluster hardening 15
Fuzzing 17
Issues found 19
SLSA 45

Executive summary
This report contains the results from Crossplane’s 2023 security audit carried out by Ada
Logics. The audit was funded by the Cloud Native Computing Foundation and was
facilitated by the Open Source Technology Improvement Fund.

The engagement was a time-based, holistic security audit that had the following high-level
goals:

1. Formalise a threat model of Crossplane
2. Carry out a manual code audit of Crossplane
3. Review Crossplane’s fuzzing suite against the threat model from goal #1
4. Review Crossplane’s SLSA compliance

During the threat modelling goal, we found that the container image registry represented a
significant attack surface for Crossplane. This guided the work in goals #2 and #3 to
consider a specific set of attacks that have received increased attention in recent years:
Supply chain attacks. The findings from the threat modelling combined with the manual
code auditing goal resulted in several findings from the supply chain class of
vulnerabilities that were reachable from the container image registry. Two of the issues
were assigned CVEs with Low and High severity. At the completion of the audit, Crossplane
has fixed all issues except for a single one which impacts an alpha feature.

Ada Logics added 4 fuzzers to Crossplane’s fuzzing suite. These fuzzers target parts of
Crossplane that we found to be exposed from attacks to the registry during the threat
modelling goal of the audit. We added the fuzzers to the packages that they target in the
Crossplane repository. Crossplane is integrated into OSS-Fuzz in such a way that all fuzzers
from the Crossplane and Crossplane-runtime repositories are included during OSS-Fuzz
build cycles. As such, the fuzzers we added in this audit run continuously as well as in
Crossplane’s CI.

The SLSA goal of the audit found that Crossplane performs well on all accounts except for
provenance distribution along with releases. Adding provenance will allow adopters to
avoid issues in their supply chain by verifying the Crossplane artefacts against provenance
attestations.

Results summarised
5 new fuzzers added to Crossplane’s fuzzing suite

16 issues security found

2 CVE’s assigned

All issues minus 1 (in an alpha feature) are fixed at the end of the audit by the Crossplane
team

Project Summary
The auditors of Ada Logics were:

Name Title Email

Adam Korczynski Security Engineer, Ada Logics Adam@adalogics.com

David Korczynski Security Researcher, Ada Logics David@adalogics.com

The Crossplane community members involved in audit were:

Name Title Email

Philippe Scorsolini Senior Software Engineer,
Upbound

philippe.scorsolini@upbound.io

Jared Watts Community Manager, Upbound jared@upbound.io

Jean du Plessis Senior Engineering Manager,
Upbound

jean@upbound.io

Nic Cope Senior Principal Engineer,
Upbound

negz@upbound.io

The following facilitators of OSTIF were engaged in the audit:

Name Title Email

Derek Zimmer Executive Director, OSTIF Derek@ostif.org

Amir Montazery Managing Director, OSTIF Amir@ostif.org

Audit Scope
The following assets were in scope of the audit.

Repository https://github.com/crossplane/crossplane

Language Go

Repository https://github.com/crossplane/crossplane-runtime

Language Go

Threat model formalisation
In this section, we present the threat modelling we did as part of the audit. Threat
modelling is a process to identify potential security risks or threats to a system. We
analysed Crossplane’s components, data flows and attack vectors to identify how threat
actors could seek to compromise Crossplane and which goals they would attempt to
achieve. During the audit, threat modelling progressed alongside other efforts; We started
with an initial threat model of the assets in scope, and as the audit progressed, the manual
auditing contributed to a clearer understanding of the threat model. Vice versa, the threat
modelling contributed to identifying more security issues in Crossplane’s code base. The
audit drew organically towards the threats from Crossplane’s supply chain attack vectors.
The audit was not a dedicated supply chain audit, however, we found this vector to be
important and exposed to Crossplane. Crossplane has many characteristics of a package
manager considering Debians definition:

“A package manager keeps track of what software is installed on your computer, and allows
you to easily install new software, upgrade software to newer versions, or remove software
that you previously installed. As the name suggests, package managers deal with packages:
collections of files that are bundled together and can be installed and removed as a group.”
https://www.debian.org/doc/manuals/aptitude/pr01s02.en.html

Crossplane has all of these qualities which makes it an ideal target for supply chain
attacks. Package managers are responsible for fetching software packages from internal or
remote sources and installing them in an environment so that they can be executed later.
This is by default an exposed attack surface since attackers have a wide range of
techniques and tactics at their disposal to comprise the package manager itself or its
users. We see Crossplane as a package manager for container images. Crossplane fetches
the images from remote sources. Over the last few years the security community has
formalised a series of attack vectors for software systems that handle container images
from remote sources which we have included in the threat model below.

After we enumerate the attack vectors, we detail how attackers can put themselves in a
position to launch an attack through this attack vector. We finally present the threat actors
and their objectives that could seek to exploit security holes in Crossplane.

https://www.debian.org/doc/manuals/aptitude/pr01s02.en.html

Supply chain attacks
In recent years, much work has been put into identifying how attackers can seek to
compromise the software supply chain. Known, high-impact attacks from successful
compromises of users’ software supply chain have sparked an interest in understanding
this attack vector which has led the community to formalising a series of supply chain
specific threats against software systems that consume 3rd-party software packages.
Crossplane both consumes 3rd-party packages but also implements infrastructure that
facilitates the lifecycle of consuming 3rd-party software packages for the user. Both sides
are critical to harden against.

Endless data attack
An attack where an attacker tricks a client into downloading an endless stream of data
when the client requests it. The resulting impact is that the machine on which the client is
running will run indefinitely without completing the task thus preventing the service from
carrying out other tasks. Crossplane is exposed to this attack vector in case an attacker can
compromise the registry fromwhich Crossplane fetches images.

Rollback attacks
A rollback attack is where a threat actor can trick a client into installing older versions of a
given software artefact. The actor would be interested in doing this in case they knew
about vulnerabilities in older versions of a software artefact. They would then prevent
updates of the artefact and exploit the vulnerabilities of the old version. Crossplane users
specify images by either tags or digests. Specifying an image with a digest is the best
security practice, however, if an attacker compromises the registry, they may be able to
tamper with the image if Crossplane lacks validation against the requested digest.

Freeze attacks
This is an attack where an actor prevents a client from updating software artefacts. The
threat actor does this by presenting files to the client that the client is already aware of
and is tricked into concluding that there is no update to the artefact. A freeze attack can be
enabled by a vulnerability that allows the actor to carry out a Man-in-the-Middle attack,
where the actor intercepts requests between the client and the central repository when
the client checks for updates. To update a Crossplane package, users are required to
manually update manifest files which will prompt Crossplane to pull the new package. An
attacker who can block upgrades will be able to launch a freeze attack against Crossplane.

Arbitrary package attacks
An arbitrary package attack is where an attacker can trick a client into downloading a
software artefact of the attackers choice. In a successful arbitrary package attack, the
client will not be aware that it downloaded the wrong artefact. There are several ways an

attacker could attempt this against Crossplane: Image tampering is one way since a
maliciously modified image could be considered an arbitrary package. Attackers could
also seek to compromise the dependencies of Crossplane packages since Crossplane pulls
dependencies when installing Crossplane packages.

Typosquatting attacks
A typosquatting attack is when an attacker tricks a client into downloading malicious
software artifacts by typing a name that closely resembles the safe artifacts name but is
still different. Typosquatting attacks are hard for Crossplane to harden against, given that
Crossplane trusts the package name.

