
cURL
Security Assessment

December 20, 2022

Prepared for:
Daniel Stenberg, cURL
Open Source Security Foundation (OpenSSF)
Open Source Technology Improvement Fund

Prepared by: Emilio López, Spencer Michaels, and Paweł Płatek

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high- end security research with a real -world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 cURL Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2022 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to the cURL
project under the terms of the project statement of work and has been made public at the
project’s request. Material within this report may not be reproduced or distributed in part
or in whole without the express written permission of Trail of Bits.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 cURL Security Assessment
PUBLIC

Table of Contents

About Trail of Bits 1

Notices and Remarks 2

Table of Contents 3

Executive Summary 5

Project Summary 7

Project Goals 8

Project Targets 9

Project Coverage 10

Fuzzing Coverage Assessment 12

Approach 12

Alt-Svc header parsing 12

Base64 encoding and decoding 13

DoH decoding 13

Escape 14

Date parsing 14

Expanding HSTS and Alt-Svc coverage 14

Expanding file-related and authentication-related fuzzing coverage 15

Strategic fuzzing recommendations 16

Codebase Maturity Evaluation 17

Summary of Findings 20

Detailed Findings 22

1. Bad recommendation in libcurl cookie documentation 22

Trail of Bits 3 cURL Security Assessment
PUBLIC

2. Libcurl URI parser accepts invalid characters 23

3. libcurl Alt-Svc parser accepts invalid port numbers 25

4. Non-constant-time comparison of secrets 27

5. Tab injection in cookie file 29

6. Standard output/input/error may not be opened 31

7. Double free when using HTTP proxy with specific protocols 32

8. Some flags override previous instances of themselves 35

9. Cookies are not stripped after redirect 36

10. Use after free while using parallel option and sequences 37

11. Unused memory blocks are not freed resulting in memory leaks 40

12. Referer header is generated in insecure manner 42

13. Redirect to localhost and local network is possible (Server-side request forgery
like) 43

14. URL parsing from redirect is incorrect when no path separator is provided 44

Summary of Recommendations 47

A. Vulnerability Categories 48

B. Code Maturity Categories 50

C. Code Quality Recommendations 52

D. HSTS debug patch 53

E. Fix Review Results 54

Detailed Fix Review Results 56

Trail of Bits 4 cURL Security Assessment
PUBLIC

Executive Summary

Engagement Overview
The Linux Foundation, via OpenSSF and strategic partner Open Source Technology
Improvement Fund, engaged Trail of Bits to review the security of cURL. From September
12 to October 7, 2022, a team of four Trail of Bits consultants conducted a security review
of the client-provided source code, with five and a half engineer-weeks of effort. Since this
project coincided with a Trail of Bits Maker Week, six additional people contributed five
additional days of effort. Details of the project’s timeline, test targets, and coverage are
provided in subsequent sections of this report.

Project Scope
Our testing efforts were focused on the identification of flaws that could result in a
compromise of confidentiality, integrity, or availability of the target system. We conducted
this audit with full knowledge of the system. We had access to the cURL source code,
documentation, and fuzzing harnesses. We performed static and dynamic automated and
manual testing of the target system and its codebase, using both automated and manual
processes.

Summary of Findings
The audit uncovered a small number of significant flaws that could impact system
confidentiality, integrity, or availability. A summary of the findings and details on notable
findings are provided below.

EXPOSURE ANALYSIS

Severity Count

High 2

Low 5

Informational 6

Undetermined 2

CATEGORY BREAKDOWN

Category Count

Configuration 4

Cryptography 1

Data Validation 8

Denial of Service 1

Undefined Behavior 1

Trail of Bits 5 cURL Security Assessment
PUBLIC

Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

● TOB-CURL-7: Double free when using HTTP proxy with specific protocols
A double free occurs during connection cleanup when cURL (or libcurl) makes a
connection through a proxy.

● TOB-CURL-10: Use after free while using parallel option and sequences
Using cURL in parallel mode (-Z) with two consecutive sequences followed by an
empty bracket results in a use after free.

Trail of Bits 6 cURL Security Assessment
PUBLIC

Project Summary

Contact Information
The following managers were associated with this project:

Dan Guido, Account Manager Mary O’Brien, Project Manager
dan@trailofbits.com mary.obrien@trailofbits.com

Derek Zimmer, Program Manager Amir Montazery, Program Manager
derek@ostif.org amir@ostif.org

The following engineers were associated with this project:

Spencer Michaels, Consultant Emilio López, Consultant
spencer.michaels@trailofbits.com emilio.lopez@trailofbits.com

Anders Helsing, Consultant Paweł Płatek, Consultant
anders.helsing@trailofbits.com pawel.platek@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

September 2, 2022 Pre-project kickoff call

September 20, 2022 Status update meeting #1

September 27, 2022 Status update meeting #2

October 4, 2022 Status update meeting #3

October 11, 2022 Delivery of report draft; report readout meeting

December 13, 2022 Delivery of final report with fix review

December 20, 2022 Re-delivery of final report with fix review

Trail of Bits 7 cURL Security Assessment
PUBLIC

mailto:dan@trailofbits.com
mailto:spencer.michaels@trailofbits.com
mailto:emilio.lopez@trailofbits.com
mailto:spencer.michaels@trailofbits.com
mailto:emilio.lopez@trailofbits.com

Project Goals

The engagement was scoped to provide a security assessment of cURL. Specifically, we
sought to answer the following non-exhaustive list of questions:

● Does cURL safely handle inputs from untrusted sources?

● Does cURL properly implement the security-relevant features of each protocol it
supports, both in terms of implementation details and API compliance with the
protocol specification?

● Can an attacker exploit cURL’s connection reuse mechanism to hijack existing
connections created by other users in applications that use libcurl?

● Does cURL safely store and transmit credentials and other secrets passed to it?

● Do cURL fuzz tests provide coverage in likely areas of issues, such as parsing or
decoding, or areas where vulnerabilities have been found previously?

● Do cURL fuzzers run against different supported build configurations?

● Do cURL fuzzers leverage techniques and tools to make fuzzing more effective, such
as dictionaries and structure-aware fuzzing?

Trail of Bits 8 cURL Security Assessment
PUBLIC

Project Targets

The engagement involved a review and testing of the targets listed below.

cURL

Repository https://github.com/curl/curl

Version 2ca0530a4d4bd1e1ccb9c876e954d8dc9a87da4a

Type Library and CLI binary

Platform Native

cURL fuzzer for OSS-Fuzz

Repository https://github.com/curl/curl-fuzzer

Version 32fc19a4fa6398ff9a23b744c7cf21547b375c6a

Type Fuzzing harnesses and scripts

Platform x86 and x86_64

Trail of Bits 9 cURL Security Assessment
PUBLIC

https://github.com/curl/curl-fuzzer

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches and include the following:

● Automated analysis of the cURL codebase with static analyzers such as Semgrep
and CodeQL, with manual follow-up to investigate promising leads.

● Targeted manual code review of the following components:

○ X.509 certificate parser

○ Cookie storage and cookie file parsing

○ URI parsing

○ HSTS data storage

○ cURL’s custom printf implementation (mprintf)

○ Connection reuse

○ HTTP redirects

○ Authentication header handlers

○ Alt-Svc header handlers

○ MQTT protocol implementation

○ The cURL command-line tool

● Fuzzing of the built-in X.509 certificate parser with AFL

● Review of the existing fuzzing harnesses and coverage information, and
identification of areas for improvement

● Improvement of existing harnesses to enhance coverage and test a larger set of
cURL functionalities

● Development of new targeted harnesses targeting code paths which may be sources
of issues, such as parsers and decoders

● Fuzzing of a cURL binary built with the ASan address sanitizer option enabled

Trail of Bits 10 cURL Security Assessment
PUBLIC

Coverage Limitations
Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. The following list outlines the coverage limitations of the engagement and
indicates system elements that may warrant further review:

● We partially reviewed shared logic and some protocol implementations, but due to
time constraints, we were unable to exhaustively review cURL’s supported protocols,
nor did we have time to fully evaluate the standards-compliance of the protocol
implementations, except in a few specific known cases. It may be beneficial to
conduct a targeted review against individual protocols of special concern.

● We did not review the correctness of integrations with various SSL libraries, i.e., the
vTLS component.

● We evaluated fuzzing coverage and functionality using a specific, common build
configuration of cURL that included OpenSSL 1.0.2m and Nghttp2 1.41.0 on x86_64
Linux. cURL can be built with support for a wide variety of libraries and target
systems, and fuzzing with different configuration sets may be beneficial.

Trail of Bits 11 cURL Security Assessment
PUBLIC

Fuzzing Coverage Assessment

As part of this engagement, Trail of Bits reviewed the cURL project’s fuzz tests and their
coverage, with the aim of improving their depth and coverage. The libcurl library is
continuously fuzzed by OSS-Fuzz, an initiative for fuzzing open-source software, using
scripts and harnesses from the curl-fuzzer repository.

Approach
As a first step, we reviewed the coverage currently achieved by the fuzzing harnesses in the
repository, combined with the seed cases. We also reviewed a coverage report from
OSS-Fuzz. These reports showed several areas in cURL that lacked fuzzing coverage, such
as Alt-Svc and HSTS management, and DNS-over-HTTPS, among others.

