OpenSSL Security Assessment

Technical report

privateinternetaccess

Quarkslat

SECURING EVERY BIT OF YOUR DATA

Ref. 18-04-720-REP
Version 1.2
Date 2019
Prepared for OSTIF
By Quarkslab

Quarkslab SAS

13 rue Saint-Ambroise
75011 Paris

France

Contents

1 Project Information

2 Executive Summary

2.1 Security/Bug concerns. o oo L
21,1 Bug ..o e e
2.1.2 Vulnerability
2.2 Security OVerview L. e e e
221 TLS 1.3 . . . o e e e
222 PRNG . . . e e
223 SRP . .. e
2.2.4 CAPL . . . e e e
2.2.,5 Recommendations
3 Introduction
3.1 Context and Scopeo Lo
3.1.1 Past Security Vulnerabilities 0L,
3.1.2 OpenSSL Source code architecture
4 TLS 1.3 implementation
4.1 Methodology
4.1.1 TCP Proxy o i v i i e
4.1.2 Code instrumentation
4.1.3 Codereview i e e e e
4.2 Internal Mechanisms of TLS 1.3
4.2.1 Handshake e
422 0-RTT . . . e
4.2.3 Hello Retry Request
4.2.4 Security
4.3 Security problem and bug identified in TLS 1.3 of OpenSSL
4.3.1 Client Denial of Service Bug (Debug mode)
4.3.2 Client Denial of Service Issue
4.4 Conclusion e e
5 PRNG implementation
5.1 APL . . o
5.2 Test Vectors e e e e e e e e
5.3 Implementation Details o o
5.3.1 Description of the Internals
5.3.2 Update Process e
5.3.3 Coding Style e
5.4 Entropy Sources L e
5.4.1 WiIndows e e e e e
5.4.2 Linuxo e
6 SRP implementation
6.1 Description L e e e e e e e e
6.2 Test Vectors e e e e e e e e e
6.3 Implementation L
6.3.1 Parameters e e e e

15
15
15
16
16
17
19
20
20
20

6.3.2 Quality of thecode 23

6.3.3 Security Checks 23

6.3.4 Format e 24

6.3.5 Fuzzing e 24

6.4 Conclusion e e 25

7 Appendix 26
7.1 OpenSSL Patch 26
7.2 How to apply the patch and start fuzzing 31
Bibliography 32

Ref.: 18-04-720-REP Quarkslab SAS 3

1. Project Information

Version ‘

Date

August 31, 2018

Status

Document Creation

Author
Quarkslab

Version 1.0 | November 28, 2018 First Version

Version 1.1 | January 11, 2019

Intermediate Version

Version 1.2

January 16, 2019

Final Version

Quarkslab

Frédéric Raynal

Position
CEO Quarkslab

Contact Information

fraynal@quarkslab.com

OSTIF \

Derek Zimmer

Position

CEO OSTIF

Contact Information

derek@ostif.org

Ref.: 18-04-720-REP

Quarkslab SAS

—_

fraynal@quarkslab.com
derek@ostif.org

2. Executive Summary

This report describes the results of the security assessment of OpenSSL 1.1.1 made by Quarkslab,
and funded by OSTIF. Two Quarkslab engineers worked on this audit for a total of 60 man
days of study.

Scope of the audit :
« TLS1.3
« PRNG
o SRP
« CAPI

2.1 Security/Bug concerns

Two client Denial of Service vulnerability and bug were found, allowing an attacker to crash
the client:

2.1.1 Bug

o Ensure we send an alert on error when processing a ticket. Cf. https://github.com/
openssl/openssl/pull /6852

2.1.2 Vulnerability
o Resolve some TLSv1.3 alert issues. Cf. https://github.com/openssl/openssl/pull /6887

All these bug and vulnerability were fixed before OpenSSL 1.1.1 was launched.

2.2 Security overview

2.2.1 TLS 13
e The implementation follows the RFC 8446.

e The quality of the source code is good.

2.2.2 PRNG
o The implementation follows the NIST standard SP800-90A (Rev. 1).

e The quality of the source code could be improved.

Ref.: 18-04-720-REP Quarkslab SAS 2

https://github.com/openssl/openssl/pull/6852
https://github.com/openssl/openssl/pull/6852
https://github.com/openssl/openssl/pull/6887

OpenSSL Security Assessment, Release 1.2

2.2.3 SRP

e The protocol seems to be correctly implemented.
e The quality of the source code could be improved.

o The inaccurate SRP comment (mentioned at the beginning of section 6.3, and then later in
6.3.4) was actually recently corrected (independently of this report) in commit 495ale5c3
(master branch only).

2.2.4 CAPI

e The quality of the source code could be improved.

CAPI is the interface to the Microsoft Cryptographic API, it is used to get certificates and keys
from Windows certificate store, encrypt/decrypt/sign with RSA/DSA. ..

CAPI is not directly exposed to the end user so there is no way to compromise OpenSSL with
it.

Malicious users should have admin access to potentially add a corrupted certificate in order
to compromise OpenSSL CAPI. We didn’t find any solution to fuzz CAPI, so we manually

reviewed the code. We didn’t find any vulnerability during this review. The CAPI code (en-
gines/e_ capi.c) clearly lacks of comment.

2.2.5 Recommendations

We recommend to the OpenSSL Security Team to integrate the fuzzing methodology we have
developed during this security assessment and to fuzz new features of TLS 1.3. This fuzzing
methodology could be used to fuzz older TLS versions as well.

The quality of the source code should be improved with more pointers verification.

2.2. Security overview 3

3. Introduction

3.1 Context and Scope

This report describes the security assessment made by Quarkslab on OpenSSL 1.1.1, an open
source library used to secure network communications.

This audit has been carried out at the request of the Open Source Technology Improvement
Fund. Its goal was to evaluate the security of OpenSSL 1.1.1.

Two engineers from Quarkslab worked on this audit, for a total of 60 man days of study.

The Internet Engineering Task Force has been in charge of defining the TLS protocol. The 21st
of March, 2018, IETF finalized TLS 1.3.

This study focuses on the source code of OpenSSL 1.1.1 especially TLS 1.3, PRNG, SRP and
CAPL

The version of OpenSSL source code that we analyzed is available in OpenSSL’s Github reposi-
tory with the dcb55e4f70f401¢5869410d6a0c068c18c3fd53ec commit hash. At the moment of the
analysis OpenSSL 1.1.1 supports the draft 26 of TLS 1.3.

3.1.1 Past Security Vulnerabilities

OpenSSL is a software library developed since 1998. A number of vulnerabilities in its source
code have been published. Recent security advisories are referenced in the Security Announce-
ments webpage of the project: https://www.openssl.org/news/vulnerabilities.html

We decided to consider only the vulnerabilities found after 2014, assuming that source code
older than five years widely differs from the current one.

Memory Corruption :

CVE-2017-3733 : During a renegotiation handshake, if the Encrypt-Then-Mac extension
is negotiated while it was not in the original handshake (or vice-versa) then this can cause
OpenSSL to crash (dependent on cipher suites). Both clients and servers are affected.

CVE-2016-7054 : TLS connections using *-CHACHA20-POLY1305 cipher suites are susceptible
to a DoS attack by corrupting larger payloads. This can result in an OpenSSL crash. This issue
is not considered to be exploitable beyond a DoS.

CVE-2016-6304 : A malicious client can send an excessively large OCSP Status Request
extension. If that client continually requests renegotiation, sending a large OCSP Status Request
extension each time, then there will be unbounded memory growth on the server. This will
eventually lead to a Denial Of Service attack through memory exhaustion. Servers with a
default configuration are vulnerable even if they do not support OCSP. Builds using the “no-
ocsp” build time option are not affected. Servers using OpenSSL versions prior to 1.0.1g are
not vulnerable in a default configuration, instead only if an application explicitly enables OCSP
stapling support.

CVE-2015-0291 : ClientHello sigalgs DoS. If a client connects to an OpenSSL 1.0.2 server
and renegotiates with an invalid signature algorithms extension a NULL pointer dereference
will occur. This can be exploited in a DoS attack against the server.

CVE-2014-0160 : The TLS and DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do
not properly handle Heartbeat Extension packets, which allows remote attackers to obtain
sensitive information from process memory via crafted packets that trigger a buffer overread, as

Ref.: 18-04-720-REP Quarkslab SAS 4

https://www.openssl.org/news/vulnerabilities.html

OpenSSL Security Assessment, Release 1.2

demonstrated by reading private keys, related to d1_both.c and t1_lib.c, aka the Heartbleed
bug.

