
PRESENTS

CRI-O Security Audit
In collaboration with the CRI-O project maintainers and The Open Source Technology
Improvement Fund, Inc, Cloud Native Computing Foundation and Chainguard.

ostif.org

Authors
Adam Korczynski <adam@adalogics.com>
David Korczynski <david@adalogics.com>
Date: 6 June 2022

This report is licensed under Creative Commons 4.0 (CC BY 4.0)

mailto:adam@adalogics.com
mailto:david@adalogics.com

CRI-O security audit, 2022

Executive summary
This report outlines a security engagement of the CRI-O project. CRI-O is an implementation
of the Kubernetes Container Runtime Interface. The goal of this engagement was to conduct
a holistic security assessment of CRI-O, which means that the engagement had several
high-level tasks.

This security audit was performed by Ada Logics in collaboration with CRI-O maintainers,
OSTIF, CNCF and Chainguard. Ada Logics performed the security work described in the first
part of the report and Chainguard carried out a supply chain security assessment, which is
found in the report appendix.
The assessment includes four high-level tasks:

● Threat model formalisation of CRI-O.
● Fuzzing integration of CRI-O into OSS-Fuzz, including fourteen designated fuzzers.
● Manual code auditing.
● Documentation/testing review

Most of the efforts in the engagement were spent on the first three items listed above, and
particularly much on fuzzing and code auditing.

The primary security finding of the work is a single high-severity issue. A few minor issues
were found as well, however, our view from completing this audit is that CRI-O is a
well-written project that has a high level of security assurance.

The high severity finding is a denial of service attack on a given cluster by way of resource
exhaustion of nodes. The attack is performed by way of pod creation, which means any user
that can create a pod can cause denial of service on the given node that is used for pod
creation. The CVE for this vulnerability is CVE-2022-1708.

Interestingly, the denial of service attack also occurred in other container runtime interface
implementations, most notably Containerd. Specifically, the exact same attack that exhausts
memory in CRI-O can be used to exhaust memory of Containerd. The CVE for the
corresponding Containerd issue is CVE-2022-31030.

The Github security advisories for the denial of service attacks are:
● CRI-O: https://github.com/cri-o/cri-o/security/advisories/GHSA-fcm2-6c3h-pg6j
● Containerd:

https://github.com/containerd/containerd/security/advisories/GHSA-5ffw-gxpp-
mxpf

In the remainder of this report we will iterate through each of the tasks in more detail, and
the findings are listed at the end of the report.

The work in this report (excluding appendix) was done by Ada Logics over the duration of 25
working days.

2

https://github.com/cri-o/cri-o/security/advisories/GHSA-fcm2-6c3h-pg6j
https://github.com/containerd/containerd/security/advisories/GHSA-5ffw-gxpp-mxpf
https://github.com/containerd/containerd/security/advisories/GHSA-5ffw-gxpp-mxpf

CRI-O security audit, 2022

Table of Contents
Executive summary 2

Threat model formalisation 5
CRI-O architecture & components 5

Crio binary 5
Conmon 6
Pinns 6
Runtime service 6
Containers/image and containers/storage 6
Container Network Interface 6

CRI-O attack surface enumeration 7
CRI-O gRPC server 7
Conmon 7
Pinns 7
Runtime service 8
Containers/image and containers/storage 8
Container Network Interface 8

Code audit 9

Fuzzing integration 11

Testing and documentation 13

Issues found 14
Issue 1: High: Cluster DOS by way of memory exhaustion 15
Issue 2: Medium: Temporary exhaustion of disk resources on a given node 18
Issue 3: Low: Use of deprecated library io/ioutil 19
Issue 4: Low: Timeouts in container creation routines due to device specifications 20
Issue 5: Low: Unhandled errors from deferred file close operations 21
Issue 6: Informational: Missing nil-pointer checks in json unmarshalling 22

Appendix: Software Supply Chain Security Audit CRI-O 23
Table Of Contents 25
Engagement Overview 26
Chainguard Company Overview 26
Executive Summary 26
Software Supply Chain Security Background 26
Goals 28
Interviews & Engagement Model 28
Findings 28

Build 28
Source Code 28
Deploy 29
Material Verification 29

SLSA Overview 29

3

CRI-O security audit, 2022

SLSA Findings 29
SLSA Assessment Table 29

Recommendations and Remediations 32
Document the Release Process, Draft Policy 33
System Generated Provenance and SBOM 33
Push towards SLSA compliance, all the way to Level 3 33
Automate Package Builds 34

Sources 35

4

CRI-O security audit, 2022

Threat model formalisation
In this section we outline the threat modelling of CRI-O. The goal of this effort was to
construct an understanding of CRI-O in order to outline a suitable attack surface which can
be used throughout the engagement. The goal is to both construct a model that is both
useful for manual auditing as well as fuzzer creation. To do this, we extract the logical
components of CRI-O and identify the potential application security issues that may exist.

CRI-O architecture & components
The architecture diagram of CRI-O provides a convenient way to identify these. In the
following we go through each of the components to highlight their importance and security
relevance.

Diagram from https://cri-o.io

Crio binary
The central component of the CRI-O architecture is the crio binary itself. This application is
in charge of facilitating communication between kubelet and the rest of the components that
CRI-O uses, such as container runtimes and container registries. The crio binary runs by
way of a gRPC server which implements the Kubernetes Container Runtime Interface.

The execution environment of the crio binary is particularly relevant to the security analysis
of CRI-O. In particular, crio is always meant to:

1. Only communicate with the Kubelet, despite it in theory being able to work as a
gRPC server independently of Kubelet.

2. Run as a systemd daemon.

5

https://cri-o.io
https://github.com/kubernetes/cri-api

CRI-O security audit, 2022

The importance of the crio binary only communicating with the Kubelet is important because
the Kubelet handles a lot of the sanitization of user input before it reaches CRI-O.
Furthermore, much of the input that reaches CRI-O is auto-generated by Kubelet and follows
a certain set of restrictions. This is important for the threat model of CRI-O because many
security issues will arise in the event that the gRPC server runs independently of Kubelet.

The fact that the gRPC server runs by way of the Kubelet makes it more complicated to
assess the complete security posture of CRI-O. This is because in order to understand the
potential input space CRI-O has it is necessary to navigate through the Kubelet, and the
Kubelet will perform various sanitizations as well as generate data that is passed on to
CRI-O.