We then proceeded to make changes to the curl-fuzzer repository to improve coverage
of said areas and try to detect new bugs. This resulted in the discovery of TOB-CURL-3 and
TOB-CURL-7. A summary of the harness improvements and new harnesses can be found
below. We recommend including these modifications as part of the OSS-Fuzz cURL harness
suite.

Fuzzing harness changes

Harness Description

curl_fuzzer Addition of Alt-Svc and HSTS header testing, and multiple CURLOPTs

curl_fuzzer_altsvc Fuzzing Alt-Svc header parsing

curl_fuzzer_base64 Fuzzing base64 encoding and decoding

curl_fuzzer_doh Fuzzing DNS-over-HTTPS (DoH) decoding

curl_fuzzer_escape Fuzzing escape/unescape functions

curl_fuzzer_parsedate Fuzzing date parsing

Alt-Svc header parsing
Rationale
HTTP servers may send Alt-Svc headers to indicate support for alternative protocols,
such as HTTP/2. This facilitates connection protocol upgrades. cURL supports parsing these
headers and storing the information collected in a file for future reference.

Trail of Bits 12 cURL Security Assessment
PUBLIC

The current fuzzing coverage did not show any coverage for the relevant code (altsvc.c).
This code also does manual string parsing, which tends to be error-prone and is hard for a
human reviewer to reason about, so it is a good target for fuzzing.

Harness
We implemented a simple harness that receives a string representing an Alt-Svc header
and parses it with Curl_altsvc_parse. We seeded the fuzzer with some of the Alt-Svc
strings from unit test #1654. This improved the coverage of the file to over 50% of lines and
functions. We executed this harness for over a week with address sanitizer (ASan) enabled,
but it did not find any failures.

Future work
altsvc.c also deals with storing, loading, and looking up Alt-Svc entries from a
Curl-generated file store. These functions are also currently uncovered. We recommend
enhancing the harness suite to exercise these functions as well.

Base64 encoding and decoding
Rationale
Base64 decoding and encoding are widely used across cURL, including in several
authentication schemas, certificate management, WebSockets, HTTP connection upgrades,
and LDAP support.

Although the current fuzzing coverage of the code in base64.c code is high, there was no
explicit harness fuzzing the encoder and decoder in a roundtrip. Encoding and decoding a
series of bytes should always result in the same message; fuzzing in roundtrip is a good
way to ensure that the implementations do not corrupt the data.

Harness
We implemented a harness that receives a string and tries to decode it as Base64. If
decoding succeeds, it will re-encode and decode the buffer and ensure that the data stays
unchanged. We executed this harness for over a week with address sanitizer (ASan)
enabled, but it did not find any failures.

DoH decoding
Rationale
cURL supports resolving domain names in URLs using DNS-over-HTTPS (DoH) instead of
traditional DNS requests. The current fuzzing coverage did not show any coverage for the
relevant code (doh.c). This code also does manual parsing of external inputs, so it is a
good target for fuzzing.

Harness
We implemented a harness that receives a buffer and tries to decode it as a DoH response
using doh_decode. We executed this harness for over a week with address sanitizer (ASan)
enabled, but it did not find any failures.

Trail of Bits 13 cURL Security Assessment
PUBLIC

Future work
doh.c also deals with encoding requests, and these functions are also currently uncovered.
We recommend enhancing the harness suite to exercise these functions as well.

Escape
Rationale
Creating a round-trip fuzzing harness is a good practice, as it may detect a problem when
the implementation changes and helps to ensure that the current implementation is
correct. The cURL URL escaping and unescaping functions (curl_easy_escape and
curl_easy_unescape respectively) were not fuzz tested in this way.

Harness
We implemented a simple harness, escaping input (using curl_easy_escape)and
unescaping the result (with curl_easy_unescape)to confirm that those functions
combined keep the input data intact.

Date parsing
Rationale
Date string parsing is also widely used across cURL, including in the HTTP implementation
(used for HSTS, Alt-Svc, and cookies) and other protocols such as FTP and SSH.

Although the current fuzzing coverage of the code in parsedate.c code is high, there was
no explicit harness fuzzing this functionality. As the function does complex string parsing
and handles user input, we felt it would be a good target for a specific harness.

Harness
We implemented a harness that receives a string and tries to parse it using
Curl_getdate_capped. We executed this harness for over a week with address sanitizer
(ASan) enabled, but it did not find any failures.

Expanding HSTS and Alt-Svc coverage
As cURL, by default, accepts only the Strict-Transport-Security and Alt-Svc
headers when sent over TLS, the OSS-Fuzz HTTP fuzzer was missing most code paths in
altsvc.c and hsts.c. To expand coverage of these files, we made the following changes:

● After noting that the CURL_ALTSVC_HTTP environment variable informs debug
builds of cURL to accept the Alt-Svc header over unencrypted HTTP, we enabled
the variable in the curl-fuzzer codebase.

● We added an analogous variable for HSTS (CURL_HSTS_HTTP) to the cURL codebase
and enabled it in the curl-fuzzer codebase (see Appendix D).

● We modified curl_fuzzer.cc to set CURLOPT_HSTS and CURLOPT_ALTSVC to
point to their respective cache files (in this case, both /dev/null).

Trail of Bits 14 cURL Security Assessment
PUBLIC

https://storage.googleapis.com/oss-fuzz-coverage/curl/reports/20221006/linux/src/curl/lib/altsvc.c.html
https://storage.googleapis.com/oss-fuzz-coverage/curl/reports/20221006/linux/src/curl/lib/hsts.c.html

These changes enabled us to significantly expand the OSS-Fuzz coverage for altsvc.c and
hsts.c. Because of the lack of stateful fuzzing, many of the areas still without coverage are
related to the loading and processing of the HSTS and Alt-Svc cache files from disk. We
recommend adding direct fuzz harnesses for such functions (e.g., hsts_add(),
hsts_push(), hsts_pull()).

Expanding file-related and authentication-related fuzzing coverage
We added TLVs and test cases to several of the existing curl-fuzzer harnesses where
codecoverage.sh showed pre-existing tests exercised < 50% of a file. We focused on
improving areas like HTTP authentication methods and domain-specific file and filename
parsing (e.g., cache files for the Strict-Transport-Security and Alt-Svc headers).

We added corpus seed cases that covered the following:

● Additional WebSockets functionality, including upgrade from HTTP;
● Areas that team members noted were performing unexpectedly;
● Previously uncovered functionality involved in recent CVEs, including but not limited

to CVE-2022-22576, CVE-2022-35252, and CVE-2022-32207.

To make it easier to add test coverage in these areas, we also did the following:

● Added multiple TLV types relating to CURLOPT_ options to the test case generation
scripts to enable fuzzing differently authenticated messages across various
protocols.

● Added basic fuzzing directly to curl_fuzzer.cc and curl_fuzzer_tlv.cc for
CURLOPT_ options, which take files such as .netrc and the read-only cookie file
specified with CURLOPT_COOKIEFILE when we added coverage for the HSTS and
Alt-Svc cache file paths.

● After noting it was moderately difficult to maintain a mental map matching string
authentication method names #defined in curl.h e.g. CURLAUTH_ONLY and their
unsigned long values (e.g., `((unsigned long)1) << 31`), we also added an
enum class to translate from authentication method names (read in to
generate_corpus.py) and the unsigned long authentication method values that
libcurl expects.

These changes increase general coverage for cURL, but we believe it is preferable to have
at least one corpus test case to exercise each CURLOPT_ option, and ideally also to cover
more common combinations of options.

Trail of Bits 15 cURL Security Assessment
PUBLIC

https://hackerone.com/reports/1526328
https://hackerone.com/reports/1613943
https://hackerone.com/reports/1573634

Strategic fuzzing recommendations
We recommend the following general changes to improve the coverage and efficiency of
cURL’s fuzzing setup:

● Add dictionaries for other protocols to libFuzzer and OSS-Fuzz: Adding a
dictionary with common words greatly improves the efficiency of fuzzing in certain
cases, such as text-based protocols.

● Ensure that all build configurations (e.g., non-OpenSSL builds) are covered in
the fuzz tests.

● Add a round-trip fuzzing harness for every encoder/decoder pair: This will
ensure that the encoding and decoding processes work as expected and that data is
not corrupted or otherwise modified.

● Implement structure-aware fuzzing: curl-fuzzer currently uses a
type-length-value (TLV) format for inputs in order to encode various types and
components of requests and responses. However, as libFuzzer is not aware of the
TLV structure, many of the mutations it generates are invalid at the TLV-unpacking
stage and have to be discarded by curl-fuzzer. This reduces fuzzing efficiency. In
accordance with Google’s recommendation above, we recommend implementing
structure-aware fuzzing by adding a custom mutator that ensures the fuzzer always
receives a valid input. There is an open pull request from 2019 to add such a
mutator, but its current status is unclear.

● Cover argv fuzzing: Fuzzing the curl binary with different options can be useful to
discover issues such as TOB-CURL-10. This can be achieved using the
argv-fuzz-inl.h header from the AFL++ project to build the arguments array
from standard input in cURL. Also, consider adding a dictionary with possible
options and protocols to the fuzzer based on the source code or cURL’s manual.

