

Linux Kernel Release Signing
Security Assessment
April 5, 2021

Prepared For:
Derek Zimmer | Open Source Technology Improvement Fund
derek@ostif.org

Greg Kroah-Hartman | Linux Foundation
gregkh@linuxfoundation.org

Konstantin Ryabitsev | Linux Foundation
konstantin@linuxfoundation.org

Prepared By:
Jim Miller | Trail of Bits
james.miller@trailofbits.com

Mike Martel | Trail of Bits
mike.martel@trailofbits.com

Opal Wright | Trail of Bits
opal.wright@trailofbits.com

Executive Summary

Project Dashboard

Engagement Goals and Coverage

Recommendations Summary
Short Term
Long Term

Threat Scenarios
Scenario 1: Compromise of kernel maintainer workstation
Scenario 2: Compromise of kernel.org administrator workstation
Scenario 3: Compromise of kernel.org front-end systems
Scenario 4: Compromise of kernel.org git master server
Scenario 5: Compromise of kernel.org kup-server
Scenario 6: Compromise of kernel.org marshall server

Findings Summary
1. Use of smart cards for GPG and SSH not enforced for key individuals
2. Recommended smart card does not require touch activation
3. Lack of documented key management policies and procedures
4. Lack of public-key authentication resources
5. Use of older public-key algorithms and standards within web of trust
6. Lack of external integrity validation mechanisms
7. Lack of SSH key rotation

A. Vulnerability Classifications

© 2021 Trail of Bits Linux Kernel Release Signing Assessment | 1

Executive Summary
On behalf of the Linux Foundation, the Open Source Technology Improvement Fund
(OSTIF) sought a third-party review of the Linux kernel release signing process. From March
29 to April 2, 2021, Trail of Bits reviewed the security of this process and provided
recommendations for improvements. Trail of Bits conducted this assessment over two
person-weeks, with two engineers reviewing the kernel release process as described by the
Linux Foundation.

Trail of Bits began the assessment by reviewing the provided documentation on the Linux
kernel release signing process. This led to a technical discussion with representatives of the
Linux Foundation pertaining to their design. After strengthening our understanding of the
overall process, we began to analyze the design for any weaknesses or opportunities for
Defense-in-Depth recommendations.

To analyze the security of the kernel release signing process, Trail of Bits enumerated
various threat scenarios against the system, which are detailed in this report. We were then
able to identify issues and develop recommendations for improving the system such that it
would be secure if any of those threats materialized. We detail seven issues, working off of
six threat scenarios.

The process reviewed by Trail of Bits was designed primarily in response to an attack on
kernel.org in 2011. Its goal is minimizing the amount of trust required in each
infrastructure component of the system. We found this current design achieves this goal to
a degree; however, the recommendations in this report should help reduce the amount of
implicit trust placed in the current design’s infrastructure. For instance, issue TOB-LFKS-006
describes how adding more external validation could increase the robustness of the
system and reduce this implicit trust.

We would encourage the Linux Foundation to consider all of our recommendations and to
improve the documentation of its process. The documentation supplied to Trail of Bits was
informative but outdated. A current, comprehensive description of the process would
make it easier to enforce compliance and identify any weaknesses.

© 2021 Trail of Bits Linux Kernel Release Signing Assessment | 2

Project Dashboard
Application Summary

Engagement Summary

Vulnerability Summary

Category Breakdown

Name Linux Foundation

Version Kernel Release Signing

Type Process Design

Platforms Linux

Dates March 29 – April 2, 2021

Consultants Engaged 2

Level of Effort 2 person-weeks

Total High-Severity Issues 0

Total Medium-Severity Issues 1 ◼

Total Low-Severity Issues 4 ◼◼◼◼

Total Informational-Severity Issues 2 ◼◼

Total 7

Access Controls 2 ◼◼

Auditing and Logging 2 ◼◼

Authentication 2 ◼◼

Cryptography 1 ◼

Total 7

© 2021 Trail of Bits Linux Kernel Release Signing Assessment | 3

Engagement Goals and Coverage
The engagement was scoped to provide a security assessment of the Linux kernel release
signing process. We performed the assessment by reviewing the documentation supplied
by the Linux Foundation and engaging in technical discussions with Linux Foundation
representatives. We identified several possible threat scenarios (detailed in the “ Threat
Scenarios ” section) and developed recommendations for mitigating those scenarios.

Specifically, we sought to answer the following questions:

● Are GPG keys managed safely?
● Are releases signed and verified safely?
● Does the design use any weak cryptographic primitives?
● Is the process susceptible to any known cryptographic attacks?
● Does the security of the release process unnecessarily rely on the security of

infrastructure not trusted by the Linux Foundation?