For the above reasons, it’s imperative to stress: CRI-O is only meant to be run by way of the
Kubelet and if this is not satisfied then there are no guarantees from CRI-O about being
secure.

The crio binary itself handles a lot of communication and managing of the other components
involved in the CRI-O ecosystem. We will now iterate through several of the important ones.

Conmon
Is a small utility application working as a monitoring and communication tool between CRI-O
and OCI runtimes, e.g. runc in the CRI-O case. A Conmon process is launched for each
container started by the crio binary.

Pinns
The Pinns utility is a small program that lives in the CRI-O repository here and is used to set
kernel parameters at runtime. Notably, this utility was a core part of the container escape in
CVE-2022-0811. The problem that occurred was from a high-level perspective that the Pinns
utility could be used to set arbitrary kernel parameters, whereas CRI-O aims to only allow
setting a few selected and pre-determined kernel parameters.

Runtime service
CRI-O implements the Kubernetes Container Runtime Interface with focus on using runtimes
compatible with the Open Container Initiative Runtime Specification. The runtime service
component in the CRI-O architecture is thus runtimes that implement this specification, such
as runc.

Containers/image and containers/storage
The containers/image and containers/storage projects are used by CRI-O to pull images
from container registries as well as storing the file systems on disk, respectively.

Container Network Interface
CRI-O uses the Container Network Interface to configure network interfaces for its pods.

6

https://github.com/cri-o/cri-o/tree/a12d4de4666875483659f158f5047185c519a40e/pinns
https://www.crowdstrike.com/blog/cr8escape-new-vulnerability-discovered-in-cri-o-container-engine-cve-2022-0811/
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runc
https://github.com/containers/image
https://github.com/containers/storage
https://github.com/containernetworking/cni

CRI-O security audit, 2022

CRI-O attack surface enumeration
In this section we outline the attack surface enumeration. The goal is first and foremost to
outline relevant areas of potential attacks to be analysed throughout this engagement. In this
context, we focus on identifying an attack surface that we can assess in line with the scope
of the audit.

The focus of the attack surface enumeration is to highlight where breaking of trust
relationships in CRI-O may be possible and also areas of potential vulnerabilities in the
components outlined above.

The focus of our attack surface enumeration is also to identify the scope of the security in
CRI-O.

CRI-O gRPC server
A central part of the attack surface of CRI-O is the gRPC server itself. The gRPC server
itself accepts input from the Kubelet and a lot of security measures are handled by
Kubernetes before passing the data over to the gRPC server.

Due to the relationship between Kubernetes and the CRI, the important part for the gRPC
server is that each of the gRPC handlers will only perform the operations expected by the
gRPC handler and only those. There should be no unintended side-effects.

The gRPC server runs as a daemon on each Kubernetes node. This means a key threat to
CRI-O is if the gRPC server can be used to perform unintended behaviour on the node
which can be used for malicious purposes.

The gRPC server doesndles a lot of handling of other components on the node, e.g.
Conmon, OCI runtime and Pinns. The communication and management of these
components is an area of attack surface, e.g. command injections or passing of malicious
data to the other components.

Conmon
A conmon process is launched for each container on the node managed by CRI-O. Conmon
is thus a ubiquitous part of the system. Conmon is written in C and susceptible to memory
corruption attacks. User input originating from the gRPC server is passed to Conmon and
input from the container’s are also handled in Conmon. These are areas of potential attack
surface against Conmon.

Pinns
The central attack surface to the Pinns utility is whether it can be abused to set undesired
kernel runtime parameters. This is the style that the recent attack leveraged in
CVE-2022-0811. In addition to this, Pinns is written in C which means it is susceptible to
memory corruption issues.

7

https://www.crowdstrike.com/blog/cr8escape-new-vulnerability-discovered-in-cri-o-container-engine-cve-2022-0811/

CRI-O security audit, 2022

Runtime service
The runtime service plays a big role in CRI-O. The attack surface of the runtime
implementations themselves is out of scope of CRI-O. However, the communication
channels and configuration between CRI-O and the runtime implementations is an area of
attack surface.

Containers/image and containers/storage
The containers/image and containers/storage libraries are used to handle container images.
Each of these projects should be treated as potential areas of issues, such as mishandling of
data that can affect CRI-O.

The containers/image relies on dependencies with substantial complexity that are written in
memory unsafe languages, e.g. OSTree. In this sense, although CRI-O is mainly written in
the Go programming language it has close dependencies that are written in memory unsafe
languages.

The communication between the container registries and CRI-O is also an area of attack
surface. The network communication needs to be done in a secure manner.

Container Network Interface
The Container Network Interface is used by CRI-O to configure container networking. The
attack surface of the CNI itself is out of the scope of CRI-O. However, the communication
channels and configuration between CRI-O and the CNI is an area of attack surface.

8

https://github.com/containers/image
https://github.com/containers/storage
https://github.com/containers/image#building
https://github.com/containernetworking/cni

CRI-O security audit, 2022

Code audit
In this section we outline the main efforts in manually auditing CRI-O and, specifically, we
detail how we enumerated the attack surface defined above.

Auditing of gRPC entrypoints.
A thorough auditing of the gRPC handlers were undertaken in an effort to both understand
the CRI-O daemon in detail as well as outline any potential areas for flaws. This is the main
entrypoint for communication from CRI-O’s perspective and is thus where the majority of the
auditing efforts were dedicated.

The first step was to audit the code from the entrypoint of the gRPC handlers’ and follow the
possible code paths. At first the effort during the auditing was made to understand the details
of the code, and then further reviews of the code were performed to assess security issues.
During this auditing we focused on mishandling of untrusted input:

● Command injections for all code paths where crio ends up in exec calls. This
includes calls to e.g. conmon and r.path (often runc). The arguments were traced
to the origins in the gRPC messages.
In general, this found no possibilities for command injection due to the use of proper
command execution handling. However, we found that in general there was a lack of
sanitization on user input, though, none of which had any security issues at this
moment in time.

● Improper file handling. We focused on cases for malevolent file operations such as
path traversals and read/write of files in undesired ways.

