
Falco Security Audit

Report

Reference 23-01-1097-LIV
Version 1.0

Date 2023/01/16

Quarkslab SAS
10 boulevard Haussman

75009 Paris
France

Contents

1 Project Information 1

2 Executive summary 2
2.1 Disclaimer . 2
2.2 Findings summary . 2

3 Context and scope 4
3.1 Context . 4
3.2 Scope . 4
3.3 Audit settings . 5

4 Discovery and state of the art 6
4.1 Discovery . 6
4.2 State of the art . 6

5 Threat model 7
5.1 A note on threat actors . 8

6 Static analysis 9
6.1 Automated static analyzers . 9

6.1.1 Cppcheck . 9
6.1.2 Infer . 12
6.1.3 CodeQL . 14
6.1.4 Scan-Build . 15
6.1.5 Conclusion . 17

6.2 Manual review . 18
6.2.1 Issues with readlink . 18
6.2.2 Checks on sensitive functions . 23
6.2.3 Third-party dependencies version . 24
6.2.4 Conclusion . 24

7 Dynamic analysis 25
7.1 Fuzzing the rules parser . 25
7.2 Fuzzing the event processor . 28

7.2.1 Using libprotobuf-mutator . 29
7.2.2 Using syzkaller . 35
7.2.3 Using the scap file format . 41

7.3 Conclusion . 44

8 Conclusion 45

Glossary 46

Bibliography 47

A Severity Classification 48

B Infer report extracts 49

C Scan-Build experimentations 54

D Exploiting and debugging readlink issues 56

E AFL++ persistent mode boilerplate 58

F Fuzzing with libprotobuf-mutator 59

1 Project Information

Document history
Version Date Details Authors
1.0 2023/01/16 Initial Version Victor Houal & Laurent Laubin & Mahé

Tardy

Quarkslab
Contact Role Contact Address

Frédéric Raynal CEO fraynal@quarkslab.com
Ramtine Tofighi Shirazi Project Manager mrtofighishirazi@quarkslab.com
Victor Houal R&D Engineer Apprentice vhoual@quarkslab.com
Laurent Laubin R&D Engineer llaubin@quarkslab.com
Mahé Tardy R&D Engineer mtardy@quarkslab.com

Falco maintainers
Contact Company Contact Address

Frederico Araujo IBM frederico.araujo@ibm.com
Jason Dellaluce Sysdig jasondellaluce@gmail.com
Mauro Ezequiel Moltrasio Red Hat mmoltras@redhat.com
Leonardo Grasso Sysdig me@leonardograsso.com
Luca Guerra Sysdig luca.guerra@sysdig.com
Teryl Taylor IBM terylt@ibm.com
Michele Zuccala Sysdig michele@zuccala.com

OSTIF
Contact Role Contact Address

Derek Zimmer President and Executive Director derek@ostif.org
Amir Montazery Managing Director amir@ostif.org

Ref: 23-01-1097-LIV 1 Quarkslab SAS

2 Executive summary

The goal of the audit was to assist the Falco maintainers to increase their security posture using
static and dynamic analysis. Falco maintainers required an emphasis on fuzzing. To that end,
Quarkslab’s engineers researched multiple topics to provide recommendations and relevant advice.
In addition, Quarkslab’s engineers assessed the code in order to find some issues, using automated
testing tools, fuzzing, or just by manually reviewing the code base.

This report describes the steps and research conducted by Quarkslab’s engineers on static analysis
and fuzzing. In addition, readers can refer to Section 2.2 for the summary of findings that were
found during the audit.

The report starts with introductory sections, the next Section 3, describes the context and scope
that were decided for the audit, then Section 4 presents how the auditors got familiar with the
project and the state-of-the-art research that was conducted, accompanied by a bibliography.
Afterwards, Section 5 presents the threat model that was created, with Section 6 and Section 7
presenting the static and dynamic analysis resulting from the threat modeling. The section on
static analysis presents static analyzers that were tested on the project with their results, while the
section on dynamic analysis illustrates and explains the research conducted on how fuzz-testing
was applied to various parts of the project.

2.1 Disclaimer

This report reflects the work and results obtained within the duration of the audit on the specified
scope (see Section 3.2) and as agreed between the OSTIF, Falco maintainers, and Quarkslab.
Tests are not guaranteed to be exhaustive and the report does not ensure the code is bug or
vulnerability free.

2.2 Findings summary

The following table synthesizes the various findings that were uncovered during the audit. The
severity classification given as informative, low, and medium, reflects a relative hierarchy between
the various findings of this report (see the table in Appendix A). It depends on the threat model
and security properties considered.

ID Description Category Severity
MEDIUM 1 Potential buffer overflow due to not null

terminated output of readlink in lib-
scap/scap_proc_file_root

Buffer overflow Medium

LOW 1 Memory leak on error structure in lib-
scap/engine/bpf/scap_bpf.c:513

Memory Leak Low

LOW 2 Resource leak on pfile in lib-
scap/engine/kmod/scap_kmod.c:67

Resource Leak Low

Ref: 23-01-1097-LIV 2 Quarkslab SAS

ID Description Category Severity
LOW 3 Memory leak on handle structure in lib-

scap/scap.c:146
Memory Leak Low

LOW 4 Memory leak on pAdapterInfo structure in
libscap/windows_hal.c:342

Memory Leak Low

LOW 5 Multiple unchecked return value from mal-
loc, calloc and realloc

Null dereference Low

LOW 6 Multiple unchecked return value from lo-
caltime, sinsp_threadinfo::get_fd_-
table and scap_write_proclist_begin
that can return Nullptr

Null dereference Low

LOW 7 Double free in libscap/scap.c function
scap_open

Double free Low

LOW 8 Garbage return value from stack in lib-
sinsp/sinsp.cpp

Garbage return value Low

LOW 9 Four null terminations of buffers written out
of range by one in libscap/scan_fds.c

Buffer overflow Low

INFO 1 Multiple bad handling of realloc return
value in libsinsp/filterchecks.cpp

Memory Leak Info

INFO 2 Missing va_end() after va_copy() in test
file sinsp_with_test_input.h

Incorrect handling of
variadic macros

Info

INFO 3 Returned heap allocated buffer resolved
after being deallocated

Return pointer on freed
memory

Info

INFO 4 Multiple potential Null pointer dereferences
in macro HASH_ADD_INT64

Null dereference Info

INFO 5 Resource leak in libsinsp example lib-
sinsp/examples/test.cpp

Resource leak Info

INFO 6 Dangerous construct in a vforked process in
libscap/engine/gvisor/runsc.cpp

Incorrect use of vfork Info

INFO 7 Buffer overflow with not null terminated
output of readlink in debug code in lib-
sinsp/parsers.cpp

Buffer overflow Info

INFO 8 Return value in various usage of readlink
not checked which could lead to write to a
different file

Unchecked return value Info

INFO 9 Multiple crashes in the parsing of scap files
and event buffer with malformed files

Null dereference Info

Ref: 23-01-1097-LIV 3 Quarkslab SAS

3 Context and scope

3.1 Context

Falco’s README introduces the project like that:

The Falco Project, originally created by Sysdig, is an incubating CNCF open-source
cloud-native runtime security tool. Falco makes it easy to consume kernel events and
enrich those events with information from Kubernetes and the rest of the cloud-native
stack. Falco can also be extended to other data sources by using plugins. Falco has a
rich set of security rules specifically built for Kubernetes, Linux, and cloud-native. If a
rule is violated in a system, Falco will send an alert notifying the user of the violation
and its severity.

Falco monitors system calls to secure a system, by:

• Parsing the Linux system calls from the kernel at runtime.

• Asserting the stream against a powerful rules engine.

• Alerting when a rule is violated.

The project ships with a default set of rules ready to be consumed by end-users to secure their
Kubernetes clusters. However, users can write their own rules using a syntax created by the
project for specific needs.

Historically, Falco was the first runtime security project to join CNCF as an incubation-level project.

3.2 Scope

The scope of this audit was mainly the userspace part of Falco, distributed in the falcosecurity/falco
and falcosecurity/libs repositories on GitHub. Refer to Table 3.1 and 3.2 for URLs and commit
hashes. The kernel module was investigated although it was not the focus of the audit. The
dependencies and the plugins of Falco were left out of scope. The eBPF drivers of Falco also were
not investigated.

The Falco team requested assistance on:

• building fuzzers for security-relevant areas;

• building a threat model;

• using and adding automatic static analysis in their pipeline;

• looking for improper usage of cryptography;

• manually searching for vulnerability, with an emphasis on memory safety.

Quarkslab proposed a multi-step approach:

• discovery of the project, its documentation, build system, architecture and codebase;

Ref: 23-01-1097-LIV 4 Quarkslab SAS

• threat modeling;

• static code review, including automatic and manual reviews;

• dynamic testing and fuzzing.

3.3 Audit settings

See below Table 3.1 and 3.2 for the versions used to conduct this audit. Most of the work was
conducted on the libs repository, thus falco repository is needed to compile the final binary.

Project falco

Repository https://github.com/falcosecurity/falco

Commit hash 44d1c1eb65031b8895b154139a1cc7bb545df60a

Commit date 2022/10/19

Tag 0.33.0

Table 3.1: falco version references

Project libs

Repository https://github.com/falcosecurity/libs

Commit hash 74eec76d2c1dbba66a37db227d25a6b41987c1a6

Commit date 2022/10/13

Tag 0.9.0

Table 3.2: libs version references

Ref: 23-01-1097-LIV 5 Quarkslab SAS

https://github.com/falcosecurity/falco
https://github.com/falcosecurity/falco/commit/44d1c1eb65031b8895b154139a1cc7bb545df60a
https://github.com/falcosecurity/libs
https://github.com/falcosecurity/libs/commit/74eec76d2c1dbba66a37db227d25a6b41987c1a6

4 Discovery and state of the art

4.1 Discovery

Falco is overall well-documented and easy to integrate. The documentation is pretty comprehen-
sive, well-written, and easy to follow. For example, to build and run Falco from the source, the
official documentation is great [1]. A tutorial to run Falco on a minikube cluster is also available.1

We had no major difficulty to get familiar with the project and understand the cmake setup, the
only difficulty could be the high number of dependencies that Falco relies on.

4.2 State of the art

To begin, an audit of Falco was conducted by Cure53 in mid-2019 [2]. They performed a manual
analysis of the source, some dynamic analysis, and tried to bypass the default set of rules. They
found some interesting bypass, configuration issues and crashes.

We noted that almost all the issues from the audit and security advisories were fixed except for
a symlink file bypass. Cure53 discussed this topic in their report, giving the example of using
/proc/self/root to bypass detection on a specific path, like /etc/shadow. Open discussions are
still happening on how to prevent these issues [3].

Specifically on bypasses, Mark Manning, at the time at NCC Group, wrote about it at the end
of 2019 [4]. Then, Brad Geesaman, at the time founding Darkbit, published a bypass article a
year after [5], September 2020. Then a Falco maintainer from Sysdig, Leonardo Di Donato, did a
presentation at KubeCon Europe 2021 Virtual on the subject [6]. Finally a researcher at Blackberry,
Shay Berkovich presented a talk virtually at KubeCon Europe 2022 on new bypasses [7].

Then, some articles are great to understand the inner workings of Falco, for example this official
blog post about “Monitoring new syscalls with Falco” [8]. Or articles on personal blogs that try to
go deep into the code like this series on Falco design and the source code of Sysdig [9] [10].

The previous CVEs on Falco were investigated, first a CVE-2019-8339, a capacity-related vulnera-
bility in which you can overflow the kernel with events to drop the control on sensitive ones [11].
The GitHub security advisory pages on Falco and libs repository [12], containing the recent
security issues were also looked into.

1https://falco.org/docs/getting-started/source/

Ref: 23-01-1097-LIV 6 Quarkslab SAS

https://nvd.nist.gov/vuln/detail/CVE-2019-8339
https://falco.org/docs/getting-started/source/

5 Threat model

Falco maintainers explicitly asked for a threat model, see Figure 5.1 for the threat model proposed
by Quarkslab’s engineers.

libsinsp

libscap

kernel

procfs

kernel
module
or eBPFsyscalls

process is

created

process performs

a syscall

rules in yaml

config files

plugins

Attack surface

scap_proc_scan_proc_dir

sinsp_parser::process_event

filter::parser::parse

user space

kernel space

admin
access

user

access

create

read

critical
function

kernel

data

Figure 5.1: Falco threat model

This threat model is a simplified view of the security threats on Falco and is not technically
comprehensive. For example, a process creation will also generate a syscall event, which is not
represented on the diagram. The goal of this figure was to identify the security-relevant areas of
Falco to head the audit in the most interesting direction.

To describe further this diagram:

• the attack surface is represented in red, with items requiring admin access, in green, and
items accessible from a normal user using the system, in yellow.

• In the boxes in blue, you can find the parts of the code that interact with sensitive information,
via reading data represented with the blue arrows.

Ref: 23-01-1097-LIV 7 Quarkslab SAS

• The sensitive parts of the code are reading directly from attack surface items, for the YAML
config files for example, or indirectly from the system, with procfs or the syscalls events.

• The dotted arrows just represent the relation between the attack surface and the system for
the indirect links.

5.1 A note on threat actors

On the attack surface of Falco, it was important to separate what can be targeted by a superuser
(i.e., root or admin) and a regular user on the system. Some of the work during this audit targeted
components that should be accessible only to superusers, see Section 7.1 for an example. This
fuzzer was built, on one side, to get more familiar with the Falco project and on the other side
because the rules files could theoretically be accessible to unprivileged users if the Linux file
rights were badly configured.

An emphasis should be put on the fact that finding security issues that absolutely require to be a
superuser (i.e., root) is less interesting because having those rights on the host already allows the
superuser to disable Falco completely. Indeed, a superuser could stop the userland program of
Falco or remove the kernel module, or eBPF probe directly. That’s why the threat model and this
audit insisted on the attack surface that could be reached by a non-admin user of the system.

Considering Falco might be installed on Kubernetes clusters nodes, it’s safe to assume that most
users will be non-trusted unprivileged users, or diminished root users in containers. Indeed by
default, as root in Kubernetes pods, the default set of Linux capabilities is restricted, which means
root doesn’t have all capabilities, like CAP_SYS_ADMIN or the ones allowing to reboot or remove
and add kernel modules. In addition, other security mechanisms limit the access to /proc or
/sys as root.

The plurality of “root status” in containers environment creates some confusion. Linux capabilities,
namespace and the various security modules allow to create more complex combination of rights.
However, considering the most used configuration it should be clarified that regular users on
the system, i.e., unprivileged users or containerized root users in Kubernetes pods are the main
threat. Root users on the host and root users in privileged containers should be out of the scope of
the threat actors. As a matter of fact, privileged containers with root users are almost equivalent
to root processes on the host: all except the process Linux namespace are disabled, all capabilities
are granted, virtual file systems are unmasked and LSMs are disabled. It’s trivial to pivot from a
privilege container process to “complete root” on the host.

Ref: 23-01-1097-LIV 8 Quarkslab SAS

6 Static analysis

6.1 Automated static analyzers

Some linters and static checkers were selected and tested on the project to find immediate issues
but also to see if they could be easily integrated to the project workflows. These tools were mainly
selected because engineers at Quarkslab were familiar with them and they are (most of them)
free and open-source.

• Cppcheck: a static analysis tool for C/C++ code.

• CodeQL: a semantic code analysis engine to discover vulnerabilities across a codebase.