Cryptographic vulnerabilities :

CVE-2018-0732 : During key agreement in a TLS handshake using a DH(E) based cipher
suites a malicious server can send a very large prime value to the client. This will cause the
client to spend an unreasonably long period of time generating a key for this prime resulting in
a hang until the client has finished. This could be exploited in a Denial Of Service attack.

CVE-2016-0703 : This issue only affected versions of OpenSSL prior to March 19th 2015
at which time the code was refactored to address vulnerability CVE-2015-0293. s2_srvr.c did
not enforce that clear-key-length is 0 for non-export ciphers. If clear-key bytes are present for
these ciphers, they displace encrypted-key bytes. This leads to an efficient divide-and-conquer
key recovery attack: if an eavesdropper has intercepted an SSLv2 handshake, they can use the
server as an oracle to determine the SSLv2 master-key, using only 16 connections to the server
and negligible computation. More importantly, this leads to a more efficient version of DROWN
that is effective against non-export cipher suites, and requires no significant computation.

CVE-2015-0285 : Under certain conditions an OpenSSL 1.0.2 client can complete a handshake
with an unseeded PRNG. If the handshake succeeds then the client random that has been used
will have been generated from a PRNG with insufficient entropy and therefore the output may
be predictable.

CVE-2014-0224 : An attacker can force the use of weak keying material in OpenSSL SSL/TLS
clients and servers. This can be exploited by a Man-in-the-middle (MITM) attack where the
attacker can decrypt and modify traffic from the attacked client and server.

3.1.2 OpenSSL Source code architecture

OpenSSL is composed of two separate C libraries: libcrypto and libssl. Liberypto is in charge
of general-purpose cryptography. This library can be used alone, without using libssl. libssl is
a SSL/TLS library using libcrypto methods. Code specific to TLS 1.3 is located under the ss1,
ssl/statem and ssl/record directories.

crypto :

This directory contains the code related to the libcrypto library.
crypto/rand

The PRNG is implemented in this directory.

crypto/srp

This section of libcrypto contains the main part of the code in charge of SRP.
ssl :

In this directory we can find code managing the main part of libssl, communications with
liberypto, structures definition and SSL/TLS context initialization.

ssl/statem :

This directory contains the source code responsible for extensions parsing, messages parsing
and client/server state machine for SSL/TLS sessions.

ssl/record :

3.1. Context and Scope 5

OpenSSL Security Assessment, Release 1.2

Source code in charge of TLS record compression, decompression, encoding, decoding, read and
write.

engines :

Source code in the engines directory provides interfaces to hardware implementation of specific
cryptographic operations like CAPI.

3.1. Context and Scope 6

4. TLS 1.3 implementation

4.1 Methodology

We chose to focus our analysis with fuzzing methods in order to detect memory errors and
invalid behaviors. During the fuzzing phase, we reviewed the source code manually.

As OpenSSL is already fuzzed by OpenSSL itself and OSS-Fuzz, we decided to use a different
methodology of fuzzing to discover bugs that were not revealed by already existing fuzzers. Two
kinds of fuzzer were developed in order to cover the maximum of possibilities of OpenSSL.

For the fuzzing phase, the library was compiled with TLS 1.3, ASAN and debug mode activated.
ASAN was used in order to detect memory corruption that doesn’t lead to a crash in normal
compilation.

$./config no-shared enable-tlsl_3 enable-asan -debug

4.1.1 TCP Proxy

The first fuzzer we developed was a TCP proxy. This proxy was placed in a Man In The Middle
position to alter TCP streams.

Alterations done by the fuzzer:
o Packet mutation (Bitflip)
o Packet injection (Alert, CSS...)
o Packet drop

e Packet duplication

A TLS 1.3 client and a ping server were developed. The fuzzer altered both the client and server
streams to find vulnerabilities in both sides.

——» Altered stream

— » Legit stream

After some tests, we realized that this fuzzer had a low probability to find revelant bugs, due
to a low speed of fuzzing and poor fuzzing strategies. We decided to stop this approach and
move to code instrumentation.

4.1.2 Code instrumentation

In order to fuzz TLS 1.3 in a different manner than OpenSSL and OSS-Fuzz, we decided to
modify the source code of OpenSSL to be able to save and restore a TLS session to and from a
file.

Ref.: 18-04-720-REP Quarkslab SAS 7

OpenSSL Security Assessment, Release 1.2

To make it possible, hooks were placed in the OpenSSL source code. These hooks save and
restore TLS Records and internal packets. Hooks were placed in functions ss13_read_n of
ssl/record/rec_layer_s3.c, tls_get_message_header of ssl/statem/statem_lib.c and
read_state_machine of ssl/statem/statem.c.

To create an initial corpus of sessions from tlsl3ccstest and sslapitest, two tests from the
OpenSSL test set were serialized using the installed hooks in the source code. These tests
were chosen because they use the latest features of TLS 1.3 (Extensions, Early Data, HRR,...)
and this is useful to have a good coverage of TLS 1.3.

Due to key generation and timestamp in NewSessionTicket, sessions generated by these pro-
grams were dynamic and therefore not replayable. To solve this problem, RNG and time were
fixed, to have predictable TLS sessions that can be injected without error.

RNG was fixed using this code:

static void stdlib_rand_cleanup() {}
static void stdlib_rand_add(const void *buf, int num, double add_entropy) {}
static int stdlib_rand_status() { return 1; }

static void stdlib_rand_seed(const void *buf, int num)

{

srand(*((unsigned int *) buf));
}
static int stdlib_rand_bytes(unsigned char *buf, int num)
{

for(int index = 0; index < num; ++index){

buf [index] = rand() % 256;

}

return 1;
}

RAND_METHOD stdlib_rand _meth = {
stdlib_rand_seed,
stdlib_rand_bytes,
stdlib_rand_cleanup,
stdlib_rand_add,
stdlib_rand_bytes,
stdlib_rand_status

bg

RAND_METHOD #RAND_stdlib() { return &stdlib_rand_meth; }

And initialized with this code in the main function of each test:

RAND_set_rand_method (RAND_stdlib());
unsigned int seed = 0x00beef00;
RAND_seed(&seed, sizeof (seed));

Time was fixed by overloading the time function :

time_t time(time_t *t){
time_t p_time_t;
memset (&p_time_t, 0, sizeof(time_t));
return p_time_t;

4.1. Methodology 8

OpenSSL Security Assessment, Release 1.2

Two fuzzing engines were used during this analysis, HonggFuzz and AFL. HonggFuzz was used
in association of ASAN because AFL gives false positives with ASAN.

Fuzzers ran over a week on a i7-8550U with 6 cores dedicated to the fuzzing process. We
recommend running these fuzzers on more powerful stations and in a long-term process.

4.1.3 Code review

During the fuzzing phase, we reviewed the code of the state machine, extensions parsing and
messages parsing. We didn’t find anything relevant.

4.2 Internal Mechanisms of TLS 1.3

TLS stands for Transport Layer Security and is the successor of SSL. TLS brings secure com-
munication between clients and servers. It is used by many protocols such as HTTP, SMTP,
POP3, FTP, OpenVPN. ..

4.2.1 Handshake

1. The TLS 1.3 handshake starts with the ClientHello message. This message is con-
structed from cryptographic information such as supported protocols and supported Ci-
pherSuites. In this message there is also the client’s key share.

2. The server replies with a ServerHello message that consists of the key agreement protocol
it has chosen, the server’s key share, its certificate and the ServerFinished message.

3. The client checks the server certificate, generates keys since it has the key share of the
server, and sends the ClientFinished message. From here on, the encryption of the data
begins.

4.2.2 0-RTT

0-RTT Resumption permits a zero-round trip handshake if the client has connected to the server
before. This is done by saving secret information (SessionID) of a past session.

4.2.3 Hello Retry Request

HRR is a message sent by the server in case of a configuration mismatch between ServerHello
and ClientHello. When a client receives an HRR, the client must resend a ClientHello to
renegotiate the TLS connection.

4.2.4 Security
TLS 1.3 removes obsolete and insecure ciphers/hash functions from TLS 1.2 :
o SHA-1
« RC4
« DES
« 3DES
o AES-CBC
« MD5

4.2. Internal Mechanisms of TLS 1.3 9

OpenSSL Security Assessment, Release 1.2

All handshake messages after the ServerHello are now encrypted.

4.3 Security problem and bug identified in TLS 1.3 of OpenSSL

In this section, we are presenting two bugs we have found in our fuzzing campaign. These two
bugs were found with AFL and our patch available in the appendix.

4.3.1 Client Denial of Service Bug (Debug mode)

If the server sends a NewSessionTicket extension that is larger than the size given in
the TLS Record, this causes the tls_process_new_sessions_ticket function to return a
MSG_PROCESS_ERROR state.