Crossplane’s supply chain attack vectors
An attacker can take several positions to launch a supply chain attack. In this part, we
present how an attacker could obtain such a position.

Compromising the registry
An attacker can compromise the registry and control the data the registry responds to
requests made to it. This level of compromise allows the attacker to return any data to
Crossplane.

Compromising the package in the registry
An attacker can compromise the package that exists in the registry. This requires the
attacker to compromise either the registry itself or the maintainer of the package. A
successful attack would require that neither the user nor the package manager validate
the package at download time. This could for example be enabled by compromising the
vendor account that uploads andmanages a given package at the registry.

Compromising the infrastructure delivering the package
An attacker can compromise the infrastructure delivering the package to Crossplane.
There are two important pieces of infrastructure to Crossplane in this attack vector:

1. The cloud providers’ infrastructure. An attacker could compromise the cloud
providers infrastructure to get access to the users cluster.

2. Crossplane’s go-containerregistry dependency. Crossplane relies on the
github.com/google/go-containerregistry library to fetch images.
Vulnerabilities in go-containerregistry that Crossplane can reach could impact
Crossplane in the samemanner as if the code lived in Crossplane’s own repository.

Crossplane threat scenario
In this section, we exemplify the above observations with a threat scenario. The purpose is
to consider a tangible series of observations that an attacker would make to look for
vulnerabilities to exploit in Crossplane. The previous sections in our threat modelling have
taken a high-level approach, and this section aims to make these more tangible with an
example threat scenario.

Crossplane infrastructure teamsmanage packages through container image references.
The infrastructure teamwill input a reference to Crossplane which will then download an
image from a registry specified in the reference. For example, when creating a Provider or
Configuration, the user will specify a package which is the image reference:

https://pkg.go.dev/github.com/crossplane/crossplane/apis/pkg/v1beta1#PackageRevisionSpec

The Crossplane revision controller will fetch the image defined in the PackageSpec from
its registry. As such, when Crossplane deals with container images, there are two inputs to
Crossplane one of which the Crossplane admin controls, and one of which the admin does
not control.

1. The infrastructure team inputs the image reference to Crossplane. In this step,
there is no change in trust.

2. Crossplane sends a request to the registry which responds with the Crossplane
package. In this step, the trust flows high to low when Crossplane sends the request
to the registry and low to high when the registry responds with the package:

https://pkg.go.dev/github.com/crossplane/crossplane/apis/pkg/v1beta1#PackageRevisionSpec

In this workflow, Crossplane expects the registry to correctly and safely handle the request
from Crossplane to the registry and to return the correct image based on the reference.
Even if the infrastructure team has specified the correct image reference using a digest
which is more secure, the attack surface from the registry exists. For example, if an
attacker has compromised the registry, they can choose to ignore the digest and return an
arbitrary data blob to Crossplane. This makes the registry an ideal target for supply chain
attacks. Attackers will look for ways to compromise registries as well as missing hardening
in Crossplane’s Package fetching routines.
If an attacker has compromised the registry, they can potentially fully control the package
that Crossplane returns. In this scenario, Crossplane should be hardened against every
possible attack vector from the registry, which includes the supply chain attacks listed
above as well as non-supply chain-specific privilege escalations.

Crossplane Claims
Claims in Crossplane are declarative requests for a given cloud resource or service. They
allow Platform Engineers to define the specific resources that developers can provision
and access, while also allowing developers to define their desired characteristics and
parameters for those permitted resources. When a user makes a claim, Crossplane
provisions andmanages the requested resources based on the provided specifications.
This separation of concerns is a major advantage of Crossplane which is intended to allow
safe self-service provisioning of resources by developers.

A vital security assumption for claims is that users consume the resources that they
believe they consume. If an attacker can cause that assumption to be wrong, they can
obtain an advantageous security position. For example, a threat actor could interfere with
how Crossplane handles claims to attempt to tamper with the resource that the user is
expecting. By causing Crossplane to supply a different resource than the requested one,
the threat actor would be able to breach the security of Crossplane.

A serious breach related to composite resources is the case where a user - who is not a
cluster admin - can assume the role of the platform team and obtain privileges to
configure the CompositeResourceDefinitions of the cluster. This could lead to full cluster
breach as the threat actor could replace existing CompositeResourceDefinitions with
malicious ones or add new CompositeResourceDefinitions that could be used to further
escalate privileges. This attack vector is particularly severe if the user can do this by way of
a claim since claims are the API that limited privilege users are meant to use andmust be
secured against privilege escalations.

Threat actors
A threat actor is an individual or group that intentionally attempts to exploit
vulnerabilities, deploys malicious code, or compromise or disrupt a Crossplane
deployment, often for financial gain, espionage, or sabotage.
We identify the following threat actors for Crossplane. A threat actor can assumemultiple
profiles from the table below; for example, a fully untrusted user can also be a contributor
to a 3rd-party library used by Crossplane.

Actor Description Have already
escalated
privileges

Fully untrusted
users

Users that have not been granted any
privileges.

No

Platform authors Users that are responsible for configuring
Crossplane, e.g., installing
providers/configurations, creating
compositions, setting up cloud credentials,
etc.

No

Platform
consumers

App developers who consume the platform
API through claims. They have limited
permissions via RBAC. They do not have
permission to install a provider for example.

No

Contributors to
3rd-party
dependencies

Contributors to dependencies used by
Crossplane.

No

Well-funded
criminal groups

Organised criminal groups that often have
either political or economic goals.

No

Attacker objectives
In this section, we enumerate common objectives observed in the wild amongst attacks
against cloud-native systems that apply to Crossplane.

Steal compute power
Threat actors may seek to compromise a Crossplane deployment to steal computational
resources. This is a common attack vector for cloud-based infrastructure, and there are
numerous examples of such attacks in the wild1 2.

The attacker will often attempt to generate new workloads that run cryptominers.
Attackers will often use the Monero crypto miners, since there are many images available
publicly to deploy Monero mining workloads3.

Further privilege escalation
Attackers look for vulnerabilities that can allow them to further manifest their position
even after having already elevated their privileges. One way is to extend the timeframe of
the elevated position by finding a way to maintain their position even after the initial
vulnerability has been patched. At the time of this audit, attackers are actively leveraging
misconfigurations in RBAC to gain a foothold into Kubernetes clusters in the wild and
obtain persisted elevated privileges4. Another way the attacker could seek to further their
position is by way of horizontal privilege escalation. This could be done by attacking other
users of the Crossplane deployment to run code on the victims machine, steal secrets,
pretend to be the victim in other attacks, or something else. A desirable goal for any attack
is to escalate privileges all the way to root. As such, an attacker can seek to chain
vulnerabilities starting with a low-impact vuln and escalate horizontally with other
higher-impact vulns that require existing privileges to exploit.

Denial of service
Attackers may seek to gain a competitive advantage by launching denial-of-service attacks
against Crossplane deployments. The motivation here could be financial or to disrupt a
competitor's research and development efforts. Denial of service attacks can also damage
the users reputation or put the users in a position where they breach contractual
agreements with their partners, thus making them vulnerable to legal action.

