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1 Summary

Monero is planning to use the RandomX proof-of-work (PoW) scheme, an innovative

PoW attempting to maximize the advantage of miners equipped with mainstream

CPUs.

Monero hired Kudelski Security to perform a security assessment of RandomX,

providing access to source code and documentation, in the repository at

https://github.com/tevador/RandomX/. Most of the work was performed on the

version 3daceac from the branch master (June 10, 2019).

The sections below summarize the security goals of RandomX (which define the goals

of this audit, namely assessing whether these goals are satisfied), our methodology

and reporting approach, and finally our results.

We would like to thank the Monero community for trusting us with this work, as well

as @tevador on GitHub, the maintainer of the RandomX repository, for his rapid

responses to our issues posted on GitHub. We also thank OSTIF for coordinating the

work and making this audit happen.

1.1 Security goals
The general goal of this audit is to find and fix any security issues in the RandomX PoW.

Of course a first step is to define what is a security issue in the context of RandomX,

in other words, what are the security goals of RandomX. As a PoW, the main security

goal is that there shouldn’t be any algorithm to compute its results significantly more

efficiently—with respect to a realistic metric–than as defined and implemented by the

author. Secondary security goals include (but are not limited to):

• There shouldn’t be significant speed-up of the current implementation (given the
same set of target platforms).
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• The attacker-controlled input (mainly, the block to validate) should not allow an
attacker to DoS, crash, execute code, or make any other unexpected change to

the system running the PoW.

• Miners should not be able to identify "weaker" authorized parameters (such as
specific nonce values) that make the PoW computation significantly more

efficient, thus giving an advantage to a miner who would know such

parameters.

• There should not be any case where the PoW, under normal conditions (valid
parameters and adequate platform), crashes the system, leaks memory, leaks

sensitive values, etc.

• The Pow running time and resource consumption should be distributed in a way
that minimizes the variance and the risk of "extreme" behaviors (in other words,

the distribution should behave more like a Gaussian than a power law).

• The cryptographic components on which relies the PoW should be reliable

enough and use with adequate parameters.

Note that we did not review the security of testing code, nor that of the table-based

sofware AES implementation, as these won’t be used for running actual PoWs.

1.2 Methodology and reporting
Our work consisted of a review of the documentation and of the source code. We

also used automated static analysis tools but unsurprisingly they didn’t uncover any

worth-reporting issue.

Our main findings were directly reported in the issue tracker of that repository, and

the maintainer of the project promptly and patiently responded to these to clarify the

impact.

For completeness, all the findings reported are listed in the present report, regardless

of their impact.

The audit was performed by Dr. Jean-Philippe Aumasson, VP Technology at Kudelski

Security, and involved 6 person-days of work.
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1.3 Results summary
We did not find any security exploitable by an attacker to significantly impact

RandomX’s security. We initially believed that some of our findings had a security

impact, but after discussion with the RandomX designer and futher analysis, we

realized that these were not realistic security concerns (for example, the

cryptographic insecurity of the AES-based hash). Therefore, all our findings are listed

as observations, as opposed to security issues.

Our general assessment is that, having a very narrow attack surface, and a fairly simple

(thus easy to analyze) PoW mechanism, we believe that RandomX is unlikely to fail its

security goals.

That said, we have less certainty about the complete match between the specification

and the implementation, as well as about the optimality and correctness of the JIT

logic. Given the attack model, and based on our extensive review of RandomX’ code,

we nonetheless believe that any such error would not be exploitable.

The least clear part, already extensively discussed online, is the relative cost-efficiency

of RandomX versus that of a dedicated ASIC, when considering both the development

and operation costs of the latter. This advantage is hard to quantify (and even to define

rigorously) and involves a lot of technical and economical variables, We therefore don’t

have a specific statement to make here, except that RandomX is arguably the most

hardware-unfriendly PoW considered by a major cryptocurrency.
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2 Introduction

RandomX is a PoW algorithm that attempts tominimize the advantage of GPUs, FPGAs,

and ASICs, by using a customer virtual machine (VM) system that executes the actual

PoW and "hashing", created by picking a set of pseudo-random instructions of that

VM. The VM takes as input both a description of the code to execute, and the input fed

to the program running on the VM.

2.1 Principle
Such an idea was previously discussed in 2013-2014 in the context of the Password

Hashing Competition (and allegedly prior to that). A conclusion was then that the

potential benefits did not justify the extra complexity of such systems and the

ensuing implementation/integration costs. However, that assessment was made in

the context of password hashing, not of PoW for consensus protocols, for which the

economic and technological context is different.