MSG_PROCESS_RETURN tls_process_new_session_ticket (SSL *s, PACKET *pkt)

if (SSL_IS_TLS13(s)) {
PACKET extpkt;
if (!'PACKET_as_length_prefixed_2(pkt, &extpkt)
|| PACKET remaining(pkt) !'= 0
|| !'tls_collect_extensions(s, &extpkt,
SSL_EXT_TLS1 3 _NEW_SESSION TICKET,
&exts, NULL, 1)
[| !'tls_parse_all_extensions(s,
SSL_EXT_TLS1_3_NEW_SESSION_TICKET,
exts, NULL, 0, 1)) {

/* SSLfatal () already called */
goto err;

static SUB_STATE_RETURN read_state_machine(SSL *s)
ret = process_message(s, &pkt);

/* Discard the packet data */
s—>init_num = 0;

switch (ret) {

case MSG_PROCESS_ERROR:
check_fatal(s, SSL_F_READ_STATE_MACHINE);
return SUB_STATE_ERROR;

Debug :

ssl/statem/statem.c:664: OpenSSL internal error: Assertion failed: (s)->statem.in_
—init && (s)->statem.state == MSG_FLOW_ERROR

Debug Stack Trace :

#0 __GI_raise (sig=sig@entry=6) at ../sysdeps/unix/sysv/linux/raise.c:51

#1 0x00007ffff7632231 in __GI_abort () at abort.c:79

#2 0x00000000005350dc in OPENSSL_die (message=<optimized out>, file=<optimized out>,
—line=<optimized out>) at crypto/cryptlib.c:355

#3 0x0000000000480dab5 in ossl_assert_int (expr=<optimized out>, exprstr=<optimized

—out>, file=<optimized out>, line=<optimized out>) at include/intefnaitfworeppil ibxhpase)

4.3. Security problem and bug identified in TLS 1.3 of OpenSSL 10

OpenSSL Security Assessment, Release 1.2

(continued from previous page)

#4 read_state_machine (s=<optimized out>) at ssl/statem/statem.c:664

#5 state_machine (s=0xb21210, server=<optimized out>) at ssl/statem/statem.c:428

#6 0x00000000004141a6 in ssl3_read_bytes (s=0xb21210, type=<optimized out>, recvd_
—type=0x0, buf=<optimized out>, len=<optimized out>, peek=0, readbytes=<optimized,
—out>) at ssl/record/rec_layer_s3.c:1631

#7 0x000000000042736b in ssl3_read_internal (s=0xb21210, buf=0x7fffffffe097, len=1,
—peek=0, readbytes=0x7fffffffe078) at ssl/s3_lib.c:4414

#8 0x0000000000443558 in ssl_read_internal (s=0xb21210, buf=0x7fffffffe097, num=1,
—readbytes=0x7fffffffe078) at ssl/ssl_lib.c:1740

#9 0x0000000000443ab5 in SSL_read_ex (s=0x2, buf=0x7fffffffdb70, num=0,
—readbytes=0x7ffff7630e7b <__GI_raise+267>) at ssl/ssl_lib.c:1768

#10 0x0000000000406b35 in create_ssl_connection (serverssl=0xbifa30,,
—sclientssl=0xb21210, want=0) at test/ssltestlib.c:672

#11 0x00000000004071e3 in test_tlsl3ccs (tst=11) at test/tlsl3ccstest.c:308

#12 setup_tests () at test/tlsl3ccstest.c:542

#13 0x00000000004dfd53 in main (argc=<optimized out>, argv=0x7fffffffe2a8) at test/
—testutil/main.c:50

4.3.2 Client Denial of Service Issue

If the server sends an invalid length for SessionId extension in the ServerHello, and the
client and the server are in a HRR waiting state, or if the server sends an invalid cipher suite
in the ServerHello, and the client and the server are in a HRR waiting state, then the client
tries to send an encrypted alert. Because the secure channel is not established, this causes the
generation of a new alert leading to a stack overflow.

Example 1 :

MSG_PROCESS_RETURN tls_process_server_hello(SSL *s, PACKET *pkt)

/* Get the session—-id. */
if (!PACKET_get_length_prefixed_1(pkt, &session_id)) {
SSLfatal(s, SSL_AD DECODE_ERROR, SSL_F_TLS_ PROCESS_SERVER_HELLO,
SSL_R_LENGTH_MISMATCH) ;
goto err;

Example 2 :

MSG_PROCESS_RETURN tls_process_server_hello(SSL *s, PACKET *pkt)

if (!PACKET_get_bytes(pkt, &cipherchars, TLS_CIPHER_LEN)) {
SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_TLS_PROCESS_SERVER_HELLO,
SSL_R_LENGTH_MISMATCH) ;
goto err;

}

if (!set_client_ciphersuite(s, cipherchars)) {
/* SSLfatal () already called */
goto err;

static int set_client_ciphersuite(SSL *s, const unsigned char *cipherchars)

(continues on next page)

4.3. Security problem and bug identified in TLS 1.3 of OpenSSL 11

OpenSSL Security Assessment, Release 1.2

(continued from previous page)

c = ssl_get_cipher_by_char(s, cipherchars, 0);
if (c == NULL) {
/* unknown cipher */
SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_SET_CLIENT_CIPHERSUITE,
SSL_R_UNKNOWN_CIPHER_RETURNED) ;
return O;

Debug :

tlsl13ccstest: ssl/statem/statem.c:122: void ossl_statem_fatal(SSL *, int, int, int,,
—»const char *, int): Assertion “s->statem.state != MSG_FLOW_ERROR' failed.

ssl/record/ssl3_record_tls13.c:81: OpenSSL internal error: Assertion failed: s->s3->
—tmp.new_cipher != NULL

Debug Stack Trace :

#0 __GI_raise (sig=sig@entry=6) at ../sysdeps/unix/sysv/linux/raise.c:51
#1 0x00007ffff7632231 in __GI_abort () at abort.c:79
#2 0x00007ffff76299da in __assert_fail base (fmt=0x7ffff777cd48 "Yshshs:%u: %s
—%sAssertion “Ys' failed.\n)n", assertion=assertion@entry=0x8lcc3c "s->statem.state !
<= MSG_FLOW_ERROR",

file=file@entry=0x81lccbe "ssl/statem/statem.c", line=line@entry=122,,
—function=function@entry=0x81cc72 "void ossl_statem_fatal(SSL *, int, int, int,
—sconst char *, int)") at assert.c:92
#3 0x00007ffff7629a52 in __GI___assert_fail (assertion=0x81cc3c "s->statem.state !=
—MSG_FLOW_ERROR", file=0x81ccbe "ssl/statem/statem.c", line=122,

function=0x81cc72 "void ossl_statem_fatal(SSL *, int, int, int, const char *, int)
—") at assert.c:101
#4 0x000000000047de78 in ossl_statem_fatal (s=0xb33700, al=80, func=401, reason=68,
—file=0x8184d0 "ssl/record/ssl3_record.c", line=1056) at ssl/statem/statem.c:122
#5 0x000000000041b7fd in tlsl_enc (s=<optimized out>, recs=<optimized out>, n_recs=
—<optimized out>, sending=<optimized out>) at ssl/record/ssl3_record.c:1055
#6 0x0000000000412485 in do_ssl3_write (s=0xb33700, type=21, buf=0xb1dd70 "\002/", .
—pipelens=0x7fffffffdda8, numpipes=<optimized out>, create_empty_fragment=0, written=
—<optimized out>)

at ssl/record/rec_layer_s3.c:1018
#7 0x00000000004290f1 in ssl3_dispatch_alert (s=0xb33700) at ssl/s3_msg.c:78
#8 0x0000000000429033 in ssl3_send_alert (s=0xb33700, level=2, desc=47) at ssl/s3_
—msg.c:60
#9 0x000000000047ddf0 in ossl_statem_fatal (s=0xb33700, al=47, func=369, reason=999,
—file=0x81d4b8 "ssl/statem/statem_clnt.c", line=1505) at ssl/statem/statem.c:127
#10 0x00000000004894f3 in tls_process_server_hello (s=<optimized out>, pkt=<optimized
—out>) at ssl/statem/statem_clnt.c:1444
#11 0x00000000004888af in ossl_statem_client_process_message (s=0xb33700,
—pkt=0x7fffffffdf60) at ssl/statem/statem_clnt.c:1016
#12 0x0000000000480903 in read_state_machine (s=<optimized out>) at ssl/statem/statem.
—C:657
#13 state_machine (s=0xb33700, server=<optimized out>) at ssl/statem/statem.c:428
#14 0x0000000000442ea7 in SSL_do_handshake (s=0xb33700) at ssl/ssl_lib.c:3619
#15 0x00000000004067c6 in create_ssl_connection (serverssl=0xb40f30,
—clientssl1=0xb33700, want=0) at test/ssltestlib.c:634
#16 0x0000000000407555 in test_tls13ccs (tst=11) at test/tlsi13ccstest.c:364
#17 setup_tests () at test/tlsl3ccstest.c:542