4 https://blog.aquasec.com/leveraging-kubernetes-rbac-to-backdoor-clusters
3 https://unit42.paloaltonetworks.com/cryptojacking-docker-images-for-mining-monero/
2 https://blog.aquasec.com/container-vulnerability-dzmlt-dynamic-container-analysis

1

https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/malicious-docker-hub-cont
ainer-images-cryptocurrency-mining

https://blog.aquasec.com/leveraging-kubernetes-rbac-to-backdoor-clusters
https://unit42.paloaltonetworks.com/cryptojacking-docker-images-for-mining-monero/
https://blog.aquasec.com/container-vulnerability-dzmlt-dynamic-container-analysis
https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/malicious-docker-hub-container-images-cryptocurrency-mining
https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/malicious-docker-hub-container-images-cryptocurrency-mining

Steal secrets
Attackers may seek to steal secrets from Crossplane users to obtain confidential,
high-value data or access to other systems that the user manages.

Cluster hardening
Ada Logics assessed Crossplane’s hardening against NSA’s Kubernetes hardening guide.
We used Kubescape5 to scan Crossplane’s YAMLmanifests against Kubescape’s NSA
framework setting. Crossplane scores at 100% compliance against NSA’s Kubernetes
hardening guide, meaning that no resources failed with security issues of any kind.

These are the findings from Kubescape against both Crossplane and Crossplane-runtime.

Controls: 24 (Failed: 0, Passed: 24, Action Required: 0
Failed Resources by Severity: Critical — 0, High — 0, Medium— 0, Low— 0

Severity Control name Failed
resources

All
Resources

% Compliance-score
(if failed)

Critical API server insecure port is enabled 0 0 -1%

Critical Disable anonymous access to
Kubelet service

0 0 -1%

Critical Enforce Kubelet client TLS
authentication

0 0 -1%

High Resource limits 0 0 -1%

High Applications credentials in
configuration files

0 0 -1%

High Host PID/IPC privileges 0 0 -1%

High HostNetwork access 0 0 -1%

High Insecure capabilities 0 0 -1%

High Privileged container 0 0 -1%

High CVE-2021-25742-nginx-ingress-snip
pet-annotation-vu…

0 0 -1%

Medium Exec into container 0 0 -1%

Medium Non-root containers 0 0 -1%

Medium Allow privilege escalation 0 0 -1%

Medium Ingress and Egress blocked 0 0 -1%

Medium Automatic mapping of service 0 0 -1%

5 https://github.com/kubescape/kubescape

https://github.com/kubescape/kubescape

account

Medium Cluster-admin binding 0 0 -1%

Medium Container hostPort 0 0 -1%

Medium Cluster internal networking 0 0 -1%

Medium Linux hardening 0 0 -1%

Medium CVE-2021-25741 - Using symlink for
arbitrary host ...

0 0 -1%

Medium Secret/ETCD encryption enabled 0 0 -1%

Medium Audit logs enabled 0 0 -1%

Low Immutable container filesystem 0 0 -1%

Low PSP enabled 0 0 -1%

Resource Summary 0 0 0.00%

We recommend Crossplane to integrate Kubescape into Crossplane’s CI pipeline to maintain
the same high standard over time.

Fuzzing
Crossplane has a fuzzing suite covering both the Crossplane main repository as well as the
Crossplane-runtime repository. The fuzzers run continuously on OSS-Fuzz, which runs the
fuzzers around 143 billion times every month.

OSS-Fuzz fuzzing stats from 30th April to 30th May 2023:

Fuzzer name # of times executed (millions) Fuzzing hours

FuzzDag 29,548 1,642.6

FuzzFindXpkgInDir 8,715 1,188.2

FuzzForCompositeResourceClaim 18,778 1,143.8

FuzzForCompositeResourceXcrd 24,347 1,349.7

FuzzNewCompositionRevision 4,532 1,147.4

FuzzPackageRevision 16,263 1,288.5

FuzzParse 1,492 1,500.3

FuzzPatchApply 500 1,017.3

FuzzPropagateConnection 17,782 1,079.9

FuzzTransform 21,525 1,354

Total 143,482 12,711.7

An important element of fuzzing is continuity: The fuzzers need to keep running to keep
testing for bugs and build up their corpora. Crossplane’s OSS-Fuzz build has had no
downtime since the completion of its fuzzing audit6. Crossplane maintains the fuzzers in
the Crossplane and Crossplane-runtime repositories which allows the maintainers to
quickly fix any breakages should they arise.

In addition to the fuzzers running continuously by way of OSS-Fuzz, Crossplane also runs
them in the CI pipeline through OSS-Fuzz’s CIFuzz7 on pull requests. As such, the fuzzers
test for low-hanging, easy-to-find issues on pull requests before they are merged into the
project. An advantage of using OSS-Fuzz’s CIFuzz is that it starts the fuzz job with the full
corpus that OSS-Fuzz has accumulated, thereby allowing the fuzzers to reach far into their
targets at every run.

7 https://google.github.io/oss-fuzz/getting-started/continuous-integration/
6 https://blog.crossplane.io/fuzzing-security-audit/

https://google.github.io/oss-fuzz/getting-started/continuous-integration/
https://blog.crossplane.io/fuzzing-security-audit/

ADA Logics added 4 new fuzzers to Crossplane’s fuzzing suite and improved the FuzzDag
fuzzer by increasing its coverage.

New fuzzers

FuzzPTFComposer
Adds a fuzzer that calls several APIs in the same order that the composite controller does.
Tests if any of the APIs can be disrupted in a production-like scenario.
PR: https://github.com/crossplane/crossplane/pull/4198

FuzzRevisionControllerPackageHandling
Tests the Revision controllers handling of Crossplane packages. The fuzzerscreates a
Revision and resolves its dependencies.
PR: https://github.com/crossplane/crossplane/pull/4199

FuzzRenderClusterRoles
Tests the RBACmanagers rendering of cluster roles.
PR: https://github.com/crossplane/crossplane/pull/4201

FuzzRenderRoles
Tests the RBACmanagers rendering of cluster roles.
PR: https://github.com/crossplane/crossplane/pull/4202

Improved fuzzers
Ada Logics addedmore calls to the DAG fuzzer which were not covered prior to the security
audit. This improvement resulted in increased coverage.
PR: https://github.com/crossplane/crossplane/pull/4200

https://github.com/crossplane/crossplane/pull/4198
https://github.com/crossplane/crossplane/pull/4199
https://github.com/crossplane/crossplane/pull/4201
https://github.com/crossplane/crossplane/pull/4202
https://github.com/crossplane/crossplane/pull/4200

Issues found
Here we present the issues that we identified during the audit.