• Infer: a static analysis tool for Java, C++, Objective-C, and C.

• Scan-Build: a command line utility that enables a user to run the clang static analyzer over
their codebase as part of performing a regular build.

These tools are different some of them are linters that can be directly run against the source
code, while others need the project to be built to create databases against which the analyzer can
run. Some already propose a set of embedded checks, while others are only engines and need
a curated selection of queries. Semgrep was also considered but the support of C/C++ is still
experimental.

6.1.1 Cppcheck

Note that despite the name, Cppcheck is designed for both C and C++. It can provide good
information on potential memory and resource leaks for example and is really easy to run. It runs
directly on source code and thus could be quickly integrated into a CI step. The version used was
Cppcheck 1.90.

Cppcheck was run on the codebase with the following command:

cppcheck -j 32 -q --force <folder>

The -j flag is used to start 32 threads to do the checking work, the -q to only print something
when there is an error and avoid progression message, --force for checking files that have a
lot of configurations (using a lot of different combinations depending on C macro). To enable
more rules, is it possible to pass the --enable flag, for example --enable=all will output a lot
of errors that could be associated with style, performance, portability, etc.

For this output, the userspace codebase was scanned with the basic checkers enabled.

libscap The first issue, on line 1, is a memory leak on the heap allocated error structure, indeed
free(error) should be added just before line 513 in engine/bpf/scap_bpf.c. The second one,
line 4, is a resource leak, in the case fscanf(pfile, "%"PRIu32, &max) returns 0, the function
will return without calling fclose(3). Then, line 7, is a memory leak similar to the first issue, on

Ref: 23-01-1097-LIV 9 Quarkslab SAS

https://github.com/danmar/cppcheck
https://codeql.github.com/
https://github.com/facebook/infer
https://clang-analyzer.llvm.org/scan-build.html
https://github.com/returntocorp/semgrep

line 146 of scap.c, a free(handle) should be added just before. For the issues line 10, 13 and
16, it seems that the pAdapterInfo is allocated and then not used nor freed, which could lead to
a memory leak.

1 engine/bpf/scap_bpf.c:513:3: error: Memory leak: error [memleak]
2 return SCAP_FAILURE;
3 ^
4 engine/kmod/scap_kmod.c:67:4: error: Resource leak: pfile [resourceLeak]
5 return 0;
6 ^
7 scap.c:146:3: error: Memory leak: handle [memleak]
8 return NULL;
9 ^

10 windows_hal.c:325:3: error: Memory leak: pAdapterInfo [memleak]
11 return SCAP_FAILURE;
12 ^
13 windows_hal.c:331:3: error: Memory leak: pAdapterInfo [memleak]
14 return SCAP_FAILURE;
15 ^
16 windows_hal.c:342:3: error: Memory leak: pAdapterInfo [memleak]
17 return SCAP_FAILURE;
18 ^

LOW 1 Memory leak on error structure in libscap/engine/bpf/scap_bpf.c:513

Category Memory Leak

Rating Impact: Availability Exploitability: None

LOW 2 Resource leak on pfile in libscap/engine/kmod/scap_kmod.c:67

Category Resource Leak

Rating Impact: Availability Exploitability: None

LOW 3 Memory leak on handle structure in libscap/scap.c:146

Category Memory Leak

Rating Impact: Availability Exploitability: None

LOW 4 Memory leak on pAdapterInfo structure in libscap/windows_hal.c:342

Category Memory Leak

Rating Impact: Availability Exploitability: None

Ref: 23-01-1097-LIV 10 Quarkslab SAS

libsinsp The first issue, on line 1, with the uninitvar is certainly a false positive. However,
the memleakOnRealloc issues, on lines 4, 7, 10 are real programing mistakes1. The last one, on
line 13, is also a real mistake but in the test files, so less problematic.

1 dns_manager.cpp:111:9: error: Uninitialized variable: dinfo [uninitvar]
2 return dinfo;
3 ^
4 filterchecks.cpp:5174:3: error: Common realloc mistake: 'm_storage' nulled but not

freed upon failure [memleakOnRealloc]↪→

5 m_storage = (char*)realloc(m_storage, encoded_args_len);
6 ^
7 filterchecks.cpp:5326:5: error: Common realloc mistake: 'm_storage' nulled but not

freed upon failure [memleakOnRealloc]↪→

8 m_storage = (char*)realloc(m_storage, encoded_tags_len);
9 ^

10 filterchecks.cpp:5810:4: error: Common realloc mistake: 'm_storage' nulled but not
freed upon failure [memleakOnRealloc]↪→

11 m_storage = (char*)realloc(m_storage, encoded_tags_len);
12 ^
13 test/sinsp_with_test_input.h:95:117: error: va_list 'args2' was opened but not

closed by va_end(). [va_end_missing]↪→

14 throw std::runtime_error("the test framework does not currently support equal
timestamps or out of order events");↪→

INFO 1 Multiple bad handling of realloc return value in libsinsp/filterchecks.cpp

Category Memory Leak

Rating Impact: Availability Exploitability: None

INFO 2 Missing va_end() after va_copy() in test file sinsp_with_test_input.h

Category Incorrect handling of variadic macros

Rating Impact: Integrity Exploitability: None

chisel These three issues are the same, the function realpath_ex in
userspace/chisel/chisel_utils.cpp returns a pointer on freed memory. It seems to
be a mistake because a variable is created just before, named ret, on line 93, that might be the
variable that should be returned.

1 userspace/chisel/chisel_utils.cpp:95:2: error: Returning/dereferencing 'resolved'
after it is deallocated / released [deallocret]↪→

2 return resolved;
3 ^

1More details on how to properly checks the result of realloc: https://stackoverflow.com/a/27589881/4561420.

Ref: 23-01-1097-LIV 11 Quarkslab SAS

https://stackoverflow.com/a/27589881/4561420

4 userspace/chisel/chisel_utils.cpp:94:2: note: Returning/dereferencing 'resolved'
after it is deallocated / released↪→

5 free(resolved);
6 ^
7 userspace/chisel/chisel_utils.cpp:95:2: note: Returning/dereferencing 'resolved'

after it is deallocated / released↪→

8 return resolved;
9 ^

INFO 3 Returned heap allocated buffer resolved after being deallocated

Category Return pointer on freed memory

Rating Impact: Availability Exploitability: None

6.1.2 Infer

Infer is an open-source static analysis tool designed for C, C++, Java and Objective-C code
by Facebook. Similarly to Scan-Build or CodeQL, Infer uses the compilation step to create an
intermediate representation of the program on which it can then run an analysis. The version
used for Infer was 1.1.0.

Infer 1.1.0 is using clang 11 and compiling the whole Falco project with dependencies with it
will cause errors during the build process because of tbb2. However, it is possible to build the
problematic dependency beforehand to avoid the issue. In addition, some implementations are
missing when compiling with the Infer toolchain, however, adding add_link_options(-latomic)
fixes the issue.

Like other tools that create databases during the building process, you need to explicitly ex-
clude files from the included ones otherwise you end up with a lot of results coming from the
dependencies code.

We managed to make Infer analyze the project with the following setup.

vim CMakeLists.txt # add 'add_link_options(-latomic)'
mkdir build-infer && cd build-infer
infer compile -- cmake -DUSE_BUNDLED_DEPS=ON ..
make -j `nproc` tbb

2It seems that -flifetime-dse=1, is not supported on clang 11 with Infer.

Ref: 23-01-1097-LIV 12 Quarkslab SAS

infer capture --skip-analysis-in-path b64-prefix --skip-analysis-in-path
c-ares-prefix --skip-analysis-in-path catch2-prefix --skip-analysis-in-path
cloudtrail-plugin-prefix --skip-analysis-in-path cloudtrail-rules-prefix
--skip-analysis-in-path cpp-httplib-prefix --skip-analysis-in-path curl-prefix
--skip-analysis-in-path cxxopts-prefix --skip-analysis-in-path fakeit-prefix
--skip-analysis-in-path grpc-prefix --skip-analysis-in-path jq-prefix
--skip-analysis-in-path json-plugin-prefix --skip-analysis-in-path
k8saudit-plugin-prefix --skip-analysis-in-path k8saudit-rules-prefix
--skip-analysis-in-path njson-prefix --skip-analysis-in-path openssl-prefix
--skip-analysis-in-path protobuf-prefix --skip-analysis-in-path re2-prefix
--skip-analysis-in-path string-view-lite-prefix --skip-analysis-in-path
tbb-prefix --skip-analysis-in-path valijson-prefix --skip-analysis-in-path
yamlcpp-prefix --skip-analysis-in-path zlib-prefix -- make -j `nproc`

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

infer analyze

Results

During our scan, it found 105 issues. See the following list for comments on the results, you
will need Infer report to follow, you can find the report under the name infer-report.txt or
an abbreviated version in the Appendix B containing only the errors mentioned in the following
comments.

• 27 Null Dereferences - 13 of these errors come from unchecked return value from malloc,
calloc and realloc that could lead to Null dereferences, it is errors number 9, 15, 16, 25,
28, 29, 42, 45, 52, 57, 59, 74 and 80.

Error number 17 is similar, on error localtime(3) returns Null which is not checked in
the code. Errors 54, 56 and 69 are very similar, sinsp_threadinfo::get_fd_table can
return Null and the value is not checked, it’s even immediately dereferenced for case 69.
For error 79, potentially scap_write_proclist_begin can return Null and the returned
pointer is dereferenced in scap_write_proclist_end later.

Errors 43, 51, 53, 67, 68, 70, 71, 87 and 88 are issues of dereferences in hashmap macro
HASH_ADD_INT64.

• 7 Resource Leaks - interestingly, the first resource leak, number 13 is the same as the
one detected by Cppcheck in libscape/engine/kmod/scap_kmod.c and is valid. See low
Recommendation 2.

Error number 24 is a false positive, it’s not considering sinsp_logger destructor that is
properly closing the related files.

Error number 38 is a real issue but in libsinsp/examples/test.cpp which is not sensitive.

Errors 60, 61 and 62 are false positives since these files descriptors are saved and the files
are closed by calling scap_dump_close.

The last error 78 seems to be a false positive because the normal flow actually closedir on
the taskdir_p properly and the error flow as well.

• 26 Dead Stores - 9 of these errors are raised from the driver folder. While dead stores do
not have security implications by themselves, the compiler optimizing them out can lead to

Ref: 23-01-1097-LIV 13 Quarkslab SAS

security issues if the underlying memory should be rewritten. However, it does not seem
that these dead stores are because of memory reset for sensitive information. They can still
be checked for program correctness because they might imply a programming mistake (a
var assigned in the place of another).

• 17 Static Initialization Order Fiascos - all these errors come from detection on GTest
TEST_CASE macro. We can consider them as false positives and due to the use of GTest.

• 28 Uninitialized Values - these errors seems to be false positive of access to uninitialized
variables.

LOW 5 Multiple unchecked return value from malloc, calloc and realloc

Category Null dereference

Rating Impact: Availability Exploitability: None

LOW 6 Multiple unchecked return value from localtime, sinsp_threadinfo::get_-
fd_table and scap_write_proclist_begin that can return Nullptr

Category Null dereference

Rating Impact: Availability Exploitability: None

INFO 4 Multiple potential Null pointer dereferences in macro HASH_ADD_INT64

Category Null dereference

Rating Impact: Availability Exploitability: None

INFO 5 Resource leak in libsinsp example libsinsp/examples/test.cpp

Category Resource leak

Rating Impact: Availability Exploitability: None

6.1.3 CodeQL

First, contrary to the other tools mentioned here, CodeQL is not entirely open source. It’s free
for research and open source, the queries are open source but the engine is closed source and
published as a binary. It was originally built by a company named Semmle that hosted the product
on lgtm.com with the idea of massively scanning open-source projects. Semmle was acquired
by GitHub (itself owned by Microsoft) and is now integrating CodeQL into github.com and
deprecating lgtm.com. The versions used were CodeQL command-line toolchain release 2.11.2
and the Visual Studio Code extension v1.7.5.

To use CodeQL, an SQL database of the source code and data flow must be built prior to analysis.

Ref: 23-01-1097-LIV 14 Quarkslab SAS

lgtm.com
github.com
lgtm.com

codeql database create --language=cpp -j 32 --ram=25000 --command="make -j 32"
falco-db↪→

Note that the --language=cpp flag includes C code as well, the -j and --ram flags are to adjust
the process of creation to our resources available, the --command flag allows to pass a custom
build command to trigger the compilation and the last argument is the name of the database
folder.

Warning

Because CodeQL is creating a database based on everything that was compiled dur-
ing the build the process, it results in a pretty large database, including information
about the dependencies like OpenSSL, protobuf, curl, etc.

This is the main issue with using CodeQL on Falco at the moment because executing
any queries on the resulting database can lead to a lot of noise from dependencies
and thus make the results difficult to browse.

Because CodeQL does not come bundled with predefined queries, it’s more complicated to
exhibit particular results from the analysis. However, the open source queries can be found
in the github/codeql3 repository. And especially, C and C++ queries, can be found under
codeql/cpp/ql/src4.

The rule sets used were the ones under Security/CWE and Critical. There were a lot of outputs,
with a lot of noise, coming from dependencies and false positives. The results will not be printed
here but they were an important inspiration for the manual review. The queries were run through
the Visual Studio Code extension of CodeQL.

6.1.4 Scan-Build

Scan-Build is a tool to run the Clang static analyzer5, part of the LLVM project, on a codebase.
You can also use CodeChecker instead of Scan-Build6 which might be more adequate for large
projects. During a project build, as source files are compiled they are also analyzed in tandem by
the static analyzer. Upon completion of the build, results are then presented to the user within a
web browser. The version used of Scan-Build is the one packaged with the LLVM 10 clang-tools
package on Ubuntu 20.04.

Similarly to Infer and CodeQL, this tool requires compiling the codebase and checking the built
code. Thus, it, by default, raises tons of alerts on dependencies that were built along Falco.

At first, we struggled to make Scan-Build work on the project, see Appendix C for more details.
Finally, we used the following command to scan and output only the bugs found on Falco’s
codebase and it worked, resulting in 202 warnings (with 41 “bugs” from the security checkers
that are mostly just grepping some sensitive functions, which could be disabled):

3https://github.com/github/codeql
4https://github.com/github/codeql/tree/main/cpp/ql/src
5https://clang-analyzer.llvm.org/
6https://clang-analyzer.llvm.org/command-line.html

Ref: 23-01-1097-LIV 15 Quarkslab SAS

https://github.com/github/codeql
https://github.com/github/codeql/tree/main/cpp/ql/src
https://clang-analyzer.llvm.org/
https://clang-analyzer.llvm.org/command-line.html

cmake -DUSE_BUNDLED_DEPS=ON
-DCMAKE_C_COMPILER=/usr/share/clang/scan-build-10/bin/../libexec/ccc-analyzer
-DCMAKE_CXX_COMPILER=/usr/share/clang/scan-build-10/bin/../libexec/c++-analyzer
..