(continues on next page)

4.3. Security problem and bug identified in TLS 1.3 of OpenSSL 12

OpenSSL Security Assessment, Release 1.2

(continued from previous page)

#18 0x00000000004dfd33 in main (argc=<optimized out>, argv=0x7fffffffe2a8) at test/
—testutil/main.c:50

Stack Trace :

#0 0x00000000005aabc4 in EVP_MD_CTX_md (ctx=0x0) at crypto/evp/evp_lib.c:440
#1 0x000000000040fcfd in do_ssl3_write (s=0xb2f700, type=21, buf=0xb19d70 "\0OO2P",
—pipelens=0x7ffff£800148, numpipes=<optimized out>, create_empty_fragment=0, written=
—<optimized out>)

at ssl/record/rec_layer_s3.c:716
#2 0x0000000000428091 in ssl3_dispatch_alert (s=0xb2f700) at ssl/s3_msg.c:78
#3 0x0000000000427fd3 in ssl3_send_alert (s=0xb2f700, level=2, desc=80) at ssl/s3_
—msg.c:60
#4 0x000000000047c6ce in ossl_statem_fatal (s=0xb2f700, al=80, func=<optimized out>,,
—reason=<optimized out>, file=<optimized out>, line=<optimized out>) at ssl/statem/
—statem.c:127
#5 0x000000000041a8ff in tlsl_enc (s=<optimized out>, recs=0x7fffff800670, n_recs=
—<optimized out>, sending=<optimized out>) at ssl/record/ssl3_record.c:1055
#6 0x0000000000411565 in do_ssl3_write (s=0xb2f700, type=21, buf=0xb19d70 "\OO2P",
—pipelens=0x7ffff£801798, numpipes=<optimized out>, create_empty_fragment=0, written=
—<optimized out>)

#7332 0x0000000000428091 in ssl3_dispatch_alert (s=0xb2f700) at ssl/s3_msg.c:78
#7333 0x0000000000427fd3 in ssl3_send_alert (s=0xb2f700, level=2, desc=80) at ssl/s3_
—msg.c:60
#7334 0x000000000047c6ce in ossl_statem_fatal (s=0xb2f700, al=80, func=<optimized out>
—, reason=<optimized out>, file=<optimized out>, line=<optimized out>) at ssl/statem/
—statem.c:127
#7335 0x000000000041a8ff in tlsl_enc (s=<optimized out>, recs=0x7fffffffcc90, n_recs=
—<optimized out>, sending=<optimized out>) at ssl/record/ssl3_record.c:1055
#7336 0x0000000000411565 in do_ssl3_write (s=0xb2f700, type=21, buf=0xb19d70 "\0O2P",
—pipelens=0x7fffffffddb8, numpipes=<optimized out>, create_empty_fragment=0, written=
—<optimized out>)

at ssl/record/rec_layer_s3.c:1018
#7337 0x0000000000428091 in ssl3_dispatch_alert (s=0xb2f700) at ssl/s3_msg.c:78
#7338 0x0000000000427fd3 in ssl3_send_alert (s=0xb2f700, level=2, desc=50) at ssl/s3_
—msg.c:60
#7339 0x000000000047c6ce in ossl_statem_fatal (s=0xb2f700, al=50, func=<optimized out>
<, reason=<optimized out>, file=<optimized out>, line=<optimized out>) at ssl/statem/
—statem.c:127
#7340 0x0000000000487ab3 in tls_process_server_hello (s=<optimized out>, pkt=
—<optimized out>) at ssl/statem/statem_clnt.c:1444
#7341 0x0000000000486e6f in ossl_statem_client_process_message (s=0xb2f700,
—pkt=0x7fffff£f£df70) at ssl/statem/statem_clnt.c:1016
#7342 0x000000000047f195 in read_state_machine (s=<optimized out>) at ssl/statem/
—statem.c:657
#7343 state_machine (s=0xb2f700, server=<optimized out>) at ssl/statem/statem.c:428
#7344 0x0000000000441b37 in SSL_do_handshake (s=0xb2f700) at ssl/ssl_lib.c:3619

#7345 0x00000000004057c6 in create_ssl_connection (serverssl=0xb3cf30,
—clientssl=0xb2f700, want=0) at test/ssltestlib.c:634

#7346 0x0000000000406555 in test_tls13ccs (tst=11) at test/tlsl3ccstest.c:364

#7347 setup_tests () at test/tlsl3ccstest.c:542

#7348 0x00000000004de0d3 in main (argc=<optimized out>, argv=0x7fffffffe2b8) at test/
—testutil/main.c:50

4.3. Security problem and bug identified in TLS 1.3 of OpenSSL 13

OpenSSL Security Assessment, Release 1.2

4.4 Conclusion

TLS 1.3 seems to be correctly implemented in OpenSSL and the related code has a quite good
quality. The manual code review didn’t reveal any vulnerability in TLS 1.3. On the other
hand, our approach to fuzzing TLS 1.3 gave us some interesting results with two client denial
of service issues, but we didn’t find any bug on the server side. These bugs were disclosed to
OpenSSL Security Team and patched before the release of OpenSSL 1.1.1.

4.4. Conclusion 14

5. PRNG implementation

The core internals of the random generator in OpenSSL have been reimplemented for the release
of version 1.1.1. The implementation follows the NIST standard SP800-90A (Rev. 1) [SPS800-
90A]. In this section, we provide an expert opinion on this implementation and how it respects
the standard.

In OpenSSL, the following parameters are chosen:
e the DRBG is used in CTR mode

o the chosen block cipher is AES, with AES-256 as default (AES-128 and AES-192 are also
supported)

e by default, the generator uses a derivation function, but the code is constructed so that it
can be used without a derivation function by using the flag RAND_DRBG_FLAG_CTR_NO_DF.

5.1 API

Using the DRBG is really easy and users can’t make it wrong. Only the RAND_bytes or
RAND_priv_bytes' functions have to be called.

These functions take two parameters, the buffer which will receive the cryptographically strong
pseudo-random bytes and the requested size.

The initialization process of the DRBG is automatically done thanks to the call to
RUN_ONCE(&rand_init, do_rand_init) in the rand_lib.c:RAND_get_rand_method function.

NB: Here is an abstract of the documentation : RAND_bytes and RAND_priv_bytes are equiv-
alent, but RAND_priv_bytes uses a unique instance of the generator and so should be used for
sensitive materials (keys for example). For values that should not remain secret, you can use
RAND_bytes instead. This method does not provide ‘better’ randomness, it uses the same type
of CSPRNG. The intention behind using a dedicated CSPRNG exclusively for private values is
that none of its output should be visible to an attacker (e.g., used as salt value), in order to
reveal as little information as possible about its internal state, and that a compromise of the
“public” CSPRNG instance will not affect the secrecy of these private values.

5.2 Test Vectors

Test vectors for the standard SP800-90A are provided by NIST in the context of the Crypto-
graphic Algorithm Validation Program (CAVP)?. These test vectors are included in the standard
tests of OpenSSL, in the file openssl/test/drbg_cavs_data.c. The user can reproduce these
tests using the binary test/drbg_cavs_test generated after compilation.

The test vectors for the DRBG in CTR mode using AES-128, AES-192 and AES-256, both
using a derivation function or not, are all validated by the tests of OpenSSL (the vectors for
3KeyTDEA are not included).

It is interesting to note that other test vectors are included in the file openssl/test/drbgtest.
¢, but their origin could not be recovered.

! https://www.openssl.org/docs/manmaster/man3/RAND__ bytes.html
2 https: //csre.nist.gov /projects/cryptographic-algorithm-validation- program /random-number-generators

Ref.: 18-04-720-REP Quarkslab SAS 15

https://www.openssl.org/docs/manmaster/man3/RAND_bytes.html
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/random-number-generators

OpenSSL Security Assessment, Release 1.2

5.3 Implementation Details

5.3.1 Description of the Internals

The internals of the DRBG mechanism are located in the file crypto/rand/drbg_ctr.c, where
all the functions defined in the section 10.2 of [SP800-90A] can be found. We present in the
following table the correspondence between the C functions and the functions defined in the
standard.