● Manipulation of logging messages and whether user-controlled data can affect the
integrity of logs or non-repudiation issues. We found that there was lack of
sanitization on the user input to the logs, which means that in certain circumstances
the gRPC server’s logs can be tainted if the unsanitized variables include a newline
character. However, this was deemed to have no security implications because:

○ The arguments that were unsanitised were created by Kubernetes.
○ The gRPC server is meant to run as a daemon and journalctl escapes the

newline characters.
We still recommend the CRI-O maintainers to log data strings from input to CRI-O by
way of using the “%q” format string rather than “%s”. Sometimes in the code this is
done interchangeably for the same variable, such as for req.ContainerId here:

log.Infof(ctx, "Starting container: %s", req.ContainerId)

c, err := s.GetContainerFromShortID(req.ContainerId)

if err != nil {

return status.Errorf(codes.NotFound, "could not find container %q:

%v", req.ContainerId, err)

We recommend sticking with the “%q”.

The second step was to perform a bottom-up approach of vulnerable primitives in the gRPC
server. The methodology of this effort was by starting from possible vulnerability primitives
and from a bottom-up effort to determine if a potential vulnerable primitive was in fact

9

https://github.com/cri-o/cri-o/blob/a12d4de4666875483659f158f5047185c519a40e/server/container_start.go#L17-L20

CRI-O security audit, 2022

vulnerable. This included auditing all:
● Os.exec APIs
● File operations
● Command executions
● Logging operations

This worked well, in that following the bottom-up approach after having a good
understanding of the whole flow, we found the problem described in Issue 1 of this report.

Conmon auditing
A thorough auditing of the Conmon utility was performed. Conmon is written in the C
programming language and is thus vulnerable to memory corruption issues. The focus of this
auditing was finding any memory corruption issues as well as logical issues that may exist.

In the auditing we looked at whether misuse of parameters is possible, e.g. to exploit code
by way of memory corruption issues. We also developed a fuzzer for Conmon to analyse the
logging and parsing routines in conmon/src/ctr_logging.c. No issues were found.

OSTree auditing
During the initial phase of understanding the CRI-O source code we identified
containers/image depends on libostree. Libostree is a complex application written in the C
language, and, because of that, we made the decision early in the process to integrate
libostree into OSS-Fuzz in this PR. However, in collaboration with the CRI-O maintainers it
was later determined OSTree is not an important dependency since CRI-O does not rely
explicitly on OSTree, and, therefore, we focused our efforts elsewhere.

Pinns utility auditing
The pinns utility was audited for memory corruption issues and mishandling of user input.
We also assessed the possibility of configuring undesired kernel parameters by way of
/proc/sys virtual filesystem, and the options for what is set in Pinns is also guarded in the
gRPC server with the guards in pkg/config/sysctl.go

Applying CodeQL and gosec tools on gRPC server
Finally, we ran two automated security analysis tools against the CRI-O code, specifically
CodeQL (https://lgtm.com/) and Gosec (https://github.com/securego/gosec). We assessed
the reports and validated the findings of them in terms of security relevance.

Integrating CodeQL and Scorecards to the CI
As part of our efforts here we integrated CodeQL and Scorecard Github actions. These are
now run on each PR made to CRI-O.

Although we found none of the issues reported as being exploitable, CodeQL did report a
handful of coding issues. These have been addressed here.

10

https://github.com/google/oss-fuzz/pull/7557
https://github.com/cri-o/cri-o/blob/e844e752a4174b7410cacd7f45d7e5dde2904791/pkg/config/sysctl.go
https://lgtm.com/
https://github.com/securego/gosec
https://github.com/ossf/scorecard
https://github.com/cri-o/cri-o/commit/c657f4623d9d44c5ab7aa4b10780caaddeeced08

CRI-O security audit, 2022

Fuzzing integration
In this section we outline the fuzzing work of CRI-O. The main goal of fuzzing CRI-O was to
set up continuous fuzzing by way of OSS-Fuzz that achieves a high level of code coverage.

The main challenge of this task was to set up infrastructure to make fuzzing of CRI-O work.
CRI-O relies on many components and binaries existing on the system, as well uses a fairly
complex testing framework, e.g. many mocks.

In summary, we implemented 14 fuzzers targeting the CRI-O code, as well as
containers/image and containers/store, and integrated the project into OSS-Fuzz. The
fuzzers are available at https://github.com/cncf/cncf-fuzzing/tree/main/projects/cri-o and the
OSS-Fuzz integration is available at
https://github.com/google/oss-fuzz/tree/master/projects/cri-o.

The primary focus of the fuzzing was to target the gRPC handlers. This is mainly done by
fuzz_server which is a fairly large fuzzer consisting of 900 lines of code. This fuzzer initiates
a gRPC server and sends sequences of random messages to the server. In this way, the
fuzzer has a significant reach throughout the code of CRI-O. However, it’s important to note
here that the fuzzer is an over-approximation of the values that are actually possible to have
in CRI-O, in that the fuzzer generates arbitrary data that is not sanitised by all the Kubelet
logic, i.e. much of the data send will not be possible to receive through Kubelet. The fuzzer,
regardless, found an interesting issue (issue 4 in this report).

The following table provides source code to all of the fuzzers developed.

Fuzzer Source code

fuzz_server https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o
/fuzz_server.go

fuzz_container_server https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o
/container_server_fuzzer.go

fuzz_copy_image https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o
/storage_fuzzer2.go

fuzz_container https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o
/container_fuzzer.go

fuzz_apparmor https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o
/config_apparmor_fuzzer.go

fuzz_blockio https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o
/config_blockio_fuzzer.go

fuzz_config https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o
/config_fuzzer.go

fuzz_generate_passwd https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o

11

https://github.com/google/oss-fuzz
https://github.com/cncf/cncf-fuzzing/tree/main/projects/cri-o
https://github.com/google/oss-fuzz/tree/master/projects/cri-o
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/fuzz_server.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/fuzz_server.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/fuzz_server.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/container_server_fuzzer.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/container_server_fuzzer.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/storage_fuzzer2.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/storage_fuzzer2.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/container_fuzzer.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/container_fuzzer.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/config_apparmor_fuzzer.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/config_apparmor_fuzzer.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/config_blockio_fuzzer.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/config_blockio_fuzzer.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/config_fuzzer.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/config_fuzzer.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/utils_fuzzer.go

CRI-O security audit, 2022

/utils_fuzzer.go

fuzz_get_decryption_keys https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o
/server_fuzzer2.go

fuzz_idtools_parse_id_ma

p

https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o
/server_fuzzer2.go

fuzz_parse_image_name https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o
/storage_fuzzer.go

fuzz_parse_store_referen

ce

https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o
/ParseStoreReference_fuzzer.go

fuzz_rdt https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o
/config_rdt_fuzzer.go

fuzz_shortnames_resolve https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o
/storage_fuzzer.go

12

https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/utils_fuzzer.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/server_fuzzer2.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/server_fuzzer2.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/server_fuzzer2.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/server_fuzzer2.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/storage_fuzzer.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/storage_fuzzer.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/ParseStoreReference_fuzzer.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/ParseStoreReference_fuzzer.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/config_rdt_fuzzer.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/config_rdt_fuzzer.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/storage_fuzzer.go
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/storage_fuzzer.go

CRI-O security audit, 2022

Testing and documentation
An area of interest from the CRI-O maintainers was our view on the testing and
documentation of CRI-O.