Trail of Bits 16 cURL Security Assessment
PUBLIC

https://github.com/curl/curl-fuzzer/blob/afd786d49a55d928bc6502f4c3abfc1b5030a136/curl_fuzzer_tlv.cc#L200
https://github.com/curl/curl-fuzzer/blob/afd786d49a55d928bc6502f4c3abfc1b5030a136/curl_fuzzer_tlv.cc#L200
https://github.com/google/fuzzing/blob/master/docs/split-inputs.md#type-length-value
https://github.com/google/fuzzing/blob/master/docs/structure-aware-fuzzing.md
https://github.com/curl/curl-fuzzer/issues/32
https://github.com/AFLplusplus/AFLplusplus/blob/4.03c/utils/argv_fuzzing/argv-fuzz-inl.h

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic Where applicable, arithmetic operations are checked
carefully for overflows and other exceptional conditions.

Satisfactory

Auditing cURL can produce detailed, verbose debug output. Satisfactory

Authentication /
Access Controls

Although no issues pertaining to authentication were
discovered in this audit, cURL has had several recent
CVEs that could leak credentials over the network
(CVE-2022-27776, CVE-2021-22876, and CVE-2020-8169),
indicating a potential weak point in this area.

Moderate

Complexity
Management

cURL is necessarily an extremely complex project, but its
codebase is well organized: protocol-specific functionality
is isolated, and common functionality is generic and
broadly accessible.

Strong

Configuration Some of cURL’s options default to the most common case
rather than the most secure one, for the sake of ease of
use. In addition, different command-line flags can behave
differently—e.g., repeating the same flag may override
previous values in some cases and append to them in
others—which may result in user confusion.

Moderate

Cryptography
and Key
Management

Wherever technically feasible, cURL relies on well audited
third-party libraries such as OpenSSL to perform
cryptographic operations. In rare cases—generally
uncommon build configurations which do not permit the

Strong

Trail of Bits 17 cURL Security Assessment
PUBLIC

use of such libraries—cURL sparingly uses its own
implementations. Our fuzz testing of portions of the
latter code (e.g., the X.509 parser) revealed no issues.

Data Handling Although data received over the network is generally
handled with the appropriate care (with the notable
exception of TOB-CURL-5), command-line options and
parameters supplied to libcurl are less well checked
(TOB-CURL-2, TOB-CURL-3, TOB-CURL-7, TOB-CURL-10). A
few cases were discovered where received data is
accepted even if its values make no sense within the
protocol specification, such as negative HTTP status
codes or empty transfer encoding lists.

Moderate

Documentation Documentation for end-users of both the cURL
command-line tool and the libcurl library is extensive.
However, the documentation for less common protocols
such as MQTT does not appear to have been kept up to
date, which may indicate a lack of a systematic process to
ensure that documentation and code do not go
out-of-sync with each other.

Moderate

Maintenance Consistent standards are applied rigorously throughout
the codebase; for instance, the handle to the current
connection is named identically in any function that takes
such a value as a parameter. A small number of outdated
comments were discovered, but none pertain to
important functionality.

Satisfactory

Memory Safety
and Error
Handling

Several possible memory violations were discovered
during the audit, and though they are not likely to be
present in cURL’s most common use cases, an attacker
could easily discover them by fuzzing the cURL codebase.

Weak

Testing and
Verification

Both unit and fuzz tests are present, but coverage and
efficiency could be improved through the use of extra
dictionaries, structure aware fuzzing, targeted harnesses,
and a wider set of build configurations.

Moderate

Trail of Bits 18 cURL Security Assessment
PUBLIC

Trail of Bits 19 cURL Security Assessment
PUBLIC

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Bad recommendation in libcurl cookie
documentation

Configuration Informational

2 Libcurl URI parser accepts invalid characters Data Validation Undetermined

3 Libcurl Alt-Svc parser accepts invalid port
numbers

Data Validation Undetermined

4 Non-constant-time comparison of secrets Cryptography Low

5 Tab injection in cookie file Data Validation Informational

6 Standard output/input/error may not be opened Data Validation Informational

7 Double free when using HTTP proxy with specific
protocols

Data Validation High

8 Some flags override previous instances of
themselves

Configuration Informational

9 Cookies are not stripped after redirect Configuration Low

10 Use after free while using parallel option and
sequences

Data Validation High

11 Unused memory blocks are not freed resulting in
memory leaks

Denial of Service Low

12 Referer header is generated in insecure manner Configuration Low

Trail of Bits 20 cURL Security Assessment
PUBLIC

13 Redirect to localhost and local network is possible
(Server-side request forgery like)

Data Validation Informational

14 URL parsing from redirect is incorrect when no
path separator is provided

Undefined
Behavior

Low

Trail of Bits 21 cURL Security Assessment
PUBLIC

Detailed Findings

1. Bad recommendation in libcurl cookie documentation

Severity: Informational Difficulty: High

Type: Configuration Finding ID: TOB-CURL-1

Target: https://everything.curl.dev/libcurl-http/cookies

Description
The libcurl documentation recommends that, to enable the cookie store with a blank
cookie database, the calling application should use the CURLOPT_COOKIEFILE option with
a non-existing file name or plain “”, as shown in figure 1.1. However, the former
recommendation—a non-blank filename with a target that does not exist—can have
unexpected results if a file by that name is unexpectedly present.

Figure 1.1: The recommendation in libcurl’s documentation

Exploit Scenario
An inexperienced developer uses libcurl in his application, invoking the
CURLOPT_COOKIEFILE option and hard-coding a filename that he thinks will never exist
(e.g., a long random string), but which could potentially be created on the filesystem. An
attacker reverse-engineers his program to determine the filename and path in question,
and then uses a separate local file write vulnerability to inject cookies into the application.

Recommendations
Short term, remove the reference to a non-existing file name; mention only a blank string.

Long term, avoid suggesting “tricks” such as this in documentation when a misuse or
misunderstanding of them could result in side effects of which users may be unaware.

Trail of Bits 22 cURL Security Assessment
PUBLIC

2. Libcurl URI parser accepts invalid characters

Severity: Undetermined Difficulty: Low

Type: Data Validation Finding ID: TOB-CURL-2

Target: URL parser

Description
According to RFC 3986 section 2.2, “Reserved Characters,”

reserved = gen-delims / sub-delims

gen-delims = ":" / "/" / "?" / "#" / "[" / "]" / "@"

sub-delims = "!" / "$" / "&" / "'" / "(" / ")"
/ "*" / "+" / "," / ";" / "="

Figure 2.1: Reserved characters for URIs.

Furthermore, the host field of the URI is defined as follows:

host = IP-literal / IPv4address / reg-name

reg-name = *(unreserved / pct-encoded / sub-delims)
...
unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"
sub-delims = "!" / "$" / "&" / "'" / "(" / ")"

/ "*" / "+" / "," / ";" / "="

Figure 2.2: Valid characters for the URI host field

However, cURL does not seem to strictly adhere to this format, as it accepts characters not
included in the above. This behavior is present in both libcurl and the cURL binary. For
instance, characters from the gen-delims set, and those not in the reg-name set, are
accepted:

$ curl -g "http://foo[]bar" # from gen-delims
curl: (6) Could not resolve host: foo[]bar

$ curl -g "http://foo{}bar" # outside of reg-name
curl: (6) Could not resolve host: foo{}bar

Figure 2.3: Valid characters for the URI host field

Trail of Bits 23 cURL Security Assessment
PUBLIC

The exploitability and impact of this issue is not yet well understood; this may be deliberate
behavior to account for currently unknown edge-cases or legacy support.

Recommendations
Short term, determine whether these characters are being allowed for compatibility
reasons. If so, it is likely that nothing can be done; if not, however, make the URI parser
stricter, rejecting characters that cannot appear in a valid URI as defined by RFC 3986.

Long term, add fuzz tests for the URI parser that use forbidden or out-of-scope characters.

Trail of Bits 24 cURL Security Assessment
PUBLIC

3. libcurl Alt-Svc parser accepts invalid port numbers

Severity: Undetermined Difficulty: Low

Type: Data Validation Finding ID: TOB-CURL-3

Target: Alt-Svc parser

Description
Invalid port numbers in Alt-Svc headers, such as negative numbers, may be accepted by
libcurl when presented by an HTTP server. libcurl uses the strtoul function to parse port
numbers in Alt-Svc headers. This function will accept and parse negative numbers and
represent them as unsigned integers without indicating an error.

For example, when an HTTP server provides an invalid port number of
-18446744073709543616, cURL parses the number as 8000:

* Using HTTP2, server supports multiplexing
* Connection state changed (HTTP/2 confirmed)
* Copying HTTP/2 data in stream buffer to connection buffer after upgrade: len=0
* Using Stream ID: 1 (easy handle 0x12d013600)
> GET / HTTP/2
> Host: localhost:2443
> user-agent: curl/7.79.1
> accept: */*
>
< HTTP/2 200
< server: basic-h2-server/1.0
< content-length: 130
< content-type: application/json
* Added alt-svc: localhost:8000 over h3
< alt-svc: h3=":-18446744073709543616"
<

Figure 3.1: Example cURL session

Exploit Scenario
A server operator wishes to target cURL clients and serve them alternative content. The
operator includes a specially-crafted, invalid Alt-Svc header on the HTTP server
responses, indicating that HTTP/3 is available on port -18446744073709543616, an
invalid, negative port number. When users connect to the HTTP server using
standards-compliant HTTP client software, their clients ignore the invalid header. However,
when users connect using cURL, it interprets the negative number as an unsigned integer
and uses the resulting port number, 8000, to upgrade the next connection to HTTP/3. The
server operator hosts alternative content on this other port.