ID Title Severity Fixed

1 ADA-XP-23-1 Denial of service from 3rd-party
vulnerability

Moderate Yes

2 ADA-XP-23-2 Possible OOM in internal/xpkg Low Yes

3 ADA-XP-23-3 Possible OOMwhen reading Xfn
command output

Low Yes

4 ADA-XP-23-4 Possible OOMwhen reading Xfn
command output

Low Yes

5 ADA-XP-23-5 Dockerfiles do not follow best practices
regarding COPY vs ADD

Low Yes

6 ADA-XP-23-6 Insufficient documentation on security
implications of using tags for remote
images

Low Yes

7 ADA-XP-23-7 Crossplane’s OCI store does not validate
for invariants in images

Moderate No

8 ADA-XP-23-8 gPRC connection not closed Low Yes

9 ADA-XP-23-9 Possible endless data attack in
Crossplane’s Image backend

Moderate Yes

10 ADA-XP-23-10 Denial of service frommalicious
Crossplane package

Moderate Yes

11 ADA-XP-23-11 Possible image tampering frommissing
image validation

High Yes

12 ADA-XP-23-12 Possible endless data attack in
ProviderRevision controller

Moderate Yes

13 ADA-XP-23-13 Possible endless data attack in
Crossplane’s OCI store I

Moderate Yes

14 ADA-XP-23-14 Possible endless data attack in
Crossplane’s OCI store II

Moderate Yes

15 ADA-XP-23-15 Possible endless data attack in
Crossplane’s OCI store III

Moderate Yes

16 ADA-XP-23-16 Denial of service from large image Low Yes

Issues found in alpha features
Several of the issues were found in alpha components of Crossplane. These issues have
been scored by the samemetrics as issues found in non-alpha components. The issues
found in alpha components are:

ID Title Severity Fixed

3 ADA-XP-23-3 Possible OOMwhen reading Xfn
command output

Low Yes

4 ADA-XP-23-4 Possible OOMwhen reading Xfn
command output

Low Yes

7 ADA-XP-23-7 Crossplane’s OCI store does not validate
for invariants in images

Moderate No

8 ADA-XP-23-8 gPRC connection not closed Low Yes

13 ADA-XP-23-13 Possible endless data attack in
Crossplane’s OCI store I

Moderate Yes

14 ADA-XP-23-14 Possible endless data attack in
Crossplane’s OCI store II

Moderate Yes

15 ADA-XP-23-15 Possible endless data attack in
Crossplane’s OCI store III

Moderate Yes

CVEs
The following issues were assigned CVEs:

ID Title CVE Severity

11 ADA-XP-23-11 Possible image tampering from
missing image validation

CVE-2023-38495 High

16 ADA-XP-23-16 Denial of service from large image CVE-2023-37900 Low

ADA-XP-23-1: Denial of service from 3rd-party vulnerability
ID ADA-XP-23-1

Component Crossplane OCI store

Severity Moderate

Fixed: Yes

If an attacker can cause Crossplane to fetch an image with a maliciously-craftedmanifest,
the attacker can cause a DoS condition for Crossplane from an unrecoverable OOM panic.
This will crash the Crossplane controller and will cause a temporary DoS of the node
affecting other services.

The root cause of the issue was in a 3rd-party dependency. The issue has been fixed. Ada
Logics has requested issuance of a CVE which has not been confirmed.

The attacker will need to compromise the registry fromwhich Crossplane fetches an image
or by tricking the Crossplane user into consuming an image by way of dependency
confusion or typosquatting attack vectors. To launch a targeted attack, the threat actor will
need to knowwhich images their victim consumes in their Crossplane deployment.
Alternatively, they can launch a non-targeted attack by compromising images of popular
and widely-used images.

Once the attacker has compromised the registry, the attack vector is fairly simple, and
crafting the malicious manifest is trivial.

ADA-XP-23-2: Possible OOM in internal/xpkg
ID ADA-XP-23-2

Component Crossplane Packages

Severity Low

Fixed in: https://github.com/crossplane/crossplane/pull/4232

github.com/crossplane/crossplane/blob/master/internal/xpkg.Build() is
susceptible to an OOM condition on the highlighted line below if buf on the highlighted
line contains a large buffer.

https://github.com/crossplane/crossplane/blob/498b2fcbcc5323676d48048944e8a2a6d67cd87a/i
nternal/xpkg/build.go#L82-L117

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

func Build(ctx context.Context, b parser.Backend, p parser.Parser, l parser.Linter)

(v1.Image, error) {

// Get YAML stream.

r, err := b.Init(ctx)

if err != nil {

return nil, errors.Wrap(err, errInitBackend)

}

defer func() { _ = r.Close() }()

// Copy stream once to parse and once write to tarball.

buf := new(bytes.Buffer)

pkg, err := p.Parse(ctx, annotatedTeeReadCloser(r, buf))

if err != nil {

return nil, errors.Wrap(err, errParserPackage)

}

if err := l.Lint(pkg); err != nil {

return nil, errors.Wrap(err, errLintPackage)

}

// Write on-disk package contents to tarball.

tarBuf := new(bytes.Buffer)

tw := tar.NewWriter(tarBuf)

hdr := &tar.Header{

Name: StreamFile,

Mode: int64(StreamFileMode),

Size: int64(buf.Len()),

}

if err := tw.WriteHeader(hdr); err != nil {

return nil, errors.Wrap(err, errTarFromStream)

}

if _, err = io.Copy(tw, buf); err != nil {

return nil, errors.Wrap(err, errTarFromStream)

}

https://github.com/crossplane/crossplane/pull/4232
https://github.com/crossplane/crossplane/blob/498b2fcbcc5323676d48048944e8a2a6d67cd87a/internal/xpkg/build.go#L82-L117
https://github.com/crossplane/crossplane/blob/498b2fcbcc5323676d48048944e8a2a6d67cd87a/internal/xpkg/build.go#L82-L117

115

116

117

if err := tw.Close(); err != nil {

return nil, errors.Wrap(err, errTarFromStream)

}

In the case of an excessively large buf on line 112, Go will perform a sigkill, but before
doing so, the machine running Crossplane will experience a temporary DoS condition that
will affect other services as well.

ADA-XP-23-3: Possible OOM when reading Xfn command
output
ID ADA-XP-23-3

Component Composite Functions

Severity Low

Fixed in: https://github.com/crossplane/crossplane/pull/4217

This issue affects an alpha feature in Crossplane.

If an attacker can control the input to an Xfn, they can trigger an OOM DoS issue. The
attacker would need to cause the Xfn to create a large Stdout buffer, and the OOMwould
happen when Crossplane reads it entirely into memory on the highlighted line:

https://github.com/crossplane/crossplane/blob/b01a0f8c0830f038514714baf24deb7ef21bbad4/c
md/xfn/spark/spark.go#L81

81

...

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

...

157

158

159

160

161

162

func (c *Command) Run() error {

...

p := oci.NewCachingPuller(h, store.NewImage(c.CacheDir),

&oci.RemoteClient{})

img, err := p.Image(ctx, r, FromImagePullConfig(req.GetImagePullConfig()))

if err != nil {

return errors.Wrap(err, errPull)

}

// Create an OCI runtime bundle for this container run.

b, err := s.Bundle(ctx, img, runID,

FromRunFunctionConfig(req.GetRunFunctionConfig()))

if err != nil {

return errors.Wrap(err, errBundleFn)

}

root := filepath.Join(c.CacheDir, ociRuntimeRoot)

if err := os.MkdirAll(root, 0700); err != nil {

_ = b.Cleanup()

return errors.Wrap(err, errMkRuntimeRootdir)

}

...

cmd := exec.CommandContext(ctx, c.Runtime, "--root="+root, "run",

"--bundle="+b.Path(), runID)

cmd.Stdin = bytes.NewReader(req.GetInput())

out, err := cmd.Output()

if err != nil {

_ = b.Cleanup()

https://github.com/crossplane/crossplane/pull/4217
https://github.com/crossplane/crossplane/blob/b01a0f8c0830f038514714baf24deb7ef21bbad4/cmd/xfn/spark/spark.go#L81
https://github.com/crossplane/crossplane/blob/b01a0f8c0830f038514714baf24deb7ef21bbad4/cmd/xfn/spark/spark.go#L81

163

164

165

166

167

168

169

170

171

172

173

174

175

176

return errors.Wrap(err, errRuntime)

}

if err := b.Cleanup(); err != nil {

return errors.Wrap(err, errCleanupBundle)

}

rsp := &v1alpha1.RunFunctionResponse{Output: out}

pb, err = proto.Marshal(rsp)

if err != nil {

return errors.Wrap(err, errMarshalResponse)

}

_, err = os.Stdout.Write(pb)

return errors.Wrap(err, errWriteResponse)

}

ADA-XP-23-4: Possible OOM when reading Xfn command
output
ID ADA-XP-23-4

Component Composite Functions

Severity Low

Fixed in: https://github.com/crossplane/crossplane/pull/4217

This issue affects an alpha feature in Crossplane.