© 2021 Trail of Bits Linux Kernel Release Signing Assessment | 4

Recommendations Summary
This section aggregates all the recommendations made during the engagement.
Short-term recommendations address the immediate causes of issues. Long-term
recommendations pertain to the development process and long-term design goals.

Short Term
❑ Update all documentation related to the release process to accurately reflect the
latest version of the process. This will make it easier to ensure compliance and identify
weaknesses.

❑ Require individuals with access to significant repositories or systems to use a
smart card device to store sensitive key material. TOB-LFKS-001

❑ Consider mandating the use of smart card devices that require physical touch to
validate each smart card operation. If that is not possible, add guidance recommending
that a smart card be physically connected to a workstation only when it is required to
complete an operation. TOB-LFKS-002

❑ Work with administrators and developers to document current procedures and
policies and compile that information into a single set of documents that can be
updated as necessary. TOB-LFKS-003

❑ Identify effective ways to widely advertise developers’ key fingerprints. These could
include adding key fingerprints to email signatures, periodically posting them in mailing
lists, or referencing them in conference presentations. TOB-LFKS-004

❑ Choose a single algorithm and key size for new keys incorporated into the kernel
web of trust and the PGP key repository. Trail of Bits recommends using elliptic curve
algorithms; GnuPG supports ECDSA and Ed25519 signatures starting from version 2.2.
TOB-LFKS-005

❑ Consider releasing tooling that can compare release tarball content with the
content of the tagged Git release, as well as tooling that can ensure that all commits
to key repositories hosted on kernel.org are signed with an expected identity. Also
consider running a verifier on kernel.org systems. TOB-LFKS-006

❑ Develop an appropriate key rotation schedule to limit the impact of a
compromised SSH key. TOB-LFKS-007

© 2021 Trail of Bits Linux Kernel Release Signing Assessment | 5

Long Term
❑ As the release process evolves over time, keep all of the documentation up-to-date
with the latest version. This will make it easier to ensure compliance and identify
weaknesses.

❑ Periodically review policies and procedures, assessing their applicability and
appropriateness. Update the documentation as policies and procedures change.
TOB-LFKS-003

❑ Continue advertising keys through multiple channels, and work with partners to
provide easily-found sources of public-key corroboration. TOB-LFKS-004

❑ Work with developers to generate new, standard-compliant keys and integrate
them into the kernel web of trust. TOB-LFKS-005

❑ Consider advocating for interested independent parties to run these verification
tools to bolster the integrity verification mechanisms of the wider Linux kernel
community. TOB-LFKS-006

❑ Ensure that key rotation policy is followed and that administrators are practiced in
key rotation procedures. This will limit the threat posed by compromised keys and
ensure that administrators are capable of quickly rotating keys when a compromise is
discovered. TOB-LFKS-007

© 2021 Trail of Bits Linux Kernel Release Signing Assessment | 6

Threat Scenarios
This section describes the scenarios that guided our analysis and subsequent development
of recommendations. These scenarios are not meant to be exhaustive but illustrate how a
sufficiently advanced external adversary could compromise the integrity of the kernel
signing and release process.

Scenario 1: Compromise of kernel maintainer workstation
Possible attack vectors
Web browser exploitation, malicious email attachments, coercion, and physical access

Impact
Kernel maintainer systems include GPG and SSH keys to authenticate and sign releases. If a
maintainer did not use a smart card to store sensitive key material, an attacker could
retrieve the key material, intercept the passphrase entry, and (for example) push malicious
code to repositories and subsequently release a malicious kernel with a valid developer
signature. An attacker could also use sensitive key material to move laterally into kernel.org
systems to carry out certain of the scenarios described below.

Scenario 2: Compromise of kernel.org administrator workstation
Possible attack vectors
Web browser exploitation, malicious email attachments, coercion, and physical access

Impact
This scenario is similar to scenario 1, but the use of smart cards to store key material would
complicate lateral movement. However, if an attacker intercepted GPG passphrases, the
attacker would be able to use the key material on the smart card if the card did not support
functionalities like requiring physical touch to be triggered. If the administrator had already
connected to the Wireguard VPN, the attacker could piggyback on this connection to access
kernel.org back-end systems and move laterally, potentially facilitating other threat
scenarios.