Trail of Bits 25 cURL Security Assessment
PUBLIC

Recommendations
Short term, improve parsing and validation of Alt-Svc headers so that invalid port values
are rejected.

Long term, add fuzz and differential tests to the Alt-Svc parsing code to detect
non-standard behavior.

Trail of Bits 26 cURL Security Assessment
PUBLIC

4. Non-constant-time comparison of secrets

Severity: Low Difficulty: High

Type: Cryptography Finding ID: TOB-CURL-4

Targets:
● lib/url.c:972-973,1133-1134,1382-1383
● lib/vtls/vtls.c:149-150
● lib/vauth/digest_sspi.c:434-435
● lib/netrc.c:219

Description
Several cases were discovered in which possibly user-supplied values are checked against a
known secret using non-constant-time comparison. In cases where an attacker can
accurately time how long it takes for the application to fail validation of submitted data that
he controls, such behavior could leak information about the secret itself, allowing the
attacker to brute-force it in linear time.

In the example below, credentials are checked via Curl_safecmp(), which is a
memory-safe, but not constant-time, wrapper around strcmp(). This is used to determine
whether or not to reuse an existing TLS connection.

#ifdef USE_TLS_SRP
Curl_safecmp(data->username, needle->username) &&
Curl_safecmp(data->password, needle->password) &&
(data->authtype == needle->authtype) &&

#endif

Figure 4.1: lib/url.c, lines 148 through 152. Credentials checked using a memory-safe, but
not constant-time, wrapper around strcmp()

The above is one example out of several cases found, all of which are noted above.

Exploit Scenario
An application uses a libcurl build with TLS-SRP enabled and allows multiple users to make
TLS connections to a remote server. An attacker times how quickly cURL responds to his
requests to create a connection, and thereby gradually works out the credentials
associated with an existing connection. Eventually, he is able to submit a request with
exactly the same SSL configuration such that another user’s existing connection is reused.

Trail of Bits 27 cURL Security Assessment
PUBLIC

Recommendations
Short term, introduce a method, e.g. Curl_constcmp(), which does a constant-time
comparison of two strings—that is, it scans both strings exactly once in their entirety.

Long term, compare secrets to user-submitted values using only constant-time algorithms.

Trail of Bits 28 cURL Security Assessment
PUBLIC

5. Tab injection in cookie file

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-CURL-5

Target: lib/cookie.c:895,984

Description
When libcurl makes an HTTP request, the cookie jar file is overwritten to store the cookies,
but the storage format uses tabs to separate key pieces of information. The cookie parsing
code for HTTP headers strips the leading and trailing tabs from cookie keys and values, but
it does not reject cookies with tabs inside the keys or values.

In the snippet of lib/cookie.c below, Curl_cookie_add() parses tab-separated cookie
data via strtok_r() and uses a switch-based state machine to interpret specific parts as
key information:

firstptr = strtok_r(lineptr, "\t", &tok_buf); /* tokenize it on the TAB */

Figure 5.1: Parsing tab-separated cookie data via strtok_r()

Exploit Scenario
A webpage returns a Set-Cookie header with a tab character in the cookie name. When a
cookie file is saved from cURL for this page, the part of the name before the tab is taken as
the key, and the part after the tab is taken as the value. The next time the cookie file is
loaded, these two values will be used.

% echo "HTTP/1.1 200 OK\r\nSet-Cookie: foo\tbar=\r\n\r\n\r\n"|nc -l 8000 &
% curl -v -c /tmp/cookies.txt http://localhost:8000
* Trying 127.0.0.1:8000...
* Connected to localhost (127.0.0.1) port 8000 (#0)
> GET / HTTP/1.1
> Host: localhost:8000
> User-Agent: curl/7.79.1
> Accept: */*
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
* Added cookie foo bar="" for domain localhost, path /, expire 0
< Set-Cookie: foo bar=
* no chunk, no close, no size. Assume close to signal end

Figure 5.2: Sending a cookie with name foo\tbar, and no value.

% cat /tmp/cookies.txt | tail -1

Trail of Bits 29 cURL Security Assessment
PUBLIC

localhost FALSE / FALSE 0 foo bar

Figure 5.3: Sending a cookie with name foo\tbar and no value

Recommendations
Short term, either reject any cookie with a tab in its key (as \t is not a valid character for
cookie keys, according to the relevant RFC), or escape or quote tab characters that appear
in cookie keys.

Long term, do not assume that external data will follow the intended specification. Always
account for the presence of special characters in such inputs.

Trail of Bits 30 cURL Security Assessment
PUBLIC

6. Standard output/input/error may not be opened

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-CURL-6

Target: src/tool_main.c:83-105

Description
The function main_checkfds() is used to ensure that file descriptors 0, 1, and 2 (stdin,
stdout, and stderr) are open before curl starts to run. This is necessary to avoid the case
wherein, if one of those descriptors fails to open initially, the next network socket opened
by cURL may gain an FD number of 0, 1, or 2, resulting in what should be local input/output
being received from or sent to a network socket instead. However, pipe errors actually
result in the same outcome as success:

static void main_checkfds(void)
{
#ifdef HAVE_PIPE
int fd[2] = { STDIN_FILENO, STDIN_FILENO };
while(fd[0] == STDIN_FILENO || fd[0] == STDOUT_FILENO ||

fd[0] == STDERR_FILENO || fd[1] == STDIN_FILENO ||
fd[1] == STDOUT_FILENO || fd[1] == STDERR_FILENO)

if(pipe(fd) < 0)
return; /* Out of handles. This isn't really a big problem now, but

will be when we try to create a socket later. */
close(fd[0]);
close(fd[1]);

#endif
}

Figure 6.1: tool_main.c:83–105, lines 83 through 105

Though the comment notes that an out-of-handles condition would result in a failure later
on in the application, there may be cases where this is not true—e.g., the maximum
number of handles has been reached at the time of this check, but handles are closed
between it and the next attempt to create a socket. In such a case, execution might
continue as normal, with stdin/out/err being redirected to an unexpected location.

Recommendations
Short term, use fcntl() to check if stdin/out/err are open. If they are not, exit the
program if the pipe function fails.

Long term, do not assume that execution will fail later; fail early in cases like these.

Trail of Bits 31 cURL Security Assessment
PUBLIC

7. Double free when using HTTP proxy with specific protocols

Severity: High Difficulty: High

Type: Data Validation Finding ID: TOB-CURL-7

Target: curl/lib/url.c, curl/lib/http_proxy.c

Description
Using cURL with proxy connection and dict, gopher, LDAP, or telnet protocol triggers a
double free vulnerability (figure 7.1). The connect_init function allocates a memory block
for a connectdata struct (figure 7.2). After the connection, cURL frees the allocated buffer
in the conn_free function (figure 7.3), which is freed for the second time in the
Curl_free_request_state frees, which uses the Curl_safefree function on elements
of the Curl_easy struct (figure 7.4).

This double free was also not detected in release builds during our testing — the glibc
allocator checks may fail to detect such cases on some occasions. The two frees’ success
indicates that future memory allocations made by the program will return the same pointer
twice. This may enable exploitation of cURL if the allocated objects contain data controlled
by an attacker.

Additionally, if this vulnerability also triggers in libcurl—which we believe it should—it may
enable the exploitation of programs that depend on libcurl.