This issue is similar to ADA-XP-23-3 in root cause, attack vector and impact.

https://github.com/crossplane/crossplane/blob/b01a0f8c0830f038514714baf24deb7ef21bbad4/internal/xfn
/container_linux.go#L83

83

...

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

...

157

158

159

160

...

163

164

165

166

167

168

func (r *ContainerRunner) RunFunction(ctx context.Context, req

*v1alpha1.RunFunctionRequest) (*v1alpha1.RunFunctionResponse, error) {

...

stdio, err := StdioPipes(cmd, r.rootUID, r.rootGID)

if err != nil {

return nil, errors.Wrap(err, errCreateStdioPipes)

}

b, err := proto.Marshal(req)

if err != nil {

return nil, errors.Wrap(err, errMarshalRequest)

}

if err := cmd.Start(); err != nil {

return nil, errors.Wrap(err, errStartSpark)

}

if _, err := stdio.Stdin.Write(b); err != nil {

return nil, errors.Wrap(err, errWriteRequest)

}

if err := stdio.Stdin.Close(); err != nil {

return nil, errors.Wrap(err, errCloseStdin)

}

stdout, err := io.ReadAll(stdio.Stdout)

if err != nil {

return nil, errors.Wrap(err, errReadStdout)

}

stderr, err := io.ReadAll(stdio.Stderr)

https://github.com/crossplane/crossplane/pull/4217
https://github.com/crossplane/crossplane/blob/b01a0f8c0830f038514714baf24deb7ef21bbad4/internal/xfn/container_linux.go#L83
https://github.com/crossplane/crossplane/blob/b01a0f8c0830f038514714baf24deb7ef21bbad4/internal/xfn/container_linux.go#L83

169

170

171

172

...

180

if err != nil {

return nil, errors.Wrap(err, errReadStderr)

}

...

}

ADA-XP-23-5: Dockerfiles do not follow best practices
regarding COPY vs ADD
ID ADA-XP-23-5

Component Crossplane Cluster
Images

Severity Low

Fixed in: https://github.com/crossplane/crossplane/pull/4173

Dockers best practices documentation recommends using COPY instead of ADD:

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#add-or-copy

Crossplane does not follow this best practices the following places:

https://github.com/crossplane/crossplane/blob/192a09266e10f1873020201043b5782cdef8ce8f/clu
ster/images/xfn/Dockerfile

14 ADD bin/${TARGETOS}_${TARGETARCH}/xfn /usr/local/bin/

https://github.com/crossplane/crossplane/blob/19be2ce66814569829d13e9ecc3ba2cfc6b245bb/cl
uster/images/crossplane/Dockerfile

6

7

ADD bin/$TARGETOS_$TARGETARCH/crossplane /usr/local/bin/

ADD crds /crds

https://github.com/crossplane/crossplane/pull/4173
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#add-or-copy
https://github.com/crossplane/crossplane/blob/192a09266e10f1873020201043b5782cdef8ce8f/cluster/images/xfn/Dockerfile
https://github.com/crossplane/crossplane/blob/192a09266e10f1873020201043b5782cdef8ce8f/cluster/images/xfn/Dockerfile
https://github.com/crossplane/crossplane/blob/19be2ce66814569829d13e9ecc3ba2cfc6b245bb/cluster/images/crossplane/Dockerfile
https://github.com/crossplane/crossplane/blob/19be2ce66814569829d13e9ecc3ba2cfc6b245bb/cluster/images/crossplane/Dockerfile

ADA-XP-23-6: Insufficient documentation on security
implications of using tags for remote images
ID ADA-XP-23-6

Component Crossplane
Documentation

Severity Low

Fixed in: https://github.com/crossplane/docs/pull/465

The Crossplane documentation recommends referencing images with digests rather than
tags. However, the documentation does not mention the security concerns of referencing
by tags.

When referencing an image by tag, users may receive a different image than they expect,
and it is harder to validate the received image. This makes it easy for an attacker to tamper
with an image and avoid detection in case of a successful attack against the Crossplane
user.

Crossplane users consuming packages from a private registry are also affected by this
since attackers can compromise the registry and change the underlying image that a tag
refers to.

We recommendmaking it explicit in the documentation that referencing images by tag has
considerate security downsides.

https://github.com/crossplane/docs/pull/465

ADA-XP-23-7: Crossplane’s OCI store does not validate for
invariants in images
ID ADA-XP-23-7

Component Crossplane’s OCI store

Severity Moderate

Fixed: No

This issue affects an alpha feature in Crossplane. It has not been fixed by the completion of
the security audit, but Crossplane is working on a fix here:
https://github.com/crossplane/crossplane/pull/4214

Crossplane’s OCI store does not validate layers, config andmanifests of images.
Crossplane uses github.com/google/go-containerregistry for the underlying image
interface. go-containerregistry has a validation API for images which is available here:
https://github.com/google/go-containerregistry/blob/ca48523123223c5ea478501e6cb1a9
1a64a8a049/pkg/v1/validate/image.go#L30.

This API validates the layers, configs andmanifests of an image and returns an error if any
step of the validation fails.

Crossplane uses this validation API when writing a supplied image to the OCI store:
https://github.com/crossplane/crossplane/blob/498b2fcbcc5323676d48048944e8a2a6d67cd87a/i
nternal/oci/store/store.go#L158

145

146

147

148

149

150

151

152

154

154

...

158

159

func (i *Image) Image(h ociv1.Hash) (ociv1.Image, error) {

uncompressed := image{root: i.root, h: h}

...

// return an error.

oi, err := partial.UncompressedToImage(uncompressed)

if err != nil {

return nil, errors.Wrap(err, errPartial)

}

...

return oi, errors.Wrap(validate.Image(oi, validate.Fast), errInvalidImage)

}

This API is called in before writing the image to the local store here:

https://github.com/crossplane/crossplane/pull/4214
https://github.com/google/go-containerregistry/blob/ca48523123223c5ea478501e6cb1a91a64a8a049/pkg/v1/validate/image.go#L30
https://github.com/google/go-containerregistry/blob/ca48523123223c5ea478501e6cb1a91a64a8a049/pkg/v1/validate/image.go#L30
https://github.com/crossplane/crossplane/blob/498b2fcbcc5323676d48048944e8a2a6d67cd87a/internal/oci/store/store.go#L158
https://github.com/crossplane/crossplane/blob/498b2fcbcc5323676d48048944e8a2a6d67cd87a/internal/oci/store/store.go#L158

https://github.com/crossplane/crossplane/blob/498b2fcbcc5323676d48048944e8a2a6d67cd87a/i
nternal/oci/store/store.go#L168

162

163

164

165

166

167

168

169

170

171

...

216

func (i *Image) WriteImage(img ociv1.Image) error {

d, err := img.Digest()

if err != nil {

return errors.Wrap(err, errGetDigest)

}

if _, err = i.Image(d); err == nil {

// Image already exists in the store.

return nil

}

...