Of course a CPU is nothing but an ASIC designed for general-purpose computing

operations. RandomX aims to be optimized for the class of modern CPU architectures

and feature set, but one could design a CPU-like architecture specifically optimized

for RandomX. This could for example include an FPGA or PLD component

reconfigured on the fly to efficiently execute random programs, and a memory layout

mimicking the cache architecture of common CPUs. The designers expect that

FPGA/PLD reconfigure time be too slow to be CPU implementations in terms of

cost-efficiency. A different, likely more efficient approach, would be to just implement

the VM logic as a dedicated processor, on which would run the generated programs.

The main question is whether investments in designing and producing such a

hardware-based system could be quickly amortized by the efficiency gain.

6

https://password-hashing.net
https://password-hashing.net


RandomX Security Audit Monero

2.2 Core algorithms
RandomX relies on two software-friendly cryptographic functions: BLAKE2 (which can

for example take advantage of AVX512 instructions) and mainly AES (which is arguably

the most efficient building block on chips including native instructions), aimed to be

efficient on CPUs thanks to NIs.

AES is clearly a good choice, thanks to the on-chip hardware acceleration. BLAKE2 is

also fine, although it’s not performance-critical in the RandomX design.

2.3 Properties
Like most PoWs, RandomX aims to be asymmetric, that is, enforce slow/costly solution
generation but efficient verification.

RandomX also aims to be partially memory-hard, and default to 2080MiB of memory
usage. This amount is understood as the memory that should be allocated when

running the PoW following the standard specification. A security goal is that any

method to compute the result with significantly less memory should be prohibitely

less cost-effective (according to any reasonable metric) than the version using

2080MiB.

RandomX verification also requires non-negligible memory, but allows verification with

lower memory while preserving the AT cost. The design document notably describes

the specific case of verifying PoWs on light nodes using 256 MiB, while being 8 times

slower (thought it’s unclear whether this refers to the number of operations or to the

actual latency when taking memory access time into account). The possibility of this

trade-off is the reason why RandomX is called partially memory-hard.

The 256MiB limit is enforced thanks to Argon2d, whose strong memory hardness

prevents any efficient computation of the result with less storage.

2.4 Optimization approach
RandomX does not target a specific microarchitecture but is designed to take

advantage of CPUs low-latency caches, superscalar instructions (such as AVX512), and

parallel execution units (such as Zen’s double AES unit).

In particular, the "Scratchpad" is a memory buffer defined to fit into cache, and to

minimize the usage of highest-latency L3 cache. The assumptions on the CPU and
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cache behavior seem fair, however CPUs can sometimes behave in surprising ways.

2.5 Program creation
The random program is a sequence of 256 “random instructions” including common

arithmetic operations, and in particular IEEE 754 floating-point operations (which may

be a compatibility issues on certain platforms, but likely not those targetted by

RandomX). Operands are determined in a way that avoids NaN results (division by

zero, etc.).

By default there are 2048 iterations of the 256-instruction program, so the program

latency can easily be upper bounded given the latencies of underlying instructions.

The expected latency may also be easily determined given the rough distribution of

instructions, under some assumptions about the branching and ratio of instructions

executed.

However, programs are not straight-line, for they can include branches and in

particular "random branches" (where a jump is only executed with some predefined

probability). This again aims to give an edge to CPU implementations compared to

GPUs or (programmable) hardware.

Programs are not sequential either, and may include flow-independent sequences of

executions which permit the use of parallel ALUs or other units.

2.6 Programs security goals
Programs should be sampled in such a way that:

• There are sufficiently many distinct programs (which seems easily satisfied).

• At most a negligible fraction of programs can be significantly optimized.

• The variance of a program’s runtime should be small enough to ensure that two
instances of the PoW with similar parameters will run in approximately the

same time. The documentation presents empirical data on the program

execution suggesting a factor between 2 and 3 between the fastest and slowest

program.

• Programs cannot enter a “problematic” state, such as infinite loop, undefined
operation (such as division by zero), suffer from memory corruption, etc.
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• Programs are deterministic—in order to be verifiable—and in particular should
avoid code patterns that are undefined or compiler-specific behavior.

• Programs should depend on the block to validate, and should not be predictable
before receiving the information of the block to validate.
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3 Observations

This section includes suggestions of potential improvements in terms of code quality

or defensive coding, but which are, in our understanding not security issues.

KS-RX-O-01: AESHash1R is not a secure hash function
Collisions and preimages for AESHash1R can be found instantaneously, since the

message is input as 16-byte blocks xored once with part of the state. (The attack is

straightforward given the descriptions of AESHash1R.)