Scenario 3: Compromise of kernel.org front-end systems
Possible attack vectors
Prior compromise such as that in scenario 2, remote exploitation of an exposed service,
and physical access

Impact

© 2021 Trail of Bits Linux Kernel Release Signing Assessment | 7

If an attacker were able to manipulate front-end systems, the attacker could potentially
modify information displayed on kernel.org or the Git front end or change keys delivered to
users employing WKD with GPG. This could allow the attacker to upload malicious kernel
releases or insert additional signing keys associated with trusted identifiers, which could be
used as part of a more complex attack (such as those described below). In the event that
an attacker gained exclusive access to front-end systems, though, measures such as the
autosigner mechanism would prevent the attacker from executing long-term subversion
of kernel releases without detection.

Scenario 4: Compromise of kernel.org git master server
Possible attack vectors
Prior compromise such as that in scenario 1 or 2, remote exploitation of an exposed
service, and physical access

Impact
An attacker who has persistent access to the git master server could modify gitolite and
git configurations, which could enable the attacker to make commits as other valid users
(e.g., pushing unsigned commits as Linus). Without sufficient commit-monitoring measures,
malicious code could be inadvertently included in future kernel releases signed with a valid
key. If an attacker also possessed key material valid for signing a release, the attacker could
push a git tag to kick off a release process with malicious code as well.

Scenario 5: Compromise of kernel.org kup-server
Possible attack vectors
Prior compromise such as that in scenario 1 or 2, remote exploitation of an exposed
service, and physical access

Impact
An attacker with persistent access could modify the processes running on kup-server to
subvert the upload of a valid tarball signature for a kernel release. For instance, an attacker
could replace the tarball and signature file that is output by kup and sent to temporary
storage before the marshall server synchronized the data. As the GPG signature is not
verified again, sha256sums.asc generation would include the malicious tarball and
signature, and they would be pushed to mirrors. If the tarball were signed without a valid
developer identity, this type of subversion would likely be quickly detected by the
community, as signature verification would fail. However, if the attacker also had front-end
access, like in scenario 3, or possessed valid key material of a maintainer, like in scenario 1,
detection would be more difficult.

© 2021 Trail of Bits Linux Kernel Release Signing Assessment | 8

Scenario 6: Compromise of kernel.org marshall server
Possible attack vectors
Prior compromise such as that in scenario 2, 4, or 5

Impact
This scenario is similar to scenario 5. However, an advanced attacker could conceivably
modify or influence the operation of grokmirror as well as the content of files stored on
NFS to push malicious tarballs or signatures and modify the content of pub/scm . Unlike
scenario 5, in which an attacker would need to hijack an ongoing release process to insert a
malicious tarball, this scenario could allow an attacker modifying the content synchronized
via grokmirror to trigger a release. The community would likely detect such a release, as
valid git tags would be missing from the authoritative repositories.

© 2021 Trail of Bits Linux Kernel Release Signing Assessment | 9

Findings Summary

Title Type Severity

1 Use of smart card for GPG and SSH not
enforced for key individuals

Access Controls Medium

2 Recommended smart card does not
require touch activation

Access Controls Low

3 Lack of documented key management
policies and procedures

Auditing and
Logging

Low

4 Lack of public-key corroboration
resources

Authentication Informational

5 Insecure or invalid keys are allowed
within the web of trust

Cryptography Informational

6 Lack of external integrity validation
mechanisms

Auditing and
Logging

Low

7 Lack of SSH key rotation Authentication Low

© 2021 Trail of Bits Linux Kernel Release Signing Assessment | 10

1. Use of smart cards for GPG and SSH not enforced for key individuals
Severity: Medium Difficulty: Medium
Type: Access Controls Finding ID: TOB-LFKS-001
Threat Scenario: Scenario 1

Description
To verify kernel updates, Linux kernel developers produce signed tags in their git trees and
produce a signature over the entire tarball for a new release using their GPG keys. These
updates are then delivered to various components of the kernel.org infrastructure using
SSH sessions.

Individuals with commit rights on key Linux kernel repositories are not required to store
private key material used for GPG or SSH on a separate smart card device, such as a
Nitrokey or Yubikey.

Exploit Scenario
Alice is a Linux kernel maintainer who stores private key material on a user-accessible
block device. Eve, an attacker, is able to install malware on Alice’s workstation. Eve is able to
exfiltrate private key material from Alice’s workstation and could attempt to brute-force
passphrases or to install a keylogger to record passphrase entry. Eve could then create
valid signatures and authenticate to some kernel.org services using the stolen key material.

Recommendation
Short term, require individuals with access to significant repositories or systems to use a
smart card device to store sensitive key material. If that is not a viable option, consider
using an alternative mechanism, such as a TPM, to protect sensitive cryptographic material.