}

This usage of the go-containerregistrys validation API will not catch validation errors, since
Crossplane does not catch errors. As such, if any layers in the image have been tampered
with, Crossplane will not validate and catch this to prevent the user from consuming the
image.

https://github.com/crossplane/crossplane/blob/498b2fcbcc5323676d48048944e8a2a6d67cd87a/internal/oci/store/store.go#L168
https://github.com/crossplane/crossplane/blob/498b2fcbcc5323676d48048944e8a2a6d67cd87a/internal/oci/store/store.go#L168

ADA-XP-23-8: gPRC connection not closed
ID ADA-XP-23-8

Component Crossplane’s OCI store

Severity Low

Fixed in: https://github.com/crossplane/crossplane/pull/4174

This issue impacts an alpha-feature in Crossplane.

Crossplane keeps the gRPC connection of composite functions open in case any of the
passed options fail:

https://github.com/crossplane/crossplane/blob/001d0577249ebb4fcb0d315bf7eb452d5dc5b1ad/i
nternal/controller/apiextensions/composite/composition_ptf.go#L793-L820

793

794

795

796

797

789

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

func RunFunction(ctx context.Context, fnio *iov1alpha1.FunctionIO, fn

*v1.ContainerFunction, o ...ContainerFunctionRunnerOption)

(*iov1alpha1.FunctionIO, error) {

in, err := yaml.Marshal(fnio)

if err != nil {

return nil, errors.Wrap(err, errMarshalFnIO)

}

target := DefaultTarget

if fn.Runner != nil && fn.Runner.Endpoint != nil {

target = *fn.Runner.Endpoint

}

conn, err := grpc.DialContext(ctx, target,

grpc.WithTransportCredentials(insecure.NewCredentials()))

if err != nil {

return nil, errors.Wrap(err, errDialRunner)

}

req := &fnv1alpha1.RunFunctionRequest{

Image: fn.Image,

Input: in,

ImagePullConfig: ImagePullConfig(fn),

RunFunctionConfig: RunFunctionConfig(fn),

}

for _, opt := range o {

if err := opt(ctx, fn, req); err != nil {

return nil, errors.Wrap(err, errApplyRunFunctionOption)

}

}

rsp, err :=

https://github.com/crossplane/crossplane/pull/4174
https://github.com/crossplane/crossplane/blob/001d0577249ebb4fcb0d315bf7eb452d5dc5b1ad/internal/controller/apiextensions/composite/composition_ptf.go#L793-L820
https://github.com/crossplane/crossplane/blob/001d0577249ebb4fcb0d315bf7eb452d5dc5b1ad/internal/controller/apiextensions/composite/composition_ptf.go#L793-L820

823

824

825

826

827

828

829

830

831

832

...

835

836

837

fnv1alpha1.NewContainerizedFunctionRunnerServiceClient(conn).RunFunction(ctx, req)

if err != nil {

// TODO(negz): Parse any gRPC status codes.

_ = conn.Close()

return nil, errors.Wrap(err, errRunFnContainer)

}

if err := conn.Close(); err != nil {

return nil, errors.Wrap(err, errCloseRunner)

}

...

out := &iov1alpha1.FunctionIO{}

return out, errors.Wrap(yaml.Unmarshal(rsp.Output, out), errUnmarshalFnIO)

}

ADA-XP-23-9: Possible endless data attack in Crossplane’s
Image backend
ID ADA-XP-23-9

Component Crossplane’s OCI store

Severity Moderate

Fixed in: https://github.com/crossplane/crossplane/pull/4348

Crossplane’s image backend is susceptible to an endless data attack from an unrestricted
loop throughmanifest layers in Crossplane packages. To launch this attack, the attacker
needs to craft an image containing a manifest with a high number of layers. Then, they
need to either compromise the registry or trick the user into consuming the image by way
of dependency confusion or typosquatting attack vectors. The impact will be that the
revision controller will be stuck in an infinite loop and be prevented from finishing the task
and doing other subsequent tasks.

The issue has its root cause in the image backend:

https://github.com/crossplane/crossplane/blob/f32e27f375b0218ccaf49e072c5661d71f368131/int
ernal/controller/pkg/revision/imageback.go#LL94C1-L110C4

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

// Fetch image from registry.

img, err := i.fetcher.Fetch(ctx, ref,

v1.RefNames(n.pr.GetPackagePullSecrets())...)

if err != nil {

return nil, errors.Wrap(err, errFetchPackage)

}

// Get image manifest.

manifest, err := img.Manifest()

if err != nil {

return nil, errors.Wrap(err, errGetManifest)

}

// Determine if the image is using annotated layers.

var tarc io.ReadCloser

foundAnnotated := false

for _, l := range manifest.Layers {

if a, ok := l.Annotations[layerAnnotation]; !ok || a !=

baseAnnotationValue {

continue

}

An attacker can add a high number of layers to the manifest which can cause Crossplane to go into
an infinite loop.

https://github.com/crossplane/crossplane/pull/4348
https://github.com/crossplane/crossplane/blob/f32e27f375b0218ccaf49e072c5661d71f368131/internal/controller/pkg/revision/imageback.go#LL94C1-L110C4
https://github.com/crossplane/crossplane/blob/f32e27f375b0218ccaf49e072c5661d71f368131/internal/controller/pkg/revision/imageback.go#LL94C1-L110C4

ADA-XP-23-10: Denial of service from malicious Crossplane
package
ID ADA-XP-23-10

Component Revision image backend

Severity Moderate

Fixed in: https://github.com/google/go-containerregistry/pull/1742

If Crossplane’s image backend does not find an annotated file, it will call
go-containerregistry’s Extract() API passing the fetched image:

https://github.com/crossplane/crossplane/blob/f32e27f375b0218ccaf49e072c5661d71f368131/int
ernal/controller/pkg/revision/imageback.go#L131-L133

131

132

133

if !foundAnnotated {

tarc = mutate.Extract(img)

}

When go-containerregistry extracts the image, it decompresses each layer and ultimately
copies the contents from a tar Reader to a tar Writer:

https://github.com/google/go-containerregistry/blob/03b86570e60f261bf4a79b903d73e03cb8629
10b/pkg/v1/mutate/mutate.go#L331-L340

332

332

333

334

335

336

337

338

339

340

if !tombstone {

if err := tarWriter.WriteHeader(header); err != nil {

return err

}

if header.Size > 0 {

if _, err := io.CopyN(tarWriter, tarReader,

header.Size); err != nil {

return err

}

}

}

When copying the file, there is no upper limit to the file size which allows an attacker to
compress a large layer that will crash go-containerregistry and thereby Crossplane with an
out of memory panic.

https://github.com/google/go-containerregistry/pull/1742
https://github.com/crossplane/crossplane/blob/f32e27f375b0218ccaf49e072c5661d71f368131/internal/controller/pkg/revision/imageback.go#L131-L133
https://github.com/crossplane/crossplane/blob/f32e27f375b0218ccaf49e072c5661d71f368131/internal/controller/pkg/revision/imageback.go#L131-L133
https://github.com/google/go-containerregistry/blob/03b86570e60f261bf4a79b903d73e03cb862910b/pkg/v1/mutate/mutate.go#L331-L340
https://github.com/google/go-containerregistry/blob/03b86570e60f261bf4a79b903d73e03cb862910b/pkg/v1/mutate/mutate.go#L331-L340

ADA-XP-23-11: Possible image tampering from missing
image validation
ID ADA-XP-23-11

Component Revision image backend

Severity High

Fixed in: https://github.com/crossplane/crossplane/pull/4370

Crossplane’s image backend is susceptible to an image tampering attack due to
insufficient validation of Crossplane packages. An attacker can launch an attack against
Crossplane by compromising the registry fromwhich Crossplane fetches the image. The
attacker could then replace the image that the user is referencing and trick Crossplane
users into fetching a tampered image.