$ nc -l 1337 | echo 'test' & # Imitation of a proxy server using netcat
$ curl -x http://test:test@127.0.0.1:1337 dict://127.0.0.1

2069694==ERROR: AddressSanitizer: attempting double-free on 0x617000000780 in thread T0:
#0 0x494c8d in free (curl/src/.libs/curl+0x494c8d)
#1 0x7f1eeeaf3afe in Curl_free_request_state curl/lib/url.c:2259:3
#2 0x7f1eeeaf3afe in Curl_close curl/lib/url.c:421:3
#3 0x7f1eeea30943 in curl_easy_cleanup curl/lib/easy.c:798:3
#4 0x4e07df in post_per_transfer curl/src/tool_operate.c:656:3
#5 0x4dee58 in serial_transfers curl/src/tool_operate.c:2434:18
#6 0x4dee58 in run_all_transfers curl/src/tool_operate.c:2620:16
#7 0x4dee58 in operate curl/src/tool_operate.c:2732:18
#8 0x4dcf73 in main curl/src/tool_main.c:276:14
#9 0x7f1eee2af082 in __libc_start_main

/build/glibc-SzIz7B/glibc-2.31/csu/../csu/libc-start.c:308:16
#10 0x41c7cd in _start (curl/src/.libs/curl+0x41c7cd)

0x617000000780 is located 0 bytes inside of 664-byte region [0x617000000780,0x617000000a18)
freed by thread T0 here:
#0 0x494c8d in free (curl/src/.libs/curl+0x494c8d)
#1 0x7f1eeeaf6094 in conn_free curl/lib/url.c:814:3
#2 0x7f1eeea92cc6 in curl_multi_perform curl/lib/multi.c:2684:14

Trail of Bits 32 cURL Security Assessment
PUBLIC

#3 0x7f1eeea304bd in easy_transfer curl/lib/easy.c:662:15
#4 0x7f1eeea304bd in easy_perform curl/lib/easy.c:752:42
#5 0x7f1eeea304bd in curl_easy_perform curl/lib/easy.c:771:10
#6 0x4dee35 in serial_transfers curl/src/tool_operate.c:2432:16
#7 0x4dee35 in run_all_transfers curl/src/tool_operate.c:2620:16
#8 0x4dee35 in operate curl/src/tool_operate.c:2732:18
#9 0x4dcf73 in main curl/src/tool_main.c:276:14
#10 0x7f1eee2af082 in __libc_start_main

/build/glibc-SzIz7B/glibc-2.31/csu/../csu/libc-start.c:308:16

previously allocated by thread T0 here:
#0 0x495082 in calloc (curl/src/.libs/curl+0x495082)
#1 0x7f1eeea6d642 in connect_init curl/lib/http_proxy.c:174:9
#2 0x7f1eeea6d642 in Curl_proxyCONNECT curl/lib/http_proxy.c:1061:14
#3 0x7f1eeea6d1f2 in Curl_proxy_connect curl/lib/http_proxy.c:118:14
#4 0x7f1eeea94c33 in multi_runsingle curl/lib/multi.c:2028:16
#5 0x7f1eeea92cc6 in curl_multi_perform curl/lib/multi.c:2684:14
#6 0x7f1eeea304bd in easy_transfer curl/lib/easy.c:662:15
#7 0x7f1eeea304bd in easy_perform curl/lib/easy.c:752:42
#8 0x7f1eeea304bd in curl_easy_perform curl/lib/easy.c:771:10
#9 0x4dee35 in serial_transfers curl/src/tool_operate.c:2432:16
#10 0x4dee35 in run_all_transfers curl/src/tool_operate.c:2620:16
#11 0x4dee35 in operate curl/src/tool_operate.c:2732:18
#12 0x4dcf73 in main curl/src/tool_main.c:276:14
#13 0x7f1eee2af082 in __libc_start_main

/build/glibc-SzIz7B/glibc-2.31/csu/../csu/libc-start.c:308:16

SUMMARY: AddressSanitizer: double-free (curl/src/.libs/curl+0x494c8d) in free

Figure 7.1: Reproducing double free vulnerability with ASAN log

158 static CURLcode connect_init(struct Curl_easy *data, bool reinit)
// (...)
174 s = calloc(1, sizeof(struct http_connect_state));

Figure 7.2: Allocating a block of memory that is freed twice
(curl/lib/http_proxy.c#158–174)

787 static void conn_free(struct connectdata *conn)
// (...)
814 Curl_safefree(conn->connect_state);

Figure 7.3: The conn_free function that frees the http_connect_state struct for HTTP
CONNECT (curl/lib/url.c#787–814)

2257 void Curl_free_request_state(struct Curl_easy *data)
2258 {
2259 Curl_safefree(data->req.p.http);
2260 Curl_safefree(data->req.newurl);

Figure 7.4: The Curl_free_request_state function that frees elements in the Curl_easy
struct, which leads to a double free vulnerability (curl/lib/url.c#2257–2260)

Trail of Bits 33 cURL Security Assessment
PUBLIC

https://github.com/curl/curl/blob/2ca0530a4d4bd1e1ccb9c876e954d8dc9a87da4a/lib/http_proxy.c#L158-L174
https://github.com/curl/curl/blob/2ca0530a4d4bd1e1ccb9c876e954d8dc9a87da4a/lib/url.c#L787-L814
https://github.com/curl/curl/blob/2ca0530a4d4bd1e1ccb9c876e954d8dc9a87da4a/lib/url.c#L2257-L2260

Exploit Scenario
An attacker finds a way to exploit the double free vulnerability described in this finding
either in cURL or in a program that uses libcurl and gets remote code execution on the
machine from which the cURL code was executed.

Recommendations
Short term, fix the double free vulnerability described in this finding.

Long term, expand cURL’s unit tests and fuzz tests to cover different types of proxies for
supported protocols. Also, extend the fuzzing strategy to cover argv fuzzing. It can be
obtained using the approach presented in the argv-fuzz-inl.h from the AFL++ project.
This will force the fuzzer to build an argv pointer array (which points to arguments passed
to the cURL) from NULL-delimited standard input. Finally, consider adding a dictionary with
possible options and protocols to the fuzzer based on the source code or on cURL’s
manual.

Trail of Bits 34 cURL Security Assessment
PUBLIC

https://github.com/AFLplusplus/AFLplusplus/tree/stable/utils/argv_fuzzing

8. Some flags override previous instances of themselves

Severity: Informational Difficulty: High

Type: Configuration Finding ID: TOB-CURL-8

Target: src/tool_operate.c:1539

Description
Some cURL flags, when provided multiple times, overrides themselves and effectively use
the last flag provided. If a flag makes cURL invocation’s security options more strict, then
accidental overwriting may weaken the desired security. The identified flag with this
property is the --crlfile command-line option. It allows users to pass a PEM-formatted
certificate revocation list to cURL.

--crlfile <file>
(TLS) Provide a file using PEM format with a Certificate Revocation

List that may specify peer certificates that are to be considered revoked.

If this option is used several times, the last one will be used.

Example:
curl --crlfile rejects.txt https://example.com

Added in 7.19.7.

Figure 8.1: The description of the --crlfile option

Exploit Scenario
A user wishes for cURL to reject certificates specified across multiple certificate revocation
lists. He unwittingly uses the --crlfile flag multiple times, dropping all but the
last-specified list. Requests the user sends with cURL are intercepted by a
Man-in-the-Middle attacker, who uses a known-compromised certificate to bypass TLS
protections.

Recommendations
Short term, change the behavior of --crlfile to append new certificates to the
revocation list, not to replace those specified earlier. If backwards compatibility prevents
this, have cURL issue a warning such as “--crlfile specified multiple times,
using only <filename.txt>”.

Long term, ensure that behavior, such as how multiple instances of a command-line
argument are handled, is consistent throughout the application. Issue a warning when a
security-relevant flag is provided multiple times.

Trail of Bits 35 cURL Security Assessment
PUBLIC

9. Cookies are not stripped after redirect

Severity: Low Difficulty: High

Type: Configuration Finding ID: TOB-CURL-9

Target: --cookie flag

Description
If cookies are passed to cURL via the --cookie flag, they will not be stripped if the target
responds with a redirect. RFC 9110 section 15.4, “Redirection 3xx”, does not specify
whether or not cookies should be stripped during a redirect; as such, it may be better to err
on the side of caution and strip them by default if the origin changed. The recommended
behavior would match the current behavior with cookie jar (i.e., when a server sets a new
cookie and requests a redirect) and Authorization header (which is stripped on
cross-origin redirects).

Recommendations
Short term, if backwards compatibility would not prohibit such a change, strip cookies upon
a redirect to a different origin by default and provide a command-line flag that enables the
previous behavior (or extend the --location-trusted flag).

Long term, in cases where a specification is ambiguous and practicality allows, always
default to the most secure possible interpretation. Extend tests to check for behavior of
passing data after redirection.

Trail of Bits 36 cURL Security Assessment
PUBLIC

https://www.rfc-editor.org/rfc/rfc9110.html#name-redirection-3xx

10. Use after free while using parallel option and sequences

Severity: High Difficulty: High

Type: Data Validation Finding ID: TOB-CURL-10

Target: tool_operate.c:2251, tool_operate.c:2228, lib/sendf.c:275

Description
Using cURL with parallel option (-Z), two consecutive sequences (that end up creating 51
hosts), and an unmatched bracket triggers a use-after-free vulnerability (figure 10.1). The
add_parallel_transfers function allocates memory blocks for an error buffer;
consequently, by default, it allows up to 50 transfers (figure 10.2, line 2228). Then, in the
Curl_failf function, it copies errors (e.g., Could not resolve host: q{) to
appropriate error buffers when connections fail (figure 10.3) and frees the memory. For the
last sequence (u~ host), it allocates a memory buffer (figure 10.2), frees a buffer (figure
10.3), and copies an error (Could not resolve host: u~) to the previously freed
memory buffer (figure 10.4).

$ curl 0 -Z [q-u][u-~] }
curl: (7) Failed to connect to 0.0.0.0 port 80 after 0 ms: Connection refused
curl: (3) unmatched close brace/bracket in URL position 1:
}
^
curl: (6) Could not resolve host: q{
curl: (6) Could not resolve host: q|
curl: (6) Could not resolve host: q}
curl: (6) Could not resolve host: q~
curl: (6) Could not resolve host: r{
curl: (6) Could not resolve host: r|
curl: (6) Could not resolve host: r}
curl: (6) Could not resolve host: r~
curl: (6) Could not resolve host: s{
curl: (6) Could not resolve host: s|
curl: (6) Could not resolve host: s}
curl: (6) Could not resolve host: s~
curl: (6) Could not resolve host: t{
curl: (6) Could not resolve host: t|
curl: (6) Could not resolve host: t}
curl: (6) Could not resolve host: t~
curl: (6) Could not resolve host: u{
curl: (6) Could not resolve host: u|
curl: (6) Could not resolve host: u}
curl: (3) unmatched close brace/bracket in URL position 1:
}
^
====2789144==ERROR: AddressSanitizer: heap-use-after-free on address 0x611000004780 at pc
0x7f9b5f94016d bp 0x7fff12d4dbc0 sp 0x7fff12d4d368
WRITE of size 27 at 0x611000004780 thread T0

Trail of Bits 37 cURL Security Assessment
PUBLIC

#0 0x7f9b5f94016c in __interceptor_strcpy
../../../../src/libsanitizer/asan/asan_interceptors.cc:431

#1 0x7f9b5f7ce6f4 in strcpy /usr/include/x86_64-linux-gnu/bits/string_fortified.h:90
#2 0x7f9b5f7ce6f4 in Curl_failf /home/scooby/curl/lib/sendf.c:275
#3 0x7f9b5f78309a in Curl_resolver_error /home/scooby/curl/lib/hostip.c:1316
#4 0x7f9b5f73cb6f in Curl_resolver_is_resolved /home/scooby/curl/lib/asyn-thread.c:596
#5 0x7f9b5f7bc77c in multi_runsingle /home/scooby/curl/lib/multi.c:1979
#6 0x7f9b5f7bf00f in curl_multi_perform /home/scooby/curl/lib/multi.c:2684
#7 0x55d812f7609e in parallel_transfers /home/scooby/curl/src/tool_operate.c:2308
#8 0x55d812f7609e in run_all_transfers /home/scooby/curl/src/tool_operate.c:2618
#9 0x55d812f7609e in operate /home/scooby/curl/src/tool_operate.c:2732
#10 0x55d812f4ffa8 in main /home/scooby/curl/src/tool_main.c:276
#11 0x7f9b5f1aa082 in __libc_start_main ../csu/libc-start.c:308
#12 0x55d812f506cd in _start (/usr/local/bin/curl+0x316cd)

0x611000004780 is located 0 bytes inside of 256-byte region [0x611000004780,0x611000004880)
freed by thread T0 here:

#0 0x7f9b5f9b140f in __interceptor_free
../../../../src/libsanitizer/asan/asan_malloc_linux.cc:122

#1 0x55d812f75682 in add_parallel_transfers /home/scooby/curl/src/tool_operate.c:2251

previously allocated by thread T0 here:
#0 0x7f9b5f9b1808 in __interceptor_malloc

../../../../src/libsanitizer/asan/asan_malloc_linux.cc:144
#1 0x55d812f75589 in add_parallel_transfers /home/scooby/curl/src/tool_operate.c:2228

SUMMARY: AddressSanitizer: heap-use-after-free
../../../../src/libsanitizer/asan/asan_interceptors.cc:431 in __interceptor_strcpy
Shadow bytes around the buggy address:
0x0c227fff88a0: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
0x0c227fff88b0: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
0x0c227fff88c0: fa fa fa fa fa fa fa fa fd fd fd fd fd fd fd fd
0x0c227fff88d0: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
0x0c227fff88e0: fd fd fd fd fd fd fd fd fa fa fa fa fa fa fa fa

=>0x0c227fff88f0:[fd]fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
0x0c227fff8900: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
0x0c227fff8910: fa fa fa fa fa fa fa fa fd fd fd fd fd fd fd fd
0x0c227fff8920: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
0x0c227fff8930: fd fd fd fd fd fd fd fa fa fa fa fa fa fa fa fa
0x0c227fff8940: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd

Shadow byte legend (one shadow byte represents 8 application bytes):
Heap left redzone: fa
Freed heap region: fd
==2789144==ABORTING

Figure 10.1: Reproducing use-after-free vulnerability with ASAN log

2192 static CURLcode add_parallel_transfers(struct GlobalConfig *global,
CURLM *multi, CURLSH *share, bool *morep, bool *addedp)
2197 {
// (...)
2210 for(per = transfers; per && (all_added < global->parallel_max);

per = per->next) {
2227 if(!errorbuf) {
2228 errorbuf = malloc(CURL_ERROR_SIZE);
// (...)
2249 result = create_transfer(global, share, &getadded);

Trail of Bits 38 cURL Security Assessment
PUBLIC

2250 if(result) {
2251 free(errorbuf);
2252 return result;
2253 }

Figure 10.2: The add_parallel_transfers function
(curl/src/tool_operate.c#2192–2253)

264 void Curl_failf(struct Curl_easy *data, const char *fmt, ...)
265 {
// (...)
275 strcpy(data->set.errorbuffer, error);

Figure 10.3: The Curl_failf function that copies appropriate error to the error buffer
(curl/lib/sendf.c#264–275)

Exploit Scenario
An administrator sets up a service that calls cURL, where some of the cURL command-line
arguments are provided from external, untrusted input. An attacker manipulates the input
to exploit the use-after-free bug to run arbitrary code on the machine that runs cURL.

Recommendations
Short term, fix the use-after-free vulnerability described in this finding.

Long term, extend the fuzzing strategy to cover argv fuzzing. It can be obtained using the
argv-fuzz-inl.h from the AFL++ project to build argv from stdin in the cURL. Also,
consider adding a dictionary with possible options and protocols to the fuzzer based on the
source code or cURL’s manual.

Trail of Bits 39 cURL Security Assessment
PUBLIC

https://github.com/curl/curl/blob/2ca0530a4d4bd1e1ccb9c876e954d8dc9a87da4a/src/tool_operate.c#L2192-L2253
https://github.com/curl/curl/blob/2ca0530a4d4bd1e1ccb9c876e954d8dc9a87da4a/lib/sendf.c#L264-L275
https://github.com/AFLplusplus/AFLplusplus/tree/stable/utils/argv_fuzzing

11. Unused memory blocks are not freed resulting in memory leaks

Severity: Low Difficulty: High

Type: Denial of Service Finding ID: TOB-CURL-11

Target: tool_urlglob.c, tool_getparam.c

Description
For specific commands (figure 11.1, 11.2, 11.3), cURL allocates blocks of memory that are
not freed when they are no longer needed, leading to memory leaks.

$ curl 0 -Z 0 -Tz 0
curl: Can't open 'z'!
curl: try 'curl --help' or 'curl --manual' for more information
curl: (26) Failed to open/read local data from file/application

=============2798000==ERROR: LeakSanitizer: detected memory leaks

Direct leak of 4848 byte(s) in 1 object(s) allocated from:
#0 0x7f868e6eba06 in __interceptor_calloc

../../../../src/libsanitizer/asan/asan_malloc_linux.cc:153
#1 0x561bb1d1dc9f in glob_url /home/scooby/curl/src/tool_urlglob.c:459

Indirect leak of 8 byte(s) in 1 object(s) allocated from:
#0 0x7f868e6eb808 in __interceptor_malloc

../../../../src/libsanitizer/asan/asan_malloc_linux.cc:144
#1 0x561bb1d1e06c in glob_fixed /home/scooby/curl/src/tool_urlglob.c:48
#2 0x561bb1d1e06c in glob_parse /home/scooby/curl/src/tool_urlglob.c:411
#3 0x561bb1d1e06c in glob_url /home/scooby/curl/src/tool_urlglob.c:467

Indirect leak of 2 byte(s) in 1 object(s) allocated from:
#0 0x7f868e6eb808 in __interceptor_malloc

../../../../src/libsanitizer/asan/asan_malloc_linux.cc:144
#1 0x561bb1d1e0b0 in glob_fixed /home/scooby/curl/src/tool_urlglob.c:53
#2 0x561bb1d1e0b0 in glob_parse /home/scooby/curl/src/tool_urlglob.c:411
#3 0x561bb1d1e0b0 in glob_url /home/scooby/curl/src/tool_urlglob.c:467

Indirect leak of 2 byte(s) in 1 object(s) allocated from:
#0 0x7f868e6eb808 in __interceptor_malloc

../../../../src/libsanitizer/asan/asan_malloc_linux.cc:144
#1 0x561bb1d1dc6a in glob_url /home/scooby/curl/src/tool_urlglob.c:454

Figure 11.1: Reproducing memory leaks vulnerability in the tool_urlglob.c file with
LeakSanitizer log.

$ curl 00 --cu 00
curl: (7) Failed to connect to 0.0.0.0 port 80 after 0 ms: Connection refused

Trail of Bits 40 cURL Security Assessment
PUBLIC

=============2798691==ERROR: LeakSanitizer: detected memory leaks

Direct leak of 3 byte(s) in 1 object(s) allocated from:
#0 0x7fbc6811b3ed in __interceptor_strdup

../../../../src/libsanitizer/asan/asan_interceptors.cc:445
#1 0x56412ed047ee in getparameter /home/scooby/curl/src/tool_getparam.c:1885

SUMMARY: AddressSanitizer: 3 byte(s) leaked in 1 allocation(s).

Figure 11.2: Reproducing a memory leak vulnerability in the tool_getparam.c file with
LeakSanitizer log

$ curl --proto =0 --proto =0
Warning: unrecognized protocol '0'
Warning: unrecognized protocol '0'
curl: no URL specified!
curl: try 'curl --help' or 'curl --manual' for more information

===
==2799783==ERROR: LeakSanitizer: detected memory leaks

Direct leak of 1 byte(s) in 1 object(s) allocated from:
#0 0x7f90391803ed in __interceptor_strdup

../../../../src/libsanitizer/asan/asan_interceptors.cc:445
#1 0x55e405955ab7 in proto2num /home/scooby/curl/src/tool_paramhlp.c:385

SUMMARY: AddressSanitizer: 1 byte(s) leaked in 1 allocation(s).

Figure 11.3: Reproducing a memory leak vulnerability in the tool_paramhlp.c file with
LeakSanitizer log

Exploit Scenario
An attacker finds a way to allocate extensive lots of memory on the local machine, which
leads to the overconsumption of resources and a denial-of-service attack.

Recommendations
Short term, fix memory leaks described in this finding by freeing memory blocks that are
no longer needed.

Long term, extend the fuzzing strategy to cover argv fuzzing. It can be obtained using the
argv-fuzz-inl.h from the AFL++ project to build argv from stdin in the cURL. Also,
consider adding a dictionary with possible options and protocols to the fuzzer based on the
source code or cURL’s manual.

Trail of Bits 41 cURL Security Assessment
PUBLIC

https://github.com/AFLplusplus/AFLplusplus/tree/stable/utils/argv_fuzzing

12. Referer header is generated in insecure manner

Severity: Low Difficulty: High

Type: Configuration Finding ID: TOB-CURL-12

Target: --referer flag

Description
The cURL automatically sets the referer header for HTTP redirects when provided with
the --referer ‘;auto’ flag. The header set contains the entire original URL except for
the user-password fragment. The URL includes query parameters, which is against current
best practices for handling the referer, which say to default to the
strict-origin-when-cross-origin option. The option instructs clients to send only
the URL’s origin for cross-origin redirect, and not to send the header to less secure
destinations (e.g., when redirecting from HTTPS to HTTP protocol).

Exploit Scenario
An user uses cURL to send a request to a server that requires multi-step authorization. He
provides the authorization token as a query parameter and enables redirects with
--location flag. Because of the server misconfiguration, a 302 redirect response with an
incorrect Location header that points to a third-party domain is sent back to the cURL.
The cURL requests the third-party domain, leaking the authorization token via the referer
header.

Recommendations
Short term, send only the origin instead of the whole URL on cross-origin requests in the
referer header. Consider not sending the header on redirects downgrading the security
level. Additionally, consider implementing support for the Referrer-Policy response
header. Alternatively, introduce a new flag that would allow users to set the desired
referrer policy manually.

Long term, review response headers that change behavior of HTTP redirects and ensure
either that they are supported by the cURL or that secure defaults are implemented.

References
● Feature: Referrer Policy: Default to strict-origin-when-cross-origin

Trail of Bits 42 cURL Security Assessment
PUBLIC

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy#directives
https://chromestatus.com/feature/6251880185331712

13. Redirect to localhost and local network is possible (Server-side request
forgery like)

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-CURL-13

Target: HTTP redirects

Description
When redirects are enabled with cURL (i.e., the --location flag is provided), then a server
may redirect a request to an arbitrary endpoint, and the cURL will issue a request to it. This
gives requested servers partial access to cURL’s users local networks. The issue is similar to
the Server-Side Request Forgery (SSRF) attack vector, but in the context of the client
application.

Exploit Scenario
An user sends a request using cURL to a malicious server using the --location flag. The
server responds with a 302 redirect to http://192.168.0.1:1080?malicious=data
endpoint, accessing the user's router admin panel.

Recommendations
Short term, add a warning about this attack vector in the --location flag documentation.

Long term, consider disallowing redirects to private networks and loopback interface by
either introducing a new flag that would disable the restriction or extending the
--location-trusted flag functionality.

Trail of Bits 43 cURL Security Assessment
PUBLIC

https://en.wikipedia.org/wiki/Private_network

14. URL parsing from redirect is incorrect when no path separator is provided

Severity: Low Difficulty: High

Type: Undefined Behavior Finding ID: TOB-CURL-14

Target: URL parser

Description
When cURL parses a URL from the Location header for an HTTP redirect and the URL
does not contain a path separator (“/”), the cURL incorrectly duplicates query strings (i.e.,
data after the question mark) and fragments (data after cross). The cURL correctly parses
similar URLs when they are provided directly in the command line. This behavior indicates
that different parsers are used for direct URLs and URLs from redirects, which may lead to
further bugs.

$ curl -v -L 'http://local.test?redirect=http://local.test:80?-123'
* Trying 127.0.0.1:80...
* Connected to local.test (127.0.0.1) port 80 (#0)
> GET /?redirect=http://local.test:80?-123 HTTP/1.1
> Host: local.test
> User-Agent: curl/7.86.0-DEV
> Accept: */*
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 302 Found
< Location: http://local.test:80?-123
< Date: Mon, 10 Oct 2022 14:53:46 GMT
< Connection: keep-alive
< Keep-Alive: timeout=5
< Transfer-Encoding: chunked
<
* Ignoring the response-body
* Connection #0 to host local.test left intact
* Issue another request to this URL: 'http://local.test:80/?-123?-123'
* Found bundle for host: 0x6000039287b0 [serially]
* Re-using existing connection #0 with host local.test
* Connected to local.test (127.0.0.1) port 80 (#0)
> GET /?-123?-123 HTTP/1.1
> Host: local.test
> User-Agent: curl/7.86.0-DEV
> Accept: */*
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
< Date: Mon, 10 Oct 2022 14:53:46 GMT

Trail of Bits 44 cURL Security Assessment
PUBLIC

< Connection: keep-alive
< Keep-Alive: timeout=5
< Content-Length: 16
<
* Connection #0 to host local.test left intact
HTTP Connection!

Figure 14.1: Example logging output from cURL, presenting the bug in parsing URLs from the
Location header, with port and query parameters

$ curl -v -L 'http://local.test?redirect=http://local.test%23-123'
* Trying 127.0.0.1:80...
* Connected to local.test (127.0.0.1) port 80 (#0)
> GET /?redirect=http://local.test%23-123 HTTP/1.1
> Host: local.test
> User-Agent: curl/7.86.0-DEV
> Accept: */*
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 302 Found
< Location: http://local.test#-123
< Date: Mon, 10 Oct 2022 14:56:05 GMT
< Connection: keep-alive
< Keep-Alive: timeout=5
< Transfer-Encoding: chunked
<
* Ignoring the response-body
* Connection #0 to host local.test left intact
* Issue another request to this URL: 'http://local.test/#-123#-123'
* Found bundle for host: 0x6000003f47b0 [serially]
* Re-using existing connection #0 with host local.test
* Connected to local.test (127.0.0.1) port 80 (#0)
> GET / HTTP/1.1
> Host: local.test
> User-Agent: curl/7.86.0-DEV
> Accept: */*
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
< Date: Mon, 10 Oct 2022 14:56:05 GMT
< Connection: keep-alive
< Keep-Alive: timeout=5
< Content-Length: 16
<
* Connection #0 to host local.test left intact
HTTP Connection!

Figure 14.2: Example logging output from cURL, presenting the bug in parsing URLs from
Location header, without port and with fragment

Trail of Bits 45 cURL Security Assessment
PUBLIC

Exploit Scenario
A user of cURL accesses data from a server. The server redirects cURL to another endpoint.
cURL incorrectly duplicates the query string in the new request. The other endpoint uses
the incorrect data, which negatively affects the user.

Recommendations
Short term, fix the parsing bug in the Location header parser.

Long term, use a single, centralized API for URL parsing in the whole cURL codebase.
Expand tests with checks of parsing of redirect responses.

Trail of Bits 46 cURL Security Assessment
PUBLIC

Summary of Recommendations

Trail of Bits recommends that cURL’s developers address the findings detailed in this report
and take the following additional steps in future versions of the software.

● Where it is possible to change cURL’s behavior without breaking backwards-
compatibility guarantees, homogenize the behavior of command-line flags to ensure
that option-specific behavior does not catch users off-guard (see TOB-CURL-8).

● In cases where a protocol’s specification is ambiguous, err on the side of the most
secure interpretation or default, and provide an option to opt out if necessary.

● Implement the measures noted in the strategic fuzzing recommendations section
above.

Trail of Bits 47 cURL Security Assessment
PUBLIC

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 48 cURL Security Assessment
PUBLIC

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 49 cURL Security Assessment
PUBLIC

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Configuration The configuration of system components in accordance with best
practices

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Data Handling The safe handling of user inputs and data processed by the system

Documentation The presence of comprehensive and readable codebase documentation

Maintenance The timely maintenance of system components to mitigate risk

Memory Safety
and Error Handling

The presence of memory safety and robust error-handling mechanisms

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Trail of Bits 50 cURL Security Assessment
PUBLIC

Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.