In short, we found the testing of CRI-O to be extensive and of high quality. The testing of the
gRPC server is extensive, but we found no unit testing of the Pinns utility. Pinns is a small
component of CRI-O and this may be the reason why there is no unit testing. One
recommendation we have in this context is to include more thorough unit tests for Pinns, in
particular to also detect regressions that may be related to CVE-2022-0811.

We found the documentation of CRI-O and its internals to be very limited and almost
non-existing. This was problematic from a perspective of getting to understand the code in
detail. A lot of this engagement was spent in walking through the code to extract a thorough
understanding, and this could be improved with more technical documentation.

In the context of documentation, the man pages and the tutorials in /tutorials were of
significant help, as well as the (limited) documentation on https://cri-o.io.

Due to the nature of CRI-O’s security model it’s imperative to be able to assess CRI-O (and
custom versions of it) by way of Kubernetes. Our approach to this ended up being using
CRI-O in Minikube and transferring custom crio binaries into the Minikube cluster from our
localhost. In this way we could attack CRI-O from a Kubernetes user’s perspective while
debugging CRI-O with custom modifications. In the context for future security work it would
be of great benefit to have tutorials or guides on how to deploy custom CRI-O binaries (or at
least the gRPC server) onto a cluster, and perhaps for multiple common Kubernetes testing
environments (i.e. not limited to tutorials/Kubernetes.md).

13

https://www.crowdstrike.com/blog/cr8escape-new-vulnerability-discovered-in-cri-o-container-engine-cve-2022-0811/
https://github.com/cri-o/cri-o/tree/main/tutorials
https://cri-o.io
https://github.com/cri-o/cri-o/blob/main/tutorials/kubernetes.md

CRI-O security audit, 2022

Issues found
In this section we outline and detail the issues found in CRI-O. The following table
summarises the issues found and in the remaining parts of the report we go into detail with
each of the issues.

Issue number Title Severity Difficulty

ADA-CRIO-22-01 Cluster DOS by way of memory exhaustion High Low

ADA-CRIO-22-02 Temporary exhaustion of disk resources on
a given node

Medium Low

ADA-CRIO-22-03 Use of deprecated library io/ioutil Low High

ADA-CRIO-22-04 Timeouts in container creation routines due
to device specifications

Low High

ADA-CRIO-22-05 Unhandled errors from deferred file close
operations

Low High

ADA-CRIO-22-06 Missing nil-pointer checks in json
unmarshalling

Informational High

14

CRI-O security audit, 2022

Issue 1: High: Cluster DOS by way of memory exhaustion

Severity High

Difficulty Low

Target ExecSync gRPC handler and internal/oci/runtime_oci.go

Finding ID ADA-CRIO-22-01

Found by Manual auditing

The ExecSync request runs commands in a container and logs the output of the command.
This output is then read by CRI-O after command execution, and it is read in a manner
where the entire file corresponding to the output of the command is read in. Thus, if the
output of the command is large it is possible to exhaust the memory of the node when crio
reads output of the command.

A similar, although manifested by way of different underlying code, also exists in Containerd
and the exact same attack as outlined here can be used on Containerd.

The CVE for this vulnerability is CVE-2022-1708 for CRI-O and CVE-2022-31030 for
Containerd, and the Github security advisories for this issue are:

● CRI-O: https://github.com/cri-o/cri-o/security/advisories/GHSA-fcm2-6c3h-pg6j
● Containerd:

https://github.com/containerd/containerd/security/advisories/GHSA-5ffw-gxpp-
mxpf

The specific code that loads the logged output is here:

// XXX: Currently runC dups the same console over both stdout and

stderr,

// so we can't differentiate between the two.

logBytes, err := ioutil.ReadFile(logPath)

if err != nil {

return nil, &ExecSyncError{

Stdout: stdoutBuf,

Stderr: stderrBuf,

ExitCode: -1,

Err: err,

}

}

The following deployment is an example yaml file that will log many gigabytes of ‘A’
characters, which will be read by the above lines. Depending on the machine this will
exhaust the memory available.

15

https://github.com/cri-o/cri-o/security/advisories/GHSA-fcm2-6c3h-pg6j
https://github.com/containerd/containerd/security/advisories/GHSA-5ffw-gxpp-mxpf
https://github.com/containerd/containerd/security/advisories/GHSA-5ffw-gxpp-mxpf
https://github.com/cri-o/cri-o/blob/231af7093b86c0dcd0828d9045e8b87bf20ed78e/internal/oci/runtime_oci.go#L582-L592

CRI-O security audit, 2022

apiVersion: apps/v1

kind: Deployment

metadata:

name: nginx-deployment100

spec:

selector:

matchLabels:

app: nginx

replicas: 2

template:

metadata:

labels:

app: nginx

spec:

containers:

- name: nginx

image: nginx:1.14.2

ports:

- containerPort: 80

lifecycle:

postStart:

exec:

command: ["/bin/sh", "-c", "for i in `seq 1 5000000`; do

echo -n

'AAA

AA

AA

AA

AA

AA

AA

AA

AA

AA

AA

AA

AA

AA

AA

AA

AA

AA

AA

AA

16

CRI-O security audit, 2022

AAAAAAAAAAAAAAAAAAA'; done"]

preStop:

exec:

command: ["/bin/sh", "-c", "echo

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"]

Severity is high since anyone who can create pods on the cluster can exhaust the memory
on the nodes of the cluster.

Difficulty is low because the vulnerability is easy to exploit. However, in order to create
deployments on the cluster a user is required to have already gained some privileges.

Remediation:
The solution to this problem involved a patch to CRI-O that limited the number of bytes that
were read from logFile written by conmon. Since the dockershim previously set a limit of 16
MB for this buffer, the same size was adopted by CRI-O.