Crossplane users can reference images by tags or digests. Digests are the more secure way
to reference, however, in this case, even if the user referenced an image by digest, the user
had insufficient guarantee that the image they fetched was the correct one.

Crossplane fixed the issue by validating both the image itself as well as each layer in the
fetched imagemanifest.

CVE-2023-38495 has been assigned this finding.

https://github.com/crossplane/crossplane/pull/4370

ADA-XP-23-12: Possible endless data attack in
ProviderRevision controller
ID ADA-XP-23-12

Component ProviderRevision
controller

Severity Moderate

Fixed in: https://github.com/crossplane/crossplane/pull/4347

A Crossplane user that can send a request to the ProviderRevision controller can launch an
endless data attack against the controller if the request has a high number of policy rules.

The reconciler validates incoming requests by way of ValidatePermissionRequests(),
https://github.com/crossplane/crossplane/blob/5abc44508f88d892535fc8608d5e35ad5df
b5a0a/internal/controller/rbac/provider/roles/reconciler.go#L303, which loops through
the requests policy rules:

https://github.com/crossplane/crossplane/blob/f32e27f375b0218ccaf49e072c5661d71f368131/int
ernal/controller/rbac/provider/roles/requests.go#L174-L193

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

func (v *ClusterRoleBackedValidator) ValidatePermissionRequests(ctx

context.Context, requests ...rbacv1.PolicyRule) ([]Rule, error) {

cr := &rbacv1.ClusterRole{}

if err := v.client.Get(ctx, types.NamespacedName{Name: v.name}, cr); err !=

nil {

return nil, errors.Wrap(err, errGetClusterRole)

}

t := newNode()

for _, rule := range Expand(cr.Rules...) {

t.Allow(rule.path())

}

rejected := make([]Rule, 0)

for _, rule := range Expand(requests...) {

if !t.Allowed(rule.path()) {

rejected = append(rejected, rule)

}

}

return rejected, nil

}

https://github.com/crossplane/crossplane/pull/4347
https://github.com/crossplane/crossplane/blob/5abc44508f88d892535fc8608d5e35ad5dfb5a0a/internal/controller/rbac/provider/roles/reconciler.go#L303
https://github.com/crossplane/crossplane/blob/5abc44508f88d892535fc8608d5e35ad5dfb5a0a/internal/controller/rbac/provider/roles/reconciler.go#L303
https://github.com/crossplane/crossplane/blob/f32e27f375b0218ccaf49e072c5661d71f368131/internal/controller/rbac/provider/roles/requests.go#L174-L193
https://github.com/crossplane/crossplane/blob/f32e27f375b0218ccaf49e072c5661d71f368131/internal/controller/rbac/provider/roles/requests.go#L174-L193

If the length of requests is sufficiently large, a threat actor can cause Crossplane into
spending excessive time on this loop and can use that to prevent the controller from
performing other tasks, such as upgrading Providers. An attacker could leverage that to
prevent Crossplane from upgrading to a secure Provider package while exploiting a known
vulnerability in the current version of the package.

ADA-XP-23-13: Possible endless data attack in Crossplane’s
OCI store I
ID ADA-XP-23-13

Component Crossplane’s OCI store

Severity Moderate

Fixed in: https://github.com/crossplane/crossplane/pull/4203

This issue affects an alpha feature in Crossplane.

Crossplane’s OCI store is susceptible to an endless data attack if the image that Crossplane
fetches has a high number of layers. An attacker can launch the attack against Crossplane
by compromising the registry and replacing the original image with a tampered image
containing a high number of layers or by tricking a Crossplane user into fetching the image
by way of dependency confusion or typosquatting attack vectors.

The root cause of the issue is that the Crossplane loops through the layers of the fetched
image without an upper limit. An attacker can add a high number of layers to the manifest
which can cause Crossplane to go into an infinite loop.

https://github.com/crossplane/crossplane/blob/b01a0f8c0830f038514714baf24deb7ef21bbad4/in
ternal/oci/store/overlay/store_overlay.go#L166

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

func (c *CachingBundler) Bundle(ctx context.Context, i ociv1.Image, id string, o

...spec.Option) (store.Bundle, error) {

cfg, err := i.ConfigFile()

if err != nil {

return nil, errors.Wrap(err, errReadConfigFile)

}

layers, err := i.Layers()

if err != nil {

return nil, errors.Wrap(err, errGetLayers)

}

lowerPaths := make([]string, len(layers))

for i := range layers {

p, err := c.layer.Resolve(ctx, layers[i], layers[:i]...)

if err != nil {

return nil, errors.Wrap(err, errResolveLayer)

}

lowerPaths[i] = p

}

https://github.com/crossplane/crossplane/pull/4203
https://github.com/crossplane/crossplane/blob/b01a0f8c0830f038514714baf24deb7ef21bbad4/internal/oci/store/overlay/store_overlay.go#L166
https://github.com/crossplane/crossplane/blob/b01a0f8c0830f038514714baf24deb7ef21bbad4/internal/oci/store/overlay/store_overlay.go#L166

ADA-XP-23-14: Possible endless data attack in Crossplane’s
OCI store II
ID ADA-XP-23-14

Component Crossplane’s OCI store

Severity Moderate

Fixed in: https://github.com/crossplane/crossplane/pull/4203

This issue affects an alpha feature in Crossplane.

This issue is similar to ADA-XP-23-13 in attack vector, impact and root cause but affects the
handling of uncompressed layers.

https://github.com/crossplane/crossplane/blob/d0d7527f92869a780a49d25d15fea0ed54f3bf0b/in
ternal/oci/store/uncompressed/store_uncompressed.go#L89

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

func (c *Bundler) Bundle(ctx context.Context, i ociv1.Image, id string, o

...spec.Option) (store.Bundle, error) {

cfg, err := i.ConfigFile()

if err != nil {

return nil, errors.Wrap(err, errReadConfigFile)

}

layers, err := i.Layers()

if err != nil {

return nil, errors.Wrap(err, errGetLayers)

}

path := filepath.Join(c.root, id)

rootfs := filepath.Join(path, store.DirRootFS)

if err := os.MkdirAll(rootfs, 0700); err != nil {

return nil, errors.Wrap(err, errMkRootFS)

}

b := Bundle{path: path}

for _, l := range layers {

tb, err := l.Uncompressed()

if err != nil {

_ = b.Cleanup()

return nil, errors.Wrap(err, errOpenLayer)

}

if err := c.tarball.Apply(ctx, tb, rootfs); err != nil {

_ = tb.Close()

_ = b.Cleanup()

return nil, errors.Wrap(err, errApplyLayer)

}

https://github.com/crossplane/crossplane/pull/4203
https://github.com/crossplane/crossplane/blob/d0d7527f92869a780a49d25d15fea0ed54f3bf0b/internal/oci/store/uncompressed/store_uncompressed.go#L89
https://github.com/crossplane/crossplane/blob/d0d7527f92869a780a49d25d15fea0ed54f3bf0b/internal/oci/store/uncompressed/store_uncompressed.go#L89

118

119

120

121

122

if err := tb.Close(); err != nil {

_ = b.Cleanup()

return nil, errors.Wrap(err, errCloseLayer)

}

}

An attacker can add a high number of layers to the manifest which can cause Crossplane to
go into an infinite loop when Crossplane reads the layers of the image.