↪→

↪→

↪→

scan-build -enable-checker unix,nullability,core,cplusplus,security --exclude
b64-prefix --exclude c-ares-prefix --exclude catch2-prefix --exclude
cloudtrail-plugin-prefix --exclude cloudtrail-rules-prefix --exclude
cpp-httplib-prefix --exclude curl-prefix --exclude cxxopts-prefix --exclude
fakeit-prefix --exclude grpc-prefix --exclude jq-prefix --exclude
json-plugin-prefix --exclude k8saudit-plugin-prefix --exclude
k8saudit-rules-prefix --exclude njson-prefix --exclude openssl-prefix
--exclude protobuf-prefix --exclude re2-prefix --exclude
string-view-lite-prefix --exclude tbb-prefix --exclude valijson-prefix
--exclude yamlcpp-prefix --exclude zlib-prefix make -j 32

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Note that the --exclude flag will not disable checking the code of dependencies but just filter out
the results in the report. That’s why this scan can take a significant amount of time to process.

Scan-Build generates an HTML report that explains each issue in detail, illustrating the multiple
steps and the branches the program must take to be in the situation indicated by the tool. The
HTML report generated from the above steps will be included with this report under the file name
scan-build-44d1c1e.tar.gz, open the index.html file for more information.

Results

Apart from the security checkers (security checker is just issuing warning based on some function
name), the clang static analyzer found some potential issues. Here are some comments on what
it found, some issues seem real, some are certainly false positives, and some may come from
confusion in macros.

• A double free - in libscap scap.c file, from the scap_open function, when calling scap_-
open_udig_int, a double free occurs because the function that calls scap_close(handle)
will free the handle, and on the next line, the handle is freed again with free(handle).
Removing line 317 should solve the issue.

• A garbage return value - in libsinsp sinsp.cpp, the function sinsp::get_read_-
progress_with_str, with a specific control flow execution detailed in the report, can
return a non-initialized stack variable, which might be garbage and disrupt the execution.

• A dangerous construct in a vforked process - in the code related to the gvisor engine in
libscap/engine/gvisor/runsc.cpp, the vforked process is closing a file descriptor which
could be an undefined behavior according to POSIX, and it should not call exit(3) as well.
Some refactoring could be done considering the restriction and caution on using vfork(2).

• Ten NULL pointer dereferences - the path of execution are various in length but it might
be interesting to investigate these highlight to fix this potential issues that could result in
crashes.

• Five cases of argument with nonnull attribute passed null - the static analyzer re-
vealed 41 issues like that, it seems that most of them are not interesting because they
highlight a potential null value in a comparison with an int. However, five of these

Ref: 23-01-1097-LIV 16 Quarkslab SAS

highlights result in a null pointer being passed to arguments of memcpy, three of
them the destination, and two of them the source. Here are their names in the scan-
build-44d1c1e.tar.gz archive: report-2dfbca.html, report-9cb243.html, report-
760867.html, report-940464.html, report-e46a72.html.

• Five memory leaks - in various places of the codebase, they seem to be realistic scenarios
of memory leaks. Some involve more steps than others and their path of execution might
terminate execution but should be investigated.

• Four dead store issues - two dead assignments and two dead increments which are real
but might not even be considered as bugs since eliminating them could lead to other bugs
in the future by missing these assignments and increments.

• Use of zero allocatedmemory - in function scap_write_proc_fds which is certainly expected,
so a false positive.

• Some division by zero and use-after-free issues - a total of eighteen issues that seem to
be false positives confusions because of the usage of macro for hash maps manipulation.

LOW 7 Double free in libscap/scap.c function scap_open

Category Double free

Rating Impact: Integrity, Confidentiality,
Availability

Exploitability: None

LOW 8 Garbage return value from stack in libsinsp/sinsp.cpp

Category Garbage return value

Rating Impact: Availability Exploitability: None

INFO 6 Dangerous construct in a vforked process in lib-
scap/engine/gvisor/runsc.cpp

Category Incorrect use of vfork

Rating Impact: Availability Exploitability: None

6.1.5 Conclusion

These four static analyzers produced interesting results. Because CodeQL cannot, at the moment,
exclude files on database creation or systematically exclude files at the analysis stage, it’s a bit
difficult to integrate with Falco. Otherwise, including Cppcheck is easy since it’s directly running
on the source code. Then, integrating more elaborate analyzers like Infer and Scan-Build is more
complex, but possible, and can provide more hints on potential issues in the future.

Ref: 23-01-1097-LIV 17 Quarkslab SAS

On top of that, some analyzers like Infer have options for differential analysis, thus running only
on the addition that was made in a pull request7, thus cutting the noise from the rest of the
project issues. Cppcheck can also only run on specified files, which can limit the scope of the
analysis but provide useful information.

6.2 Manual review

The manual review was mainly performed in two ways, trying to find issues in sensitive areas,
such as some libscap functions for example, and systematically searching for particular patterns
on all code base. The first way guiding the latter. The code reviewed was the code of the libs.

6.2.1 Issues with readlink

From the Falco threat model (see Figure 5.1) we identified that libscap function scap_proc_-
scan_proc_dir must be investigated. Indeed, being able to influence procfs content is at the
reach of every user of the system by starting carefully crafted processes. Such a function, because
it is parsing text from the procfs file interface is highly specific to Linux and building an automated
fuzzing setup, reproducing the whole procfs interface, would be extremely time-consuming and
quickly out of date. That is why a manual review would be more efficient for this part of the code.

Issue in scap_proc_fill_root with readlink

Most of the code manipulating strings is carefully terminating them with 0 but an issue was
spotted in the function that is called to retrieve the root folder path of a process.

554 static int32_t scap_proc_fill_root(scap_t *handle, struct scap_threadinfo* tinfo,
const char* procdirname)↪→

555 {
556 char root_path[SCAP_MAX_PATH_SIZE];
557 snprintf(root_path, sizeof(root_path), "%sroot", procdirname);
558 if (readlink(root_path, tinfo->root, sizeof(tinfo->root)) > 0)
559 {
560 return SCAP_SUCCESS;
561 }
562 else
563 {
564 snprintf(handle->m_lasterr, SCAP_LASTERR_SIZE, "readlink %s failed (%s)",
565 root_path, scap_strerror(handle, errno));
566 return SCAP_FAILURE;
567 }
568 }

The issue is that readlink does not null-terminate the string that will read and copied into tinfo-
>root and the size of the buffer is sizeof(tinfo->root) instead of sizeof(tinfo->root) - 1
to let space for inserting a zero at the last index. Thus it’s possible to create a path exceeding

7https://fbinfer.com/docs/steps-for-ci

Ref: 23-01-1097-LIV 18 Quarkslab SAS

https://fbinfer.com/docs/steps-for-ci

SCAP_MAX_PATH_SIZE and chroot a program into it in order for this part of the code to write a
not null-terminated string into the structure of the size.

See the following listing for the structure in which the root buffer appears, on line 8.

1 typedef struct scap_threadinfo
2 {
3 // [...] abbreviated
4 int64_t vtid;
5 int64_t vpid;
6 char cgroups[SCAP_MAX_CGROUPS_SIZE];
7 uint16_t cgroups_len;
8 char root[SCAP_MAX_PATH_SIZE+1];
9 int filtered_out; ///< nonzero if this entry should not be saved to file

10 scap_fdinfo* fdlist; ///< The fd table for this process
11 uint64_t clone_ts;
12 int32_t tty;
13 int32_t loginuid; ///< loginuid (auid)
14

15 UT_hash_handle hh; ///< makes this structure hashable
16 }scap_threadinfo;

In theory, because the static size buffer is inserted directly in the structure, the situation could
potentially mean that future reads of this string, supposed to be null-terminated, could overflow
and read the data of the next structure’s fields values. However, the size of the buffer is SCAP_-
MAX_PATH_SIZE + 1, which translates to 1025, so the compiler will align the next fields, resulting
in the next integer to be shifted by some blocks. And because this structure is allocated using
calloc, the bytes hole will be filled with zeros. The result will be a string with a size equal to
the expected length plus one, which could potentially be an issue with copies trusting that the
string is well formed.

It seems that this situation is not present in the codebase, for example, line 433 of
userspace/libscap/scap_savefile.c, the computation of the length is performed using
strnlen using the constant 1024 as max length rootlen = (uint16_t)strnlen(root, SCAP_-
MAX_PATH_SIZE);.

Find in Appendix D more information about how to exploit this issue and debug with GDB to
understand the situation.

MEDIUM 1 Potential buffer overflow due to not null terminated output of readlink in lib-
scap/scap_proc_file_root

Category Buffer overflow

Rating Impact: Availability, Integrity Exploitability: None

Ref: 23-01-1097-LIV 19 Quarkslab SAS

Searching similar issues in libscap

Because a first issue was found with readlink, other parts of the codebase were investigated
looking for the same programming mistake. We used ripgrep8 to search the codebase.

userspace/libscap/scap_procs.c
63: target_res = readlink(filename, tinfo->cwd, sizeof(tinfo->cwd) - 1);
558: if (readlink(root_path, tinfo->root, sizeof(tinfo->root)) > 0)
723: target_res = readlink(filename, target_name, sizeof(target_name) - 1);

// Getting the target of the exe, i.e. to which binary it points to↪→

756: // null-terminate target_name (readlink() does not append a null byte)

In userspace/libscap/scap_procs.c, the issue from the previous section is present on line
558, where tinfo->root is not null terminated. On line 63 and line 723, the bufsize, third
argument of readlink is correctly set to the size of the buffer minus one.

userspace/libscap/scap_fds.c
418: r = readlink(fname, link_name, SCAP_MAX_PATH_SIZE);
619: r = readlink(fname, link_name, SCAP_MAX_PATH_SIZE);
727: r = readlink(fname, link_name, SCAP_MAX_PATH_SIZE);
1609: r = readlink(f_name, link_name, sizeof(link_name));

In userspace/libscap/scap_fds.c, all the readlink call are made with
SCAP_MAX_PATH_SIZE (even in the forth case, because link_name is always initialized as
char link_name[SCAP_MAX_PATH_SIZE];). The issue is that then these buffer are manually null
terminated doing link_name[r] = ’\0’; leading to an overflow by one. Let’s see an example,
the one line 619:

616 char link_name[SCAP_MAX_PATH_SIZE];
617 ssize_t r;
618

619 r = readlink(fname, link_name, SCAP_MAX_PATH_SIZE);
620 if (r <= 0)
621 {
622 return SCAP_SUCCESS;
623 }
624

625 link_name[r] = '\0';

Compiled with -O0, the compiler lets the locals in the order there are declared on the stack, thus
we have on the stack (in the order of the stack growth), the return address, a canary, the frame
pointer and the end of the link_name. So the line link_name[r] = ’\0’; will effectively write
a zero out of bound on the frame pointer, which might start with zeros.

So in this precise situation, there are no consequences. But in a different setup, where locals
could be located before the buffer, the stack overflow could theoretically lead to issues.

It is recommended to always readlink with a bufsize of the buffer size minus one, and then to
correctly null terminate the string using the return value as the index.

8https://github.com/BurntSushi/ripgrep

Ref: 23-01-1097-LIV 20 Quarkslab SAS

https://github.com/BurntSushi/ripgrep

LOW 9 Four null terminations of buffers written out of range by one in libscap/scan_-
fds.c

Category Buffer overflow

Rating Impact: Availability, Integrity Exploitability: Easy

Searching similar issues in libsinsp

userspace/libsinsp/sinsp_auth.cpp
71: ssize_t sz = readlink(fd_path.c_str(), buf, sizeof(buf));
72- if(sz != -1 && sz <= static_cast<ssize_t>(sizeof(buf)))
73- {

The bufsize is equal to sizeof(buf) but it’s not an issue since the value is later copied using
real size of the content of buf using std::string::assign.

userspace/libsinsp/threadinfo.cpp
1108: ret = readlink(proc_path, dirfd_path, sizeof(dirfd_path) - 1);
1109- if (ret < 0)
1110- {

In threadinfo.cpp, the second finding of the above output, the bufsize is correctly specified.

userspace/libsinsp/parsers.cpp
4486: target_res = readlink((chkstr + "/").c_str(),
4487- target_name,
4488- sizeof(target_name) - 1);

Finally, in parsers.cpp, the target_name buffer is not null terminated which could lead to an
overflow. However this piece of code is by default not used, you must specify the -A flag to analyze
the getcwd syscall. And on top of that, it is only debug code that is not shipped in the release.

INFO 7 Buffer overflow with not null terminated output of readlink in debug code in
libsinsp/parsers.cpp

Category Buffer overflow

Rating Impact: Availability, Integrity, Confi-
dentiality

Exploitability: None

Checking the return value of readlink

In the previous sections, we searched for potential buffer overflows but, in addition to this issue,
most of these usages of readlink are potentially vulnerable to referring to the wrong file. Indeed,

Ref: 23-01-1097-LIV 21 Quarkslab SAS

readlink takes the bufsize as a third argument and if the return value is equal to this, it means
that “truncation may have occurred”. The return value should be compared against bufsize and
increase the buffer or handle the error properly.

In many situations above, especially when reading from files in /proc/%d/fd, this issue is almost
impossible to exploit since it would require a legitimate absolute path target longer than 1024
bytes because the path in the fd directory are already canonicals thanks to the kernel.

Example in userspace/libsinsp/sinsp_auth.cpp, line 71. The readlink call could result
in a situation where it returns bufsize, its third argument, which here is sizeof(buf). In this
situation “truncation may have occurred” and it’s not possible to know if the path was exactly this
size or more. This means that the buffer could contain a path to a different file than expected. See
this extract of the method.

1 std::string sinsp_ssl::memorize_file(const std::string& disk_file)
2 {
3 std::string mem_file;
4 // [...]
5 if(fd != -1)
6 {
7 char buf[FILENAME_MAX] = { 0 };
8 std::ifstream ifs(disk_file);
9 std::string fd_path = "/proc/self/fd/" + std::to_string(fd);

10 ssize_t sz = readlink(fd_path.c_str(), buf, sizeof(buf));
11 if(sz != -1 && sz <= static_cast<ssize_t>(sizeof(buf)))
12 {
13 mem_file.assign(buf, sz);
14 std::string str;
15 std::ofstream ofs(mem_file, std::ofstream::out);
16 while(std::getline(ifs, str))
17 {
18 ofs << str << '\n';
19 }
20 }
21 // [...]
22 return mem_file;
23 }

So if the real path behind the file descriptor symlink is too long, readlink returns sizeof(buf)
line 10 of the example above, then, the if condition statement is true and the content of the
buffer at the maximum size of sizeof(buf) is copied into mem_file. Later, line 15, an output
file stream is created based on this path and written to, line 18. So if the realpath is long enough,
it’s possible to write to a different location than expected.

In theory, the program could use the symlink and let the kernel redirect the writing operation to
the correct file but it seems that the functions want to return the realpath to the caller, line 22.
We tried to exploit this bug but it seems that this method is private and never referenced in the
whole codebase. So maybe this can be deleted instead of refactored.

Ref: 23-01-1097-LIV 22 Quarkslab SAS

INFO 8 Return value in various usage of readlink is not checked which could lead to
write to a different file

Category Unchecked return value

Rating Impact: Confidentiality Exploitability: None

Conclusion on readlink

To conclude on the readlink syscall, there are three main issues in its usage:

1. readlink does not append a null byte to the buffer which could lead to buffer overflow if
not manually written.

2. The return value is often used as an index to write the terminating zero but could go out of
bounds if the bufsize, the third argument is equal to sizeof(buf) and not sizeof(buf)-1.

3. The return value should be checked not only against -1 but also when it’s equal to bufsize,
the third argument. It could imply that truncation may have occurred, ending up with a
path to the wrong file.

