

Page 1 of 12

Privileged and Confidential
Report

Security Assessment of slf4j on behalf of Open Source

Technology Improvement Fund

Page 2 of 12

Privileged and Confidential
Report

TABLE OF CONTENTS

Executive Summary ... 3

Include Security (IncludeSec) .. 3

Assessment Objectives .. 3

Scope and Methodology ... 3

Findings Overview ... 3

Next Steps ... 3

Risk Categorizations .. 4

Critical-Risk .. 4

High-Risk.. 4

Medium-Risk ... 4

Low-Risk .. 4

Informational .. 4

INTRODUCTION ... 5

Project Scoping .. 5

Testing Methodology .. 5

Threat Modeling .. 5

Review of Supply Chain Security Against SLSA ... 6

Evaluation of Continuous Integration Pipeline and Automated Security Testing 8

Low-Risk Findings .. 9

L1: GPG Signing Passphrase Supplied via Command-Line Argument ... 9

Informational Findings .. 11

I1: Project Does Not Define Security Policy .. 11

I2: Infrastructure Information Disclosure in Public Repository .. 12

Page 3 of 12

Privileged and Confidential
Report

EXECUTIVE SUMMARY

Include Security (IncludeSec)

IncludeSec brings together some of the best information security talent from around the world. The team is
composed of security experts in every aspect of consumer and enterprise technology, from low-level hardware
and operating systems to the latest cutting-edge web and mobile applications. More information about the
company can be found at www.IncludeSecurity.com.

Assessment Objectives

The objective of this assessment was to identify and confirm potential security vulnerabilities within targets in-
scope of the SOW. The team assigned a qualitative risk ranking to each finding. Recommendations were
provided for remediation steps which slf4j could implement to secure its applications and systems.

Scope and Methodology

Include Security performed a security assessment of slf4j’s Security Review. The assessment team performed a
10 day effort spanning from April 25th – May 6th, 2022, using a Standard Grey Box assessment methodology
which included a detailed review of all the components described in a manner consistent with the original
Statement of Work (SOW).

Findings Overview

IncludeSec identified 3 categories of findings. There were 0 deemed to be “Critical-Risk,” 0 deemed to be “High-
Risk,” 0 deemed to be “Medium-Risk,” and 1 deemed to be “Low-Risk,” which pose some tangible security risk.
Additionally, 2 “Informational” level findings were identified that do not immediately pose a security risk.

IncludeSec encourages slf4j to redefine the stated risk categorizations internally in a manner that incorporates
internal knowledge regarding business model, customer risk, and mitigation environmental factors.

Next Steps

IncludeSec advises slf4j to remediate as many findings as possible in a prioritized manner and make systemic
changes to the Software Development Life Cycle (SDLC) to prevent further vulnerabilities from being introduced
into future release cycles. This report can be used by as a basis for any SDLC changes. IncludeSec welcomes the
opportunity to assist slf4j in improving their SDLC in future engagements by providing security assessments of
additional products. For inquiries or assistance scheduling remediation tests, please contact us at
remediation@includesecurity.com.

https://www.includesecurity.com/
mailto:remediation@includesecurity.com

Page 4 of 12

Privileged and Confidential
Report

RISK CATEGORIZATIONS

At the conclusion of the assessment, Include Security categorized findings into five levels of perceived security
risk: Critical, High, Medium, Low, or Informational. The risk categorizations below are guidelines that
IncludeSec understands reflect best practices in the security industry and may differ from a client's internal
perceived risk. Additionally, all risk is viewed as "location agnostic" as if the system in question was deployed
on the Internet. It is common and encouraged that all clients recategorize findings based on their internal
business risk tolerances. Any discrepancies between assigned risk and internal perceived risk are addressed
during the course of remediation testing.

Critical-Risk findings are those that pose an immediate and serious threat to the company’s infrastructure and
customers. This includes loss of system, access, or application control, compromise of administrative accounts
or restriction of system functions, or the exposure of confidential information. These threats should take priority
during remediation efforts.

High-Risk findings are those that could pose serious threats including loss of system, access, or application
control, compromise of administrative accounts or restriction of system functions, or the exposure of
confidential information.

Medium-Risk findings are those that could potentially be used with other techniques to compromise accounts,
data, or performance.

Low-Risk findings pose limited exposure to compromise or loss of data, and are typically attributed to
configuration, and outdated patches or policies.

Informational findings pose little to no security exposure to compromise or loss of data which cover defense-
in-depth and best-practice changes which we recommend are made to the application. Any informational
findings for which the assessment team perceived a direct security risk, were also reported in the spirit of full
disclosure but were considered to be out of scope of the engagement.

The findings represented in this report are listed by a risk rated short name (e.g., C1, H2, M3, L4, and I5) and
finding title. Each finding may include if applicable: Title, Description, Impact, Reproduction (evidence necessary
to reproduce findings), Recommended Remediation, and References.