17

https://github.com/dims/kubernetes/blob/5706a13bd6f5444f7dbadf5478e4912a1c8b9937/pkg/kubelet/dockershim/docker_streaming.go#L83-L84

CRI-O security audit, 2022

Issue 2: Medium: Temporary exhaustion of disk resources on a given
node

Severity Medium

Difficulty Low

Target ExecSync gRPC handler and internal/oci/runtime_oci.go

Finding ID ADA-CRIO-22-02

Found by Manual auditing

The ExecSync request runs commands in a container and logs the output of the command.
Thus, if the output of the command is large it is possible to exhaust the storage of the node
as all output is stored on disk.

This is orthogonal to issue 1, but is a separate issue that should also be considered.
Kubernetes allows users to specify storage limitations to pods, and it is possible by users to
bypass this, at least in the sense of taking up more storage than asked for, in a temporary
manner by way of logging.

Remediation:
For this vulnerability, the fix lies in conmon, since conmon is the entity writing the exec log to
disk. Conmon will introduce the `--log-global-size-max` option, which counts the number of
bytes that have been written for this container, and ignores bytes written after the limit is
reached. CRI-O has been patched to check for this capability in conmon, and sets the limit to
16MB automatically if conmon supports it.

18

CRI-O security audit, 2022

Issue 3: Low: Use of deprecated library io/ioutil

Severity Low

Difficulty High

Target Many places in code base

Finding ID ADA-CRIO-22-03

Found by Manual auditing

The library io/ioutil is used throughout the codebase. This library is deprecated since go1.16
https://go.dev/doc/go1.16#ioutil

The deprecation was not due to security issues and as such it does not pose any immediate
risk. However, the use of deprecated libraries is discouraged and can lead to situations
where security issues in a library are found but never patched.

Issue 1 is due to the use of a dangerous function, ReadFile, in this library.

19

CRI-O security audit, 2022

Issue 4: Low: Timeouts in container creation routines due to device
specifications

Severity Low

Difficulty High

Target internal/factory/container/device.go

Finding ID ADA-CRIO-22-04

Found by Fuzzing

The following issue: https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=47159 is a
timeout in SpecAddDevices triggered by the container_fuzzer.go fuzzer. The issue is
triggered by a call to SpecAddDevices function call and the issue happens because the
configuration ends up having set a number of devices in the container config that will each
trigger this line with path set to “/”. In this case this means there will be several directory
walks of the entire file system, and this causes the timeout.

for _, device := range c.Config().Devices {

// pin the device to avoid using `device` within the range scope as

...

...

// if the device is not a device node

// try to see if it's a directory holding many devices

if err == devices.ErrNotADevice {

// check if it is a directory

if e := utils.IsDirectory(path); e == nil {

// mount the internal devices recursively

// nolint: errcheck

filepath.Walk(path, func(dpath string, f os.FileInfo, e error)

error {

// filepath.Walk failed, skip

if e != nil {

return nil

The issue happens when a specific config is set by way of container.SetConfig.

This function is, however, set in the CreateContainer entrypoint of the server here
https://github.com/cri-o/cri-o/blob/c17baa0dd7701bfd9bed58cb24aef39c1c125cc0/server/co
ntainer_create.go#L289 and the requests have not been sanitised before calling SetConfig.

Recommendation:
In general, we advise to have guards in place for this. Performance is of significance in
CRI-O. Further discussion with the CRI-O team should be done.

20

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=47159
https://github.com/cncf/cncf-fuzzing/blob/main/projects/cri-o/container_fuzzer.go
https://github.com/cncf/cncf-fuzzing/blob/5c8fd77a6f32444f753b8dc1d58b010b8333f6da/projects/cri-o/container_fuzzer.go#L88
https://github.com/cri-o/cri-o/blob/f1d3a46642377d9bf4cb79255020b07578023540/internal/factory/container/device.go#L141
https://github.com/cri-o/cri-o/blob/c17baa0dd7701bfd9bed58cb24aef39c1c125cc0/server/container_create.go#L289
https://github.com/cri-o/cri-o/blob/c17baa0dd7701bfd9bed58cb24aef39c1c125cc0/server/container_create.go#L289

CRI-O security audit, 2022

Issue 5: Low: Unhandled errors from deferred file close operations

Severity Low

Difficulty High

Target Throughout the code

Finding ID ADA-CRIO-22-05

Found by Manual auditing

Throughout the codebase there are places where file close operations are deferred within a
function where a file is being written to, e.g.
https://github.com/cri-o/cri-o/blob/149cccaad772158d5908376aad3ee86e4e1ca4cf/internal/o
ci/runtime_oci.go#L1152
https://github.com/cri-o/cri-o/blob/2aae9632876b0df4fba49e4229d7239a168a097c/cmd/crio/
main.go#L201

This can lead to undefined behaviour since any errors returned by the f.Close() operation
are ignored. This can have consequences in the event a close operation fails and the data
has not yet been flushed to the file, which the rest of the code will assume it to be. For a
detailed discussion on this, please see
https://www.joeshaw.org/dont-defer-close-on-writable-files/

Recommendation
Ensure that errors from f.Close() are handled.

21

https://github.com/cri-o/cri-o/blob/149cccaad772158d5908376aad3ee86e4e1ca4cf/internal/oci/runtime_oci.go#L1152
https://github.com/cri-o/cri-o/blob/149cccaad772158d5908376aad3ee86e4e1ca4cf/internal/oci/runtime_oci.go#L1152
https://github.com/cri-o/cri-o/blob/2aae9632876b0df4fba49e4229d7239a168a097c/cmd/crio/main.go#L201
https://github.com/cri-o/cri-o/blob/2aae9632876b0df4fba49e4229d7239a168a097c/cmd/crio/main.go#L201
https://www.joeshaw.org/dont-defer-close-on-writable-files/

CRI-O security audit, 2022

Issue 6: Informational: Missing nil-pointer checks in json unmarshalling

Severity Informational

Difficulty High

Target internal/oci/runtime_oci.go

Finding ID ADA-CRIO-22-06

Found by Manual auditing

There are several places in the code base where JSON decoding happens with a double
pointer as argument. There are scenarios where the JSON decoding will cause the double
pointer argument to be a nil-pointer and there are currently no checks in the code for this
case.