This cryptographic insecurity of AESHash1R seems well understood by the authors,

and to not be an issue since this functions seems to play the role of a universal hash

function rather than a cryptographic one.

Having AESHash1R to be a secure hash function would prevent the creation of final

Scratchpad values that map to a given hash, but would likely make it significantly

slower, which would have an impact on the relative performance of Scratchpad

hashing compared to the other operations.

This issue has been reported and discussed at https://github.com/tevador/RandomX

/issues/62, with the conclusion that the cryptographic weakness of AESHash1R is not

exploitable, and apparently not required given the way it is used (as per our analysis).

KS-RX-O-02: Unoptimized BLAKE2
The implementation of BLAKE2 does not leverage vectorized instructions, and

therefore may be significantly slower than an optimized implementation. For

example, on platforms supporting AVX2, a reference, portable implemnentations is

about 40% slower than an AVX2 implementation, as reported on a Cannonlake

microarchitecture benchmark from SUPERCOP.
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An AVX2 implementation of BLAKE2b can be found in the SUPERCOP archive as well

as in Libsodium. An AVX512-optimized version of BLAKE2s (not BLAKE2b) is used in

Wireguard Similar techniques may be used to optimize BLAKE2b for the AVX512

instruction set.

This would be an issue is BLAKE2 were performance-critical (and thus security-critical).

However, unlike AESHash1R, the BLAKE2b operations are not performance-critical in

the PoW construction, so an optimized BLAKE2 implementation would be little benefit

to miners.

This has been reported and discussed at https://github.com/tevador/RandomX/iss

ues/60.

KS-RX-O-03: Outsourceability
RandomX is not designed to be nonoutsourceable, as is for example the recent

Autolykos construction. RandomX therefore does not attempt to prevent mining

pools by enforcing the use of a node’s private key to compute the PoW.

Nonoutsourceability requires specific constructions and seems hard to add without

major changes to the construction. It is anyway probably not a property required, or

desired by Monero.

KS-RX-O-04: AES encrypt vs. decrypt
AES’s round function is alternatively used in encryption and decryption mode over 16-

byte state chunks. The reason why these two operations, as opposed to only (say)

encryption is unclear; is it to force hardware miners to implement both operations’

logic

KS-RX-O-05: AESGenerator4R behaves like the ECB mode
AESGenerator4R processes each 16-byte chunk of the generator’s state independently,

in a way that if state0 == state2 then the transformed values will be identical as well

(same for 1 and 3).

The designers may want to avoid this property by using a mode similar to CTR or CBC.

If CBC is used, CBC’d decryption mode might be used instead of the encryption

mode—because the former is parallelizable, whereas the former is not, which allows
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to exploit Zen’s two parallel AES units.

This has been reported and discussed at https://github.com/tevador/RandomX/iss

ues/64.

KS-RX-O-06: “Operations that preserve entropy”
The design document states that “RandomX uses all primitive integer operations that

preserve entropy: addition (IADD_RS, IADD_M), subtraction (ISUB_R, ISUB_M, INEG_R),

multiplication (IMUL_R, IMUL_M, IMULH_R, IMULH_M, ISMULH_R, ISMULH_M,

IMUL_RCP), exclusive or (IXOR_R, IXOR_M) and rotation (IROR_R, IROL_R).”

Here “preserve entropy” is probably meant as “is invertible if one of the operands is

fixed”. However this is not the case for multiplication.

This has been reported and discussed at https://github.com/tevador/RandomX/iss

ues/60.

KS-RX-O-07: Lack of NULL pointer checks
As documented in random.h, most functions exposed by the API would attempted to

dereference points without checking whether they’re NULL. Adding checks for NULL

pointers would make the code safer against developers errors.

KS-RX-O-08: randomx_reciprocal() could divide by zero
The divisor argument of randomx_reciprocal() is not checked in the function, and

therefore a division by zero may happen:

1 uint64_t randomx_reciprocal(uint64_t divisor) {
2

3 const uint64_t p2exp63 = 1ULL << 63;
4

5 uint64_t quotient = p2exp63 / divisor, remainder = p2exp63 % divisor
6 ...

We suggest to check that divisor isn’t zero and otherwise return an appropriate value.