© 2021 Trail of Bits Linux Kernel Release Signing Assessment | 11

2. Recommended smart card does not require touch activation
Severity: Low Difficulty: Medium
Type: Access Controls Finding ID: TOB-LFKS-002
Threat Scenario: Scenario 1, 2

Description
The Linux Foundation recommends that kernel developers use smart cards, specifically
Nitrokeys, to secure their private key material. Linux Foundation-issued Nitrokeys do not
require users to perform any physical actions when using smart card functions. Other
devices can be configured to require the user to touch the device before the smart card
operations occur. As a result, the Nitrokey is protected only by a passphrase while inserted
into a workstation.

While touch activation does not prevent all classes of attacks, such as ones that replace
binaries on disk (e.g., for GPG and SSH) or leverage session hijacking, it prevents entire
classes of less sophisticated attacks and improves the security posture of a given end-user.

Exploit Scenario
Alice is a Linux kernel maintainer who stores private key material on a Nitrokey. Eve, an
attacker, is able to install malware on Alice’s workstation. Eve is able to intercept the entry
of Alice’s passphrase while Alice is using the Nitrokey. Without Alice’s knowledge, Eve can
make requests to the Nitrokey while it remains plugged in to the device and subsequently
authenticate as Alice and access or modify sensitive systems and repositories.

Recommendation
Short term, consider mandating the use of smart card devices that require physical touch
to validate each smart card operation. If that is not possible, add guidance recommending
that a smart card be physically connected to a workstation only when it is required to
complete an operation, which would help prevent an attacker from using an attached
smart card device without its user’s knowledge.

© 2021 Trail of Bits Linux Kernel Release Signing Assessment | 12

3. Lack of documented key management policies and procedures
Severity: Low Difficulty: N/A
Type: Auditing and Logging Finding ID: TOB-LFKS-003
Threat Scenario: N/A

Description
There is no centralized, authoritative documentation laying out policies and procedures for
key revocation, generation, or rotation or other key management tasks. Without such
documentation, users and administrators are more likely to make serious errors when
engaging in routine and emergent key management tasks.

Recommendation
Short term, work with administrators and developers to document current procedures and
policies and compile that information into a single set of documents that can be updated
as necessary.

Long term, periodically review policies and procedures, assessing their applicability and
appropriateness. Update the documentation as policies and procedures change.

© 2021 Trail of Bits Linux Kernel Release Signing Assessment | 13

4. Lack of public-key authentication resources
Severity: Informational Difficulty: N/A
Type: Authentication Finding ID: TOB-LFKS-004
Threat Scenario: Scenarios 3 and 4

Description
To verify the content of kernel updates, each commit in the git tree produces a signed tag,
and each release is accompanied by a signature over the release’s tarball. Public keys for
Linux developers, as well as the associated key signatures forming the web of trust, are
managed from a single location. Compromise of the git.kernel.org server would allow an
attacker to provide users with a web of public keys not controlled by kernel developers,
enabling them to post malicious kernel “releases” that would validate against the attacker’s
public keys.

Bootstrapping trust for public-key systems is a hard problem, and is certainly not unique to
the Linux kernel. Any software that relies on digital signatures for verification must first
"bootstrap" trust by ensuring that users have the correct public key. It creates a circular
problem that is difficult to solve in the general case.

The Linux Foundation is uniquely equipped to alleviate this problem. Because of Linux's
community and commercial support, kernel developers have many ways to distribute PGP
key fingerprints for important developers. Key fingerprints can be included in conference
presentations, periodically published on news sites such as lwn.net, included in email
signatures, or published on websites maintained by Linux Foundation partners like Red Hat
or IBM. Key fingerprints hosted on the kernel.org infrastructure could then be validated
against multiple public sources, reducing the likelihood of a malicious key being trusted.

Recommendation
Short term, identify effective ways to widely advertise developers’ key fingerprints. These
could include adding key fingerprints to email signatures, periodically posting them in
mailing lists, or referencing them in conference presentations.

Long term, continue advertising keys through multiple channels, and work with partners to
provide accessible sources of public-key corroboration.

© 2021 Trail of Bits Linux Kernel Release Signing Assessment | 14

5. Use of older public-key algorithms and standards within web of trust
Severity: Informational Difficulty: High
Type: Cryptography Finding ID: TOB-LFKS-005
Threat Scenario: N/A

Description
PGP keys used by kernel developers vary significantly in terms of algorithm and key size.
RSA is the most commonly used algorithm, followed by DSA and elliptic curve algorithms.
Work estimates for attacking algorithms based on integer factorization and integer discrete
logarithms vary widely, and the algorithms are frequently subject to subtle new failure
modes. Trail of Bits generally recommends moving away from RSA where possible in favor
of elliptic curve algorithms.