An example of this is in internal/oci/runtime_oci.go:

// regardless of what is in waitErr

// we should attempt to decode the output of the parent pipe

// this allows us to catch TimedOutMessage, which will cause waitErr to

not be nil

var ec *exitCodeInfo

decodeErr := json.NewDecoder(parentPipe).Decode(&ec)

…
…
NB: Called when there is no error in decoding:

if ec.ExitCode == -1 {

return nil, &ExecSyncError{

Stdout: stdoutBuf,

Stderr: stderrBuf,

ExitCode: -1,

Err: errors.New(ec.Message),

}

}

There are cases where decodeErr is nil and ec ends up also being nil. This would cause
a nil-pointer dereference in ec.ExitCode. The specific event occurs when the output of
parentPipe equals “null”. Although we were not able to trigger this case, this exact coding
pattern has previously caused high-severity security vulnerabilities elsewhere:
https://github.com/istio/istio/security/advisories/GHSA-856q-xv3c-7f2f

Recommendation:
Check for ec being a nil pointer before dereferencing it or avoid using a nil-pointer
dereference.

22

https://github.com/istio/istio/security/advisories/GHSA-856q-xv3c-7f2f

CRI-O security audit, 2022

Software Supply Chain Security Audit CRI-O

In collaboration with Open Source Technology
Improvement Fund, Cloud Native Computing

Foundation, and Ada Logics.

23

CRI-O security audit, 2022

Version Author Notes

0.0.1 Adolfo García Veytia Initial Draft

24

CRI-O security audit, 2022

Table Of Contents

Engagement Overview 25

Chainguard Company Overview 25

Executive Summary 25

Software Supply Chain Security Background 25

Goals 27

Interviews & Engagement Model 27

Findings 27
Build 27
Source Code 27
Deploy 28
Material Verification 28

SLSA Overview 28
SLSA Findings 28
SLSA Assessment Table 28

Recommendations and Remediations 31
Document the Release Process, Draft Policy 31
System Generated Provenance and SBOM 32
Push towards SLSA compliance, all the way to Level 3 32
Automate Package Builds 33

Sources 34

25

CRI-O security audit, 2022

Engagement Overview

As part of the Cloud Native Computing Foundation (CNCF) and Linux Foundation’s
commitment to industry best practices, a third-party security review of CRI-O was funded.
Open Source Technology Improvement Fund, Inc (OSTIF) facilitated the review and sourced
AdaLogics and Chainguard. AdaLogics performed threat modeling, OSS Fuzz integration,
and manual code review; while Chainguard performed a supply chain review. The following
report is the Supply Chain Review.

Chainguard Company Overview

Chainguard is the world's premiere software supply chain leader. Our mission is to make the
software supply chain secure by default. Our teams feature the brightest minds in the
industry with cross-cutting experience across containers, cloud computing, security, and all
things software supply chain. We have a strong commitment to building and scaling secure
open source technologies for the world.

Executive Summary
The release process that generates CRI-O’s public and testing artifacts has its core
functionality automated end to end, enabling the project to shield it from threats induced by
human omission and compromised operator’s systems. The GitHub Actions powered
release process sets the project in a position to start making its outputs non-falsifiable and to
push towards SLSA compliance, setting a roadmap to an increasingly hardened process.

Before pursuing SLSA compliance, automating system package generation should be
prioritized. Running those builds in an automated environment should be the first priority of
the CRI-O team. Minor recommendations around documentation can be done in parallel to
ensure advancing towards SLSA compliant systems is done from a fully documented
platform.

The project is close to SLSA level 1 compliance. Adding provenance metadata to the build
runs would cover most of the missing points, readying the project to start signing artifacts
and attestations.

Software Supply Chain Security Background
The software development lifecycle has become increasingly complex, and one way for
software companies to deal with that complexity is to rely more and more on Open Source
Software development. This reliance has opened an attack vector for hackers to infiltrate
organizations and steal crucial business and valuable customer data. In 2020 there has
been a 430% growth in next-generation cyber-attacks actively targeting open-source
software projects 1—open Source software in components in an organization's Software
Supply Chain. Organizations' build systems, those software components that build software,
are also under attack. 2020 saw the first prolific supply chain security attack, Sunburst. This
attack compromised the Solarwinds build system to inject malicious code into their IT

26

CRI-O security audit, 2022

monitoring system, distributed to customers unbeknownst to Solarwinds. There are many
entry points in the software supply chain of an organization, and any good defensive strategy
requires diligence, multilevel security, and observability of the entirety of the Software supply
chain.

Software Supply chains and the processes involved can be divided into three categories:
Development, Build, Run. Development is the process of adding new features, functionality,
testing and bug fixes. Before running software, it must be validated and packaged in the
build category. And finally running the software so it is available to end users.

These categories can be further divided into links:
● Development - Act of writing software
● Source - Artifact that was directly authored or reviewed by persons
● Build - Set of process that transform for consumption
● Package - Source that is published for use
● Dependencies - Artifact that is an input to a build process but that is not a source
● Deploy - Set of steps to make Artifact consumable for end users
● Run - Artifacts are available to be consumed by end users

Software developers face threats at each link in the software supply chain. Source threats
are those that inject software, features, and functionality not intended by the software
producer. Build threats are those that involve manipulating the source during build time, such
as Sunburst attacks. The final category is Dependency threats, Attacker adds a dependency
and then later changes the dependency to add malicious behavior.

27

CRI-O security audit, 2022

Goals
A deliverable from Chainguard that represents their findings and perspective about the
current release process including a prioritized list of gaps that they believe should be
addressed in the short term, this document. The document will serve as an appendix to the
overall audit report, therefore, the codebase itself and the running environment is out of
scope of this assessment.

Interviews & Engagement Model
Review of the release tooling was conducted by inspecting the open-source GitHub
repository. A final Q&A session was held on slack on May 9th, 2022

Findings

Build
The CRI-O build system runs at every commit, producing the same bundles for arm64 and
am64 architectures containing config files, plugins, binaries and other files that tagged
releases publish.

Most of CRI-O build system run in GitHub actions, with a fairly high degree of automation,
especially given the number of active contributors to the project. The release process of the
static binaries performs all critical steps under automation, while the last non-critical bits
(patching the release notes, for example) are still manual. Building the system packages is
still a manual process which is more of a concern, but given the overall automation level of
the project, automating the build of these artifacts should be easily achievable.

Base builds are reproducible, yet some artifacts like os packages are signed which
introduces entropy, leading to varying output.