Standard Implementation ‘
Block__Cipher__df (or df) ctr_df ()
CTR_DRBG_ Update ctr_update ()
CTR_ DRBG_ Instantiate_ algorithm | drbg_ctr_instantiate()

CTR__DRBG_ Reseed__ algorithm drbg_ctr_reseed()

CTR_ DRBG_ Generate__algorithm drbg_ctr_generate()
BCC ctr_BCC_update()

Block__Encrypt EVP_Cipher_Update()

The different parameters of the generator are stored in a RAND_DRBG object, which is a general-
ization for all types of DRBG. This object contains a RAND_DRBG_CTR object, which is defined
as the following structure:

Listing 5.1: openssl/crypto/rand/rand_lcl.h

/*
* The state of a DRBG AES-CTR.
*/
typedef struct rand_drbg_ctr_st {
EVP_CIPHER_CTX *ctx;
EVP_CIPHER_CTX *ctx_df;
const EVP_CIPHER *cipher;
size_t keylen;
unsigned char K[32];
unsigned char V[16];
/* Temporary block storage used by ctr_df */
unsigned char bltmp[16];
size_t bltmp_pos;
unsigned char KX[48];
} RAND DRBG_CTR;

This object contains two EVP_CIPHER_CTX, which are used to encrypt a block with AES. Two
encryption contexts are needed because two different keys are used, depending if the encryption
is done in the derivation function (ctr_df()) or not. The EVP_CIPHER object holds the type of
block cipher used and is affected in the drbg_ctr_init() function. The keylen parameter is
the same as described in the standard, and is 256 bits by default. The buffers K and V correspond
to the buffers Key and V in the standard. This structure is almost the equivalent of the working
state described in [SP800-90A], but some elements are missing like the reseed counter. These
elements can be found in the more abstract structure rand_drbg_st.

In the following section, we describe in detail how the ctr_update () function correctly imple-
ments the update function of the standard.

5.3. Implementation Details 16

OpenSSL Security Assessment, Release 1.2

5.3.2 Update Process

The parameters used in the function and their values are reminded here:
o seedlen: 384 bits
o keylen: 256 bits
e blocklen: 128 bits

o citr_len: 128 bits (this is the case in the pseudo-code example of the standard, and can
be inferred from the structure of ctr_update())

When seedlen is 384 bits, three rounds of the “while” loop in the CTR__DRBG_ Update
Process (section 10.2.1.2 of [SP800-90A]) will be executed, as the output of Block__Encrypt
is 128 bits, and 128*3 = 384. As ctr_len is equal to blocklen, each iteration will consist of:

e« V=V+1
e Encryption of V with Key

At the end of the “while” loop, the variable temp will contain the concatenation of three suc-
cessive encryptions of incremented versions of V. So if Vj is the initial value of V before the
loop, at the end of the loop we get:

temp = Encrypt(Key, Vo + 1) || Encrypt(Key, Vo + 2) || Encrypt(Key, Vo + 3)

As 384 is exactly 128*3, temp does not need to be truncated with the instruction 3 of the
process. Then, temp is XORed with the provided data, and Key and V are affected with part
of temp, giving the final values for Key and V' (we consider that the operator [n : m] represents
an access between bits n and m, m-th bit excluded):

Key = (Encrypt(Key, Vo + 1) || Encrypt(Key, Vo + 2)) @ provided__datal0 : 256]
V = Encrypt(Key, Vo + 3) @ provided__data[256 : 384]

We reproduce here part of the code of the function ctr_update(), with custom comments to
help understand the implementation.

__owur static int ctr_update(RAND_DRBG *drbg,
const unsigned char *inl, size_t inllen,
const unsigned char *in2, size_t in2len,
const unsigned char *nonce, size_t noncelen)

RAND_DRBG_CTR *ctr = &drbg->data.ctr;
int outlen = AES_BLOCK_SIZE;

/* First iteration */

inc_128(ctr);

if (!EVP_CipherUpdate(ctr->ctx, ctr->K, &outlen, ctr->V, AES_BLOCK_SIZE)
|| outlen !'= AES_BLOCK_SIZE)
return O;

/* Second iteration */
if (ctr->keylen != 16) {
inc_128(ctr);

(continues on next page)

5.3. Implementation Details 17

OpenSSL Security Assessment, Release 1.2

(continued from previous page)

if (!EVP_CipherUpdate(ctr->ctx, ctr->K+16, &outlen, ctr->V,
AES_BLOCK_SIZE)
|| outlen != AES_BLOCK_SIZE)
return 0O;
}
/* Third iteration */
inc_128(ctr);
if (!EVP_CipherUpdate(ctr->ctx, ctr->V, &outlen, ctr->V, AES_BLOCK_SIZE)
|| outlen '= AES_BLOCK_SIZE)
return O;

[...]

/* In our case, we use the derivation function */
if ((drbg->flags & RAND_DRBG_FLAG_CTR_NO_DF) == 0) {
/* When coming from instantiate, generate or reseed, the condition is true */
if (inl != NULL || nonce !'= NULL || in2 != NULL)
if (!'ctr_df(ctr, inl, inllen, nonce, noncelen, in2, in2len))
return O;
if (inllen)
ctr_XOR(ctr, ctr->KX, drbg->seedlen);
yL...]

if (!EVP_CipherInit_ex(ctr->ctx, ctr->cipher, NULL, ctr->K, NULL, 1))
return O;
return 1;

One can note that the ctr_update () function does not exhibit a “while” loop like in the stan-
dard. This is because the loop has been unrolled, with “if” conditions guarding the operations
depending of the length of seedlen. In our case, as seedlen is 384 bits, we go through the three
iterations. Fach iteration contains two instructions: a call to inc_128(ctr), which increments
the buffer V by one, and a block encryption with EVP_CipherUpdate. This seems to fit the
process of the standard. An interesting point is the absence of a temp variable: indeed, the
result of the encryption is directly affected in K or V (we remind that the second parameter of
EVP_CipherUpdate is the output buffer for the encryption), which leaves us with these values
after the three iterations:

K = Encrypt(Key, Vo + 1) || Encrypt(Key, Vo + 2)
V = Encrypt(Key, Vo + 3)

Then one just needs to check that the XOR with the provided data is performed. Another
particularity of the implementation is the presence of the derivation function in the code of
the update function. Indeed, in the standard, the df function is independent from the update
function, and usually called just before. The return of df is then passed as an argument in
the update function. This behavior can be witnessed in the instantiate, reseed and generate
functions of the standard.

The implementation has taken another approach by executing the derivation function inside
the update function just before computing the XOR (as the derivation function is applied on
the input of the update function, which are the provided data). A quick look at ctr_df ()
shows that the modified buffer is ctr->KX, it will thus contain the output of the derivation.
After the derivation function, the XOR is performed with ctr_XOR() between ctr->KX (the
provided__data after treatment by the derivation function) and the concatenation of K and V.
Then the values of K and V at the end of the function are as expected by the standard.

5.3. Implementation Details 18

OpenSSL Security Assessment, Release 1.2

The end of the function calls EVP_CipherInit_ex to update the cipher context with the new
value of K.

5.3.3 Coding Style

Some improvements should be considered. Reading the files was quite difficult due to the lack
of comments and the intensive use of macros.

Let’s take an example and try to understand the following call: RUN_ONCE(&rand_init,
do_rand_init)

The macro RUN_ONCE is defined by:

Listing 5.2: openssl/include/internal/thread_once.h

#define RUN_ONCE(once, intit) \
(CRYPTO_THREAD_run_once(once, init##_ossl_, #init) ? init## _ossl_ret_ : 0)

The second parameter init will be expanded thanks to the processor init##_ossl_. In our
case, RUN_ONCE(&rand_init, do_rand_init) will call the function do_rand_init_ossl_.

This function is not declared directly but is defined through the call to the macro
DEFINE_RUN_ONCE_STATIC (thread once.h) with the parameter do_rand_init, which adds
some glue.

Another encountered difficulty came from the use of ifdef, ifndef directives without comments
at the ending part. So it was quite difficult to see which parts of code will be compiled or not.
Here is an example with the end of the function rand_pool_acquire_entropy:

[...]
if (num == (int)bytes_needed)
bytes = bytes_needed;

rand_pool_add_end(pool, bytes, 8 * bytes);
entropy_available = rand_pool_entropy_available(pool);
b
if (entropy_available > 0)
return entropy_available;
X
X
endif

return rand_pool_entropy_available(pool) ;
endif

endif

#
b
#
#endif

It could be useful for the future developers to add a comment after each endif directive to
indicate from which if, ifdef, ifndef directive it refers to.

Also, there is a lack of defensive programming style. Even if a function is declared static (i.e.
internal to a file), its parameters should be checked. That is true especially with pointers. The
functions contained in the file drbg_ctr.c which implements the internals of the DRBG never
check their parameters. This practice is really dangerous and can lead to vulnerabilities. Even
if we focused our review on the new DRBG, this practice is global to the project. One of the
worst examples can be found in the TLS stack:

5.3. Implementation Details 19

OpenSSL Security Assessment, Release 1.2

EXT_RETURN tls_construct_stoc_ec_pt_formats(SSL *s, WPACKET *pkt,
unsigned int context, X509 *x,
size_t chainidx)

unsigned long alg _k = s->s3->tmp.new_cipher->algorithm_mkey;

[...]

We have also noticed that some parts of code should be mutualized. An example is the function
static void inc_128(RAND_DRBG_CTR *ctr) located in drbg_ctr.c, which is quite the same
as the static void ctr128_inc(unsigned char *counter) function located in ctr128.c. For
example, it could be possible to improve the code (in terms of speed) by using dedicated
instructions but it will require to modify the code at (at least) two places.

5.4 Entropy Sources

Entropy from the system is used in order to seed the generator. This source depends
on different characteristics (architecture, operating system...) of the hardware on which
OpenSSL is installed. We studied the two most common sources, which are Linux (De-
bian 9 testing) and Windows on x86-64 architecture. The function providing this entropy
is rand_pool_acquire_entropy() and can be found in rand_unix.c or rand_win.c.

5.4.1 Windows

On Windows, the rand_pool_acquire_entropy() gathers entropy from BCryptGenRandom on
Windows 7 or higher and from legacy CryptoAPI CryptGenRandom for earlier versions of Win-
dows. These two functions can be considered secure. We can note that, on Windows, the default
random number provider implements an algorithm for generating random numbers that comply
with the NIST SP800-90 standard, specifically the CTR_DRBG portion of the standard®. It
means that two DRBG which implements the NIST SP800-90 standard are chained.

5.4.2 Linux

On Linux, the function rand_pool_acquire_entropy() provides different methods to gather
entropy. The method can be chosen with the option —-with-rand-seed during compilation.
By default, the option “OS” is chosen. On Linux, this uses the system call getrandom()* that
draws entropy from urandom by default. We consider that on modern systems, this provides
enough entropy.

3 https://docs.microsoft.com/en-us/windows/desktop/api/bcerypt /nf-berypt-beryptgenrandom
* http://man7.org/linux/man-pages/man2/getrandom.2.html

5.4. Entropy Sources 20

https://docs.microsoft.com/en-us/windows/desktop/api/bcrypt/nf-bcrypt-bcryptgenrandom
http://man7.org/linux/man-pages/man2/getrandom.2.html

6. SRP implementation

6.1 Description

The Secure Remote Password (SRP) protocol is an augmented password-authenticated key
agreement. During this protocol, a client (or user) demonstrates to a server that it knows a
password, without sending the password itself. The password never leaves the client and is
unknown to the server. In the end, the SRP protocol creates a private key shared between the
client and server, in a manner similar to Diffie-Hellman.

We recall briefly the different parameters of the protocol here. Further details can be found in
[RFC2945]. This document describes the version 3 of the protocol, which is actually in version
6a. The differences are apparently small and focused on the value of k, as it can be seen in the
Wikipedia article about SRP'. Unfortunately, the official documents (IEEE 1363.2-2008 and
ISO/IEC 11770-4) describing the standard for version 6 are not publicly available. The version
chosen by OpenSSL is 6a.

The different parameters of the SRP protocols are:
e gand N = 2g+ 1 are both primes, and all arithmetic is performed modulo N.
e g is a generator of the multiplicative group Z}.
e H() is a hash function.
o k is a parameter of both sides. In version 6a, k = H(N, g).
e s is a small salt.
e [is an identifying username.
e p is the password of the user.
o v is the password verifier, v = g* with x = H(s,p) at minimum.

o A and B are random ephemeral keys (computed from random numbers a and b with
A=g*and B = ¢’

First, the client choses a small random salt s and computes x and v. The server stores s, v as
well as g and N, all indexed by the username I. The password verifier v will allow the server to
check that the client has the password corresponding to the username. We will not detail here
the computations done in order to get a shared key and the authentication (which is based on
a proof that the keys match).

The SRP protocol can be used for strong password authentication in SSL/TLS. The document
describing how to include SRP in TLS is [RFC505/).

6.2 Test Vectors

[REC5054] provides test vectors to demonstrate calculation of the verifier and premaster secret
(computed from B, k, g%, a, and A). These test vectors can be found in openssl/test/
srptest.c, and can be tested with the binary srptest. All test vectors passed.

! https://en.wikipedia.org/wiki/Secure Remote Password protocol

Ref.: 18-04-720-REP Quarkslab SAS 21

https://en.wikipedia.org/wiki/Secure_Remote_Password_protocol

OpenSSL Security Assessment, Release 1.2

6.3 Implementation

The inaccurate SRP comment was actually recently corrected in commit 495alebc3.

OpenSSL provides a set of cipher suites called TLS-SRP? that use the SRP protocol to provide
an authenticated key exchange. The chosen version of the protocol is 6a.

The implementation is mainly organized in the following way:

o openssl/crypto/srp/srp_lib.c contains the core internals of the protocol (computa-
tions of A, B, k...).

o openssl/crypto/srp/srp_viy.c contains more high-level functions, designed to create
the verifier, parse the server file containing it, or set different fields.

o openss/ssl/tls_srp.c contains the interface with the TLS layer, managing the connec-
tion between the server and the client using the SRP parameters.

The different numbers used in the protocols are of type BIGNUM, which is a type for big numbers
implemented by OpenSSL.

A first point of importance is that the code, while clear, is not well documented. Indeed,
there are very few comments to explain the content of the different functions, and one needs to
spend some time just to understand the interactions of the different parts of the code. A very
demonstrative example is the format of the verifier file, described wrongly by a comment in the
code (we will present the format later in section Format).

In order to setup a communication between a local client and servers, one first needs to create
a verifier file with the following commands:

$ touch password.srpv

$ openssl srp -srpvfile password.srpv -add -gn 1536 user

Enter pass phrase for user:

Verifying - Enter pass phrase for user:

$ cat password.srpv

V 47/CC92kpj1TAuH61aYS1GAq3zRwd7gHiv9j8KxzaCJDw01r1X4EVKHOpcjEeDjBGHqI4/ywF
J2WbJjZrLOBnoxSuEMyfCIhVZbkIiuLQHSno6DYj83qTAb3.13DyrEZjgXz4G5xfpL24ZtHX1/2SBG
AhZYFLKrbYtnfoNzFT33X9AuAPSLs9KJZ2gLEYZvPxt .0Yza8DyCqnrd734 jX2JwTBFEU7Bxmyeyv9
WbIapQMkJIncOGw2thquotGCTH/9 EsU3c/ApDnG. jFL7CdsfbjKVeot user 1536

The file password.srpv contains the verifier v, the salt s, the username I and the index of the
group parameters. It must be stored on the server. A quick way to setup a connection between
a server and a client using the SRP protocol is to use the commands s_server and s_client
provided by OpenSSL. Then the server is started with this command:

$ openssl s_server -nocert -cipher SRP -srpvfile password.srpv

The -nocert option deactivates the use of cipher suites that require a certificate for authenti-
cation (one can consider that the server is authenticated by its possession of the SRP verifier,
as pointed in [RFC505/).

The client is executed with this command (assuming that the server is on localhost):

$ /openssl s_client -srpuser user -cipher SRP -connect localhost

2 https://en.wikipedia.org/wiki/TLS-SRP

6.3. Implementation 22

https://en.wikipedia.org/wiki/TLS-SRP

OpenSSL Security Assessment, Release 1.2

6.3.1 Parameters

The parameters chosen by OpenSSL for the SRP protocol are:
o SHAI1 for the hash function
e 20 random bytes for the salt s
o x=H(s|H(I| “:” |p)) as defined in [RFC29/5].

[RFC5054] provides standard group parameters (N,g) to use for the protocol. OpenSSL’s
implementation uses these standard parameters groups, which are stored in the file openssl/
crypto/bn/bn_srp.c. The server only accepts these standard parameters as they are iden-
tified by their id (see Format), and the client checks the parameters of the server in
srp_verify_server_param().

6.3.2 Quality of the code

Computations in srp_lib.c seem well implemented and following the standard of [RF(C29/5].
The code lacks comments but is quite straightforward to understand when it comes to com-
putations on bignums. The same applies to the functions of srp_vfy.c: while understanding
what each function does is not too difficult, the different interactions between the functions and
the higher layers of TLS are often hard to picture. We also want to stress the importance of
checking the return values of the functions computing bignums: for example, in the function
SRP_create_verifier_BN(), the return value of SRP_Calc_x() is not checked. This means
that if the computation of x fails (e.g. if an allocation or a hash digest has failed), the exponen-
tiation afterwards with x is still performed with a null value for x, and will cause a segmentation
fault during the creation of the verifier file. We reproduce the relevant piece of code below:

Listing 6.1: openssl/crypto/srp/srp_vfy.c

x = SRP_Calc_x(salttmp, user, pass);

*verifier = BN_new();
if (*verifier == NULL)
goto err;

if (!BN_mod_exp(*verifier, g, x, N, bn_ctx)) {
BN_clear_free(*verifier);
goto err;

6.3.3 Security Checks

The [RF'C505/] contains several security checks (detailed in section 3 of the RFC) that should
be performed by the client and/or server:

e Check that A mod N and B mod N are not null: the function SRP_Verify_A_mod_N()
is called by the server in srp_generate_server_master_secret() (in the file tls_srp.
c) to check that A mod N is not null. Both the client and the server check B mod N,
in srp_verify_server_param() and srp_generate_client_master_secret() respec-
tively.

e Check that a and b are at least 256-bit random numbers: while there is no explicit
check, both parameters are instantiated with a call to RAND_priv_bytes() with a size of
SSL_MAX_MASTER_KEY_LENGTH (384 bits by default) and the return error code is checked.

6.3. Implementation 23

OpenSSL Security Assessment, Release 1.2

One can note the use of RAND_priv_bytes() instead of RAND_bytes(), which is fitting
for sensitive buffers.

e Check that N is large enough: the client performs this check in
srp_verify_server_param().

A few other recommendations are given about the high-level layers of the protocol (mainly
about resuming the session, preventing repeated connections from a malicious user...), but we
had less time to study this part of the protocol and thus could not check the presence of these
security measures.

6.3.4 Format

The format of the verifier file (in our setup, password.srpv) is described in a comment over
the function SRP_VBASE_init() (in srp_vfy.c) that parses the file. However, we found that
this description does not provide the right order for the parameters, and thus we detail here
the format as we understand it.

We recall an example of the content of password.srpv:

V 47/CC92kpj1TAuH61aYS1GAq3zRwd7gHiv9j8KxzaCIDwO1r1X4EVKHOpC jEeDjBGHGI4/ywF
J2WbJ jZrLOBnoxSuEMyfCIhVZbkIiuLQHSno6DY j83qTAb3.13DyrEZjgXz4G5xfpL24ZtHX1/2SBG
AhZYFLKrbYtnfoNzFT33X9AuAP5Ls9KJZ2gLEYZvPxt . 0Yza8DyCqnrd734 jX2JwTBFEU7Bxmyeyv9
WbIapQMkJIncOGw2thquotGCTH/9 EsU3c/ApDnG. jFL7CdsfbjKVeot user 1536

The “offsets” (indexing the words of the files, not the characters) used to parse the file can be
found in openssl/include/openssl/srp.h:

Listing 6.2: openssl/include/openssl/srp.h:95

define DB_srptype 0
define DB_srpverifier 1
define DB_srpsalt 2
define DB_srpid 3
define DB_srpgh 4
define DB_srpinfo 5

H OB R R KRR

So we understand that the file is composed of the following fields:
o a first word representing the type of the file (in our case, it is DB_SRP_VALID).

o the second being the verifier v encoded in base64 (it is indicated in the code of srp_vfy.c
that SRP uses its own variant of base64 encoding).

e then the salt s used to compute the verifier, and encoded in base64.
o the identifying username I.

o the identifying number of the group parameters (NN, g): this number is just the size of the
parameters.

o optional info about the user than can be added when creating the file.

6.3.5 Fuzzing

In order to fuzz the TLS 1.3 part of SRP, we used the same technique we used to fuzz the core
part of TLS 1.3 and the client and the server we developed. The TLS 1.3 part of SRP has a

6.3. Implementation 24

OpenSSL Security Assessment, Release 1.2

very low number of lines of code. We didn’t discover any vulnerability in SRP using fuzzing.
During the SRP fuzzing, we reviewed the code of the TLS 1.3 part of SRP, and we didn’t find
any vulnerability in it.

6.4 Conclusion

The protocol seems to be correctly implemented: the underlying operations are correct, and we
were able to successfully setup a connection between a server and a client. Nevertheless, the
code lacks clarity, for example comments explaining how the different functions interact and
when they are called. In particular, the higher levels of the protocols are the most difficult
to understand. There also seems to be some oversights on checking the return values of some
functions, as shown in section Quality of the code. A point we did not have time to study during
the audit is the handling of secrets a and b.

6.4. Conclusion 25

7. Appendix

7.1 OpenSSL Patch

Listing 7.1: fuzzing.patch

diff --git a/ssl/packet_locl.h b/ssl/packet_locl.h
index 8e553e62b5..99f493466c 100644

--- a/ssl/packet_locl.h

+++ b/ssl/packet_locl.h

@@ -24,7 +24,10 @@ extern "C" {

typedef struct {
/* Pointer to where we are currently reading from */
- const unsigned char *curr;
//const unsigned char *curr;
/*MYCODE*/
unsigned char *curr;
/*MYCODE*/
/* Number of bytes remaining */
size_t remaining;
} PACKET;
diff --git a/ssl/record/rec_layer_s3.c b/ssl/record/rec_layer_s3.c
index 61010f4e72..591eac09d7 100644
--- a/ssl/record/rec_layer_s3.c
+++ b/ssl/record/rec_layer_s3.c
@@ -166,6 +166,9 @@ const char *SSL_rstate_string(const SSL *s)
/*
* Return values are as per SSL_read()
*/
+/*MYCODE*/
+extern int hook_flag;
+/*MYCODE*/
int ssl13_read n(SSL *s, size_t n, size_t max, int extend, int clearold,
size_t *readbytes)

+ + + +

{
@@ -294,6 +297,23 @@ int ssl3_read_n(SSL *s, size_t n, size_t max, int extend, int,
—clearold,

s—->rwstate = SSL_READING;

/* TODO(size_t): Convert this function */

ret = BIO_read(s->rbio, pkt + len + left, max - left);

/*MYCODE*/
size_t len = (max - left);
if(len == 5){
uint8_t* u8_data = pkt + len + left;
printf ("RECORD:\n") ;
dump_buffer (u8_data, len);
if (hook_flag == -1){
save_to_file(u8_data, len);
Yelsed{
printf ("NEW_RECORD :\n");
read_from_file(u8_data, len);
dump_buffer (u8_data, len);

+ + + + + + + + + ++ + o+

(continues on next page)

Ref.: 18-04-720-REP Quarkslab SAS 26

OpenSSL Security Assessment, Release 1.2

(continued from previous page)

T }
+ /*MYCODEx*/
+

if (ret >= 0)
bioread = ret;
} else {

diff --git a/ssl/statem/statem.c b/ssl/statem/statem.c

index 1£221e7542..bleceef496 100644

--- a/ssl/statem/statem.c

+++ b/ssl/statem/statem.c

@@ -529,6 +529,9 @@ static int grow_init_buf(SSL *s, size_t size) {
* control returns to the calling application. When this function is recalled we
* will resume in the same state where we left off.

*/
+/*MYCODE*/
+extern int hook_flag;
+/*MYCODE*/
static SUB_STATE_RETURN read_state_machine(SSL *s)
{

OSSL_STATEM *st = &s->statem;
@@ -629,6 +632,15 @@ static SUB_STATE_RETURN read_state_machine(SSL *s)
ERR_R_INTERNAL_ERROR);
return SUB_STATE_ERROR;
}
/*MYCODEx*/
dump_packet (&pkt) ;
if (hook_flag == -1){
save_to_file(pkt.curr, pkt.remaining);
Yelseq{
read_from_file(pkt.curr, pkt.remaining);
dump_packet (&pkt) ;
}
/*MYCODE*/
ret = process_message(s, &pkt);

+ + + + + 4+ + + 4+

/* Discard the packet data */

diff --git a/ssl/statem/statem_lib.c b/ssl/statem/statem_lib.c

index 44c9c2c856..631£032e2c 100644

--- a/ssl/statem/statem_lib.c

+++ b/ssl/statem/statem_lib.c

@@ -1093,6 +1093,12 @@ WORK_STATE tls_finish_handshake(SSL *s, WORK_STATE wst, int,
—clearbufs, int stop)

return WORK_FINISHED_STOP;
}

+/*MYCODE*/
+int hook_flag = -1;
+void set_hook_index(int index){
+ hook_flag = index;
+}
+/*MYCODE*/

int tls_get_message_header(SSL *s, int *mt)

{

/% s->init_num < SSL3_HM_HEADER LENGTH */

(continues on next page)

7.1. OpenSSL Patch 27

OpenSSL Security Assessment, Release 1.2

(continued from previous page)

@@ -1108,10 +1114,24 @@ int tls_get_message_header(SSL *s, int *mt)
&p[s->init_num],
SSL3_HM_HEADER_LENGTH - s->init_num,
0, &readbytes);

+ /*MYCODE*/
+ if (4 > 0) {
+ printf ("HEADER:\n");
+ dump_buffer (&p[s->init_num], readbytes);
¥ if (hook_flag == -1){
+ save_to_file(&p[s->init_num], readbytes);
+ Yelsed{
+ read_from_file(&p[s->init_num], readbytes);
+ printf ("NEW_HEADER :\n");
& dump_buffer (&p[s->init_num], readbytes);
+ }
+ }
+ /*MYCODE*/
if (i <= 0) {
s—>rwstate = SSL_READING;
return 0O;
}
+

if (recvd_type == SSL3_RT_CHANGE_CIPHER_SPEC) {
/%
* A ChangeCipherSpec must be a single byte and may not occur
diff --git a/ssl/statem/statem_srvr.c b/ssl/statem/statem_srvr.c
index 60e0bc7373..aca30a6b45 100644
--- a/ssl/statem/statem_srvr.c
+++ b/ssl/statem/statem_srvr.c
@@ -1081,6 +1081,78 @@ size_t ossl_statem_server_max_message_size(SSL *s)
}
}

+/*MYCODE*/

+#define MIN(a,b) (((a)<(b))?(a): (b))
+extern int hook_flag;

+FILE *input_file = NULL;

+void set_input_filename(char *filename)

+{

+ if (hook_flag == -2){

S printf ("use set_hook_index before !\n");
+ exit (0);

i }

+ if (hook_flag == -1){

+ input_file = fopen(filename, "w");

+ Yelsed{

+ input_file = fopen(filename, "r");
+* }

+}

+

+void save_to_file(uint8_ t* data, size_t len)
il

+ if (input_file == NULL){

+ return;

+ }

+ if (data == NULL){

(continues on next page)

7.1. OpenSSL Patch 28

OpenSSL Security Assessment, Release 1.2

(continued from previous page)

+ return;

+ }

+ fwrite(data, 1, len, input_file);

I

+

+void read_from_file(uint8_t* data, size_t len)
+{

+ if (input_file == NULL){

+ return;

+* }

+ if (data == NULL){

+ return;

+ }

+ fread(data, sizeof(char), len, input_file);
+}

+

+void dump_buffer(char *buffer, size_t len)
+{

+ for(size_t i=0; i<len; i++){

s printf ("%02x ", buffer[i] & OxFF);
+ if (i%8 == T{

+ printf (" DE

+ }

+ if (i%16 == 15){

¥ printf("\n");

+* }

+ }

+ if (len%16 '= 15){

+ printf ("\n");

+ }

+ printf("\n");

+}

+

+uint32_t check_buffer(uint8_t* buffer, size_t len)
+{

+ uint32_t check = 0;

+ for(size_t i=0; i<len; i++){

+ check += buffer[i];

+ }

+ return check;

I

+

+void dump_packet (PACKET* pkt)

+{

+ printf ("dump_packet (len:%d check:%08x):\n", pkt->remaining, check_buffer (pkt->
—curr, pkt->remaining));

+ dump_buffer (pkt->curr, pkt->remaining);
+}

+/*MYCODE*/

+

/*

* Process a message that the server has received from the client.

*/

diff --git a/test/tlsl3ccstest.c b/test/tlsl3ccstest.c

(continues on next page)

7.1. OpenSSL Patch 29

OpenSSL Security Assessment, Release 1.2

(continued from previous page)

index 41e4896fa9..a14f217ce8 100644

--- a/test/tls13ccstest.c

+++ b/test/tls13ccstest.c

@@ -483,14 +484,61 @@ static int test_tls13ccs(int tst)
return ret;

3

+/*MYCODE*/

+#include <openssl/rand.h>

+

+static void stdlib_rand_cleanup() {}

+static void stdlib_rand_add(const void *buf, int num, double add_entropy) {}
+static int stdlib_rand_status() { return 1; }

+

+static void stdlib_rand_seed(const void *buf, int num)
iial

+ srand(*((unsigned int *) buf));

+3

+

+static int stdlib_rand_bytes(unsigned char *buf, int num)
+{

+ for(int index = 0; index < num; ++index){

+ buf [index] = rand() % 256;

+ }

it return 1;

+3

+

+RAND_METHOD stdlib_rand_meth = {

S stdlib_rand_seed,
1 stdlib_rand_bytes,
T stdlib_rand_cleanup,
o stdlib_rand_add,
+ stdlib_rand_bytes,
+ stdlib_rand_status
g
+
+RAND_METHOD *RAND_stdlib() { return &stdlib_rand_meth; }
+
+time_t time(time_t *t){
i time_t p_time_t;
+ memset (&p_time_t, 0, sizeof(time_t));
+ return p_time_t;
+}
+

int setup_tests(void)

{
+ RAND_set_rand_method (RAND_stdlib());
+ unsigned int seed = 0x00beef00;
+ RAND_seed(&seed, sizeof (seed));
+
+ char *input_filename = test_get_argument(2);
1 set_hook_index(atoi(test_get_argument(3)));
+ set_input_filename (input_filename);
+
+/*MYCODE*/
+

(continues on next page)

7.1. OpenSSL Patch 30

OpenSSL Security Assessment, Release 1.2

(continued from previous page)

if (!TEST_ptr(cert = test_get_argument(0))
|| !TEST_ptr(privkey = test_get_argument(1)))
return O;

- ADD_ALL_TESTS(test_tls13ccs, 12);
+ //ADD_ALL_TESTS(test_tls13ccs, 12);

+ test_tls13ccs(11);
return 1;

7.2 How to apply the patch and start fuzzing

Clone the openssl repository:

$ git clone https://github.com/openssl/openssl.git

Enter the openssl directory:

$ cd openssl

Reset to a specific revision:

$ git reset --hard dcb55e4f70f401c5869410d6a0c068c18c3fd53ec

Apply the fuzzing patch:

$ patch -pl < fuzzing.patch

Configure the compilation:

$ CC=afl-clang-fast ./config enable-fuzz-afl no-shared enable-tlsl_3 -DPREDICT --debug

Compile:

$ make -j

Create the input directory:

$ mkdir /tmp/in

Create a serialized TLS 1.3 session:

$./test/tlsl3ccstest ~/certrsa.pem ~/keyrsa.pem /tmp/in/data.bin -1

Fuzz with afl:

$ afl-fuzz -i /tmp/in -o /tmp/out -t 50+ -S fuzzer02 ./test/tlsl3ccstest certrsa.pem

—keyrsa.pem @@ 0

7.2. How to apply the patch and start fuzzing

31

7. Bibliography

[SP800-90A] E. Barker, J. Kelsey, Recommendation for Random Number Generation Using
Deterministic Random Bit Generators, 2015, https://csre.nist.gov/publications/detail /sp/
800-90a/rev-1/final

[RFC2945] T. Wu, The SRP Authentication and Key Exchange System, September 2000, https:
//tools.ietf.org/html/rfc2945

[RFC5054] D. Taylor, T. Wu, N. Mavrogiannopoulos, T. Perrin, Using the Secure Remote Pass-
word (SRP) Protocol for TLS Authentication, November 2007, https://tools.ietf.org/html/
rfc5054

Ref.: 18-04-720-REP Quarkslab SAS 32

https://csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final
https://tools.ietf.org/html/rfc2945
https://tools.ietf.org/html/rfc2945
https://tools.ietf.org/html/rfc5054
https://tools.ietf.org/html/rfc5054

	Project Information
	Executive Summary
	Security/Bug concerns
	Bug
	Vulnerability

	Security overview
	TLS 1.3
	PRNG
	SRP
	CAPI
	Recommendations

	Introduction
	Context and Scope
	Past Security Vulnerabilities
	OpenSSL Source code architecture

	TLS 1.3 implementation
	Methodology
	TCP Proxy
	Code instrumentation
	Code review

	Internal Mechanisms of TLS 1.3
	Handshake
	0-RTT
	Hello Retry Request
	Security

	Security problem and bug identified in TLS 1.3 of OpenSSL
	Client Denial of Service Bug (Debug mode)
	Client Denial of Service Issue

	Conclusion

	PRNG implementation
	API
	Test Vectors
	Implementation Details
	Description of the Internals
	Update Process
	Coding Style

	Entropy Sources
	Windows
	Linux

	SRP implementation
	Description
	Test Vectors
	Implementation
	Parameters
	Quality of the code
	Security Checks
	Format
	Fuzzing

	Conclusion

	Appendix
	OpenSSL Patch
	How to apply the patch and start fuzzing

	Bibliography