6.2.2 Checks on sensitive functions

Here is a non comprehensive list of common functions known to be unsafe in the sense that
they can easily be misused and can lead to crashes or buffer overflow attacks when used with
user-controlled inputs. Some are also not mentioned because they don’t appear in the codebase.

• gets - the “insecure by default” gets is not used in the codebase, its more safe counterpart
fgets is, however.

• strcpy - there are 30 occurences of strcpy, which could be replaced with safer strncpy or
even strlcpy which don’t assume infinitely long string and can guarantee null termination
in some cases.

• sprintf - there are 21 occurrences of sprintf that could be replaced with snprintf,
which don’t assume infinitely long string.

• sscanf - there are 45 occurences of sscanf, mostly to parse structured files in procfs that
cannot be directly manipulated by users.

• realloc - the interface of realloc can lead to misuses. realloc is called 22 times in
the codebase, irregularly, sometimes checking the return value properly and sometimes
without. Even if this issue could be theoretical because memory allocation failing can be
the symptom of greater issues, it’s good practice to properly check the return value.

• access - there are 4 occurences of access. It’s typically used to know if the effective user
has the right to access a file before opening it but present security issues because of potential
TOCTOU vulnerability it creates. However, when searching we found two usages in libscap,
mostly on files in procfs that cannot be modified, and two usages in libinsp, mostly to checks
files, all seeming non-problematic.

Ref: 23-01-1097-LIV 23 Quarkslab SAS

• atoi - there are 7 occurences of atoi, it seems that atof, atol or atoll are not used
in the project. The function is used mostly in example and test code but also in lib-
scap/scap_procs.c, in engine/bpf/scap_bpf.c and twice in libsinsp/container_en-
gine/docker/async_source.cpp. The issue is that atoi does not detect errors and just
returns 0 for error cases. This function can be replaced with strtol or sscanf which can
handle the error cases properly.

• realpath - there are 2 occurrences of realpath in chisel/chisel_utils.cpp, that can
be vulnerable to directory traversal attacks, symlink attacks or resource exhaustion. In
those specific cases, realpath is called with the second argument as the nullptr so the
function allocated a buffer automatically with a size up to PATH_MAX or return an error.

Most of these functions are not inherently insecure (except maybe for gets), but their usage
can be problematic in some situations. Some assume that strings can be infinitely long where
destination buffers are very finite, others have their return value typically badly handled or can
create race conditions. Some have safer alternatives, that are not inherently secure but put an
emphasis on what should be correctly taken care of.

6.2.3 Third-party dependencies version

Falco being built with various dependencies, we checked for CVE on those libraries, especialy
those potentially being exposed to the end user. For example, a minimalistic HTTP server based
on cpp-httplib9 is embedded in Falco userland process, which just answers to GET /healthz with
{"status": "ok"}, enabling some external monitoring.

If those dependencies are not all up to date, they are however regularly updated and none of the
CVEs were applicable to the context of use in Falco.

6.2.4 Conclusion

Most of the time dedicated to the manual review of the code was spent on libscap because it’s a
C component that interacts with the system implementation details and interfaces using many
syscalls and libc functions. Globally the code quality of Falco is good, but as we saw during our
research on specific pain points, the quality can sometimes be heterogeneous (similar syscalls or
libc functions called in different ways), which is not surprising in popular open source project.

9https://github.com/yhirose/cpp-httplib

Ref: 23-01-1097-LIV 24 Quarkslab SAS

https://github.com/yhirose/cpp-httplib

7 Dynamic analysis

One of the main focuses of this audit was to build fuzzers for security-relevant areas of Falco.
The threat model built during this audit was helpful to define which area should be investigated.
Although the attack surface considered was mostly the one a random unprivileged user on the
system has to interact with Falco, some early investigations were done on components a priori
only available to super users.

Indeed, a first fuzzer was built for the rules parser because it was quite natural to fuzz and a
good first project for Quarkslab’s engineers to get familiar with the build system.

7.1 Fuzzing the rules parser

First, the diagram on the Figure 7.1 was used to visualize the attack surface of Falco. Please note
that this figure is a bit dated at the moment, because of the new plugin mechanism that can
handle Kubernetes audit events as any other plugin.

Figure 7.1: Falco architecture from the project documentation

From the userland, there are two entries to the program in YAML, one is the configuration, which
should be a simple parsing, and another the rules Falco should use to filter the events. Writing
text parsers in C/C++ is notoriously error-prone so it was a good first target for fuzzing although
it’s not a priority considering the fact that these files should be accessible only by superusers.

Falco maintainers did a rewrite in C++ of their rule parser recently, it was previously written in
Lua. This work was done in a PR untitled refactor(libsinsp): renovate the filter grammar, parser,
and compiler1 with a proposed grammar in EBNF syntax.
1https://github.com/falcosecurity/libs/pull/217

Ref: 23-01-1097-LIV 25 Quarkslab SAS

https://github.com/falcosecurity/libs/pull/217

Harness

The interface of the parser is ideal to implement fuzzing. A parser object has to be initialized
with a string as an input and then parse() needs to be called. It’s possible to write a basic
libfuzzer harness like the following piece of code, directly inspired by test files that use a similar
code.

#include <filter/parser.h>
#include <string.h>

extern "C" int LLVMFuzzerTestOneInput(uint8_t* data, size_t size)
{

char* in = (char*)malloc(size + 1);
memcpy(in, data, size);
in[size] = '\0';
libsinsp::filter::parser parser(in);
try
{

parser.parse();
}
catch(std::runtime_error& e)
{

// do not crash on handled exceptions, ignore.
}
free(in);
return 0;

}

Listing 1: Harness for fuzzing the rules parser

To build this harness, the code was put in a dedicated file in the libsinsp/examples folder,
modifying the local CMakeLists.txt adding the following lines.

add_executable(fuzz-example
fuzz.cpp

)
target_link_libraries(fuzz-example

sinsp
)

And adding the following lines at the top CMakeLists.txt of libs to enable ASAN.

add_compile_options(-fsanitize=address)
add_link_options(-fsanitize=address)

Ref: 23-01-1097-LIV 26 Quarkslab SAS

Corpus

To generate a corpus of rules quickly, test case strings were gathered very quickly with a command
similar to the following ones. This is not ideal since it will generate wrong inputs that will be
discarded by the fuzzer quickly. Lines were also extracted in a crude way from the default rules
files in YAML.

grep -v EXPECT filter*.ut.cpp | grep -e '".*"' -o | cut -d "\"" -f 2 | split -l 1
yq '.[].condition' ../falco_rules.yaml | uniq | split -l 1

Results

The harness on Listing 1 was used for persistent mode fuzzing with HonggFuzz for almost 14
hours, see Figure 7.2, it did not run into any crashes during the whole fuzzing session.

Figure 7.2: Results of fuzzing in persistent mode with Honggfuzz for a night

Similarly, AFL++ was run over the harness in the persistent mode for a shorter amount of time to
see if it could spot other issues but it did not during our experimentations. Please note that to do
the same with AFL++ you need to add some boilerplate code that you can find in Appendix E.

Ref: 23-01-1097-LIV 27 Quarkslab SAS

Figure 7.3: Results of fuzzing in persistent mode with AFL++ for 8 hours with 4 instances

This does not mean that the parser is bug-free, but at least no bug would produce a crash was
found during the fuzzing session, and the harness was compiled with ASAN to produce explicit
crashes on memory errors. The coverage produced by the fuzzing session was checked manually
and it seemed like the fuzzer went over most of the codebase of the parser successfully.

7.2 Fuzzing the event processor

Having the goal of building fuzzers for the userspace part of Falco, the main target was the
sinsp_parser::process_event function. This function takes a pointer to an event as input and
can be seen as a router to the appropriate parser for the encoded event. For example, if the event
happens to be a PPME_SYSCALL_PIPE_X, which is the exit Falco event for the pipe(2) syscall, this
function will redirect the execution to parse_pipe_exit. The parser will then retrieve the event
parameters in the following manner.

// [...]
parinfo = evt->get_param(0);
retval = *(int64_t *)parinfo->m_val;
ASSERT(parinfo->m_len == sizeof(int64_t));
// [...]
parinfo = evt->get_param(1);
ASSERT(parinfo->m_len == sizeof(int64_t));
fd1 = *(int64_t *)parinfo->m_val;
// [...]

Fuzzing such big “router” would be interesting since the implementation is tedious and verifying

Ref: 23-01-1097-LIV 28 Quarkslab SAS

there is no error in this code might be even harder. The issue is that forming a valid, but random,
events (i.e., doing structured fuzzing) for so many different events is difficult.

On top of that, another difficulty is that some parsers do not actually parse all the buffer containing
the event’s arguments. These arguments are later “lazy loaded” when filtering is happening on
these specific events fields to reduce the overall load. That’s why it might not be sufficient, in
order to reach the code that would trigger an issue, to only ingest the events with the parsers.

That’s an illustration of a case in which fuzzing could be more complex and more time consuming
than doing a manual review, especially because the target is parsing a highly structured format
and might not be built with fuzzing in mind.

See in the following sections multiple ideas investigated by Quarkslab’s engineers. The order does
not reflect the chronological reality. Usage of libprotobuf-mutator was investigated in Section 7.2.1
in order to do structured fuzzing targeted directly at particular event parsers. Then usage of
syzkaller in Section 7.2.2 was explored, to fuzz the syscalls on a system with an instrumented
version of Falco running and getting coverage in the kernel engine. And then, fuzzing the scap
file format in Section 7.2.3 was looked into for unstructured fuzzing, it mostly uncovered issues
in the file format handling.

7.2.1 Using libprotobuf-mutator

For structured fuzzing in C/C++, libprotobuf-mutator2 is a library to randomly mutate protobuf
message. It could be used together with guided fuzzing engines, such as libFuzzer. The overall
idea is to define a structure in protobuf format and libprotobuf-mutator will mutate the fields
with type-valid values.

Falco maintainers pointed us to the driver/event_table.c files in libs that defines all the
events supported by Falco. See the following listing for an extract of that structure.

// [...]
/* PPME_SYSCALL_CLOSE_E */ {"close", EC_IO_OTHER | EC_SYSCALL, EF_DESTROYS_FD |

EF_USES_FD | EF_MODIFIES_STATE, 1, {{"fd", PT_FD, PF_DEC} } },↪→

/* PPME_SYSCALL_CLOSE_X */ {"close", EC_IO_OTHER | EC_SYSCALL, EF_DESTROYS_FD |
EF_USES_FD | EF_MODIFIES_STATE, 1, {{"res", PT_ERRNO, PF_DEC} } },↪→

/* PPME_SYSCALL_READ_E */ {"read", EC_IO_READ | EC_SYSCALL, EF_USES_FD |
EF_READS_FROM_FD, 2, {{"fd", PT_FD, PF_DEC}, {"size", PT_UINT32, PF_DEC} } },↪→

/* PPME_SYSCALL_READ_X */ {"read", EC_IO_READ | EC_SYSCALL, EF_USES_FD |
EF_READS_FROM_FD, 2, {{"res", PT_ERRNO, PF_DEC}, {"data", PT_BYTEBUF, PF_NA} }
},

↪→

↪→

// [...]

In addition of this file, a documentation page is available on the Falco website3. More importantly,
this page displays which syscalls are monitored by default, for performance reasons, without
specifying the -A flag that enables everything. Thus, the default list, on top of the syscalls that

2https://github.com/google/libprotobuf-mutator
3https://falco.org/docs/rules/supported-events/

Ref: 23-01-1097-LIV 29 Quarkslab SAS

https://github.com/google/libprotobuf-mutator
https://falco.org/docs/rules/supported-events/

are typically available in Kubernetes containers enviromnent4, can be used to make a priority list
of syscalls parsers that should be fuzzed with structured fuzzing.

Compiling libprotobuf-mutator

One of the main difficulties was to link a binary with libprotobuf-mutator which was using a
different version of protobuf than Falco. The solution to link without bothering with missing
symbols or multiple definitions is to align the protobuf version used by libprotobuf-mutator with
the one used by Falco. Fortunately, libprotobuf-mutator v1.1 compiles with an older protobuf
version.

git clone https://github.com/google/libprotobuf-mutator.git
cd libprotobuf-mutator
git checkout v1.1

In the file cmake/external/protobuf.cmake, modify line 66 with GIT_TAG v3.17.3, which is
the version used by Falco at the moment of the audit (see 3.2).

mkdir build
cd build
cmake .. -GNinja -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++

-DCMAKE_BUILD_TYPE=Debug -DLIB_PROTO_MUTATOR_DOWNLOAD_PROTOBUF=ON↪→

ninja

At this point we successfully compiled a version of libprotobuf-mutator compatible with the
protobuf version Falco use.

Writing the proto file and the harness

The example here will use the events associated with the open(2) syscall.

First, a proto file must be written containing the value types needed for filling the arguments of
the event we want to generate. Unfortunately, protobuf cannot take expression as input for enum
values, so all bitwise flag values must be written directly, instead of using the practical 1 « N
notation. In our situation, the proto file will look like the abbreviated following version (see the
full proto definition in the listing in Appendix F).

syntax = "proto3";

package sys_open;

message event_args {
uint64 fd = 1;
string fspath = 2;
repeated FILE_FLAGS flags32 = 3;

4Restricted seccomp profiles are still not applied by default in Kubernetes, but Linux capabilities are already restricted,
thus reducing the syscalls available even running as root.

Ref: 23-01-1097-LIV 30 Quarkslab SAS

FILE_MODE mode = 4;
uint32 dev = 5;
uint64 ino = 6;

}

// [...]

Then generate the C++ stubs with the protobuf compiler, make sure to use the one
compiled along libprotobuf-mutator, it’s available in the project build folder libprotobuf-
mutator/build/external.protobuf/bin/protoc.

protoc --version # this should output "libprotoc 3.17.3"
protoc --cpp_out=. sys_open.proto

This command should generate two files, sys_open.pb.cc and sys_open.pb. Now, a piece of
code must be written, using the generated input to fuzz our parsers: the harness. Thanks to
the help of a Falco maintainer, we modified a version of the sinsp_with_test_input.h’s class
sinsp_with_test_input to add our event on an inspector. The resulting harness is similar to
the following piece of code.

1 #include <parsers.h>
2
3 #include "sinsp_fuzz.h"
4 #include "sys_open.pb.h"
5
6 #include "libprotobuf-mutator/src/libfuzzer/libfuzzer_macro.h" // defines DEFINE_PROTO_FUZZER
7
8 int32_t fuzz_bitwise_flag = 0;
9

10 static protobuf_mutator::libfuzzer::PostProcessorRegistration<sys_open::event_args> reg = {
11 [](sys_open::event_args* msg, unsigned int seed)
12 {
13 fuzz_bitwise_flag = 0;
14 for(int32_t flag : msg->flags32())
15 {
16 fuzz_bitwise_flag |= flag;
17 }
18 }};
19
20 DEFINE_PROTO_FUZZER(const sys_open::event_args& msg)
21 {
22 sinsp_fuzz s;
23
24 s.SetUp();
25 s.add_default_init_thread();
26 s.open_inspector();
27
28 auto evt = s.add_event_advance_ts(s.increasing_ts(), 1, PPME_SYSCALL_OPEN_E, 3,

msg.fspath().c_str(), fuzz_bitwise_flag, msg.mode());↪→
29 evt->load_params();
30
31 evt = s.add_event_advance_ts(s.increasing_ts(), 1, PPME_SYSCALL_OPEN_X, 6, msg.fd(),

msg.fspath().c_str(), fuzz_bitwise_flag, msg.mode(), msg.dev(), msg.ino());↪→
32 evt->load_params();
33
34 s.TearDown();
35 }

Ref: 23-01-1097-LIV 31 Quarkslab SAS

The DEFINE_PROTO_FUZZER macro and the post processor are part of the libFuzzer integration of
libprotobuf-mutator, see the section in the README for more details5. To detail the example here,
on the line 11 of harness, a lambda is defined to post process the generated protobuf message in
order to create a file flags argument with one or more bits set one. From line 20 to line 35 is the
part of the code that will be replayed by libFuzzer.

At this point we have a protobuf definition that is used in a libFuzzer harness and the compiled
protobuf-mutator libraries.

Compile with libFuzzer

To compile with LLVM libFuzzer, you mostly need to pass the -fsanitize=fuzzer flag to clang.
Please note that you must compile with clang and not gcc. To compile everything that was
presented in the last sections, use the following lines in the CMakeLists.txt of libsinsp/test,
fixing the relative paths, or create a new one under libsinsp/test/fuzz with the following
content.

add_compile_options(-fsanitize=fuzzer,address)
add_link_options(-fsanitize=fuzzer,address)

add_executable(fuzz_sys_open
sys_open.pb.cc
../test_utils.cpp
fuzz_sys_open.cpp

)

Set this path to your libprotobuf-mutator installation directory
set(LIBPROTOBUF_MUTATOR_BASEDIR "/home/mahe/falco-security/libprotobuf-mutator/")

target_include_directories(fuzz_sys_open PRIVATE
"${LIBPROTOBUF_MUTATOR_BASEDIR}"
no need for the following, already included with others Falco dependencies
"/home/mahe/falco-security/libprotobuf-mutator/buildy/external.protobuf/include")

)

target_link_libraries(fuzz_sys_open
"${LIBPROTOBUF_MUTATOR_BASEDIR}/build/src/libfuzzer/libprotobuf-mutator-libfuzzer.a"
"${LIBPROTOBUF_MUTATOR_BASEDIR}/build/src/libprotobuf-mutator.a"
no need for the following, already included with others Falco dependencies
"/home/mahe/falco-security/libprotobuf-mutator/build-test/external.protobuf/lib/libprotobufd.a"
sinsp

)

For ASAN to work on the whole code, the following lines must be added at the beginning of the
root CMakeLists.txt.

add_compile_options(-fsanitize=address)
add_link_options(-fsanitize=address)

To reproduce exactly this setup, we generated a diff that can be applied to falco libs repo from
version described in Table 3.2, tag 0.9.0, see the file named sys_open_fuzz.diff. Go to the root
of the git libs repository and type the following commands.

5https://github.com/google/libprotobuf-mutator#integrating-with-libfuzzer

Ref: 23-01-1097-LIV 32 Quarkslab SAS

https://github.com/google/libprotobuf-mutator#integrating-with-libfuzzer

git checkout 0.9.0
git apply sys_open_fuzz.diff
mkdir build
cd build
cmake -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ ..
make # try to use -j <nbthreads>

Fuzzing with LLVM libFuzzer

Unlike HonggFuzz or AFL++, LLVM libFuzzer adds the fuzzer directly to the compiled binary.
Thus to start the fuzzing session, just execute the binary and use libFuzzer’s flags. You can find
the documentation on the LLVM website6 to learn about the available flags and understand the
output format. It’s possible to run the fuzzer with multiple workers and monitor the logs using
tail on the multiple generated files. If libFuzzer finds a crash, it will stop and generate a file
containing the Protobuf message in text format7. It’s possible to provide an existing corpus with
the same format.

Starting the fuzzing, the output for fuzz_sys_open should be similar to this.

INFO: found LLVMFuzzerCustomMutator (0x934350). Disabling -len_control by default.
INFO: Running with entropic power schedule (0xFF, 100).
INFO: Seed: 1989839396
INFO: Loaded 1 modules (830 inline 8-bit counters): 830 [0x20899d4, 0x2089d12),
INFO: Loaded 1 PC tables (830 PCs): 830 [0x1d47f60,0x1d4b340),
INFO: -max_len is not provided; libFuzzer will not generate inputs larger than 4096 bytes
INFO: A corpus is not provided, starting from an empty corpus
#2 INITED cov: 120 ft: 121 corp: 1/1b exec/s: 0 rss: 51Mb

NEW_FUNC[1/3]: 0x92e630 in sys_open::event_args::~event_args()
/home/mahe/falco-security/libs/userspace/libsinsp/test/fuzz/sys_open.pb.cc:193↪→

NEW_FUNC[2/3]: 0x931a00 in void google::protobuf::internal::InternalMetadata::DeleteOutOfLin ⌋
eHelper<google::protobuf::UnknownFieldSet>()
/home/mahe/falco-security/libs/build/protobuf-prefix/src/protobuf/target/include/google/ ⌋
protobuf/metadata_lite.h:190

↪→
↪→
↪→

#3 NEW cov: 131 ft: 136 corp: 2/11b lim: 4096 exec/s: 0 rss: 53Mb L: 10/10 MS: 7
EraseBytes-EraseBytes-ShuffleBytes-CMP-CrossOver-ChangeBit-Custom- DE:
"\x00\x00\x00\x00\x00\x00\x00\x00"-

↪→
↪→
#5 NEW cov: 133 ft: 138 corp: 3/47b lim: 4096 exec/s: 0 rss: 54Mb L: 36/36 MS: 3

CustomCrossOver-InsertByte-Custom-↪→
#41 REDUCE cov: 133 ft: 138 corp: 3/44b lim: 4096 exec/s: 0 rss: 67Mb L: 33/33 MS: 2

ChangeByte-Custom-↪→
#142 REDUCE cov: 133 ft: 138 corp: 3/23b lim: 4096 exec/s: 0 rss: 104Mb L: 12/12 MS: 1 Custom-
#278 NEW cov: 134 ft: 139 corp: 4/50b lim: 4096 exec/s: 0 rss: 153Mb L: 27/27 MS: 2

CMP-Custom- DE: "proto2"-↪→
#380 REDUCE cov: 134 ft: 139 corp: 4/40b lim: 4096 exec/s: 0 rss: 189Mb L: 17/17 MS: 4

ShuffleBytes-Custom-EraseBytes-Custom-↪→
#811 REDUCE cov: 134 ft: 139 corp: 4/37b lim: 4096 exec/s: 811 rss: 341Mb L: 7/17 MS: 2

CopyPart-Custom-↪→
#4096 pulse cov: 134 ft: 139 corp: 4/37b lim: 4096 exec/s: 2048 rss: 393Mb
#4118 REDUCE cov: 134 ft: 139 corp: 4/32b lim: 4096 exec/s: 2059 rss: 393Mb L: 7/17 MS: 5

CustomCrossOver-ShuffleBytes-CopyPart-CopyPart-Custom-↪→
#6326 REDUCE cov: 135 ft: 140 corp: 5/78b lim: 4096 exec/s: 1581 rss: 394Mb L: 46/46 MS: 5

PersAutoDict-CustomCrossOver-Custom-CMP-Custom- DE: "\x00\x00\x00\x00\x00\x00\x00\x00"-"(NULL)"-↪→
#6457 REDUCE cov: 135 ft: 140 corp: 5/56b lim: 4096 exec/s: 1614 rss: 394Mb L: 24/24 MS: 1 Custom-

6https://llvm.org/docs/LibFuzzer.html
7https://developers.google.com/protocol-buffers/docs/text-format-spec

Ref: 23-01-1097-LIV 33 Quarkslab SAS

https://llvm.org/docs/LibFuzzer.html
https://developers.google.com/protocol-buffers/docs/text-format-spec

#6918 REDUCE cov: 135 ft: 140 corp: 5/49b lim: 4096 exec/s: 1729 rss: 394Mb L: 17/17 MS: 2
CopyPart-Custom-↪→

#8192 pulse cov: 135 ft: 140 corp: 5/49b lim: 4096 exec/s: 1638 rss: 394Mb
#8564 REDUCE cov: 135 ft: 140 corp: 5/48b lim: 4096 exec/s: 1712 rss: 394Mb L: 6/17 MS: 2

CMP-Custom- DE: "\x01\x00\x00\x00\x00\x00\x00\x00"-↪→
#16384 pulse cov: 135 ft: 140 corp: 5/48b lim: 4096 exec/s: 1820 rss: 395Mb

Fuzzing the SYS_CLONE_20_X event handler

After trying on sys_open, we selected a syscall that had a more complex handler on the userspace
side. sys_clone_20_x was choosen, notably because it has a large number of arguments: twenty,
and some could be manipulated by a simple user on the system. So we decided to mutate only the
fields that could be influenced by an attacker, i.e. the exe path, args, comm, and flags, meaning
that in the end mostly string buffers were fuzzed. In the end, the fuzzing was pretty restricted
and concerned mostly string buffers, so it was very limited and could have been checked by
a manual analysis. Unsurprisingly, in the end, fuzzing the handler with the harness did not
triggered crashes.

However, the same method can be used to fuzz the entirety of the arguments, to find bugs that
may not be security relevant. Nevertheless, it confirms that writing security relevant harness can
be more time consuming than reviewing the code manually, considering as well that it can be
harder to detect some issues by just reading the source and manual review should in addition of
a dynamic analysis.

Attached to the report, you will find a git diff named, sys_clone_fuzz.diff containing both
the changes for the open and clone syscalls from the tag 0.9.0 or more precisely, the version
specified in Table 3.2.

Conclusion

For structured fuzzing, libprotobuf-mutator is appropriate in order to create random structures,
but it’s a bit complex and time-consuming to setup. The drawback is mainly that multiple highly
targeted harnesses must be written in order to fuzz a significant amount of code, and thus find
bugs. Manual review of the function could be more time efficient in certain situations. On top of
that, by creating the proto definition and the harness, we need to have a very precise knowledge
on what could be the possible inputs and not make potential false assumptions. It should be
combined with random fuzzing that make fewer assumptions in order to find potential issues on
the format itself and not just on the range of possible values.

Because writing and maintaining a large quantity of custom harness could be burdensome,
we can even project that the proto definition and C++ harness could be generated from the
event_table.c automatically. But again creating such program could exceed the cost in time of
a manual review.

For the conclusion of the specific examples, on sys_open and sys_clone_20_x, fuzzing sessions
could not trigger crashes with the harnesses presented in this report.

Ref: 23-01-1097-LIV 34 Quarkslab SAS

7.2.2 Using syzkaller

For fuzzing related to syscalls, the syzkaller8 project can be interesting. It’s technically an
unsupervised coverage-guided kernel fuzzer but also a group of binaries and libraries that can be
used separately to generate valid syscall programs and mutate them. The advantage of using this
project as a base for creating valid event for Falco is that multiple people already took the time to
describe syscalls (their arguments, return values) in a specific domain language9.

There are two ways to see how syzkaller could be used on Falco.

1. The whole syzkaller stack could be used as intended, fuzzing the entire system on which
Falco is installed and running. The coverage will come from the system code and not from
Falco’s so it can be seen as random fuzzing without guidance.

2. The library in charge of mutating programs could be used to form valid Falco events (at least
enter events). It can be used similarly as in the syz-mutate tool10. It’s still random fuzzing
and more should be written to actually create a fuzzer from this idea: interfacing with the
C library containing the process_event function, catching signals as a fuzzer would do,
etc.

For the second point, in order to get an idea of what syzkaller is capable, you can clone the
repository, compile the binaries and use syz-mutate to generate valid programs. Here is an
extract mutating a lot of open(2) syscalls using ./syz-mutate --len 2000 --enable open.

[...]
open$dir(&(0x7f0000146fc0)='./file64\x00', 0x8840, 0x1d1)
open$dir(&(0x7f0000147000)='./file4aa ⌋

aaa ⌋

aaa ⌋

aaa ⌋

aaa ⌋

aaa ⌋

aaa ⌋

aaaa\x00', 0x193000,
0x40)

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

open(&(0x7f0000147240)='./file60\x00', 0x191180, 0x44)
open(&(0x7f0000147280)='./file7\x00', 0x40100, 0x14)
open$dir(&(0x7f00001472c0)='./file36\x00', 0x420002, 0x32)
open$dir(&(0x7f0000147300)='./file1/file1/file0/file1\x00', 0x240040, 0x20)

Fuzzing the Falco kernel module with syzkaller

For the first point, we mainly followed the syzkaller documentation11 to setup a QEMU VM on a
Ubuntu host. Some small modifications are required to integrate Falco.

8https://github.com/google/syzkaller
9https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions.md

10https://github.com/google/syzkaller/blob/master/tools/syz-mutate/mutate.go
11https://github.com/google/syzkaller/blob/master/docs/linux/setup_ubuntu-host_qemu-vm_

x86-64-kernel.md

Ref: 23-01-1097-LIV 35 Quarkslab SAS

https://github.com/google/syzkaller
https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions.md
https://github.com/google/syzkaller/blob/master/tools/syz-mutate/mutate.go
https://github.com/google/syzkaller/blob/master/docs/linux/setup_ubuntu-host_qemu-vm_x86-64-kernel.md
https://github.com/google/syzkaller/blob/master/docs/linux/setup_ubuntu-host_qemu-vm_x86-64-kernel.md

• First, in the kernel config parameters, in addition to the required config options for syzkaller,
we also added CONFIG_KCOV_ENABLE_COMPARISONS=y. This is not required but gives better
coverage results based on our experiments. A second point, which is required to enable
coverage of dynamic loaded module and so to get Falco driver coverage, is to disable KASLR
by adding CONFIG_RANDOMIZE_BASE.

• Once the kernel was built, we built Falco’s driver using the same kernel source code, in order
to get instrumentation into the module. To do this, there is just a small modification to do in
https://github.com/falcosecurity/libs/blob/master/driver/Makefile.in which
defines KERNELDIR as:

KERNELDIR ?= /lib/modules/$(shell uname -r)/build

We just have to fix this with the folder used to build our kernel.

• Then we need to build the Falco userland process inside the target image. To do this, we
started the image with a temporary second drive (Falco is quite huge to build), cloned the
git repository into it, added the required packages to build everything and then happily got
the expected binary.

• Finally, we added the default falco.yaml and falco_rules.yaml configuration files and
configured Falco to start as a systemd service, based on the scripts from Falco repository.

At this point, restart the VM and quickly check that Falco is ready:

Linux syzkaller 5.14.0 #4 SMP Tue Nov 22 07:04:02 EST 2022 x86_64
...
root@syzkaller:~# lsmod
Module Size Used by
falco 1081344 2
root@syzkaller:~# ps axu | grep falco
root 207 19.4 1.4 268792 24928 ? Rsl 22:03 0:17 /usr/bin/falco

--pidfile=/var/run/falco.pid↪→

root 282 8.0 0.0 11116 928 pts/0 S+ 22:04 0:00 grep falco
root@syzkaller:~# touch /root/whatever
root@syzkaller:~# tail -1 /var/log/user.log
Nov 23 22:05:16 syzkaller falco: 22:05:16.545542579: Error File below / or /root

opened for writing (user=root user_loginuid=0 command=touch /root/whatever
pid=283 parent=bash file=/root/whatever program=touch container_id=host
image=<NA>)

↪→

↪→

↪→

We can now start syzkaller. A manager configuration file is required to specify various parameters,
like kernel image, ‘sshkey‘ to log into the vm, number of VM, etc.

But in addition to the documentation sample, we also need to specify two parameters, module_-
obj and kernel_subsystem to help syzkaller retrieve information from Falco’s coverage. The
global configuration we used is similar to:

{
"target": "linux/amd64",

Ref: 23-01-1097-LIV 36 Quarkslab SAS

"http": "0.0.0.0:8080",
"workdir": "/home/jdoe/syzkaller/syzkaller/workdir",
"kernel_obj": "/home/jdoe/syzkaller/linux",
"module_obj": ["/home/jdoe/syzkaller/falco/build/driver"],
"kernel_subsystem": [{ "name": "falco", "path":
["/home/jdoe/syzkaller/falco/build/driver/src"]}],↪→

"image": "/home/jdoe/syzkaller/image/stretch.img",
"sshkey": "/home/jdoe/syzkaller/image/stretch.id_rsa",
"syzkaller": "/home/jdoe/syzkaller/syzkaller",
"procs": 4,
"type": "qemu",
"vm": {

"count": 2,
"kernel": "/home/jdoe/syzkaller/linux/arch/x86/boot/bzImage",
"cpu": 2,
"mem": 2048,

}
}

Running syzkaller is then as easy as running

./bin/syz-manager -config=./stretch.cfg

Syzkaller needs to start each fuzzing VM with the --snaphot option, which means that after
rebooting, any filesystem modification is lost. But this doesn’t prevent us to ssh into a working
VM and take a look at /var/log/user.log to check if Falco has caught some events:

root@syzkaller:~# grep falco /var/log/user.log
...
Nov 23 22:37:20 syzkaller falco: Opening capture with Kernel module
Nov 23 22:37:25 syzkaller falco: 22:37:25.448433801: Error File below / or /root

opened for writing (user=root user_loginuid=0 command=scp -t /syz-fuzzer
pid=362 parent=sshd file=/syz-fuzzer program=scp container_id=host image=<NA>)

↪→

↪→

Nov 23 22:37:26 syzkaller falco: 22:37:26.648266483: Error File below / or /root
opened for writing (user=root user_loginuid=0 command=scp -t /syz-executor
pid=370 parent=sshd file=/syz-executor program=scp container_id=host
image=<NA>)

↪→

↪→

↪→

Nov 23 22:37:39 syzkaller falco: 22:37:39.810731946: Error File created below
/dev by untrusted program (user=root user_loginuid=0 command=syz-executor.0
exec pid=2188 file=/dev/sr0 container_id=host image=<NA>)

↪→

↪→

Nov 23 22:37:39 syzkaller falco: 22:37:39.832322826: Error File created below
/dev by untrusted program (user=root user_loginuid=0 command=syz-executor.3
exec pid=2222 file=/dev/nvram container_id=host image=<NA>)

↪→

↪→

...

The first two events are just showing some internals from syzkaller, the syz-manager on the host
is pushing its binaries into the vm with scp, and then the two following events show that those
binaries start playing with devices.

Ref: 23-01-1097-LIV 37 Quarkslab SAS

Gathering information from the userland Falco process

At this point, an attentive reader will have noted that we are just able to get information from
the Falco driver, there is no coverage for the Falco userland process, nor even notification if this
process crashes.

If getting coverage for a userland process would require more work to adapt Syzkaller, which was
not the aim of this assessment, we nevertheless thought that it would not be so complicated to
detect crashes. Indeed, when a userland process crashes, it is reported in the local syslog. We’ve
already said that syzkaller starts the VM with the --snapshot option, so to keep track of those
potential crashes through reboots, we just configured the VM syslog to forward interesting events
to the host syslog.

This required very few modifications of our image, and a small fix in the way syzkaller is starting
the QEMU VM, due to the --restrict option used by syzkaller to isolate the guest and the host
network, obviously to prevent bad things to happen to the host. QEMU provides an option to
expose a listening socket on the host side inside the guest, thanks to the guestfwd options. Be
careful, the port must be bound before starting QEMU.

• So the code configuring the network stack of QEMU VM in /vm/qemu/qemu.go has been
fixed by:

diff --git a/vm/qemu/qemu.go b/vm/qemu/qemu.go
index d9933fa05..eac312f66 100644
--- a/vm/qemu/qemu.go
+++ b/vm/qemu/qemu.go
@@ -435,7 +435,8 @@ func (inst *instance) boot() error {

args = append(args, splitArgs(inst.cfg.QemuArgs, templateDir,
inst.index)...)↪→

args = append(args,
"-device", inst.cfg.NetDev+",netdev=net0",

- "-netdev",
fmt.Sprintf("user,id=net0,restrict=on,hostfwd=tcp:127.0.0.1:%v-:22",
inst.port))

↪→

↪→

+ "-netdev",
fmt.Sprintf("user,id=net0,restrict=on,hostfwd=tcp:127.0.0.1:%v-:22"+↪→

+ ",guestfwd=tcp:10.0.2.1:514-tcp:127.0.0.1:514",
inst.port))↪→

if inst.image == "9p" {

• In the VM image, in /etc/rsyslog.conf, two new actions were added to forward kernel
and user events to the exposed remote TCP service: kern.* @@10.0.2.1:514 and user.*
@@10.0.2.1:514. Indeed, the only events received with the user facility are Falco events,
which enable us to also have a log on the host of all triggered events.

• The syslog startup must be postponed after the network setup, by adding to the [Unit]
part of /etc/systemd/system/syslog.service

After=network.target auditd.service

Ref: 23-01-1097-LIV 38 Quarkslab SAS

• And to try to get some information in case of a crash, at least a stack trace, kernel.core_-
pattern was configured with a custom script which just calls coredumpctl info $1 |
logger -p user.notice after having executed systemd-coredump.

• Finally, Falco was recompiled with ASAN, in order to get potential memory error under
heavy syscalls load.

Results

After a 48 hours run of syzkaller, Falco kernel driver did not cause any crash. See Table 7.1 for
more information. Nevertheless, other crashes were found, like a general protection fault in
scsi_queue_rq. However those bugs have already been caught and reported by syzbot12.

uptime 32h345s
fuzzing 49h41m0s
corpus 10540
signal 130782
coverage 86763
syscalls 2125
crash types 10 (0/hour)
crashes 28 (0/hour)
exec total 6557347 (55/sec)

Table 7.1: Syzkaller fuzzing campaign stats results

See Table 7.2 for coverage information on the Falco kernel module.

filename covergae basic block
falco/build/driver/src 57% (81%) of 3660(2574)
main.c 16% (52%) of 568(175)
ppm_cputime.c — of 1
ppm_events.c 40% (46%) of 385(337)
ppm_fillers.c 68% (89%) of 2705(2062)
ppm_flag_helpers.h 100% (0%) of 1(0)

Table 7.2: Coverage on Falco kernel module code

Clearly, when syzkaller starts its fuzzing process inside the VM, Falco is already started and the
driver loaded, so there is no reason to see coverage, for example, for various parts of main.c,
as the one which handles driver initialization or the file_operations used when a userland
process opens the falco driver or memory map it.

12https://syzkaller.appspot.com/upstream

Ref: 23-01-1097-LIV 39 Quarkslab SAS

https://syzkaller.appspot.com/upstream

An interesting point is the coverage of ppm_fillers.c, which contains a hook for each syscall in
order to extract its parameters, and gives a good idea of which syscall has been reached by the
fuzzer. See the following Table 7.3, for a small extract of the coverage for the f_sys_xxx_e|x
handled in this source file. The full HTML coverage report will be included with this report under
the file name syzkaller-kernel-module-coverage.html.gz.

function name coverage basic block
...
f_sys_accept4_e 100% of 1
f_sys_accept_x 83% of 17
f_sys_access_e — of 10
f_sys_bpf_x — of 1
f_sys_brk_munmap_mmap_x — of 7
f_sys_capset_x 98% of 250
f_sys_chmod_x 94% of 33
f_sys_connect_e 80% of 20
f_sys_connect_x 75% of 16
f_sys_copy_file_range_e — of 13
f_sys_copy_file_range_x — of 7
f_sys_creat_e 95% of 34
f_sys_creat_x 96% of 43
...

Table 7.3: Coverage on the Falco kernel module fillers

Coverage of ppm_events.c, which contains various tool functions used by ppm_fillers.c to
extract the syscall arguments, is also interesting, see the following Table 7.4.

Ref: 23-01-1097-LIV 40 Quarkslab SAS

function name coverage basic block
addr_to_kernel 100% of 5
compat_parse_readv_writev_bufs — of 26
compute_snaplen 2% of 150
dpi_lookahead_init — of 1
f_sys_autofill 85% of 13
fd_to_socktuple 60% of 61
pack_addr 91% of 11
parse_readv_writev_bufs 97% of 26
ppm_copy_from_user 100% of 4
ppm_strncpy_from_user 100% of 11
sock_getname — of 21
val_to_ring 86% of 56

Table 7.4: Coverage of function in ppm_events.c

Most of the missed code comes from the compute_snaplen, which has been manually reviewed.

Concerning the Falco userland process, once again, no crash. And yet, we can see it was in high
demand thanks to the various syscall event drop present in the Falco notifications:

Dec 2 07:43:31 syzkaller falco: 07:43:24.933425157: Debug Falco internal: syscall
event drop. 10551 system calls dropped in last second.↪→

(ebpf_enabled=0 n_drops=10551 ... n_drops_buffer_total=10551 ... n_evts=14714)

Conclusion

Syzkaller appeared to be an interesting option for blackbox fuzzing of Falco’s solution, enabling
to challenge both the driver and userland application at a high level rate of event, and being able
to trigger complex syscall chain. Falco showed no weakness in dealing with this large amount of
unusual events, despite long fuzzing sessions.

A way to improve this fuzzing solution, would be to add userland process coverage to this syzkaller
based solution in to better guide the fuzzer.

7.2.3 Using the scap file format

Falco can, in addition of the live capture from the kernel module or eBPF probes, read files in
the scap file format13 to process and filter the events based on the content. The sysdig tool14
can capture syscalls event and generate such file in the scap format. Falco maintainers kindly

13The scap format is a flavor of the, often used for network, pcap file format. Note that Gerald Combs, the creator
and maintainer of Wireshark was hired by Sysdig, the initial parent company of Falco.

14https://github.com/draios/sysdig

Ref: 23-01-1097-LIV 41 Quarkslab SAS

https://github.com/draios/sysdig

directed us toward a repository, sysflow-telemetry/sf-collector where some specific scap files are
available15.

For fuzzing directly the file format, inspiration was taken from the very helpful examples in the
libs/libsinsp folder16 keeping only the part concerning the SAVEFILE engine. You can find the
complete harness in the git diff file named fuzz_file.diff attached to the report. The binary
was compiled with ASAN.

The issue is that, as expected, the fuzzing mostly uncovered crashes from the file decoding part
since these files input are what we could call “corrupted”, for example having a header “lying”
about the content of the body. It seems that the file engine and the event processor assume that
file should be valid which is reasonable. Indeed these crashes are not critical because they are
only concerning a Falco instance that was ran especially for filtering and investigating about the
content of the files.

On top of that, fuzzing is particularly slow (around 50/100 execution per second), which might
be because the code parsing the file is actually making a lot of read(2) syscalls, which is not
ideal in terms of performance. But for an unclear reason a lot of the execution timeout after 1s
or a bit more which slows everything down (it might be related to ASAN but it’s not clear). In
order to find out, it would be reasonable to first fix all the previous crash, which would imply to
refactor some parts of the parsing more defensively.

An archive with the name fuzz-scap-file-results.tar.gz contains the results of a small
session of fuzzing, around an hour in total. The file ending in .fuzz can be used as input of the
harness to provoke the crash their name indicates. Usually a good idea is to build the harness
without optimization, using -O0, not -Og, and debugging with the help of gdb, for example, to
find the root of the crash. Please note that some inputs only generate crash because of ASAN but
are silent memory bug without the sanitizer enabled. Inputs starting with SIGVTALRM are inputs
that somehow created an execution timeout (still unclear why and maybe not the priority).

Example of crash using malformed scap file

Here is an example to illustrate, let’s arbitrary take the smallest crash input generated for concision
reason. The name of the file (see HonggFuzz documentation on how to read the name17),
is SIGSEGV.PC.5555560369be.STACK.c30617a76.CODE.1.ADDR.55575e149b22.INSTR.mov__-
__(%rax),%rax.fuzz

00000000: 0a0d 0d0a 1c00 0000 4d3c 2b1a 0100 0200 ffff ffffM<+.........
00000014: ffff ffff 1c00 0000 2102 0000 c000 0000 1000 0000!...........
00000028: 00e0 dbb8 fe61 7269 612d 3235 362d 6163 6dff 0f00aria-256-acm...
0000003c: 7377 00ff 0000 0000 0000 3863 6439 6430 6631 3438 sw........8cd9d0f148
00000050: 3438 0000 0000 0000 0000 0000 0000 0000 0000 0000 48..................
00000064: 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
00000078: 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000008c: 0000 0000 0000 0000 0000 0000 0000 0063 7075 5f73cpu_s
000000a0: 6800 0000 0000 0000 0000 0000 0000 0000 0000 0000 h...................

15https://github.com/sysflow-telemetry/sf-collector/tree/master/tests
16https://github.com/falcosecurity/libs/tree/master/userspace/libsinsp/examples
17https://github.com/google/honggfuzz/blob/master/docs/USAGE.md#output-files

Ref: 23-01-1097-LIV 42 Quarkslab SAS

https://github.com/sysflow-telemetry/sf-collector/tree/master/tests
https://github.com/falcosecurity/libs/tree/master/userspace/libsinsp/examples
https://github.com/google/honggfuzz/blob/master/docs/USAGE.md#output-files

000000b4: 0000 0000 0000 0000 0000 00f1 0000 0000 0000 0000
000000c8: 0063 6173 7435 2d65 6362 0000 0000 0000 0000 0000 .cast5-ecb..........
000000dc: 0000 0000 0000 0000 ff00 0000 0000 0001 0000 0000
000000f0: 0000 ..

This input will cause to program to stop on segmentation fault because of a NULL pointer deref-
erence sinsp_parser::parse_clone_exit at libs/userspace/libsinsp/parsers.cpp:1017. Indeed
the faulty code is illustrated in the following listing.

1015 parinfo = evt->get_param(0);
1016 [...] // there is an assert here.
1017 childtid = *(int64_t *)parinfo->m_val;

The parinfo variable has for type sinsp_evt_param which could be simplified to this C structure.

struct sinsp_evt_param {
char* m_val; ///< Pointer to the event parameter data.
uint32_t m_len; ///< Length of the parameter pointed by m_val.

};

In the case of this malformed scap file, the function behind get_param will return a sinsp_-
evt_param instance with m_val being a NULL pointer thus provoking the error on the NULL
dereference in the next line of the example, line 1017 of the parsers.cpp file.

INFO 9 Multiple crashes in the parsing of scap files and event buffer with malformed files

Category Null dereference

Rating Impact: Availability Exploitability: Easy

Conclusion

Although the results of this fuzzing campaign reveal really concrete bugs, it seems that they can
only be triggered locally with malformed scap files, which reduce drastically the criticality of these
crashes. The challenge that we encounter in this Section 7.2 is exactly to overcome these bugs,
trying to find crashes that can be triggered by real events, encoded by the kernel counterpart of
Falco, without breaking the encoding.

Fixing these issues would make Falco more robust but would not significantly make this form
of fuzzing better, since most of the input generated by the random fuzzer would still be invalid
encoding, and thus discarded by Falco. To illustrate how unstructured fuzzing is inappropriate
in this situation, we could see that as fuzzing, for example, a TCP segment without knowing
the structure of the headers and not fixing the checksum. Most of the input generated will hit a
validation wall and stay at the very early stage of the program execution.

Ref: 23-01-1097-LIV 43 Quarkslab SAS

7.3 Conclusion

Fuzzing the core of Falco proved to be non-trivial because of the complexity of the events parser
inputs. We approached this problem with different strategies. First trying to fuzz specifically some
parsers with libprotobuf-mutator and highly structured fuzzing. Then doing black box fuzzing
of Falco and its driver via syzkaller. And finally trying to do random fuzzing using the scap file
format. These approaches have limitations but the syzkaller and libprotobuf-mutator technics
could be useful to discover real bugs.

Ref: 23-01-1097-LIV 44 Quarkslab SAS

8 Conclusion

To conclude, Quarkslab provided many leads and strategies on how to implement static and
dynamic security analysis of the Falco project in the restricted amount of time. This audit also
unveiled some issues in the codebase, thanks to the automated tools and the manual investigations,
but nothing critical or exploitable in the end.

Overall, it was a pleasure to work with the Falco maintainers on this audit, they were very helpful
and willing to make the project more secure.

Ref: 23-01-1097-LIV 45 Quarkslab SAS

Glossary

ASAN Address Sanitizer is a memory error detector for C and C++, find more information in
its documentation https://github.com/google/sanitizers/wiki/AddressSanitizer.

CNCF The Cloud Native Computing Foundation (CNCF) is a Linux Foundation project that was
founded in 2015 to help advance container technology and align the tech industry around
its evolution.

persistent mode In persistent mode, fuzzers fuzzes a target multiple times in a single forked
process, instead of forking a new process for each fuzz execution. This is the most effective
way to fuzz, as the speed can easily be x10 or x20 times faster without any disadvantages.
Persistent mode requires that the target can be called in one or more functions, and that
it’s state can be completely reset so that multiple calls can be performed without resource
leaks, and that earlier runs will have no impact on future runs.

protobuf Protocol Buffers (a.k.a., protobuf) are Google’s language-neutral, platform-neutral,
extensible mechanism for serializing structured data. See the documentation for more
information https://developers.google.com/protocol-buffers/.

Ref: 23-01-1097-LIV 46 Quarkslab SAS

https://github.com/google/sanitizers/wiki/AddressSanitizer
https://developers.google.com/protocol-buffers/

Bibliography

[1] Falco maintainers. Build Falco from source. The Falco documentation. url: https://falco.
org/docs/getting-started/source/ (visited on Dec. 6, 2022) (cit. on p. 6).

[2] Dr.-Ing. M. Heiderich, M. Wege, MSc. N. Krein, MSc. D. Weißer, B. Walny, BSc. J. Hector,
and J. Larsson. Pentest-Report Falco. July 24, 2019. url: https://cure53.de/pentest-
report_falco.pdf (visited on Dec. 5, 2022) (cit. on p. 6).

[3] Hi120ki. Discuss about fundamental solution of detecting symlink file based bypass method
#2203. Sept. 13, 2022. url: https://github.com/falcosecurity/falco/issues/2203
(visited on Dec. 6, 2022) (cit. on p. 6).

[4] Mark Manning. Container Runtime Security Bypasses on Falco. Sept. 15, 2019. url: https:
//www.antitree.com/2019/09/container-runtime-security-bypasses-on-falco/
(visited on Dec. 19, 2022) (cit. on p. 6).

[5] Brad Geesaman. Falco Default Rule Bypass. Sept. 11, 2020. url: https://web.archive.
org/web/20220605221820/https://darkbit.io/blog/falco-rule-bypass (visited
on Dec. 19, 2022) (cit. on p. 6).

[6] Leonardo Di Donato. Bypass Falco. May 4, 2021. url: https://www.youtube.com/watch?
v=nGqWskXRSmo (visited on Dec. 19, 2022) (cit. on p. 6).

[7] Shay Berkovich. Bypassing Falco - How to compromise a cluster without tripping the SOC.
July 15, 2021. url: https://github.com/blackberry/Falco-bypasses (visited on
Dec. 19, 2022) (cit. on p. 6).

[8] Jason Dellaluce and Federico Di Pierro. Monitoring new syscalls with Falco. The Falco Blog.
Jan. 17, 2022. url: https://falco.org/blog/falco-monitoring-new-syscalls/
(visited on Dec. 5, 2022) (cit. on p. 6).

[9] inOva. Falco Design Principle Analysis. Chinese. Jan. 10, 2021. url: https://driverxdw.
github.io/2021/01/10/Falco- Design- Principle- Analysis/ (visited on Dec. 5,
2022) (cit. on p. 6).

[10] inOva. Sysdig Source Code Analysis. Chinese. Part 1 https://driverxdw.github.io/
2021/05/29/Sysdig-Source-Code-Analysis/ and part 2 https://driverxdw.github.
io/2021/06/27/Sysdig-Source-Code-Analysis-II/. May 29, 2021. (Visited on Dec. 5,
2022) (cit. on p. 6).

[11] Mark Stemm. CVE-2019-8339, a Falco capacity related vulnerability. Sysdig blog. May 13,
2019. url: https://sysdig.com/blog/cve- 2019- 8339- falco- vulnerability/
(visited on Dec. 6, 2022) (cit. on p. 6).

[12] Falco maintainers. GitHub Security Advisories. Falco https : / / github . com /
falcosecurity / falco / security / advisories and libs https : / / github . com /
falcosecurity/libs/security/advisories. (Visited on Dec. 6, 2022) (cit. on p. 6).

Ref: 23-01-1097-LIV 47 Quarkslab SAS

https://falco.org/docs/getting-started/source/
https://falco.org/docs/getting-started/source/
https://cure53.de/pentest-report_falco.pdf
https://cure53.de/pentest-report_falco.pdf
https://github.com/falcosecurity/falco/issues/2203
https://www.antitree.com/2019/09/container-runtime-security-bypasses-on-falco/
https://www.antitree.com/2019/09/container-runtime-security-bypasses-on-falco/
https://web.archive.org/web/20220605221820/https://darkbit.io/blog/falco-rule-bypass
https://web.archive.org/web/20220605221820/https://darkbit.io/blog/falco-rule-bypass
https://www.youtube.com/watch?v=nGqWskXRSmo
https://www.youtube.com/watch?v=nGqWskXRSmo
https://github.com/blackberry/Falco-bypasses
https://falco.org/blog/falco-monitoring-new-syscalls/
https://driverxdw.github.io/2021/01/10/Falco-Design-Principle-Analysis/
https://driverxdw.github.io/2021/01/10/Falco-Design-Principle-Analysis/
https://driverxdw.github.io/2021/05/29/Sysdig-Source-Code-Analysis/
https://driverxdw.github.io/2021/05/29/Sysdig-Source-Code-Analysis/
https://driverxdw.github.io/2021/06/27/Sysdig-Source-Code-Analysis-II/
https://driverxdw.github.io/2021/06/27/Sysdig-Source-Code-Analysis-II/
https://sysdig.com/blog/cve-2019-8339-falco-vulnerability/
https://github.com/falcosecurity/falco/security/advisories
https://github.com/falcosecurity/falco/security/advisories
https://github.com/falcosecurity/libs/security/advisories
https://github.com/falcosecurity/libs/security/advisories

Appendix A

Severity Classification

Severity Description

Medium Medium issues that cannot be directly exploited, such as buffer overflows that
could potentially lead to a crash, arbitrary read or arbitrary code execution by
unprivileged users if exploitable in the future.

Low Low issues that cannot be directly exploited, such as memory, resource leak or Null
pointer dereference that could lead to a crash of the program by unprivileged users.

Info Minor issues such as programming mistakes or the above issues happening in less
important parts of the code, like debug or test code that makes it unreachable from
unprivileged users.

Ref: 23-01-1097-LIV 48 Quarkslab SAS

Appendix B

Infer report extracts

This is Infer’s partial report, errors not mentioned were removed from this extract, see the
infer-report.txt file for the complete version.

#9
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/plugin/plugin_loader.c:73: error: Null Dereference

pointer `ret` last assigned on line 55 could be null and is dereferenced at line 73, column 5.
71. }
72. #else
73. ret->handle = dlopen(path, RTLD_LAZY);

^
74. if (ret->handle == NULL)
75. {

#13
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libscap/engine/kmod/scap_kmod.c:67: error: Resource

Leak↪→
resource of type `_IO_FILE` acquired to `return` by call to `fopen()` at line 61, column 16 is not released after line 67, column 4.
65. if(w == 0)
66. {
67. return 0;

^
68. }
69.

#15
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libscap/engine/savefile/scap_reader_gzfile.c:72:

error: Null Dereference↪→
pointer `h` last assigned on line 71 could be null and is dereferenced at line 72, column 5.
70.
71. reader_handle_t* h = (reader_handle_t *) malloc (sizeof (reader_handle_t));
72. h->m_file = file;

^
73.
74. scap_reader_t* r = (scap_reader_t *) malloc (sizeof (scap_reader_t));

#16
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libscap/engine/savefile/scap_reader_gzfile.c:75:

error: Null Dereference↪→
pointer `r` last assigned on line 74 could be null and is dereferenced at line 75, column 5.
73.
74. scap_reader_t* r = (scap_reader_t *) malloc (sizeof (scap_reader_t));
75. r->handle = h;

^
76. r->read = &gzfile_read;
77. r->offset = &gzfile_offset;

#17
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libsinsp/filterchecks.cpp:80: error: Null

Dereference↪→
pointer `loc` last assigned on line 78 could be null and is dereferenced at line 80, column 8.
78. loc = localtime(&t);
79.
80. dt = (loc->tm_hour - gmt->tm_hour) * 60 * 60 + (loc->tm_min - gmt->tm_min) * 60;

^
81.
82. dir = loc->tm_year - gmt->tm_year;

#24
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libsinsp/logger.cpp:85: error: Resource Leak

resource of type `_IO_FILE` acquired by call to `fopen()` at line 85, column 11 is not released after line 85, column 2.
83. ASSERT(m_file == nullptr);
84.
85. m_file = fopen(filename.c_str(), "w");

^
86. if(!m_file)
87. {

#25
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libsinsp/parsers.cpp:99: error: Null Dereference

pointer `evt_state->m_piscapevt` last assigned on line 97 could be null and is dereferenced at line 99, column 2.
97. evt_state.m_piscapevt = (scap_evt*) realloc(evt_state.m_piscapevt, buf_size);
98. evt_state.m_scap_buf_size = buf_size;
99. evt_state.m_piscapevt->type = evt_type;

Ref: 23-01-1097-LIV 49 Quarkslab SAS

^
100. evt_state.m_metaevt.m_pevt = evt_state.m_piscapevt;
101. }

#28
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libscap/engine/savefile/scap_reader_buffered.c:132:

error: Null Dereference↪→
pointer `h` last assigned on line 131 could be null and is dereferenced at line 132, column 5.
130.
131. reader_handle_t* h = (reader_handle_t *) calloc (1, sizeof (reader_handle_t));
132. h->m_close_reader = own_reader;

^
133. h->m_reader = reader;
134. h->m_buffer = (uint8_t*) malloc (sizeof(uint8_t) * bufsize);

#29
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libscap/engine/savefile/scap_reader_buffered.c:138:

error: Null Dereference↪→
pointer `r` last assigned on line 137 could be null and is dereferenced at line 138, column 5.
136.
137. scap_reader_t* r = (scap_reader_t *) malloc (sizeof (scap_reader_t));
138. r->handle = h;

^
139. r->read = &buffered_read;
140. r->offset = &buffered_offset;

#38
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libsinsp/examples/test.cpp:237: error: Resource Leak

resource acquired by call to `open()` at line 229, column 11 is not released after line 237, column 2.
235. goto error;
236.
237. atexit(remove_module);

^
238.
239. return true;

#42
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libscap/engine/bpf/scap_bpf.c:351: error: Null

Dereference↪→
pointer `sym` last assigned on line 342 could be null and is dereferenced at line 351, column 6.
349. }
350.
351. if(sym[*nr_maps].st_shndx != maps_shndx)

^
352. {
353. continue;

#43
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libscap/scap_fds.c:544: error: Null Dereference

pointer `handle->m_dev_list->hh.tbl` last assigned on line 544 could be null and is dereferenced by call to `memset()` at line 544,
column 5.↪→

542. mountinfo->mount_id = mount_id;
543. mountinfo->dev = dev;
544. HASH_ADD_INT64(handle->m_dev_list, mount_id, mountinfo);

^
545. if(uth_status != SCAP_SUCCESS)
546. {

#45
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libsinsp/threadinfo.cpp:635: error: Null Dereference

pointer `zero` last assigned on line 634 could be null and is dereferenced by call to `memcmp()` at line 635, column 8.
633. size_t sz = len - offset;
634. void* zero = calloc(sz, sizeof(char));
635. if(!memcmp(left, zero, sz))

^
636. {
637. free(zero);

#51
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libscap/scap_fds.c:710: error: Null Dereference

pointer `*sockets_by_ns->hh.tbl` last assigned on line 710 could be null and is dereferenced by call to `memset()` at line 710,
column 4.↪→

708. char fd_error[SCAP_LASTERR_SIZE];
709.
710. HASH_ADD_INT64(*sockets_by_ns, net_ns, sockets);

^
711. if(uth_status != SCAP_SUCCESS)
712. {

#52
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libscap/scap_fds.c:706: error: Null Dereference

pointer `sockets` last assigned on line 705 could be null and is dereferenced at line 706, column 4.
704. {
705. sockets = malloc(sizeof(struct scap_ns_socket_list));
706. sockets->net_ns = net_ns;

^
707. sockets->sockets = NULL;
708. char fd_error[SCAP_LASTERR_SIZE];

Ref: 23-01-1097-LIV 50 Quarkslab SAS

#53
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libscap/scap_fds.c:876: error: Null Dereference

pointer `_he_new_buckets` last assigned on line 876 could be null and is dereferenced by call to `memset()` at line 876, column 3.
874. }
875.
876. HASH_ADD_INT64((*sockets), ino, fdinfo);

^
877. if(uth_status != SCAP_SUCCESS)
878. {

#54
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libsinsp/threadinfo.cpp:792: error: Null Dereference

pointer `fdt` last assigned on line 790 could be null and is dereferenced at line 792, column 11.
790. sinsp_fdtable* fdt = get_fd_table();
791.
792. for(it = fdt->m_table.begin(); it != fdt->m_table.end(); ++it)

^
793. {
794. if(it->second.m_type == SCAP_FD_IPV4_SOCK)

#56
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libsinsp/threadinfo.cpp:819: error: Null Dereference

pointer `fdt` last assigned on line 817 could be null and is dereferenced at line 819, column 11.
817. sinsp_fdtable* fdt = get_fd_table();
818.
819. for(it = fdt->m_table.begin();

^
820. it != fdt->m_table.end(); ++it)
821. {

#57
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libsinsp/threadinfo.cpp:914: error: Null Dereference

pointer `newbuf` last assigned on line 913 could be null and is dereferenced by call to `memset()` at line 914, column 4.
912. {
913. void* newbuf = malloc(sizes->at(j));
914. memset(newbuf, 0, sizes->at(j));

^
915. m_private_state.push_back(newbuf);
916. }

#59
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libscap/scap_savefile.c:985: error: Null Dereference

pointer `res` last assigned on line 984 could be null and is dereferenced at line 985, column 2.
983. {
984. scap_dumper_t* res = (scap_dumper_t*)malloc(sizeof(scap_dumper_t));
985. res->m_f = gzfile;

^
986. res->m_type = DT_FILE;
987. res->m_targetbuf = NULL;

#60
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libscap/scap_savefile.c:1064: error: Resource Leak

resource of type `_IO_FILE` acquired by call to `gzdopen()` at line 1042, column 8 is not released after line 1064, column 9.
1062. }
1063.
1064. return scap_dump_open_gzfile(handle, f, fname, skip_proc_scan);

^
1065. }
1066.