Build automation is kept in GitHub Actions workflows and scripts. Hence, the infrastructure
that runs the build automation is not managed by the project itself. The Actions environment
provides isolation from run to run

Step to step metadata is not signed, nor are artifacts built by the release process provided
for download. Prebuilt OS Packages are signed for their respective packaging system.

Source Code
The project’s source code is tracked in git and revision history is kept indefinitely in GitHub.
The project has a contributions guide. The guide establishes roles and a two-reviewer
requirement for all merges. Signed commits are required to contribute to the project.

28

CRI-O security audit, 2022

Deploy
Signed build metadata is not provided. User validation of artifacts is limited to integrity check
via checksum files.

Material Verification
Releases are not described with a Software Bill of Materials, no provenance attestations
recording the release process steps are produced either. The project uses FOSSA to keep
track of dependencies and licensing.

SLSA Overview
SLSA is a set of standards and technical controls you can adopt to improve artifact integrity
and build towards completely resilient systems. It’s not a single tool, but a step-by-step
outline to prevent artifacts from being tampered with and tampered artifacts from being used,
and at the higher levels, hardening up the platforms that make up a supply chain.4

SLSA Findings
Derived from the findings detailed below, CRI-O is near SLSA Level 1 compliance.
Producing the necessary provenance metadata would set the release process ready to start
implementing digital singatures of its artifacts and metadata, ensuring they can’t be
tampered with,

SLSA Assessment Table

Source Requirements 1 2 3 4 Status/Justification

Version controlled

Every change to the source is tracked in a
version control system that meets the
following requirements O ✓ ✓ ✓

Verified history

Every change in the revision’s history has at
least one strongly authenticated actor
identity (author, uploader, reviewer, etc.) and
timestamp. ✓ ✓

Retained indefinitely

The revision and its change history are
preserved indefinitely and cannot be deleted,
except when subject to an established and
transparent policy for obliteration, such as a
legal or policy requirement.

1
8
m
o ✓

Git tree remains unaltered. Source code
of the build is archived

Two-person reviewed

Every change in the revision’s history was
agreed to by two trusted persons prior to
submission, and both of these trusted
persons were strongly authenticated.
(Exceptions from Verified History apply here
as well.) ✓ 2 person requirement specified in docs

29

CRI-O security audit, 2022

Build requirements 1 2 3 4

Scripted build

All build steps were fully defined in some sort
of “build script”. The only manual command,
if any, was to invoke the build script.

Static builds are automated but building
system packages is still a “semi manual”
process

Build service
All build steps ran using some build service,
not on a developer’s workstation.

Static builds are automated but building
system packages is still a “semi manual”
process

Build as code

The build definition and configuration is
defined in source control and is executed by
the build service. ✓ ✓

Yes, workflows executed in GitHub
Actions

Ephemeral
environment

The build service ensured that the build
steps ran in an ephemeral environment,
such as a container or VM, provisioned
solely for this build, and not reused from a
prior build. ✓ ✓

Build environment is created/destroyed by
GitHub Actions

Isolated

The build service ensured that the build
steps ran in an isolated environment free of
influence from other build instances, whether
prior or concurrent. ✓ ✓

Build process cannot clash with other
processes

Parameterless

The build output cannot be affected by user
parameters other than the build entry point
and the top-level source location. In other
words, the build is fully defined through the
build script and nothing else. ✓

Hermetic

All transitive build steps, sources, and
dependencies were fully declared up front
with immutable references, and the build
steps ran with no network access. ✓

Reproducible

Re-running the build steps with identical
input artifacts results in bit-for-bit identical
output. Builds that cannot meet this MUST
provide a justification why the build cannot
be made reproducible. O

Yes, for static builds. Signed system
packages cannot be reproducible

Provenance 1 2 3 4

Available

The provenance is available to the consumer
in a format that the consumer accepts. The
format SHOULD be in-toto SLSA
Provenance, but another format MAY be
used if both producer and consumer agree
and it meets all the other requirements. ✓ ✓ ✓ ✓

No provenance info exists yet

Authenticated

The provenance’s authenticity and integrity
can be verified by the consumer. This
SHOULD be through a digital signature from
a private key accessible only to the service
generating the provenance. ✓ ✓ ✓

Service generated
The data in the provenance MUST be
obtained from the build service (either ✓ ✓ ✓

30

CRI-O security audit, 2022

because the generator is the build service or
because the provenance generator reads
the data directly from the build service).

Non-falsifiable
Provenance cannot be falsified by the build
service’s users. ✓ ✓

Dependencies
complete

Provenance records all build dependencies
that were available while running the build
steps. ✓

Contents of
Provenance 1 2 3 4

Identifies artifact
The provenance MUST identify the output
artifact via at least one cryptographic hash.

No provenance data exists yet

Identifies builder

The provenance identifies the entity that
performed the build and generated the
provenance. This represents the entity that
the consumer must trust.

Identifies build
instructions

The provenance identifies the top-level
instructions used to execute the build. The
identified instructions SHOULD be at the
highest level available to the build

Identifies source code

The provenance identifies the repository
origin(s) for the source code used in the
build.

Identifies entry point

The provenance identifies the “entry point” of
the build definition (see build-as-code) used
to drive the build including what source repo
the configuration was read from. ✓ ✓

Includes all build
parameters

The provenance includes all build
parameters under a user’s control. See
Parameterless for details. (At L3, the
parameters must be listed; at L4, they must
be empty.) ✓ ✓

Includes all transitive
dependencies

The provenance includes all transitive
dependencies listed in Dependencies
Complete.

Includes reproducible
info

The provenance includes a boolean
indicating whether build is intended to be
reproducible and, if so, all information
necessary to reproduce the build. See
Reproducible for more details.

Includes metadata

The provenance includes metadata to aid
debugging and investigations. This SHOULD
at least include start and end timestamps
and a permalink to debug logs. O O O O

Common
requirements 1 2 3 4

31

CRI-O security audit, 2022

Security

The system meets some TBD baseline
security standard to prevent compromise.
(Patching, vulnerability scanning, user
isolation, transport security, secure boot,
machine identity, etc. Perhaps NIST 800-53
or a subset thereof.) ✓

Needs separate assessment. shared
responsibility model inherits some
compliance but our operation needs to be
evaluated.