This has been reported and discussed at https://github.com/tevador/RandomX/iss

ues/63 (this function is called in such a way that division by zero cannot happen).
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KS-RX-O-09: Type mismatch causing potential integer overflow
In randomx.cpp:

1 void randomx_init_dataset(randomx_dataset *dataset, randomx_cache *cache,
unsigned long startItem, unsigned long itemCount) {↪→

2 cache->datasetInit(cache, dataset->memory + startItem *
randomx::CacheLineSize, startItem, startItem + itemCount);↪→

3 }

here datasetInit() will actually call initDataset() defined in dataset.cpp:

1 void initDataset(randomx_cache* cache, uint8_t* dataset, uint32_t startItem,
uint32_t endItem) {↪→

2 for (uint32_t itemNumber = startItem; itemNumber < endItem;
++itemNumber, dataset += CacheLineSize)↪→

3 initDatasetItem(cache, dataset, itemNumber);
4 }

The types of startItem and endItem are 32-bit (uint32_t) in the former function,

whereas they were initially 64-bit (unsigned long) on 64-bit platforms. In the unlikely

case that randomx_init_dataset() be called with greater than 232
values, the

initialization would not behave as expected.

This has been reported and discussed at hhttps://github.com/tevador/RandomX/i

ssues/70.

KS-RX-O-10: Potential int underflow in getCodeSize()

Although this function doesn’t appear to be used, it should probably check that

codePos >= prologueSize:

1 size_t JitCompilerX86::getCodeSize() {
2 return codePos - prologueSize;

A related risk is that the definition of functions sizes in jit_compiler_x86.cpp

depends on the address layout and on the relative addresses of the functions. If

these assumptions were invalid, then incorrect (signed) sizes would be computed.

FOR PUBLIC RELEASE Page 13 of 16

hhttps://github.com/tevador/RandomX/issues/70
hhttps://github.com/tevador/RandomX/issues/70


RandomX Security Audit Monero

KS-RX-O-11: BLAKE2 hash errors unchecked
The BLAKE2b calls in the main function randomx_calculate_hash() are not checked

for errors. In case of an error the BLAKE2 result would not be written to tempHash and

therefore part of the computations could be bypassed:

1 void randomx_calculate_hash(randomx_vm *machine, const void *input, size_t inputSize,
void *output) {↪→

2 alignas(16) uint64_t tempHash[8];
3 blake2b(tempHash, sizeof(tempHash), input, inputSize, nullptr, 0);
4 machine->initScratchpad(&tempHash)
5 machine->resetRoundingMode();
6 for (int chain = 0; chain < RANDOMX_PROGRAM_COUNT - 1; ++chain) {
7 machine->run(&tempHash);
8 blake2b(tempHash, sizeof(tempHash),

machine->getRegisterFile(), sizeof(randomx::RegisterFile), nullptr, 0);↪→

9 }

We recommend to check that blake2() always returns zero.

This has been reported and discussed at https://github.com/tevador/RandomX/iss

ues/84.

KS-RX-O-12: Potential out-of-bound write
The function fillAes4Rx4() will write 64-byte blocks to the address space provided

until the current pointer is greater or equal than the end:

1 while (outptr < outputEnd) {
2

3 ...
4

5 rx_store_vec_i128((rx_vec_i128*)outptr + 0, state0);
6 rx_store_vec_i128((rx_vec_i128*)outptr + 1, state1);
7 rx_store_vec_i128((rx_vec_i128*)outptr + 2, state2);
8 rx_store_vec_i128((rx_vec_i128*)outptr + 3, state3);
9

10 outptr += 64;
11 }

Consequently if the output length is not a multiple of 64 bytes then up to 63 bytes may

be written outside the allocated space.
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This has been reported and discussed at https://github.com/tevador/RandomX/iss

ues/83.

KS-RX-O-13: Power-of-2 test incomplete
Although this function won’t be called with zero as an argument (since it’s called with a

non-zero divisor), it’s worth noting that it will return true when called with zero (which

is not a power of 2):

1 inline bool isPowerOf2(uint64_t x) {
2 return (x & (x - 1)) == 0;
3 }

As discussed with the designer, this behavior is intended, and the function will be

renamed isZeroOrPowerOf2().
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4 About

Kudelski Security is an innovative, independent Swiss provider of tailored cyber and
media security solutions to enterprises and public sector institutions. Our team of

security experts delivers end-to-end consulting, technology, managed services, and

threat intelligence to help organizations build and run successful security programs.

Our global reach and cyber solutions focus is reinforced by key international

partnerships.

Kudelski Security is a division of Kudelski Group. For more information, please visit

https://www.kudelskisecurity.com or https://kudelski-blockchain.com/.

Kudelski Security

route de Genève, 22-24

1033 Cheseaux-sur-Lausanne

Switzerland

This report and all its content is copyright (c) Nagravision SA 2019, all rights reserved.
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