#61
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libscap/scap_savefile.c:1093: error: Resource Leak

resource of type `_IO_FILE` acquired by call to `gzdopen()` at line 1076, column 7 is not released after line 1093, column 9.
1091. }
1092.
1093. return scap_dump_open_gzfile(handle, f, "", skip_proc_scan);

^
1094. }
1095.

#62
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libscap/scap_savefile.c:1093: error: Resource Leak

resource of type `_IO_FILE` acquired by call to `gzdopen()` at line 1079, column 7 is not released after line 1093, column 9.
1091. }
1092.
1093. return scap_dump_open_gzfile(handle, f, "", skip_proc_scan);

^
1094. }
1095.

#67
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libscap/scap_procs.c:1418: error: Null Dereference

pointer `_he_new_buckets` last assigned on line 1418 could be null and is dereferenced by call to `memset()` at line 1418, column 2.
1416. int32_t uth_status = SCAP_SUCCESS;
1417.
1418. HASH_ADD_INT64(handle->m_proclist.m_proclist, tid, tinfo);

^
1419. if(uth_status == SCAP_SUCCESS)
1420. {

Ref: 23-01-1097-LIV 51 Quarkslab SAS

#68
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libscap/scap_procs.c:1418: error: Null Dereference

pointer `handle->m_proclist.m_proclist->hh.tbl` last assigned on line 1418 could be null and is dereferenced by call to `memset()`
at line 1418, column 2.↪→

1416. int32_t uth_status = SCAP_SUCCESS;
1417.
1418. HASH_ADD_INT64(handle->m_proclist.m_proclist, tid, tinfo);

^
1419. if(uth_status == SCAP_SUCCESS)
1420. {

#69
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libsinsp/threadinfo.cpp:1482: error: Null

Dereference↪→
pointer `fdtable` last assigned on line 1474 could be null and is dereferenced at line 1482, column 15.
1480. eparams.m_ts = m_inspector->m_lastevent_ts;
1481.
1482. for(fdit = fdtable->begin(); fdit != fdtable->end(); ++fdit)

^
1483. {
1484. eparams.m_fd = fdit->first;

#70
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libscap/scap_procs.c:1434: error: Null Dereference

pointer `_he_new_buckets` last assigned on line 1434 could be null and is dereferenced by call to `memset()` at line 1434, column 2.
1432. int32_t uth_status = SCAP_SUCCESS;
1433.
1434. HASH_ADD_INT64(tinfo->fdlist, fd, fdinfo);

^
1435. if(uth_status == SCAP_SUCCESS)
1436. {

#71
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libscap/scap_procs.c:1434: error: Null Dereference

pointer `tinfo->fdlist->hh.tbl` last assigned on line 1434 could be null and is dereferenced by call to `memset()` at line 1434,
column 2.↪→

1432. int32_t uth_status = SCAP_SUCCESS;
1433.
1434. HASH_ADD_INT64(tinfo->fdlist, fd, fdinfo);

^
1435. if(uth_status == SCAP_SUCCESS)
1436. {

#74
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libscap/scap_procs.c:1501: error: Null Dereference

pointer `stid` last assigned on line 1500 could be null and is dereferenced at line 1501, column 3.
1499. {
1500. stid = (scap_tid *) malloc(sizeof(scap_tid));
1501. stid->tid = tid;

^
1502. int32_t uth_status = SCAP_SUCCESS;
1503.

#78
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libscap/scap_procs.c:1696: error: Resource Leak

resource acquired by call to `opendir()` at line 1660, column 15 is not released after line 1696, column 9.
1694. if((*procinfo_p)->n_entries == (*procinfo_p)->max_entries)
1695. {
1696. if(!scap_alloc_proclist_info(procinfo_p, (*procinfo_p)->n_entries + 256, lasterr))

^
1697. {
1698. goto error;

#79
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libsinsp/threadinfo.cpp:1686: error: Null

Dereference↪→
pointer `proclist_dumper` last assigned on line 1640 could be null and is dereferenced by call to `scap_write_proclist_end()` at

line 1686, column 5.↪→
1684. });
1685.
1686. if(scap_write_proclist_end(m_inspector->m_h, dumper, proclist_dumper, totlen) != SCAP_SUCCESS)

^
1687. {
1688. throw sinsp_exception(scap_getlasterr(m_inspector->m_h));

#80
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libscap/scap.c:1662: error: Null Dereference

pointer `handle->m_suppressed_comms` last assigned on line 1659 could be null and is dereferenced at line 1662, column 2.
1660. handle->m_num_suppressed_comms * sizeof(char *));
1661.
1662. handle->m_suppressed_comms[handle->m_num_suppressed_comms-1] = strdup(comm);

^
1663.
1664. return SCAP_SUCCESS;

#87
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libscap/scap_procs.c:1812: error: Null Dereference

pointer `_he_new_buckets` last assigned on line 1812 could be null and is dereferenced by call to `memset()` at line 1812, column 4.

Ref: 23-01-1097-LIV 52 Quarkslab SAS

1810. {
1811. int32_t uth_status = SCAP_SUCCESS;
1812. HASH_ADD_INT64(handle->m_proclist.m_proclist, tid, tinfo);

^
1813. if(uth_status != SCAP_SUCCESS)
1814. {

#88
falcosecurity-libs-repo/falcosecurity-libs-prefix/src/falcosecurity-libs/userspace/libscap/scap_procs.c:1812: error: Null Dereference

pointer `handle->m_proclist.m_proclist->hh.tbl` last assigned on line 1812 could be null and is dereferenced by call to `memset()`
at line 1812, column 4.↪→

1810. {
1811. int32_t uth_status = SCAP_SUCCESS;
1812. HASH_ADD_INT64(handle->m_proclist.m_proclist, tid, tinfo);

^
1813. if(uth_status != SCAP_SUCCESS)
1814. {

Ref: 23-01-1097-LIV 53 Quarkslab SAS

Appendix C

Scan-Build experimentations

First, Scan-Build was ran with no specific options like that, on the falco repository using the
USE_BUNDLED_DEPS=ON option:

scan-build make -j 32

It found 595 bugs, all being on Falco’s third-party dependencies, none on Falco’s libs or direct
source code.

It was retried, adding more checkers with the following command:

scan-build -enable-checker unix,nullability,core,cplusplus,security make -j 32

This scan found 2491 bugs, again all out of Falco’s scope.

This was a bit suspicious so we then realized that the analyze “fake compiler” of scan-build was
only used on the dependencies and not on Falco’s libs and source code, explaining why it was not
finding anything on this code.

So we tried to force the use of this “compiler” for the code using (the path is just copy-pasted
from the Scan-Build lines of compilation, we could have simplify the ../):

cmake -DUSE_BUNDLED_DEPS=ON
-DCMAKE_C_COMPILER=/usr/share/clang/scan-build-10/bin/../libexec/ccc-analyzer
-DCMAKE_CXX_COMPILER=/usr/share/clang/scan-build-10/bin/../libexec/c++-analyzer
..

↪→

↪→

↪→

Unfortunately, it’s possible to run the analyzer like this but it will not generate the report, only
the warning during the compilation process. It would have been useful because we could have
compiled only the source code we are interested in with the static analyzer.

However, Scan-Build has an --exclude flag, that could be used to exclude the source code of
dependencies. We tried adding these flags:

Ref: 23-01-1097-LIV 54 Quarkslab SAS

--exclude b64-prefix --exclude c-ares-prefix --exclude catch2-prefix --exclude
cloudtrail-plugin-prefix --exclude cloudtrail-rules-prefix --exclude
cpp-httplib-prefix --exclude curl-prefix --exclude cxxopts-prefix --exclude
fakeit-prefix --exclude grpc-prefix --exclude jq-prefix --exclude
json-plugin-prefix --exclude k8saudit-plugin-prefix --exclude
k8saudit-rules-prefix --exclude njson-prefix --exclude openssl-prefix
--exclude protobuf-prefix --exclude re2-prefix --exclude
string-view-lite-prefix --exclude tbb-prefix --exclude valijson-prefix
--exclude yamlcpp-prefix --exclude zlib-prefix

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Ref: 23-01-1097-LIV 55 Quarkslab SAS

Appendix D

Exploiting and debugging readlink issues

The examples are quick scripts to exploit and debug and could be improved globally. For example,
the following one is a snippet on how to create a long root folder and chroot into it with a bash
process.

export NEW_ROOT=$(python3 -c "print('a'*200 + '/' + 'a'*200 + '/' + 'a'*200 + '/'
+ 'a'*200+ '/' + 'a'*200+ '/' + 'a'*200)")↪→

mkdir -p $NEW_ROOT
mkdir $NEW_ROOT/lib
mkdir $NEW_ROOT/lib64
mkdir $NEW_ROOT/bin
sudo mount -B /lib $NEW_ROOT/lib
sudo mount -B /lib64 $NEW_ROOT/lib64
sudo mount -B /bin $NEW_ROOT/bin
sudo chroot $NEW_ROOT /bin/bash
echo $$
NOTE; you will have to `sudo umount lib lib64 and bin` before `rm` the folders

Note

You don’t need to be root to chroot, you can use usernamespace to gain that
privilege with unshare -r bash -c ’chroot root /folder’.

Then start Falco with GDB to see the issue in the program’s memory.

sudo gdb ./userspace/falco/falco
b scap_proc_fill_root
r -c ../falco.yaml -r ../rules/falco_rules.yaml
`return SCAP_SUCCESS;` was on line 560 of the source
make sure to change the PID returned by the chrooted bash with echo $$
break 560 if strcmp(procdirname, "/proc/783385/") == 0
r -c ../falco.yaml -r ../rules/falco_rules.yaml
you can see that the structure with
p *tinfo
but still the last char on the string array is not \0, it's an 'a'
print tinfo->root[sizeof(tinfo->root)-1]
with the following command you can see the end of the string array on the
fourth line, and the rest of the element that starts on the lasts lines (some
values are at zero so we cannot distinguish them for alignments zeros)
x/128x tinfo->root+1000

The following listing is a minimal example to reproduce the issue.

Ref: 23-01-1097-LIV 56 Quarkslab SAS

#include <unistd.h>
#include <stdio.h>

#define SCAP_MAX_PATH_SIZE 10

typedef struct scap_threadinfo
{

char root[SCAP_MAX_PATH_SIZE + 1]
} scap_threadinfo;

static int scap_proc_fill_root(struct scap_threadinfo *tinfo, const char
*procdirname)↪→

{
if (readlink(procdirname, tinfo->root, sizeof(tinfo->root)) > 0)
{

printf("success: %s\n", tinfo->root);
return 0;

}
else
{

printf("fail\n");
return -1;

}
}

int main()
{

scap_threadinfo tinfo;
return scap_proc_fill_root(&tinfo, "input");

}

Execute like that, in the same folder:

touch aaaaaaaaaaaaaaaaaaaaaa
ln -s aaaaaaaaaaaaaaaaaaaaaa input
cc test.c -fsanitize=address -o test
./test

You will get an ASAN report for a stack buffer overflow in this situation.

Ref: 23-01-1097-LIV 57 Quarkslab SAS

Appendix E

AFL++ persistent mode boilerplate

On top of the Listing 1, you will need to add this kind of code to do persistent mode fuzzing with
AFL++:

#include <unistd.h>
__AFL_FUZZ_INIT();

int main()
{
#ifdef __AFL_HAVE_MANUAL_CONTROL

__AFL_INIT();
#endif

unsigned char* buf = __AFL_FUZZ_TESTCASE_BUF;

while(__AFL_LOOP(10000))
{

int len = __AFL_FUZZ_TESTCASE_LEN;
LLVMFuzzerTestOneInput(buf, len);

}

return 0;
}

You will then need to compile with the AFL++ instrumentation using, for example:

cmake -DUSE_BUNDLED_DEPS=ON -DCMAKE_C_COMPILER=afl-gcc-fast
-DCMAKE_CXX_COMPILER=afl-g++-fast ..↪→

Ref: 23-01-1097-LIV 58 Quarkslab SAS

Appendix F

Fuzzing with libprotobuf-mutator

syntax = "proto3";

package sys_open;

message event_args {
uint64 fd = 1;
string fspath = 2;
repeated FILE_FLAGS flags32 = 3;
FILE_MODE mode = 4;
uint32 dev = 5;
uint64 ino = 6;

}

enum FILE_FLAGS {
FUZZ_O_NONE = 0;
FUZZ_O_RDONLY = 1;
FUZZ_O_WRONLY = 2;
FUZZ_O_RDWR = 3;
FUZZ_O_CREAT = 4;
FUZZ_O_APPEND = 8;
FUZZ_O_DSYNC = 16;
FUZZ_O_EXCL = 32;
FUZZ_O_NONBLOCK = 64;
FUZZ_O_SYNC = 128;
FUZZ_O_TRUNC = 256;
FUZZ_O_DIRECT = 512;
FUZZ_O_DIRECTORY = 1024;
FUZZ_O_LARGEFILE = 2048;
FUZZ_O_CLOEXEC = 4096;
FUZZ_O_TMPFILE = 8192;

}

enum FILE_MODE {
FUZZ_S_NONE = 0;
FUZZ_S_IXOTH = 1;
FUZZ_S_IWOTH = 2;
FUZZ_S_IROTH = 4;
FUZZ_S_IXGRP = 8;
FUZZ_S_IWGRP = 16;
FUZZ_S_IRGRP = 32;
FUZZ_S_IXUSR = 64;
FUZZ_S_IWUSR = 128;
FUZZ_S_IRUSR = 256;
FUZZ_S_ISVTX = 512;

Ref: 23-01-1097-LIV 59 Quarkslab SAS

FUZZ_S_ISGID = 1024;
FUZZ_S_ISUID = 2048;

}

Ref: 23-01-1097-LIV 60 Quarkslab SAS

	Project Information
	Executive summary
	Disclaimer
	Findings summary

	Context and scope
	Context
	Scope
	Audit settings

	Discovery and state of the art
	Discovery
	State of the art

	Threat model
	A note on threat actors

	Static analysis
	Automated static analyzers
	Cppcheck
	Infer
	CodeQL
	Scan-Build
	Conclusion

	Manual review
	Issues with readlink
	Checks on sensitive functions
	Third-party dependencies version
	Conclusion

	Dynamic analysis
	Fuzzing the rules parser
	Fuzzing the event processor
	Using libprotobuf-mutator
	Using syzkaller
	Using the scap file format

	Conclusion

	Conclusion
	Glossary
	Bibliography
	Severity Classification
	Infer report extracts
	Scan-Build experimentations
	Exploiting and debugging readlink issues
	AFL++ persistent mode boilerplate
	Fuzzing with libprotobuf-mutator