Page 5 of 12

Privileged and Confidential
Report

INTRODUCTION

Project Scoping
On April 25th, 2022, the assessment team began analyzing the slf4j (Simple Logging Façade for Java)
application. The following areas were of key focus during the assessment:

• Manual Code Review – Assessing code using a combination of static analysis, dynamic analysis, and
manual review.

• Threat Modeling – Assessing potential threats, attacks, and mitigations.

• Review of Supply Chain Security Against SLSA – Assessing the current state of the supply chain
security in the slf4j project against the SLSA model v0.1.

• Evaluation of Continuous Integration Pipeline and Automated Security Testing – Assessing the
current configuration of automated security testing for the project.

Testing Methodology
A dedicated instance of the slf4j application was provided. Testing of the application involved both dynamic
and static application testing. Dynamic testing involved interacting with slf4j testing instance that was
provided. Static testing was performed by manual source code review of each in-scope repository.

Threat Modeling
Application Decomposition

The framework is lightweight and was found to present a limited attack surface by itself. Since it is a popular
framework integrated into many downstream projects, the assessment focused primarily on supply-chain
related vulnerabilities.

Attacker Behavioral Summary

• An attacker might want to abuse any flaws present in the library to attack applications that integrate it.

• An attacker might want to inject malicious code into builds of the library hosted on Maven Central in
order to attack applications that integrate it.

• An attacker might like to trick consumers of the library into integrating a non-genuine version of the
library containing malicious code.

• An attacker might want to inject code into a dependency of slf4j that is less popular than slf4j itself,
thereby magnifying the potential impact.

• An attacker might want to compromise the slf4j website and change the build links to point to
malicious packages.

• An attacker might want to “squat” names that are similar to slf4j on Maven Central and GitHub to trick
users who misspell the project into downloading the incorrect packages.

Application Threats

In it's current state as of April 2022 slf4j has a very small attack surface area. It does not support advanced
logging capabilities that may be cause for security concern (such as the log4j vulnerabilities published in 2021.)
Furthermore despite the specific integrations (or “wrapped implementation” in slf4j parlance) for many
loggers such as JUL, log4j, etc. slf4j itself is very lightweight and does not add any notable attack surface area
between the application and the logging framework. The logging frameworks themselves are separate
dependencies and subject to their own vulnerabilities as discussed further below in this section of the report.

https://slsa.dev/

Page 6 of 12

Privileged and Confidential
Report

The most probable way that flaws in slf4j itself would manifest would be flaws in the handling of log messages
containing malicious data, since this is likely the only untrusted data passed to slf4j by integrating applications.

An attacker wishing to insert malicious code into the library might attempt this in several ways.

• They might attempt to compromise the maintainer's computer.

• They could physically threaten the package's maintainer.

• They could compromise the project maintainer's GitHub account.

• They could make seemingly innocuous commits to the repository that introduce subtle vulnerabilities,
perhaps by compromising the GitHub accounts of previous contributors to the project, lending
credibility.

• They could attempt to compromise the account used to update the slf4j packages on Maven Central.

Some of the ways that someone attempting to compromise the slf4j web presence might proceed include:

• Directly obtaining the appropriate credentials to log in to the server, e.g., via compromise of the
project maintainer's computer, phishing, or similar methods.

• Hijacking the slf4j.org domain name by attacking the domain register, abusing lax security on the
domain, or opportunistically taking advantage of an accidental domain expiration.

Application Mitigations

Current Mitigations:

The fact that slf4j builds are reproducible adds significant defense against code tampering, although it relies
on third parties to actually do the verification. The slf4j builds are also signed with GPG, meaning an attacker
who is able to tamper with the final builds but who has not compromised the signing key could be discovered.
Once again, though this process is not automatically performed by Maven, it relies on a third party to
manually do this verification.

The project maintainer takes sensible precautions with the various accounts involved in slf4j, such as enabling
two-factor authentication and using a password manager.

Possible Improvements:

Some possible improvements to the build process are noted in Evaluation of Continuous Integration Pipeline
and Automated Security Testing.

Review of Supply Chain Security Against SLSA
The assessment team evaluated the current state of the supply chain security in the slf4j project against the
SLSA model v0.1. SLSA defines four levels with increasing degrees of confidence in the ultimate integrity of the
build artifacts. A discussion of the results can be found in section Evaluation of Continuous Integration
Pipeline and Automated Security Testing.

L1 Requirements:

Category Requirement Satisfied? Notes

Build Scripted build YES slf4j had a fully automated build process using Maven.
Provenance Available NO slf4j did not include a formal SLSA provenance with

releases.
Provenance Identifies artifact NO slf4j did not include a formal SLSA provenance with

releases.

https://slsa.dev/
https://slsa.dev/spec/v0.1/levels

Page 7 of 12

Privileged and Confidential
Report

Provenance Identifies builder NO slf4j did not include a formal SLSA provenance with
releases.