Satisfactory Minor issues were found, but the system is compliant with best practices.

Moderate Some issues that may affect system safety were found.

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further
Investigation
Required

Further investigation is required to reach a meaningful conclusion.

Trail of Bits 51 cURL Security Assessment
PUBLIC

C. Code Quality Recommendations

This appendix contains findings that do not have immediate or obvious security
implications. However, they may facilitate exploit chains targeting other vulnerabilities or
may become easily exploitable in future releases.

● Redundant if-statement. The second check for the value of *connected is
unnecessary, perhaps the result of earlier code removals.

if(*connected) {
/* ... omitted ... */

else {
/* Add timeout to multi handle and break out of the loop */
if(*connected == FALSE) {

/* ... omitted ... */
}

}

Figure C.1: A redundant check for the value of *connected.
(curl/lib/ftp.c:508–524)

● CONNECT packet misnamed in comments. Two comments refer to the MQTT
CONNECT packet as the “CONN” packet, which could cause confusion. The MQTT
spec itself, in section 3.1, uses “CONNECT” throughout.

/* add user to the CONN packet */
...
/* Set initial values of CONN packet */

Figure C.2: Comments misnaming MQTT packets.
(curl/lib/mqtt.c:189,219)

● Outdated documentation. The MQTT documentation at
https://everything.curl.dev/usingcurl/mqtt#caveats states that cURL does not
support MQTT authentication; however, cURL has since been updated to support it.
The documentation should be updated to note this, and should also mention as a
caveat that there is no TLS support and only MQTT v3 is supported (whereas v5 adds
enhanced authentication support).

● Missing deprecation information. CURLOPT_HTTPPOST is not described as
deprecated in a list of options for a curl easy handle. Also, the
CURLOPT_POSTFIELDS document directs the reader toward CURLOPT_HTTPPOST.

Trail of Bits 52 cURL Security Assessment
PUBLIC

https://everything.curl.dev/usingcurl/mqtt#caveats
https://curl.se/libcurl/c/curl_easy_setopt.html
https://curl.se/libcurl/c/CURLOPT_POSTFIELDS.html

D. HSTS debug patch

diff --git a/lib/http.c b/lib/http.c
index 531c6daf8..bdf9444cd 100644
--- a/lib/http.c
+++ b/lib/http.c
@@ -3715,7 +3715,14 @@ CURLcode Curl_http_header(struct Curl_easy *data, struct
connectdata *conn,
#ifndef CURL_DISABLE_HSTS
/* If enabled, the header is incoming and this is over HTTPS */
else if(data->hsts && checkprefix("Strict-Transport-Security:", headp) &&

- (conn->handler->flags & PROTOPT_SSL)) {
+ ((conn->handler->flags & PROTOPT_SSL) ||
+#ifdef CURLDEBUG
+ /* allow debug builds to circumvent the HTTPS restriction */
+ getenv("CURL_HSTS_HTTP")
+#else
+ 0
+#endif
+)) {

CURLcode check =
Curl_hsts_parse(data->hsts, data->state.up.hostname,

headp + strlen("Strict-Transport-Security:"));

Figure D.1: Patch to http.c that allows HSTS over HTTP in debug mode (to facilitate fuzzing).

Trail of Bits 53 cURL Security Assessment
PUBLIC

E. Fix Review Results

On December 5, 2022, Trail of Bits reviewed the fixes and mitigations implemented by the
cURL project team to resolve the issues identified in this report, as specified in the fix
document at https://gist.github.com/bagder/6d9e94a3a90641b552cb26f44925b3e0.

In summary, the cURL project has sufficiently addressed eleven of the fourteen issues
described in this report and accepted the risk associated with three.

We reviewed each fix to determine its effectiveness in resolving the associated issue. For
additional information, please see the Detailed Fix Log.

ID Title Severity Status

1 Bad recommendation in libcurl cookie
documentation

Informational Resolved

2 Libcurl URI parser accepts invalid characters Undetermined Resolved

3 Libcurl Alt-Svc parser accepts invalid port numbers Undetermined Resolved

4 Non-constant-time comparison of secrets Low Resolved

5 Tab injection in cookie file Informational Resolved

6 Standard output/input/error may not be opened Informational Resolved

7 Double free when using HTTP proxy with specific
protocols

High Resolved

8 Some flags override previous instances of
themselves

Informational Resolved

9 Cookies are not stripped after redirect Low Unresolved

Trail of Bits 54 cURL Security Assessment
PUBLIC

https://gist.github.com/bagder/6d9e94a3a90641b552cb26f44925b3e0

10 Use after free while using parallel option and
sequences

High Resolved

11 Unused memory blocks are not freed resulting in
memory leaks

Low Resolved

12 Referer header is generated in insecure manner Low Unresolved

13 Redirect to localhost and local network is possible
(Server-side request forgery like)

Informational Unresolved

14 URL parsing from redirect is incorrect when no
path separator is provided

Low Resolved

Trail of Bits 55 cURL Security Assessment
PUBLIC

Detailed Fix Review Results
TOB-CURL-1: Bad recommendation in libcurl cookie documentation
Resolved in PR #9654. The erroneous recommendation was removed.

TOB-CURL-2: Libcurl URI parser accepts invalid characters
Resolved in PR #9608 and PR #10096. The noted invalid characters are now rejected.

TOB-CURL-3: libcurl Alt-Svc parser accepts invalid port numbers
Resolved in PR #10095. The port number is now rejected as invalid if it begins with a
non-digit character (e.g., a negative sign).

TOB-CURL-4: Non-constant-time comparison of secrets
Resolved in PR #9658. A new string comparison function Curl_timestrcmp() was
introduced that has an execution time dependent only on the length of the shorter of its
two input strings.

TOB-CURL-5: Tab injection in cookie file
Resolved in PR #9659. Cookies with tab characters in their name are now rejected entirely.

TOB-CURL-6: Standard output/input/error may not be opened
Resolved in PR #9663 and.#9708. The main_checkfds() function now calls fnctl() to
check the status of stdin, stdout, and stderr, and will not continue until all three open
without error.

TOB-CURL-7: Double free when using HTTP proxy with specific protocols
Resolved in commit 51c0ebcf; reported as CVE-2022-42915. We used dynamic testing to
confirm that the vulnerability is no longer present.

TOB-CURL-8: Some flags override previous instances of themselves
Resolved in PR #9759. A new rule was introduced for contributors requiring that
documentation for command line options specifically note how the option will be
interpreted if the user supplies it multiple times.

TOB-CURL-9: Cookies are not stripped after redirect
Unresolved; risk accepted. “This is by design and we do not see a way to change this behavior
without breaking behavior for existing users. This is also not the typical way users use cookies
with curl so those who do provide cookies like this usually do it in special crafted ways. This
behavior is also documented in the man page for the --cookie option.”

TOB-CURL-10: Use after free while using parallel option and sequences
Resolved in PR #9729. We used dynamic testing to confirm that the vulnerability is no
longer present.

Trail of Bits 56 cURL Security Assessment
PUBLIC

https://github.com/curl/curl/pull/9654
https://github.com/curl/curl/pull/9608
https://github.com/curl/curl/pull/10096
https://github.com/curl/curl/pull/10095
https://github.com/curl/curl/pull/9658
https://github.com/curl/curl/pull/9659
https://github.com/curl/curl/pull/9659
https://github.com/curl/curl/pull/9708
https://github.com/curl/curl/commit/51c0ebcff2140c3
https://curl.se/docs/CVE-2022-42915.html
https://github.com/curl/curl/pull/9759
https://github.com/curl/curl/pull/9729

TOB-CURL-11: Unused memory blocks are not freed resulting in memory leaks
Resolved in PR #9865. Dynamic testing revealed that the vulnerability noted in figures 11.1
(tool_urlglob.c), 11.2 (tool_getparam.c), and 11.3 (tool_paramhlp.c) are no longer
present.

TOB-CURL-12: Referer header is generated in insecure manner
Unresolved; risk accepted. “This topic was brought to the mailing list
https://curl.se/mail/lib-2022-10/ 0039.html but no real desire in changing the default behavior
was picked up, rather the opposite. This is a function that is rarely used, so presumably users
that do not want this way of working will and should not enable it.”

TOB-CURL-13: Redirect to localhost and local network is possible
Unresolved; risk accepted. “This is working as intended and I do not see how adding a warning
here will help anyone or anything. The option asks curl to follow a redirect and there is nothing
that says or indicates that it would not follow a redirect to certain hosts or host names. Of
course it will also follow redirects to ‘local’ host names, for any definition of local.”

“The built-in redirect-following is not meant to be the way that covers all possible ways to do
redirects for all users in all situations. If users need more control and more say in how redirects
are done, curl and libcurl provide the means to let users follow them themselves. curl does not
follow any redirects by default.”

TOB-CURL-14: URL parsing from redirect is incorrect when no path separator is
provided
Resolved in PR #9763. We used dynamic testing to confirm that the vulnerability is no
longer present.

Trail of Bits 57 cURL Security Assessment
PUBLIC

https://github.com/curl/curl/pull/9865
https://curl.se/mail/lib-2022-10/0039.html
https://github.com/curl/curl/pull/9763