ADA-XP-23-15: Possible endless data attack in Crossplane’s
OCI store III
ID ADA-XP-23-15

Component Crossplane’s OCI store

Severity Moderate

Fixed in: https://github.com/crossplane/crossplane/pull/4203

This issue affects an alpha feature in Crossplane.

This issue is similar to ADA-XP-23-13 in attack vector, impact and root cause but affects the
routine that writes the fetched image to the OCI store.

https://github.com/crossplane/crossplane/blob/498b2fcbcc5323676d48048944e8a2a6d67cd87a/i
nternal/oci/store/store.go#L162

162

...

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

func (i *Image) WriteImage(img ociv1.Image) error {

...

layers, err := img.Layers()

if err != nil {

return errors.Wrap(err, errGetLayers)

}

g := &errgroup.Group{}

for _, l := range layers {

l := l // Pin loop var.

g.Go(func() error {

return i.WriteLayer(l)

})

}

return errors.Wrap(g.Wait(), errWriteLayers)

}

https://github.com/crossplane/crossplane/pull/4203
https://github.com/crossplane/crossplane/blob/498b2fcbcc5323676d48048944e8a2a6d67cd87a/internal/oci/store/store.go#L162
https://github.com/crossplane/crossplane/blob/498b2fcbcc5323676d48048944e8a2a6d67cd87a/internal/oci/store/store.go#L162

ADA-XP-23-16: Denial of service from large image
ID ADA-XP-23-16

Component Crossplane-runtime
parser

Severity Low

Fixed in: https://github.com/crossplane/crossplane/pull/4358

Crossplane-runtimes parser is vulnerable to a DoS attack. The root cause of the issue is
that k8s.io/apimachinery/pkg/util/yaml.(*YAMLReader).Read()will exhaust
memory if reading from a large reader. The Crossplane-runtime parser parses an image
from a remote registry using Kubernetes’ yaml parser:

https://github.com/crossplane/crossplane-runtime/blob/511b39fa560d40daecec2f9288850f92cc6
2e14b/pkg/parser/parser.go#L94

94

95

96

97

98

99

100

101

102

103

104

105

func (p *PackageParser) Parse(_ context.Context, reader io.ReadCloser) (*Package,

error) { //nolint:gocyclo // Only at 11.

pkg := NewPackage()

if reader == nil {

return pkg, nil

}

defer func() { _ = reader.Close() }()

yr := yaml.NewYAMLReader(bufio.NewReader(reader))

dm := json.NewSerializerWithOptions(json.DefaultMetaFactory, p.metaScheme,

p.metaScheme, json.SerializerOptions{Yaml: true})

do := json.NewSerializerWithOptions(json.DefaultMetaFactory, p.objScheme,

p.objScheme, json.SerializerOptions{Yaml: true})

for {

bytes, err := yr.Read()

if err != nil && !errors.Is(err, io.EOF) {

When parsing a large reader, Go will react by performing a sigkill and as a result will also
crash any application using the parser. The machine will experience a temporary DoS
before Go performs the sigkill.

This is an issue for Crossplane’s Revision controller which parses images fetched from
remote registries:
https://github.com/crossplane/crossplane/blob/90b27fed1c877f4e4d2e62dbba6e26505b3
8271b/internal/controller/pkg/revision/reconciler.go#L478.

An untrusted image could crash the Revision controller and cause a denial of service for
other users of the cluster.

https://github.com/crossplane/crossplane/pull/4358
https://github.com/crossplane/crossplane-runtime/blob/511b39fa560d40daecec2f9288850f92cc62e14b/pkg/parser/parser.go#L94
https://github.com/crossplane/crossplane-runtime/blob/511b39fa560d40daecec2f9288850f92cc62e14b/pkg/parser/parser.go#L94
https://github.com/crossplane/crossplane/blob/90b27fed1c877f4e4d2e62dbba6e26505b38271b/internal/controller/pkg/revision/reconciler.go#L478
https://github.com/crossplane/crossplane/blob/90b27fed1c877f4e4d2e62dbba6e26505b38271b/internal/controller/pkg/revision/reconciler.go#L478

The following minimized PoC illustrates the issue:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

package main

import (

"bufio"

"fmt"

"io"

"bytes"

"k8s.io/apimachinery/pkg/util/yaml"

)

func main() {

b := bytes.Repeat([]byte("a"), 9000000000)

r1 := bytes.NewReader(b)

r2 := bytes.NewReader(b)

r3 := bytes.NewReader(b)

r4 := bytes.NewReader(b)

r := io.MultiReader(r1, r2, r3, r4)

bRead := bufio.NewReader(r)

yr := yaml.NewYAMLReader(bRead)

fmt.Println("Reading...")

_, _ = yr.Read()

fmt.Println("The end")

}

This programwill not print “The end”. The console will print:

Reading...

signal: killed

CVE-2023-37900 has been assigned this issue.
GHSA: https://github.com/crossplane/crossplane/security/advisories/GHSA-68p4-95xf-7gx8

https://github.com/crossplane/crossplane/security/advisories/GHSA-68p4-95xf-7gx8

SLSA
SLSA is a framework for assessing the supply chain security posture of projects. The
current version of SLSA is v1.0 which specifies a series of requirements related to the build
platform for software releases as well as the provenance attestation. SLSA evaluates a
project based on four security levels. Level 0 has no requirements as we do not include
that in the table below.

The SLSA framework is useful to protect against a series of real-world supply chain attack
vectors, for example, during the SolarWinds attack, attackers compromised the build
platform of a software vendor - SolarWinds - and injected malicious code that the vendor
then distributed to its customers. The provenance statement helps users defend against
typosquatting attacks or attacks as well as consuming packages frommirrors instead of
the main and intended packages. These are known attack vectors; recently researchers
found 1,652 malicious packages disguised as legitimate packages8. SLSA compliance is
therefore an important factor of Crossplane’s overall security posture and should be seen
as an ongoing effort to achieve andmaintain a solid integration with SLSAs specification.
This will help Crossplane defend against a series of well-known - by users andmalicious
actors - supply chain attack vectors.

Our overall assessment is that Crossplane performs well against requirements for the build
platform but is lacking the provenance statement. The provenance is a large and
important part of the SLSA framework. Crossplane is currently lacking a compliant
provenance statement which brings compliance to a low level. Crossplane is performing
well in other areas such as the build platform for release artifacts. We recommend adding
the provenance generation via SLSA’s official Github Actions workflows:
https://github.com/slsa-framework/slsa-github-generator. The SLSA community is
currently working on a framework, Bring Your Own Builder (BYOB), which includes level 3
compliance out of the box.

Our assessment for each criteria:

Requirement L1 L2 L3

Provenance generation

Provenance Exists ⛔ ⛔ ⛔

Provenance is Authentic ⛔ ⛔

8 https://sysdig.com/blog/analysis-of-supply-chain-attacks-through-public-docker-images/

https://github.com/slsa-framework/slsa-github-generator
https://sysdig.com/blog/analysis-of-supply-chain-attacks-through-public-docker-images/

Provenance is Unforgeable ⛔

Isolation

Hosted ✓ ✓

Isolated ✓