Provenance Identifies build instructions NO slf4j did not include a formal SLSA provenance with
releases.

Provenance Includes metadata
(optional)

NO slf4j did not include a formal SLSA provenance with
releases.

L2 Requirements:

Category Requirement Satisfied? Notes

Source Version controlled YES The framework uses Git for version control.
Build Build service NO Builds of the framework were created manually by the project

maintainer.
Provenance Authenticated NO slf4j did not include a formal SLSA provenance with releases.
Provenance Service generated NO slf4j did not include a formal SLSA provenance with releases.
Provenance Identifies source

code
NO slf4j did not include a formal SLSA provenance with releases.

L3 Requirements:

Category Requirement Satisfied? Notes

Source Verified history YES The application uses signed commits.
Source Retained at least 18 months NO By default, git history is not immutable, and the slf4j

repository was not configured to change this.
Build Build as code NO The build script is a text file in the VCS, but is not invoked

by a build service
Build Ephemeral environment NO Builds were created on the project maintainer's system.
Build Isolated NO Builds were created on the project maintainer's system.
Provenance Non-falsifiable NO slf4j did not include a formal SLSA provenance with

releases.
Provenance Identifies as source code

(authenticated)
NO slf4j did not include a formal SLSA provenance with

releases.
Provenance Identifies entry point NO slf4j did not include a formal SLSA provenance with

releases.
Provenance Includes all build parameters NO slf4j did not include a formal SLSA provenance with

releases.

L4 Requirements:

Category Requirement Satisfied? Notes

Source Retained indefinitely NO By default, git history is not immutable, and the slf4j repository
was not configured to change this.

Source Two-person
reviewed

NO Pull requests were reviewed by the project maintainer, satisfying
the requirement. However commits directly from the maintainer
were not reviewed by a second person.

Build Parameterless NO The build process accepted a parameter related to GPG signing.
Build Hermetic NO The application downloaded several dependencies and plugins

from the Maven Central during build time, including 39 .jar files
Build Reproducible

(optional)
YES Starting from v1.7.36, slf4j builds are reproducible.

Provenance Dependencies
complete

NO slf4j did not include a formal SLSA provenance with releases.

Provenance Identifies source
code (complete)

NO slf4j did not include a formal SLSA provenance with releases.

Page 8 of 12

Privileged and Confidential
Report

Provenance Includes all transitive
dependencies

NO slf4j did not include a formal SLSA provenance with releases.

Provenance Includes
reproducible info

NO slf4j did not include a formal SLSA provenance with releases.

Evaluation of Continuous Integration Pipeline and Automated Security Testing
The slf4j project has already implemented reproducible builds. This means that the open-source community
can build the project from the publicly available source code repository and obtain the exact same output as
the builds supplied in Maven. This is a significant security win that, in the SLSA model, is not required until the
highest level of confidence (level 4).

One major source of risk in the current setup revolves around the fact that builds are created manually on the
project maintainer's computer. Compromise of that computer could lead to compromise of the build artifacts.
This is somewhat mitigated by the fact that builds are reproducible — as discussed above, the community
could detect when builds do not match the current state of the public source code repository. However, it was
not clear that such verification was actually performed by the community, or how long detection might take in
the event of a compromise. The tampered build artifacts might be automatically downloaded and included in
many software projects before detection.

Because of these factors, offloading the build process to a dedicated build machine (such as GitHub Actions)
would confer significant gains in supply chain confidence. This coupled with the inclusion of a signed SLSA
provenance file containing metadata about the build such as builder and build instructions would allow the
project to achieve SLSA level 2.

After that, by making some changes to the repository to disallow modification of the git history via force
pushes, along with some additional fields and properties to the build provenance, the library could be further
upgraded to SLSA level 3. Git can be made immutable repository-wide by setting the
receive.denyNonFastForwards and receive.denyDeletes configurations. Alternatively, particular branches can
be made immutable using a git hook such as this example one (Example git.kernal.org Hook Link) provided on
kernel.org.

Due to the simplicity of the framework, the assessment team believes it is unlikely to significantly benefit from
fuzzing and most automated security tests. However, one possible improvement here would be to include
some automated tests that look for known vulnerabilities in the framework's dependencies. One such test
would be DependencyCheck, which is part of the OWASP project. This tool has a Maven plugin for
automatically running the tests during builds. No vulnerabilities were found in dependencies using this tool at
the time of assessment.

https://slsa.dev/provenance/v0.2
https://slsa.dev/provenance/v0.2
https://git.kernel.org/pub/scm/git/git.git/plain/contrib/hooks/update-paranoid?id=080cbc1275ac09445136ba429d90b5ec85e92c1c
https://github.com/jeremylong/DependencyCheck

Page 9 of 12

Privileged and Confidential
Report

LOW-RISK FINDINGS

L1: GPG Signing Passphrase Supplied via Command-Line Argument

Description:

The slf4j library contained a script used for creating builds. The script optionally accepts a password as a
command-line parameter. When a password is supplied, the script in turn invokes Maven, and passes the
password again as a command line argument. The password is then used by Maven as the GPG passphrase for
signing the release.

All arguments specified via a command-line are available in the process table to all other users on the system.
They are also usually recorded in a user's shell history.

Impact:

An attacker who compromises the computer of a project maintainer that has used this script might be able to
recover the GPG passphrase from the user's shell history. This, in combination with the GPG key, would allow
the attacker to sign their own releases. If the release is performed on a multiuser system, all users would be
able to view the password by inspecting the process table at the correct time.

Reproduction:

The script in question is release.sh. On line 42, it uses the value accepted on the command line as the GPG
passphrase:

PASS=$1
echo $PASS
[...]
if [! -z "$PASS"]
then
 echoRunAndCheck "$MVN deploy -P javadocjar,sign-artifacts -Dgpg.passphrase=$PASS"
fi

When passed, the password is stored in the user's shell history:

$ bash
$./release.sh hunter2
[...]
$ exit
exit
$ bash
$ tail ~/.bash_history
[...]
./release.sh hunter2
exit

Recommended Remediation:

The assessment team recommends not passing the password via the command line. If a passphrase isn't
specified to Maven, it will prompt for one interactively. Alternatively, secrets can be passed as environment
variables in the POM. In addition, the slf4j team could consider clearing any lines containing the password
from maintainers' shell histories and/or rotating the GPG passphrase for the signing key.

Page 10 of 12

Privileged and Confidential
Report

Remediation Notes:

This finding was retested and found to be closed. As can be seen below, the original script was modified to
eliminate the requirement for a GPG passphrase argument in favor of an interactive prompt on the TTY.

if [! -z "$PASS"]
then
 export GPG_TTY=$(tty)
 echoRunAndCheck "$MVN deploy -P javadocjar,sign-artifacts"
fi

References:

Passing Passwords
POM Documentation

https://www.netmeister.org/blog/passing-passwords.html
https://maven.apache.org/pom.html#Properties

Page 11 of 12

Privileged and Confidential
Report

INFORMATIONAL FINDINGS

I1: Project Does Not Define Security Policy

Description:

GitHub allows projects to create a SECURITY.md file that defines the project's security policy, such as the
process for reporting security vulnerabilities. The assessment team noted that the slf4j project did not define a
security policy.

Impact:

Community members who discover a vulnerability in slf4j may not know how to report it. This might lead to
them reporting it in a public way (such as GitHub issues or the slf4j JIRA), or over unencrypted email, leading
to disclosure of the vulnerability before the vulnerability can be remediated.

Reproduction:

To reproduce this finding, visit https://github.com/qos-ch/slf4j/security/policy and note that there is no
security policy.

Recommended Remediation:

The assessment team recommends implementing a security policy that directs users with regard to how to
submit vulnerabilities privately to the project's maintainers over a secure mechanism, such as via GPG
encrypted emails.

Remediation Notes:
This finding was retested and found to be closed. The repository now contained a security policy built from the
standard template with additional relevant details, found by visiting the link included in the reproduction
section.

References:

Adding a Security Policy to Your Repository

https://github.com/qos-ch/slf4j/security/policy
https://docs.github.com/en/code-security/getting-started/adding-a-security-policy-to-your-repository

Page 12 of 12

Privileged and Confidential
Report

I2: Infrastructure Information Disclosure in Public Repository

Description:

The assessment team found instances where technical information about infrastructure used by the slf4j
project (such as the web host) was available within the publicly available slf4j repository.

Impact:

An attacker might leverage the technical information when attempting to attack slf4j project infrastructure.
The technical information included the hostname used when uploading the slf4j website via SCP, along with
the full path to the web root on that host.

Reproduction:

The snippet below from file slf4j/release.sh, line 53, contains the web host information in a comment:

for 1.7.x series, scp slf4j-1.7.*.tar.gz yvo.qos.ch:/var/www/www.slf4j.org/htdocs/dist/

Recommended Remediation:

The assessment team recommends, removing all infrastructure related information from the public
repositories. Optionally (for more assurance) change all infrastructure hostnames and no longer using the
IPs/hosts mentioned in the public docs or firewalling them off from the Internet completely.

Remediation Notes:
This finding was retested and found to be closed. The technical information originally extracted from a
commented line was no longer present. The remaining source code was further analyzed to find other
occurrences of similar information disclosure, and none could be found.

References:

Information Disclosure

https://portswigger.net/web-security/information-disclosure