Since these keys are used to verify code that is eventually incorporated into the kernel,
modern primitives should be used. Using a single modern algorithm and key size will help
reduce the attack surface for sophisticated attackers.

Recommendation
Short term, choose a single algorithm and key size for new keys incorporated into the
kernel web of trust and the PGP key repository. The current kernel developer guidance
suggests using ECDSA or Ed25519 keys. Requiring all new keys to conform to this guidance
would be an effective step toward standardization.

Long term, work with developers to gradually replace older RSA and traditional DSA keys
with new policy-compliant keys and integrate them into the kernel web of trust. Establish a
“sunset” date by which all keys should be switched over.

© 2021 Trail of Bits Linux Kernel Release Signing Assessment | 15

6. Lack of external integrity validation mechanisms
Severity: Low Difficulty: N/A
Type: Auditing and Logging Finding ID: TOB-LFKS-006
Threat Scenario: Scenarios 3, 4, 5, and 6

Description
Kernel releases involve a series of steps such as merging changes in Git repositories,
pushing tags, and generating a tarball for release. Currently, verification of the steps’
integrity largely depends on the wider community to notice incorrect or malicious behavior.
Although this can be effective, additional integrity checks would greatly increase the
robustness of the system and help reduce the implicit trust placed in the infrastructure.

Recommendation
Short term, consider releasing tooling that can compare release tarball content with the
content of the tagged Git release, as well as tooling that can ensure that all commits to key
repositories hosted on kernel.org are signed with an expected identity. Also consider
running a verifier on kernel.org systems.

Long term, consider advocating for interested independent parties to run these verification
tools to bolster the integrity verification mechanisms of the wider Linux kernel community.

© 2021 Trail of Bits Linux Kernel Release Signing Assessment | 16

7. Lack of SSH key rotation
Severity: Low Difficulty: High
Type: Authentication Finding ID: TOB-LFKS-007
Threat Scenario: Scenario 1

Description
Currently, SSH keys used to access kernel.org infrastructure are static. Because SSH keys
can often be leveraged to access additional systems, they are frequently targeted by
attackers. Under the current setup, recovery of a single developer’s SSH key could allow
indefinite access to kernel.org resources.

A key rotation schedule would mitigate the impact of an SSH key compromise on the
kernel.org system. Moreover, with a system in place for rotating SSH keys, the Linux
Foundation could respond to an attack that compromises these keys more quickly.

Recommendation
Short term, develop an appropriate key rotation schedule to limit the impact of a
compromised SSH key.

Long term, ensure that key rotation policy is followed and that administrators are practiced
in key rotation procedures. This will limit the threat posed by compromised keys and
ensure that administrators are capable of quickly rotating keys when a compromise is
discovered.

© 2021 Trail of Bits Linux Kernel Release Signing Assessment | 17

A. Vulnerability Classifications

Vulnerability Classes

Class Description

Access Controls Related to authorization of users and assessment of rights

Auditing and Logging Related to auditing of actions or logging of problems

Authentication Related to the identification of users

Configuration Related to security configurations of servers, devices, or
software

Cryptography Related to protecting the privacy or integrity of data

Data Exposure Related to unintended exposure of sensitive information

Data Validation Related to improper reliance on the structure or values of data

Denial of Service Related to causing a system failure

Error Reporting Related to the reporting of error conditions in a secure fashion

Patching Related to keeping software up to date

Session Management Related to the identification of authenticated users

Testing Related to test methodology or test coverage

Timing Related to race conditions, locking, or the order of operations

Undefined Behavior Related to undefined behavior triggered by the program

Severity Categories

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security
best practices or Defense in Depth.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is relatively small or is not a risk the customer has indicated is
important.

© 2021 Trail of Bits Linux Kernel Release Signing Assessment | 18

Medium Individual users’ information is at risk; exploitation could pose
reputational, legal, or moderate financial risks to the client.

High The issue could affect numerous users and have serious reputational,
legal, or financial implications for the client.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this
engagement.

Low Commonly exploited public tools exist or can be scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of
a complex system.

High An attacker must have privileged insider access to the system, may
need to know extremely complex technical details, or must discover
other weaknesses to exploit this issue.

© 2021 Trail of Bits Linux Kernel Release Signing Assessment | 19