Access

All physical and remote access must be rare,
logged, and gated behind multi-party
approval. ✓ No remote access (GH Actions based)

Superusers

Only a small number of platform admins may
override the guarantees listed here. Doing so
MUST require approval of a second platform
admin. ✓

Recommendations and Remediations
The CRI-O release process has a good degree of automation and is free of legacy platforms
and code, setting the project in a good position to build features to harden builds and
artifacts. SLSA compliance is within reach

Document the Release Process, Draft Policy

Designation SSCOBSERVE

Risk Lack of documentation and policies into the
release process may result in time and
effort to remediate incident reports and
ultimately code.

Recommendation ● Create documentation of the release
process

● Draft vulnerability policy delineating
acceptable risk levels

● Draft 3rd party components policy,
detailing acceptable dependencies,
licensing, etc

Where - Development, Build, Run All

Prioritisation P3

32

CRI-O security audit, 2022

System Generated Provenance and SBOM

Designation ARTINT

Risk Responding to 3rd party vulnerabilities or
build system compromises could result in
unnecessary burden and slow response
time because of lacking inventory and
information about the CI runs. Scanning the
code for vulnerabilities in dependencies and
attaching the results as signed attestations
can provide assurances to users and may
block releases containing vulnerabilities.

Recommendation Attach provenance data to artifacts:

We recommend that the minimum
provenance data to have:

● SBOM
● SLSA Provenance attestation
● Vulnerability scan reports

Provenance data can be generated at build
time, but not necessarily all at the same
time. For example, SBOM can be
generated at build time, and at a later time
vulnerability analysis may be attached.

We also recommend that provenance data
be signed to comply with SLSA 3
(non-falsifiable). Project Sigstore offers
facilities to sign/attach-and-sign/verify
provenance data.

Push towards SLSA compliance, all the way to Level 3

Designation SLSA

Risk The level of automation of the project’s
build systems puts it in a good position to
start implementing SLSA compliance..

Recommendation
● Github Actions has proven to run

SLSA 3 Workloads
● Non falsifiable SLSA provenance

using GitHub workflows
● Achieving SLSA 3+ on GitHub:

Reusable Workflows and OIDC

33

https://www.sigstore.dev/
https://docs.google.com/document/d/1g6zdETnYcjLJ3x4QhoxxJ6lC-UmOwgYtXISUEGxhxM8/edit#heading=h.4fb1nif40biv
https://docs.google.com/document/d/1g6zdETnYcjLJ3x4QhoxxJ6lC-UmOwgYtXISUEGxhxM8/edit#heading=h.4fb1nif40biv
https://docs.google.com/presentation/d/1d1sdR1fFqNf1UEDiL7a9aI7-ca-TD8MH-Z6Vy0fBpMc/edit?resourcekey=0-zlFhYwmqcys1Xj1sRyLTYA#slide=id.p
https://docs.google.com/presentation/d/1d1sdR1fFqNf1UEDiL7a9aI7-ca-TD8MH-Z6Vy0fBpMc/edit?resourcekey=0-zlFhYwmqcys1Xj1sRyLTYA#slide=id.p

CRI-O security audit, 2022

● Kubernetes workloads to run
ephemeral Github actions

Where - Development, Build, Run Build

Prioritisation P3

Automate Package Builds

Designation OSSPM

Risk CRI-O releases system packages for Linux
distributions but these artifacts are not built
by the automation. An attacker could
compromise systems where these
packages are built. Securing the package
builds in an automated system should be
priority one

Recommendation ● Review Sigstore integrations with
Package maintainers. Lots of
details, more targeted at repository
operators

● Review the openssf wg survey
which has a lot of practices for
package maintainers

● Become involved in the OpenSSF
Working Group to help drive and
understand the current security
available to package maintainers

● Implement and/or continue a review
process for access controls around
package managers

Where - Development, Build, Run Build

Prioritisation P0

34

https://github.com/actions-runner-controller/actions-runner-controller
https://github.com/actions-runner-controller/actions-runner-controller
https://docs.google.com/document/d/1mXrVAkUA9dd4M7fa_AJC8mQ55YnYJ-DKsGq30lh0FvA/edit#heading=h.jyrb6etgzah
https://docs.google.com/document/d/1mXrVAkUA9dd4M7fa_AJC8mQ55YnYJ-DKsGq30lh0FvA/edit#heading=h.jyrb6etgzah
https://docs.google.com/document/d/1mXrVAkUA9dd4M7fa_AJC8mQ55YnYJ-DKsGq30lh0FvA/edit#heading=h.jyrb6etgzah
https://docs.google.com/spreadsheets/d/12QlaYEtcp2ZwZRfZPHR4D3YpY8k770hYBeFQ6-N7Mts/edit#gid=0

CRI-O security audit, 2022

Sources

1. Sonatype 2020 State of Software Supply Chain
https://www.sonatype.com/resources/white-paper-state-of-the-software-supply-chain-
2020

2. Inside a Targeted Point-of-Sale Data Breach
https://krebsonsecurity.com/wp-content/uploads/2014/01/Inside-a-Targeted-Point-of-
Sale-Data-Breach.pdf

3. 10 real-world stories of how we’ve compromised CI/CD pipelines
https://research.nccgroup.com/2022/01/13/10-real-world-stories-of-how-weve-compr
omised-ci-cd-pipelines/

4. SLSA Supply Chain Threats https://slsa.dev/spec/v0.1/#supply-chain-threats
5. What an SBOM Can Do for You
6. Executive Order on Improving the Nation’s Cybersecurity
7. NIST Secure Software Development Framework (SSDF) [PDF]

35

https://www.sonatype.com/resources/white-paper-state-of-the-software-supply-chain-2020
https://www.sonatype.com/resources/white-paper-state-of-the-software-supply-chain-2020
https://krebsonsecurity.com/wp-content/uploads/2014/01/Inside-a-Targeted-Point-of-Sale-Data-Breach.pdf
https://krebsonsecurity.com/wp-content/uploads/2014/01/Inside-a-Targeted-Point-of-Sale-Data-Breach.pdf
https://research.nccgroup.com/2022/01/13/10-real-world-stories-of-how-weve-compromised-ci-cd-pipelines/
https://research.nccgroup.com/2022/01/13/10-real-world-stories-of-how-weve-compromised-ci-cd-pipelines/
https://slsa.dev/spec/v0.1/#supply-chain-threats
https://blog.chainguard.dev/what-an-sbom-can-do-for-you/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf

