
Evaluation of Bulletproof Implementation

Monero

Ref. 18-06-439-REP
Version 1.2

Date 2018 October 20th
Prepared for Monero Research Lab

With the support of OSTIF
Carried out by Quarkslab

Contents

1 Executive Summary 2

2 Context 4
2.1 Initial request . 4
2.2 Evolution of the request and complementary evaluations 4
2.3 Quarkslab’s planned work . 5
2.4 Role of Bulletproof in Monero . 5

3 Code overview 7
3.1 Structure . 7
3.2 The two main algorithms . 8

3.2.1 Prove . 9
3.2.2 Verify . 11

4 Evaluation overview 13
4.1 Hypothesis . 13
4.2 Methodology . 13
4.3 Topics covered . 13

4.3.1 Hash function . 13
4.3.2 Random generation . 14
4.3.3 Protocol challenges . 14
4.3.4 Generators of the main subgroup of Ed25519 15
4.3.5 Arithmetic operations . 17
4.3.6 Multi-exponentiation . 17
4.3.7 Prove and Verify algorithms . 18
4.3.8 Serialization . 18

5 Vulnerabilities 20
5.1 Zero value challenges . 20
5.2 Dependent generators in the Java implementation 20
5.3 Overflow in the double scalar multiplication . 21
5.4 Erroneous identity output in Bos-Coster multi-exponentiation 22
5.5 Silently discarded element in Pippenger multi-exponentiation 23
5.6 Invalid Verify input parameters . 25
5.7 Key compromise in Schnorr signature . 25
5.8 Failures in input size validation during deserialization 26
5.9 Failures in input size validation during containers deserialization 27
5.10 Failures in input type validation during deserialisation 28

6 Weaknesses 30
6.1 Checks and input validation . 30

6.1.1 Function preconditions . 30
6.1.2 Shift bounds . 30

6.2 Edge cases and failure cases . 31
6.2.1 Empty proof . 31
6.2.2 Tests on malformed proofs . 32
6.2.3 Generators at infinity . 32

6.3 Fragilities . 33
6.3.1 Random generation initialization . 33

6.3.2 Manual type isolation . 34
6.3.3 Code duplication . 34
6.3.4 Hard coded literals . 35

7 Improvements 37
7.1 Code dependencies: OpenSSL . 37
7.2 Use of near-standards: Keccak vs SHA-3 . 37
7.3 Missing abstraction layers . 37

7.3.1 Code factoring . 37
7.3.2 Variable and function names . 38

7.4 Lack of specifications . 39
7.4.1 Input parameters . 39
7.4.2 Computation of challenges . 39

7.5 Simplifications and performance suggestions . 40
7.5.1 Ugly sum computation . 40
7.5.2 Inner-product challenge for the prover 41
7.5.3 Test of points at infinity . 41

8 Conclusion 42

Bibliography 43

Ref.: 18-06-439-REP Quarkslab SAS 3

Evaluation of Bulletproof Implementation

Project information

Document Status Log
Version Date Status Authors

0.9 24/07/2018 Delivered to Monero Research Jean-Baptiste Bédrune
Lab Cédric Tessier

Marion Videau
1.0 27/07/2018 Reviewed Sarang Noether
1.1 07/08/2018 Reviewed Derek Zimmer
1.2 22/10/2018 Published

Quarkslab
Contact Role

Frédéric Raynal CEO and Founder
Marion Videau Chief Scientific Officer
Jean-Baptiste Bédrune R&D Engineer
Cédric Tessier R&D Engineer

Monero Research Lab
Contact Role

Sarang Noether R&D Engineer

Open Source Technology Improvement Fund
Contact Role

Derek Zimmer President and Founder

1

1. Executive Summary
This report describes the results of the security evaluation by Quarkslab of Monero’s im-
plementation of Bulletproof. Three senior engineers reviewed Monero’s Bulletproof be-
tween April 18 and July 17 for a total of 35 man-days of study. The review target is
the C++ code of the https://github.com/moneromooo-monero/bitmonero repository, branch
bp-multi-aggregation, commit 7f964dfc8f15145e364ae4763c49026a3fab985d, directory
src/ringct. The assessment included verifying that the implementation correctly reflected
the algorithms described in the original academic paper and looking for vulnerabilities by code
review, manual testing and fuzzing.

Bulletproof is a new non-interactive zero-knowledge proof protocol with short proofs and without
trusted setup. It is integrated in the Monero project as a replacement for the previous protocol
based on ring signatures which generates larger proofs. Bulletproof proves that amounts lie in
a given positive interval, which is crucial in validating a transaction. Without this proof, due
to the elaborated cryptographic machinery involved, it is possible to create fraudulent coins.

Three categories of concerns emerged from the evaluation work:

Improvements towards a simpler and more robust code. They revolve around adding abstrac-
tion layers to the current implementation, building specifications and a few other simplification
and performance improvements for a more robust code.

Weaknesses that could turn into vulnerabilities during code evolutions. They coalesce around
three topics: insufficient input and boundary validation, lack of edge case and failure case
testing and fragilities in the implementation choices. They could induce vulnerabilities in future
evolutions of Monero.

Vulnerabilities that should be fixed in priority. In the limited time frame of the assessment,
we preferred to focus on a search for weaknesses as wide as possible and did not dig into
exploitability. Hence none of the vulnerabilities found has lead to a practical exploit. However,
it does not mean it is impossible, especially when considering all the vulnerabilities directly
linked to inputs controled by an attacker. We gather in the following the vulnerabilities and
the associated recommendations to fix them:

• Major vulnerabilities that can be triggered by untrusted inputs. They could be
the first steps towards making a verifier accept a false proof.

Arithmetic overflow in the double scalar multiplication
Recommendation. Always reduce inputs modulo ℓ when calling the double scalar multipli-
cation function.
Class Data vali-

dation
Severity Critical Difficulty

to trigger
Low Difficulty

to exploit
Unknown

Erroneous identity output in Bos-Coster multi-exponentiation
Recommendation. Fix the implementation.
Class Arithmetic Severity Critical Difficulty

to trigger
High Difficulty

to exploit
Unknown

Silently discarded element in Pippenger multi-exponentiation
Recommendation. Fix the implementation.
Class Arithmetic Severity Critical Difficulty

to trigger
High Difficulty

to exploit
Unknown

Ref.: 18-06-439-REP Quarkslab SAS 2

https://github.com/moneromooo-monero/bitmonero

Evaluation of Bulletproof Implementation

Invalid input parameters in the function bulletproof_VERIFY that verifies a bullet-
proof
Recommendation. Add checks that the scalars are reduced, that the points are on the right
curve Ed25519 and lie in the main subgroup.
Class Data Vali-

dation
Severity High Difficulty

to trigger
Low Difficulty

to exploit
Unknown

• Minor vulnerabilities in (de)serialization procedures. Because deserialization oc-
curs on untrusted inputs, the bugs can lead at least to exceptions and denials of service.

Failures in input size validation during deserialization
Recommendation. Fix the code.
Class Data vali-

dation
Severity Medium Difficulty

to trigger
Low Difficulty

to exploit
Unknown

Failures in input type validation during deserialization
Recommendation. Fix the code.
Class Data vali-

dation
Severity Medium Difficulty

to trigger
Low Difficulty

to exploit
Unknown

Failures in input size validation during containers deserialization
Recommendation. Fix the code.
Class Data vali-

dation
Severity Inform-

ational
Difficulty
to trigger

Low Difficulty
to exploit

Unknown

• Vulnerabilities that only happen with a negligible probability. Although highly
unlikely to happen by chance, code robustness requires to check for such events.

Zero value challenges can be produced in the bulletproof protocol
Recommendation. Generate and test hash values such that it is possible to regenerate a
new challenge value if null.
Class Data vali-

dation
Severity High Difficulty

to trigger
High Difficulty

to exploit
Unknown

Missing checks in Schnorr signature
Recommendation. Add a check that the random scalar k is non null (against key compro-
mise). Add a check that the signature value sig.c is non null (against producing signature
that does not depend on the private key). In the verification, add a check that the resulting
point 𝑟.𝐺 + 𝑐.pub is non null.
Class Data vali-

dation
Severity High Difficulty

to trigger
High Difficulty

to exploit
Unknown

• A vulnerability in the cryptographic implementation of a major setup element
of the proof system in the Java implementation.

Generators of the subgroup are dependant in the Java implementation
Recommendation. Do not use the Java implementation either for production or as specifi-
cations.
Class Crypto Severity Undef. Difficulty

to trigger
Low Difficulty

to exploit
Unknown

3

2. Context
In January 2018, Monero Research Lab, through the Open Source Technology Improvement
Fund, asked Quarkslab for a statement of work detailing the steps of a security evaluation.
The target, in the Monero open-source cryptocurrency, was their implementation of a new
mechanism, the Bulletproof.

2.1 Initial request

The Monero project has implemented a new cryptographic proof for Monero (XMR), an open-
source cryptocurrency and plans to shift to it.

The Monero project currently uses Borromean-style range proofs [MP15] in their confidential
transactions, and plan to replace them with bulletproofs1. Their motivation to move from
Borromean range proofs to bulletproofs is the size of the proof: bulletproofs would significantly
reduce the size of the blockchain, as well as bring down transaction fees on the platform by an
estimated 70-80%.

The Monero Research Lab asked for a limited-scope analysis of the bulletproof prove/verify
algorithms, answering as many of the following questions as possible:

1. Does their code located at https://github.com/moneromooo-monero/bitmonero/tree/
bp-multi/src/ringct accurately represent the prove/verify algorithms from the bulletproof
whitepaper located at http://web.stanford.edu/~buenz/pubs/bulletproofs.pdf?

2. Does their implementation allow an attacker to generate a false proof that an honest
verifier judges as correct?

3. Does their implementation allow an attacker to examine an honest prover’s proof and gain
information about the hidden amount or other masks?

In order to test correctness, the original whitepaper prove/verify routines has been trans-
lated into Java code located at https://github.com/b-g-goodell/research-lab/blob/master/
source-code/StringCT-java/src/how/monero/hodl/bulletproof/MultiBulletproof.java. The
code could be used as extra material to help bridge the gap between the paper and the fi-
nal code.

2.2 Evolution of the request and complementary evaluations

During the process of answering and the selection of evaluators, the academic paper at the
origin of Bulletproof and the code to evaluate have evolved, the paper being accepted to an
academic conference and the code including several optimizations.

The selected evaluators are:

• Benedikt Bünz, one of the original authors of the bulletproof paper, to check that the
Java implementation correctly reflects the paper;

• Kudelski Security and Quarkslab to evaluate that the C++ code reflects the Java code
and that the C++ code does not contain vulnerabilities allowing an attacker to either
forge a false proof or derive knowledge of hidden amounts from a proof.

1 Bulletproofs webpage: https://crypto.stanford.edu/bulletproofs/

Ref.: 18-06-439-REP Quarkslab SAS 4

https://getmonero.org
https://github.com/moneromooo-monero/bitmonero/tree/bp-multi/src/ringct
https://github.com/moneromooo-monero/bitmonero/tree/bp-multi/src/ringct
http://web.stanford.edu/~buenz/pubs/bulletproofs.pdf
https://github.com/b-g-goodell/research-lab/blob/master/source-code/StringCT-java/src/how/monero/hodl/bulletproof/MultiBulletproof.java
https://github.com/b-g-goodell/research-lab/blob/master/source-code/StringCT-java/src/how/monero/hodl/bulletproof/MultiBulletproof.java
https://crypto.stanford.edu/bulletproofs/

Evaluation of Bulletproof Implementation

2.3 Quarkslab’s planned work

The evaluation work that Quarkslab planned includes the three following steps:

• Understanding the protocols and isolating the main points of attention regarding imple-
mentation. It is important to note that the bulletproofs research results are recent. At
the time of the request, they were to be published at IEEE S&P 2018 [BBBPWM18] and
the research paper was available at https://eprint.iacr.org/2017/1066.pdf2.

• Assessing the conformity of the C++ code (ringct amounts to around 3500 lines) to the
specifications3 (and the reference source code) both from a logical and an implementation
standpoint, including the underlying elliptic curve arithmetic used.

• Looking for vulnerabilities and assessing their severity.

2.4 Role of Bulletproof in Monero

Monero is a cryptocurrency whose goal is to provide anonymity to users and confidentiality
to transaction amounts. The coin generation happens through a trustless distributed mining
process relying on a proof of work. A transaction registers the spending of inputs on outputs.
The right to spend is afforded by a private signing key corresponding to the public key attached
to previous outputs.

Monero relies on three cryptographic mechanisms.

• One-time keys generated for each transaction hide the actual recipient of a transaction.

• Ring signatures mix the spender’s input among other people’s inputs (which are hidden,
see below). The spender can spend (sign) the amount spent but it is not possible for
an external party to link different transactions. A special adaptation of this mechanism
detects double spending.

• Ring confidential transactions hide the transferred amount.

Ring confidential transactions [NMM16] use zero-knowledge proof techniques (Perdersen com-
mitments) to hide amounts and also keep the verifiability of the blockchain.

In short, a transaction is valid if the total of inputs equals the total of outputs and fees. This
means that the total amount of inputs minus the total amount of outputs minus the fees equals
zero, which can also be committed to by zero-knowledge techniques.

Such techniques however, relying on group based cryptography, do not differentiate between
a small negative amount or a big positive amount (due to modular arithmetic), which could
cause, left unchecked, the fraudulent creation of coins.

To ensure that amounts spent are indeed reasonably positive amounts (and not huge amounts
equivalent to negative ones) without revealing them, a proof of interval is necessary for each
output amount. In Monero, the interval has been fixed to [0, 264 − 1]. A first version of a proof
of interval implemented in Monero also used ring signature techniques. The size of this proof

2 The version of the paper corresponding to the line numbering reported in the Java code used for reference
is the one of November 2017, 11th available at https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2017/1066&
version=20171110:151138&file=1066.pdf

3 In reality, academic papers are rarely specifications and that is one of the many difficulties in assessing the
code derived from them. In some way, the specifications need to be built alongside the evaluation.

2.3. Quarkslab’s planned work 5

https://eprint.iacr.org/2017/1066.pdf
https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2017/1066&version=20171110:151138&file=1066.pdf
https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2017/1066&version=20171110:151138&file=1066.pdf

Evaluation of Bulletproof Implementation

was linear in the size of the upper-bound of the interval and the major contributor to the size
of a transaction.

Bulletproof is a new proof of interval whose size is only logarithmic in the size of the upper-
bound of the interval. It has further optimizations reducing the overall size when several proofs
are combined.

2.4. Role of Bulletproof in Monero 6

3. Code overview
The code studied is in the branch bp-multi-aggregation of the repository https://github.
com/moneromooo-monero/bitmonero.git1.

The last commit taken into account in the branch bp-multi-aggregation is
7f964dfc8f15145e364ae4763c49026a3fab985d

To extend the work done on multi-exponentiation during the evaluation, we also studied the
code in the branch bp-multi-aggregation-pippenger.

The last commit taken in the branch bp-multi-aggregation-pippenger is
b7e61db030da8c97b3e82354bfee8caae57d3137 (Wed Jun 20).

The source code snippets and pieces of notation in the report refer to the commit
b7e61db030da8c97b3e82354bfee8caae57d3137 (Wed Jun 20). There were only minor dif-
ferences on the specific points detailed in the report and because all findings were still present
in this latter commit, we opted to refer to it instead. However, it does not mean that our
evaluation corresponds to the assessment of this latter commit.

3.1 Structure

The code of Bulletproof is in the directory src/ringct (ringct stands for Ring Confidential
Transaction). The structure of this directory is :

src/ringct/
bulletproofs.cc
bulletproofs.h
CMakeLists.txt
multiexp.cc
multiexp.h
rctCryptoOps.c
rctCryptoOps.h
rctOps.cpp
rctOps.h
rctSigs.cpp
rctSigs.h
rctTypes.cpp
rctTypes.h

The code in src/ringct/ mainly depends on:

• cryptographic functions defined in src/crypto/,

• utility functions defined in src/common/, src/serialization/ and contrib/epee/
include/,

• general formats and functions defined in src/cryptonote_config.h and in src/
cryptonote_basic/cryptonote_format_utils.h

• external libraries: boost and openssl/ssl.h.

At a high level, files in the src/ringct directory are organized as follows:
1 Fork from the main Monero repository https://github.com/monero-project/monero.

Ref.: 18-06-439-REP Quarkslab SAS 7

https://github.com/moneromooo-monero/bitmonero.git
https://github.com/moneromooo-monero/bitmonero.git
https://github.com/monero-project/monero

Evaluation of Bulletproof Implementation

• bulletproofs.h declares the two main functions bulletproof_PROVE and
bulletproof_VERIFY with variants depending on the input parameters.

• multiexp.h declares the structure and the functions used for multi-exponentiation. The
three algorithms implemented are Straus, Bos-Coster and Pippenger.

• rctCryptoOps.h declares the function sc_reduce32copy(unsigned char * scopy,
const unsigned char *s) which is a variant of sc_reduce32(unsigned char *s) in
src/crypto/crypto-ops.h providing the result in scopy. It is a reduction modulo
ℓ = 2252 + 27742317777372353535851937790883648493 (order of the main subgroup of
the curve Ed25519) of a 32-byte input.

• rctOps.h declares constants and functions related to the manipulation of vectors or points
(initialization, random generation, addition, multiplication, commitments, hash-to-point,
etc.)

• rctSigs.h declares functions related to the Multilayered Spontaneous Anonymous Group
Signatures (MLSAG signatures) which allows the confidential transactions. It also con-
tains the former range proof and verification functions relying on ring signatures that
should be replaced by bulletproofs.

• rctTypes defines all the objects (key, signature, tuple, etc.) in the rct namespace and
conversion functions.

3.2 The two main algorithms

Both the version of the paper we relied on for the evaluation2 and the code we evaluated
mix different levels of concepts and abstractions with implementation details. Consequently,
understanding the role of different operations is more difficult.

We propose a pseudo-code description that we derived from our understanding of the paper,
at a level of abstraction corresponding to the concepts used. Consequently, it can differ on some
points from the implementation in Monero. We named the functions as explicitly as possible and
chose to rely on elliptic curve vocabulary instead of a general group one. Some implementation
details are discussed in the next chapters.

The range one wants to prove is [0, 264 − 1]. We focus on the case of multiple proofs that are
aggregated. Important pieces of notations are regrouped below.

Public parameters

• l: cardinality of the subgroup of the elliptic curve used (Ed25519)

• N: bitsize of the elements whose range one wants to prove (N = 64)

• M: number of proofs to aggregate (upper-bounded by maxM =
BULLETPROOF_MAX_OUTPUTS = 16)

• G: the base point of the subgroup of the elliptic curve used

• H: another generator of the subgroup of the elliptic curve used whose discrete log wrt
G is not known and hard to find

2 Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille and Greg Maxwell. “Bullet-
proofs: Short Proofs for Confidential Transactions and More,” Version of 21 May 2018, of IACR eprint server
https://eprint.iacr.org/2017/1066.pdf

3.2. The two main algorithms 8

https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2017/1066&version=20180521:214038&file=1066.pdf

Evaluation of Bulletproof Implementation

• Gi: a list of M*N generators of the subgroup of the elliptic curve used whose discrete
log wrt any other generator is not known and hard to find

• Hi: a list of M*N generators of the subgroup of the elliptic curve used whose discrete
log wrt any other generator is not known and hard to find

Values to commit to, hide, and prove:

• v: a list of M integers such that for all j, 0 <= v[j] < 2^N

• gamma: a list of M integers such that for all j, 0 <= gamma[j] < l

A bulletproof is composed of:

• V: a vector of curve points, Pedersen commitments to v[i] with hiding values
gamma[i]

• A: a curve point, vector commitment to aL and aR with hiding value alpha

• S: a curve point, vector commitment to sL and sR with hiding value rho

• T1: a curve point, Pedersen commitment to t1 with hiding value tau1

• T2: a curve point, Pedersen commitment to t2 with hiding value tau2

• taux: a scalar, hiding value related to T1, T2, V and t

• mu: a scalar, hiding value related to A and S

• L: a vector of curve points of size log2(M*N) computed in the inner product protocol

• R: a vector of curve points of size log2(M*N) computed in the inner product protocol

• a: a scalar computed in the inner product protocol

• b: a scalar computed in the inner product protocol

• t: a scalar, inner product value to be verified

3.2.1 Prove

The function bulletproof_PROVE takes as input a v and a gamma and outputs a proof using
an inner product argument of knowledge of two vectors l and r proving without revealing it
that for each value v[i], the vector aL[i] is indeed its binary representation. It proves that
all v[i] lie in the interval [0, 2^N-1].

bulletproof_PROVE(v, gamma)
// Compute V: a list of curve points, Pedersen commitments to v[i]
// with hiding values gamma[i]
// Compute aL[i] the vector containing the binary representation of v[i]
// Compute aR[i] the opposite of the complementary to one of aL[i]
for (j from 0 to M-1)

V[j] = pedersen_commitment(gamma[i], H, v[i], G)
aL[j] = binary_rep(v[j]) // Line 41
aR[i] = vector_sub(aL[j], one(N)) // Line 42

// Compute A: a curve point, vector commitment to aL and aR with hiding value alpha
alpha = random_gen(l) // Line 43
A = vector_commitment(alpha, H, concat(aL, aR), concat(Gi, Hi)) // Line 44

(continues on next page)

3.2. The two main algorithms 9

Evaluation of Bulletproof Implementation

(continued from previous page)

// Compute S: a curve point, vector commitment to sL and sR with hiding value rho
sL = random_gen_vector(M*N, l) // Line 45
sR = random_gen_vector(M*N, l) // Line 45
rho = random_gen(l) // Line 46
S = vector_commitment(rho, H, concat(sL, sR), concat(Gi, Hi)) // Line 47

// Random challenges to build the inner product to prove the values of aL and aR
// Line 49 plus non-interactive
y = hash_to_scalar_non_null(V, A, S)
z = hash_to_scalar_non_null(V, A, S, y)

// reconstruct the coefficients of degree 1 and of degree 2 of the
// range proof inner product polynomial
(t1,t2) = range_proof_inner_product_poly_coeff(aL, sL, aR, sR, y, z)

// Compute T1: a curve point, Pedersen commitment to t1 with hiding value tau1
tau1 = random_gen(l) // Line 52
T1 = pedersen_commitment(tau1, H, t1, G) // Line 53
// Compute T2: a curve point, Pedersen commitment to t2 with hiding value tau2
tau2 = random_gen(l) // Line 52
T2 = pedersen_commitment(tau2, H, t2, G) // Line 53

// Random challenge to prove the commitment to t1 and t2
// Line 55 plus non-interactive
x = hash_to_scalar_non_null(V, A, S, y, z, T1, T2)

// Compute t: a scalar, inner product value to be verified
l = range_proof_inner_product_lhs(aL, sL, x, z) // Line 58
r = range_proof_inner_product_rhs(aR, sR, x, y, z) // Line 59
t = inner_product(l, r) // Line 60

// Compute taux: a scalar, hiding value related to x.T1, x^2.T2, z^2.V and t
// Line 61
taux = range_proof_inner_product_poly_hiding_value(tau1, tau2, gamma, x, z)

// Compute mu: a scalar, hiding value related to A and x.S
mu = l_r_vector_commitment_hiding_value(alpha, rho, x) // Line 62

// Adapt Hi, the vector of generators
// to apply an inner product argument of knowledge on l and r
// Line 64
Hiprime = l_r_generators_inner_product_adapt(Hi, y)

// Random challenge
// Line 6 plus non-interactive
x_ip = hash_to_scalar_non_null(V, A, S, y, z, T1, T2, x, taux, mu, t)

Hx = scalar_mul_point(x_ip, H)

// Compute L, R, curve points, and a, b, scalars
// Output of the inner product argument of knowledge
(L, R, a, b) = inner_product_prove(Gi, Hiprime, Hx, l, r)

return (V, A, S, T1, T2, taux, mu, L, R, a, b, t) // Line 63

3.2. The two main algorithms 10

Evaluation of Bulletproof Implementation

The inner product argument of knowledge corresponds to Protocol 2 in the paper.

inner_product_prove(Gi, Hi, U, a, b)
// n is the size of the input vectors
n = M * N
round = 0
while (n > 1)

n = n / 2 // Line 20
cL = inner_product(slice(a, 0, n), slice(b, n, 2*n)) // Line 21
cR = inner_product(slice(a, n, 2*n), slice(b, 0, n)) // Line 22

// Compute the intermediate commitments L[round], R[round]
// Line 23-24
L[round] = vector_commitment(cL, U, concat(slice(a, 0, n), slice(b, n, 2*n)),

concat(slice(Gi, n, 2*n), slice(Hi, 0, n)))
R[round] = vector_commitment(cR, U, concat(slice(a, n, 2*n), slice(b, 0, n)),

concat(slice(Gi, 0, n), slice(Hi, n, 2*n)))

// Random challenge Line 26 plus non-interactive
w = hash_to_scalar_non_null(L[round],R[round])

// Shrink generator vectors
// Line 29-30
Gi = hadamard_points(scalar_mul_vector_points(invert(w), slice(Gi, 0, n)),

scalar_mul_vector_points(w, slice(Gi, n, 2*n)))
Hi = hadamard_points(scalar_mul_vector_points(w, slice(Hi, 0, n)),

scalar_mul_vector_points(invert(w), slice(Hi, n, 2*n)))

// Shrink scalar vectors
// Line 33-34
a = vector_add(scalar_mul_vector(w, slice(a, 0, n)),

scalar_mul_vector(invert(w), slice(a, n, 2*n)))
b = vector_add(scalar_mul_vector(invert(w), slice(b, 0, n)),

scalar_mul_vector(w, slice(b, n, 2*n)))
round = round + 1

return (L, R, a[0], b[0]) // Lines 25 and 15

3.2.2 Verify

The verification algorithm takes as input a list of bulletproofs and rely on a batch verification
optimization.

The simple verification function for the inner product protocol can be optimized by using a
multi-exponentiation algorithm.

The batch verification optimization uses a trick involving an additional random scalar for each
proof allowing a simultaneous verification of all the proofs with multi-exponentiation.

bulletproof_VERIFY(prooflist: a list of bulletproofs)
// Checks that the sizes are coherent,
// that the scalars are reduced,
// that the points are on the right curve
// that the points are on the right subgroup
for (all proof in prooflist)

if (!bulletproof_early_checks(proof))
return false

(continues on next page)

3.2. The two main algorithms 11

Evaluation of Bulletproof Implementation

(continued from previous page)

for (all proof in prooflist)
// Reconstruct the challenges of Lines 49 and 55
y = hash_to_scalar_non_null(proof.V, proof.A, proof.S)
y_list = y_list.append(y)
z = hash_to_scalar_non_null(proof.V, proof.A, proof.S, y)
z_list = z_list.append(z)
x = hash_to_scalar_non_null(proof.V, proof.A, proof.S, y, z, proof.T1, proof.T2)
x_list = x_list.append(x)

// Check that the commitment to t does indeed correspond to
// the commitments to t1 (T1) and t2 (T2) and v[i] (V[i])
// Line 65 (or rather 72)
if (!check_commitment_inner_product_poly_coeff(proof.t, proof.taux, proof.V,

proof.T1, proof.T2, x, y, z))
return false

// Reconstruct the random challenge, Line 6
x_ip = hash_to_scalar_non_null(proof.V, proof.A, proof.S, y, z, proof.T1,

proof.T2, x, proof.taux, proof.mu, proof.t)
x_ip_list = x_ip_list.append(x_ip)

if (!inner_product_batch_verify(Gi, Hi, H, x_ip_list,
y_list, z_list, x_list, prooflist)

return false
return true

3.2. The two main algorithms 12

4. Evaluation overview

4.1 Hypothesis

Monero and Quarkslab agreed on the following hypothesis:

• The underlying principles coming from the paper are sound: we do not evaluate the paper
cryptographic content.

• The Java implementation is sound: we do not evaluate the translation of the paper in
Java.

• We are not considering side-channel attacks (local timing attacks, cross VM attacks, etc.)
on the device manipulating secret values (the prover’s).

4.2 Methodology

Security review for conformity and lack of vulnerabilities on Monero’s Bulletproof implementa-
tion meant:

• Understanding the general cryptographic principles behind the algorithms.

• Code reviewing by comparison between the Java code and the C++ code and between
the paper and the C++ code, alongside the reconstruction of missing specifications.

• Assessing arithmetic operations conformity [CDF].

• Fuzzing multi-exponentiation functions.

• Fuzzing of data serialization.

4.3 Topics covered

In this section we describe the different topics we covered in our review. Vulnerabilities and
weaknesses are detailed in the next chapters.

4.3.1 Hash function

Bulletproof depends on a hash function to turn the interactive protocols into non-interactive
ones using Fiat-Shamir heuristic. Besides, in Monero, such a hash function is also used as a
subroutine in many other functions: hashing (to points for instance), random generation and
point derivation.

In Monero’s Bulletproof, the underlying hash function is [Keccak]. Keccak is based on a sponge
construction, a class of algorithms that produce a pseudorandom bit stream of a chosen length
from an input bit stream of arbitrary length. To achieve this, a finite internal state is processed
using the Keccak-𝑓 [1600] permutation.

Keccak has been chosen by NIST as the basis of its SHA-3 standard. Choosing Keccak as the
underlying hash function in Monero is a sound choice from a cryptographic point of view.

A review on this choice is detailed in Use of near-standards: Keccak vs SHA-3 .

Ref.: 18-06-439-REP Quarkslab SAS 13

Evaluation of Bulletproof Implementation

4.3.2 Random generation

In Bulletproof, a prover builds a proof that an amount 𝑣 is in a given interval. The security
of the proof relies on many random values used to hide critical variables in the protocol. For
instance, the hiding value 𝛾 is used in the Pedersen commitment of 𝑣. Knowing 𝛾 would allow
an attacker to retrieve the value of 𝑣 through brute force, compromising the confidentiality of
the committed amount.

Other random values, 𝛼, 𝜌, 𝜏1, 𝜏2, s𝐿 and s𝑅 also protect the security of the protocol and should
not be easy to guess. A strong PRNG is therefore a critical requirement for Bulletproof.

Random numbers are generated using rct::skGen, with a variant rct::skvGen producing a
vector. Both functions are calling crypto::rand, the main random generator of Monero.

Listing 4.1: src/crypto/crypto.h:152
/* Generate N random bytes
*/
inline void rand(size_t N, uint8_t *bytes) {

generate_random_bytes_thread_safe(N, bytes);
}

The function generate_random_bytes_thread_safe is a simple wrapper, calling
generate_random_bytes_not_thread_safe, making it thread-safe with a lock.

Listing 4.2: src/crypto/crypto.cpp:89
void generate_random_bytes_thread_safe(size_t N, uint8_t *bytes)
{

static boost::mutex random_lock;
boost::lock_guard<boost::mutex> lock(random_lock);
generate_random_bytes_not_thread_safe(N, bytes);

}

The low-level routine generate_random_bytes_not_thread_safe uses iterations of the permu-
tation Keccak-𝑓 [1600] on a global state. Each iteration produces a maximum of 136 bytes (=
1088 bits), which corresponds to the security parameters of Keccak [1088,512]. The produc-
tion of pseudorandom bits is the squeezing phase in the sponge construction vocabulary.

This construction is sound as long as the global state is initialized with true random bits coming
from the system.

A weakness in the initialization procedure is detailed in Random generation initialization.

4.3.3 Protocol challenges

One of the possibilities to turn an interactive protocol into a non-interactive one is to use the
Fiat-Shamir heuristic and replace all random challenges by hashes of the transcript up to that
point.

In Monero it is done through the call to various hash variants using at their core the hash
function Keccak.

4.3. Topics covered 14

Evaluation of Bulletproof Implementation

Listing 4.3: src/ringct/bulletproofs.cc:951
rct::key hash_cache = rct::hash_to_scalar(proof.V);
rct::key y = hash_cache_mash(hash_cache, proof.A, proof.S);
rct::key z = hash_cache = rct::hash_to_scalar(y);
rct::key x = hash_cache_mash(hash_cache, z, proof.T1, proof.T2);
rct::key x_ip = hash_cache_mash(hash_cache, x, proof.taux, proof.mu, proof.t);
w[i] = hash_cache_mash(hash_cache, proof.L[i], proof.R[i]);

A security concern is detailed in Zero value challenges. Implementation choices are discussed
in Computation of challenges and Code factoring.

4.3.4 Generators of the main subgroup of Ed25519

Bulletproof does not need a trusted setup. As explained in the article:

To avoid a trusted setup we can use such a hash function to generate the public
parameters g, h, 𝑔, ℎ from a small seed. The hash function needs to map from {0, 1}*

to G ∖ {1}, which can be built as in [BLS01]

The choice of the generators is of paramount importance for the security of bulletproofs. All
points must be on the main subgroup of the curve Ed25519 and none should have any relation
that allows to deduce a discrete log from one another.

The main subgroup of Ed25519 being of prime order, all points generated on this subgroup are
generators.

Generators H and G

Point G is the base point of the curve Ed25519.

Point H is precomputed and its value is stored in src/ringct/rctTypes.h.

Listing 4.4: src/ringct/rctTypes.h:417
//other basepoint H = toPoint(cn_fast_hash(G)), G the basepoint
static const key H = { {0x8b, 0x65, 0x59, 0x70, 0x15, 0x37, 0x99, 0xaf, 0x2a, 0xea,␣

→˓0xdc, 0x9f, 0xf1, 0xad, 0xd0, 0xea, 0x6c, 0x72, 0x51, 0xd5, 0x41, 0x54, 0xcf, 0xa9,␣
→˓0x2c, 0x17, 0x3a, 0x0d, 0xd3, 0x9c, 0x1f, 0x94} };

Assessing the creation of H is necessary. It could be suspicious, knowing that the function
toPoint() does not exist and G is never stored in an object.

The origin of H has been found in the unit tests.

Listing 4.5: tests/unit_tests/ringct.cpp:814
TEST(ringct, HPow2)
{

key G = scalarmultBase(d2h(1));

key H = hashToPointSimple(G);
for (int j = 0 ; j < ATOMS ; j++) {

ASSERT_TRUE(equalKeys(H, H2[j]));
(continues on next page)

4.3. Topics covered 15

Evaluation of Bulletproof Implementation

(continued from previous page)
addKeys(H, H, H);

}
}

The first element of H2 is H and its value is actually the value stored in src/ringct/rctTypes.h.
The representation in an object key of G is created then hashed with hashToPointSimple().

Listing 4.6: src/ringct/rctOps.cpp:393
key hashToPointSimple(const key & hh) {

key pointk;
ge_p1p1 point2;
ge_p2 point;
ge_p3 res;
key h = cn_fast_hash(hh);
CHECK_AND_ASSERT_THROW_MES_L1(ge_frombytes_vartime(&res, h.bytes) == 0, "ge_

→˓frombytes_vartime failed at "+boost::lexical_cast<std::string>(__LINE__));
ge_p3_to_p2(&point, &res);
ge_mul8(&point2, &point);
ge_p1p1_to_p3(&res, &point2);
ge_p3_tobytes(pointk.bytes, &res);
return pointk;

}

The function hashToPointSimple() hashes G’s binary representation then embeds the
resulting string into a curve point with ge_frombytes_vartime(). The function
ge_frombytes_vartime() converts bytes into a group element. The resulting element is mul-
tiplied by 8 to ensure it is on the main subgroup of the curve Ed25519. Such a construction
precludes any easy discrete log relation between H and G.

On the contrary, the Java implementation which was supposed sound in the hypothesis is not.
The vulnerability is described in Dependent generators in the Java implementation.

Vectors of generators Hi and Gi

Besides generators H and G, two vectors of generators, Gi and Hi, of size M*N (hardcoded con-
stants M=16 and N=64) are needed to prove up to M aggregated proofs simultaneously.

These generators are produced according to the following procedure(in pseudo-code).

for (i from 0 to M*N)
Hi[i] = hashToPoint(hash(concat(bytes(H), "bulletproof", bytes(2*i))))
Gi[i] = hashToPoint(hash(concat(bytes(H), "bulletproof", bytes(2*i+1))))

Every element generated is unique thanks to the use of an unique index. The parameters used
to form the seed are simple enough to be harmless. They allow to get rid of any trusted set-up.
The use of the hash function ensures there is no discrete log relation between the generators.
The multiplication by 8 in the hashToPoint function ensures the points all lie on the main
subgroup of the curve Ed25519.

We checked that all generators produced are not the point at infinity.

Suggestion to check if points produced are at infinity is described in Generators at infinity.

4.3. Topics covered 16

Evaluation of Bulletproof Implementation

4.3.5 Arithmetic operations

Low-level arithmetic operations originates from the ref10 implementation of the signature
scheme Ed25519. This implementation is part of the SUPERCOP1 benchmarking framework.
It is considered the reference implementation for Ed25519.

In Monero, it has been adapted in the src/crypto/crypto_ops_builder/
ref10CommentedCombined/ directory for build reasons. In RingCT, in src/ringct/
rctOps.cpp, higher level functions are built on top of ref10 functions. Functions are simple,
amounting to less than 10 lines of code each. Functions specific to bulletproofs, like inner
product or Hadamard product, are defined in src/ringct/bulletproof.cc.

We have tested or reviewed the three categories of arithmetic functions. We did not find any
problems in ref10.

We describe a vulnerability in Overflow in the double scalar multiplication and discuss a weak-
ness in Code dependencies: OpenSSL.

While investigating arithmetic operations, we also reviewed the Schnorr signature im-
plementation. Even though it is not formally part of the evaluation, it depends on
ge_scalarmult_base() like the double scalar multiplication. A lack of checks in the signa-
ture generation is described in Key compromise in Schnorr signature.

4.3.6 Multi-exponentiation

Multi-exponentiation computes simultaneously multiple exponentiations of different elements of
a group with different exponents, in a much faster way than a naive approach.

In Bulletproof, multi-exponentiation is at the heart of the proof verification algorithm. The
batch verification of multiple aggregated proofs combines gracefully with a simple verification
of aggregated proofs in a single large multi-exponentiation.

In the branch bp-multi-aggregation we had to evaluate, the Straus algorithm is used up to
a given number of exponentiations, then from this number, Bos-Coster algorithm is preferred.

In the new branch bp-multi-aggregation-pippenger, the Straus algorithm is used up to
another number of exponentiations, then from this number, Pippenger algorithm is preferred.

The implementation of the Straus and the Bos-Coster algorithms were the only ones included
in the formal evaluation we had to perform. Knowing that the implementation of the Pippenger
algorithm was available and ready to be integrated, we extended the work done on the multi-
exponentiation code in the branch bp-multi-aggregation-pippenger.

The Straus algorithm has been reviewed and no vulnerability has been found.

Two major vulnerabilities have been discovered in the other multi-exponentiation functions.
They are detailed in Erroneous identity output in Bos-Coster multi-exponentiation and Silently
discarded element in Pippenger multi-exponentiation.

A suggestion of performance improvement when testing points at infinity is described in Test
of points at infinity.

1 eBACS: ECRYPT Benchmarking of Cryptographic Systems. https://bench.cr.yp.to/supercop.html. Source
code available on a GitHub mirror.

4.3. Topics covered 17

https://bench.cr.yp.to/supercop.html
https://github.com/floodyberry/supercop/tree/master/crypto_sign/ed25519/ref10

Evaluation of Bulletproof Implementation

4.3.7 Prove and Verify algorithms

The functions bulletproof_PROVE and bulletproof_VERIFY have been carefully reviewed in
order to assess their conformity to the cryptographic and algorithmic principles of the paper.
In The two main algorithms, we provide pseudo-code reflecting their behavior.

We considered that the dead code in bulletproof_VERIFY related to the inner-product verifi-
cation is a trace of work in progress and would be removed. We did not investigate its content.

We describe a vulnerability related to the lack of input validation in the function
bulletproof_VERIFY in Invalid Verify input parameters.

We discuss many weaknesses of the current code in Checks and input validation, Edge cases and
failure cases, Fragilities, Missing abstraction layers, Lack of specifications and Simplifications
and performance suggestions.

4.3.8 Serialization

Serialization is used to transmit and store structured data in the blockchain; therefore its robust-
ness is critical. Monero serialization library is inspired by the boost::serialization framework.

It provides a generic implementation, that can be specialized for various objects. Serializing a
high level object reuses all low-level specializations for types it depends on. A complementary
goal is to describe how an object needs to be dealt with only once. It means the same code is
used in order to generate both serialization and deserialization routines. This nice feature, in
theory, comes with various downsides.

First, partially because it is based on C++ template, code readability is questionable. When
reading this code, someone may think it will serialize an empty block:

Listing 4.7: src/cryptonote_basic/
cryptonote_format_utils.cpp

binary_archive<false> ba(ss);
cryptonote::block b;
bool r = ::serialization::serialize(ba, b);

In fact, because the code uses the binary_archive<false> template specialization, the
serialize function will unserialize the archive to a block.

All common code needs to be written very carefully in order to work both ways. It is a
major drawback. As an example, the following code will behave very differently if executed for
serialization or deserialization.

Listing 4.8: src/ringct/rctTypes.h:315
uint32_t nbp = bulletproofs.size();
FIELD(nbp)

During serialization, it will initialize a variable with the current size of a vector, and then add
this value to the archive stream. But when unserializing, the variable’s initial value will be 0
(because vector is yet to be parsed), before being set based on archive data.

If code complexity increases or checks are added, ensuring a correct code becomes more diffi-
cult and so is error handling. In case of failure, it could result in partially initialized objects
(deserialization) or archives (serialization).

4.3. Topics covered 18

https://www.boost.org/doc/libs/1_67_0/libs/serialization/doc/overview.html

Evaluation of Bulletproof Implementation

For all those reasons, we briefly audited the serialization, even if it was not directly linked with
bulletproof. In addition to code review, related routines have been fuzzed in various ways, using
both AFLFast and libFuzzer. Various objects (block, transaction, . . .) have been targeted, using
clang code coverage capabilities to steer the fuzzing campaign. Some issues have been found,
and even if none of them is really critical, more attention should be paid to this component.

We describe three minor vulnerabilities in the serialization/deserialization procedures in Fail-
ures in input size validation during deserialization and Failures in input type validation during
deserialisation.

4.3. Topics covered 19

5. Vulnerabilities
Vulnerabilities are actual bugs, errors or omissions in the code that can have a security conse-
quence.

5.1 Zero value challenges

Class Severity Difficulty to trigger Difficulty to exploit
Data validation High Extremely High Unknown

All the challenge values must be non null for the security of the protocol.

In Bulletproof, they are all produced eventually by a call to rct::hash_to_scalar() and the
resulting values are not checked. Although highly improbable, a zero value challenge would ruin
the validity of the proof.

A null y or w[i] would also be impossible to invert, raising an exception later in the code
where their inverses are needed. We did not investigate further the possibilities opened by such
failures.

We advise to concatenate an index at the end of the data to hash and increment it until the
resulting output is non null. The cost of such an adaptation and check would be negligible.

5.2 Dependent generators in the Java implementation

Class Severity Difficulty to trigger Difficulty to exploit
Cryptography Undefined Low Unknown

The implementation being different from the main code, we rated the severity as undefined.
However, one must be very careful with this implementation which was being presented as a
basis to implement the main code.

The Java implementation is not secure. It must only be used for tests and never in production.
It must not be blindly used as a kind of specifications for other implementations, either. Indeed,
the discrete logarithm of H with respect to G is straightforward.

Listing 5.1: StringCT-java/src/how/monero/hodl/
bulletproof/OptimizedLogBulletproof.java:493

// Set the curve base points
G = Curve25519Point.G;
H = Curve25519Point.hashToPoint(G);

The function hashToPoint(G) in this case hashes the representation of G, gets a scalar and
multiply it by G to get H.

Ref.: 18-06-439-REP Quarkslab SAS 20

Evaluation of Bulletproof Implementation

Listing 5.2: StringCT-java/src/how/monero/hodl/
crypto/Curve25519Point.java:70

public static Curve25519Point hashToPoint(byte[] a) {
return BASE_POINT.scalarMultiply(hashToScalar(a));

}
public static Curve25519Point hashToPoint(Curve25519Point a) {

return hashToPoint(a.toBytes());
}

The discrete logarithm of H with respect to G is hashToScalar(G.toBytes()).

5.3 Overflow in the double scalar multiplication

Class Severity Difficulty to trigger Difficulty to exploit
Data validation Critical Low Unknown

The rct::addKeys2 function computes, for a and b scalars, and H a curve point, the value of
𝑎𝐺 + 𝑏𝐻, with G the base point.

The function rct::addKeys2 is called in bulletproof_VERIFY with parameters under direct
control of the prover (𝜏𝑥 and 𝑡 for example). Prover can send data that will be incorrectly
handled. So it is very important that such a function is correctly used.

The function rct::addKeys2 is also called in the two versions of bulletproof_PROVE to com-
pute the Pedersen commitment of an amount (resp. vector of amounts) and a hiding value
(resp. vector of hiding values). The function is called with a non-reduced scalar parameter
(resp. a vector of non-reduced scalar parameters). One example of such a call is given below:

Listing 5.3: src/ringct/rctSigs.cpp:48
Bulletproof proveRangeBulletproof(key &C, key &mask, uint64_t amount)
{

mask = rct::skGen();
Bulletproof proof = bulletproof_PROVE(amount, mask);

The double scalar multiplication is performed by the ge_double_scalarmult_base_vartime
function. In order to perform the computations, a and b are converted into their non-adjacent
form (or NAF), a unique signed-digit representation of a number which is characterized by the
fact that two non-zero digits cannot be adjacent. This can be illustrated with a simple example:

7 = (100 − 1)2 = 23 − 20 = 8 − 1

The implementation uses an optimized version of NAF called 𝑤-ary non-adjacent form (or 𝑤-
NAF), with 𝑤 = 5. To accelerate scalar-point multiplications, a scalar 𝑛 is translated into an

array of 𝑟𝑖, such that
𝑡∑︀
0

𝑟𝑖 × 2𝑖 = 𝑛, where 𝑟𝑖 ∈ [−2𝑤 + 1, 2𝑤 − 1] and 𝑡 is the size of the binary

representation of 𝑛 (the size of the 𝑤-ary non-adjacent form of 𝑛 is 𝑡+1). The current implemen-
tation of the 5-NAF representation, the function slide in src/crypto/crypto_ops_builder/
ref10CommentedCombined/ge_double_scalarmult.c, has a fixed size of 256 signed char.

When a scalar (of type key), say a, provided as input to the function rct::addKeys2 is such
that a[31] >= 128, some of its values will have a 𝑤-NAF of size strictly 257 which overflows

5.3. Overflow in the double scalar multiplication 21

Evaluation of Bulletproof Implementation

the representation on 256 chars. The 5-NAF representation produced by the implementation is
the one of 𝑎 − 2256 instead of 𝑎. In those cases, the double multiplication result will be wrong.

Other functions calling ge_double_scalarmult_base_vartime in the Monero project are also
at risk if called with non-reduced inputs.

In order to avoid this problem, a and b must be reduced in the function prologue, modulo
l, ℓ = 2252 + 27742317777372353535851937790883648493, the order of the main subgroup of
Ed25519. It’s the purpose of sc_reduce32.

We did not find a way to exploit this vulnerability, but non-trusted inputs should always be
handled with great care.

Note: Other functions (ge_scalarmult, ge_scalarmult_base) have a[31] <= 127 as a
precondition. This is never checked in the bulletproof implementation.

However it seems that it is not possible to call those functions with an invalid scalar, all numbers
in input being always reduced modulo l by another computation before.

5.4 Erroneous identity output in Bos-Coster multi-exponentiation

Class Severity Difficulty to trigger Difficulty to exploit
Arithmetic Critical High Unknown

Note: We will focus only on the rct::bos_coster_heap_conv_robust function, as
rct::bos_coster_heap_conv is not used anywhere and tend to enter in an infinite loop very
easily (and as a consequence was considered broken and “yet to be removed” legacy code).

A major issue has been identified in the robust variant of the Bos-Coster algorithm implementa-
tion. It’s located in an optimization that has been added to avoid useless computations. Indeed,
if an input is either a null scalar or a point at infinity, the result of the exponentiation with this
input will be a point at infinity (the identity); therefore, it can be skipped.

If everything is to be skipped (nothing remaining after filtering), identity() is simply returned.
In case only one scalar / point pair is left, the idea is to return the unique scalar multiplication
using directly ge_scalarmult.

Listing 5.4: src/ringct/multiexp.cc:225
if (points < 2)
{
ge_p2 p2;
ge_scalarmult(&p2, data[0].scalar.bytes, &data[0].point);
rct::key res;
ge_tobytes(res.bytes, &p2);
return res;

}

However, the current implementation does not perform the scalar multiplication with the only
valid input, but with the first. If it is not the valid one (hence meaning that it was skipped),

5.4. Erroneous identity output in Bos-Coster multi-exponentiation 22

Evaluation of Bulletproof Implementation

identity will be wrongfully returned.

The current implementation is easy to fix, by getting the position from the list of valid expo-
nentiations (heap):

Listing 5.5: Fix suggestion for src/ringct/multiexp.
cc:225

if (points < 2)
{
ge_p2 p2;
// perform scalar multiplication with the only input left in heap
ge_scalarmult(&p2, data[heap[0]].scalar.bytes, &data[heap[0]].point);
rct::key res;
ge_tobytes(res.bytes, &p2);
return res;

}

5.5 Silently discarded element in Pippenger multi-exponentiation

Class Severity Difficulty to trigger Difficulty to exploit
Arithmetic Critical High Unknown

Pippenger is the latest multi-exponentiation algorithm added to Bulletproof, with a higher
efficiency when dealing with a lot of inputs (> 64 in the current implementation).

A major issue has been found in the Bulletproof Pippenger implementation, where some selected
inputs can return an invalid result.

At the beginning of the algorithm, a value c is chosen in the range [0, 9] (based on the number
of inputs). It will be the size of groups of bits during the decomposition of an exponent, one of
the essential computations performed by Pippenger.

With 𝑐 = 3, this step can be summarized with an example, where the term 𝑎85 is decomposed
in 3 groups:

𝑎85 = 𝑎

⎛⎜⎝(85)2= 0 0 1⏟ ⏞
1·22·3=1·64

2·21·3=2·8⏞ ⏟
0 1 0 1 0 1⏟ ⏞

5·20·3=5·1

⎞⎟⎠
⇒ (𝑎64)1(𝑎8)2(𝑎)5

But in current code, exponents are not encoded on 9 bits, but on 256 bits.

85 =
0·25·3⏞ ⏟ . . . 0 0 0⏟ ⏞

0·24·3=0·4096

0·23·3=0·512⏞ ⏟
0 0 0 0 0 1⏟ ⏞

1·22·3=1·64

2·21·3=2·8⏞ ⏟
0 1 0 1 0 1⏟ ⏞

5·20·3=5·1

So an optimization is performed, in order to avoid dealing with all leading zeros. The idea is
to find the most significant bit in all input exponents, and use its position to limit the number
of groups.

This is what is done by the code below (all comments have been added for clarity and are not
in the original code):

5.5. Silently discarded element in Pippenger multi-exponentiation 23

Evaluation of Bulletproof Implementation

Listing 5.6: src/ringct/multiexp.cc:594
// find the greatest exponent
rct::key maxscalar = rct::zero();
for (size_t i = 0; i < data.size(); ++i)
{

if (maxscalar < data[i].scalar)
maxscalar = data[i].scalar;

}
// compare it with powers of 2 in order to find the most significant bit position
size_t groups = 0;
while (groups < 256 && pow2(groups) < maxscalar)
++groups;

// limit the number of groups needed
groups = (groups + c - 1) / c;

Unfortunately, if the largest exponent is itself a power of 2, the most significant bit position will
be wrong. Indeed, the condition of the while loop should also include powers of 2. As a con-
sequence, the number of groups analyzed during the decomposition could be wrong (depending
on the value of c), and the most significant bit(s) will be ignored.

This bug will obviously lead to invalid results, but the consequences can be even worse. As
we said, the condition to trigger the bug is having our largest exponent be a power of 2, for
instance:

232 ⇒ 100000000000000000000000000000000

And that the bug will make the exponentiation ignore the MSB:

232 ⇒ 00000000000000000000000000000000

It means setting an exponent value to zero, hence forcing the exponentiation to return the
identity for the corresponding point.

Moreover, because all other exponents are smaller than this power of 2, their MSB will be in a
lower position. In the case where the ignored MSB is positioned at the beginning of a group,
all other exponents are located in a previous group.

26 = 0 0 1⏟ ⏞
1·22·3=1·64

0·21·3=0·8⏞ ⏟
0 0 0 0 0 0⏟ ⏞

0·20·3=0·1

37 = 0 0 0⏟ ⏞
0·22·3=0·64

4·21·3=4·8⏞ ⏟
1 0 0 1 0 1⏟ ⏞

0·20·3=0·1

If this is true, all other exponentiations will not be impacted, and a point will be silently
discarded from the computation.

Implementation can be fixed using the same trick done in the straus one:

while (groups < 256 && !(maxscalar < pow2(groups)))
++groups;

But we are advising to refactor the code and add properly tested functions (like a msb one for
rct::key) in order to perform those operations.

5.5. Silently discarded element in Pippenger multi-exponentiation 24

Evaluation of Bulletproof Implementation

5.6 Invalid Verify input parameters

Class Severity Difficulty to trigger Difficulty to exploit
Data validation High Low Unknown

The checks of the verifier’s input parameters at the beginning bulletproof_VERIFY concentrate
on the length of the proofs:

• check that the vector of aggregated V commitments is not empty,

• check that the vectors of inner-product argument points L and R have the same sizes,

• check that the vector L is not empty,

• check that the maximal size for a vector L is not greater than 32.

The maximal size for a list L is log2(MaxM * N) = 10. We do not know where the value 32 is
coming from.

Besides size questions, a Bulletproof is composed of points and scalar. There are no checks that
the scalars are reduced, which should not be a problem mathematically, but we saw in the case
of the failing addKeys2 that it can have severe consequences.

There are no checks that the points provided are indeed points of Ed25519 and that they are
on the main subgroup. We did not manage to find a way to exploit the missing checks in the
current protocol. However, we suggest to add them anyway to make the code more robust,
former attacks in different contexts showing their importance (see [LiLe97] and [ABMSV03]).

5.7 Key compromise in Schnorr signature

Class Severity Difficulty to trigger Difficulty to exploit
Data validation High Extremely High Unknown

To generate a Schnorr signature, a random scalar k is generated such that 0 <= k <= l-1. For
security reasons, the scalar k must be non null. Otherwise, an attacker can detect that sig.c
== H(O) and derive the secret key value. The signature value sig.c must be also checked for
being non zero, otherwise the signature does not depend on the signer’s key. These checks are
described for instance in [TR-03111]. Comments in the source-code below are our own.

Listing 5.7: src/crypto/crypto.cpp:244
void crypto_ops::generate_signature(const hash &prefix_hash, const public_key &pub,␣
→˓const secret_key &sec, signature &sig) {

ge_p3 tmp3;
ec_scalar k;
s_comm buf;
// [...]
buf.h = prefix_hash;
buf.key = pub;
random_scalar(k); // no check on k != 0
ge_scalarmult_base(&tmp3, &k);
ge_p3_tobytes(&buf.comm, &tmp3);

(continues on next page)

5.6. Invalid Verify input parameters 25

Evaluation of Bulletproof Implementation

(continued from previous page)
hash_to_scalar(&buf, sizeof(s_comm), sig.c); // no check on sig.c != 0
sc_mulsub(&sig.r, &sig.c, &unwrap(sec), &k);

}

The probability of such events to occur is negligible but their occurrence would lead to a com-
promise of the private key or a signature which does not depend on the signer’s key. Therefore,
we recommend adding these checks to ensure code robustness and security.

In the verification function, we also advise to check that the scalar sig.c is not null (the check
present in the code with sc_ckeck() checks if the scalars are already reduced) and check that
the resulting point 𝑟.𝐺 + 𝑐.pub is not the point at infinity (case where the scalar k used by the
signer is zero, meaning that the signer’s key is compromised). Comments in the source-code
below are our own.

Listing 5.8: src/crypto/crypto.cpp:267
bool crypto_ops::check_signature(const hash &prefix_hash, const public_key &pub,␣
→˓const signature &sig) {
ge_p2 tmp2;
ge_p3 tmp3;
ec_scalar c;
s_comm buf;
assert(check_key(pub));
buf.h = prefix_hash;
buf.key = pub;
if (ge_frombytes_vartime(&tmp3, &pub) != 0) {

return false;
}
if (sc_check(&sig.c) != 0 || sc_check(&sig.r) != 0) {

return false; // test if the scalars are reduced
} // no check that the scalar sig.c != 0
ge_double_scalarmult_base_vartime(&tmp2, &sig.c, &tmp3, &sig.r); // no check that␣

→˓tmp2 is not the point at infinity
ge_tobytes(&buf.comm, &tmp2);
hash_to_scalar(&buf, sizeof(s_comm), c);
sc_sub(&c, &c, &sig.c);
return sc_isnonzero(&c) == 0;

}

5.8 Failures in input size validation during deserialization

Class Severity Difficulty to trigger Difficulty to exploit
Data validation Medium Low Unknown

An error has been found during fuzzing using AddressSanitizer (it is only present in the
bp-multi-aggregation branch):

==31931==WARNING: AddressSanitizer failed to allocate 0x13b02f5f800 bytes

The issue is located in the rct::rctSigPrunable::serialize_rctsig_prunable function:

5.8. Failures in input size validation during deserialization 26

Evaluation of Bulletproof Implementation

Listing 5.9: src/ringct/rctTypes.h:315
uint32_t nbp = bulletproofs.size();
FIELD(nbp)
PREPARE_CUSTOM_VECTOR_SERIALIZATION(nbp, bulletproofs);
if (bulletproofs.size() > outputs)

return false;

It looks like a direct consequence of the serialization library downsides.

Serialization works. The number of proofs is packed in the stream, then
PREPARE_CUSTOM_VECTOR_SERIALIZATION marks the beginning of a vector. If the size is
invalid, serialization fails as expected.

Deserialization is broken. The variable nbp is initialized to 0, then parsed from raw data to a
value (by FIELD), that is used unchecked in PREPARE_CUSTOM_VECTOR_SERIALIZATION to reserve
the memory of a vector by resizing it. If allocation succeeds, the next check is still valid, because
vector::resize modifies the actual size of the vector (contrary to vector::reserve).

An attacker can use this bug to perform a vector pre-allocation with an arbitrary size (up to 4
GB). If memory is lacking, an exception (std::bad_alloc) will be raised and has to be caught.
We patched the code locally (in order to continue the fuzzing), by performing the check before
anything else:

Listing 5.10: Patch suggestion for src/ringct/rctTypes.
h:315

uint32_t nbp = bulletproofs.size();
FIELD(nbp)
if (nbp > outputs)

return false;
PREPARE_CUSTOM_VECTOR_SERIALIZATION(nbp, bulletproofs);
assert(bulletproofs.size() <= outputs);

5.9 Failures in input size validation during containers deserialization

Class Severity Difficulty to trigger Difficulty to exploit
Data validation Informational Low Unknown

Containers (de)serialization routines have been reviewed. A minor issue has been found in the
following code:

Listing 5.11: src/serialization/container.h:65
bool do_serialize_container(Archive<false> &ar, C &v)
{

// [...]
// very basic sanity check
if (ar.remaining_bytes() < cnt) {

ar.stream().setstate(std::ios::failbit);
return false;

}

5.9. Failures in input size validation during containers deserialization 27

Evaluation of Bulletproof Implementation

The sanity check ensures a fast detection if the remaining bytes in the stream are not enough
to unserialize the container (marking the stream as broken to ensure nothing will be done with
it).

The check is invalid as only the number of elements are taken into account and not their sizes.

This failure does not seem critical, because the routine fails during the deserialization process.
However, if the returned boolean is not verified properly, a partially initialized container object
can be created.

A correct implementation could be something like:

Listing 5.12: Patch suggestion for src/serialization/
container.h:65

bool do_serialize_container(Archive<false> &ar, C &v)
{

// [...]
// very basic sanity check
if ((cnt > SIZE_MAX / sizeof(typename C::value_type)) ||

(ar.remaining_bytes() < cnt * sizeof(typename C::value_type))) {
ar.stream().setstate(std::ios::failbit);
return false;

}

5.10 Failures in input type validation during deserialisation

Class Severity Difficulty to trigger Difficulty to exploit
Data validation Medium Low Unknown

Parsing a transaction can fail with a boost::bad_get exception —the exception does not seem
to be caught in every code paths— due to an invalid variant type:

Listing 5.13: src/cryptonote_basic/
cryptonote_format_utils.cpp

bool expand_transaction_1(transaction &tx, bool base_only) {
// [...]
for (size_t n = 0; n < tx.rct_signatures.outPk.size(); ++n) {

const auto& target = tx.vout[n].target;
// this can raise boost::bad_get if target is not a txout_to_key
rv.outPk[n].dest = rct::pk2rct(boost::get<txout_to_key>(target).key);

}

Variants are a C++17 generalization of unions in C, for non-POD types. Non-POD (non-Plain-
Old-Data) types can be approximately viewed as types that cannot be mapped directly to C
types. An example is given below:

5.10. Failures in input type validation during deserialisation 28

Evaluation of Bulletproof Implementation

Listing 5.14: Example of variant
std::variant<int, std::string, std::vector<uint64_t>> myobj;

The stored type is runtime dependent. Therefore it needs to be checked dynamically. If this is
not performed, then using the associated value may fail and an exception be raised.

Monero is using the boost::variant library, which inspired C++17 standard library. A variant
type should always be checked, but it is especially true with distrusted data. The previous
function is supposed to return false if an unexpected event occurs, so an additional check is
needed:

bool expand_transaction_1(transaction &tx, bool base_only) {
// [...]

for (size_t n = 0; n < tx.rct_signatures.outPk.size(); ++n) {
const auto& target = tx.vout[n].target;
CHECK_AND_ASSERT_MES(target.type() == typeid(txout_to_key), false,

→˓"unexpected type id in transaction");
rv.outPk[n].dest = rct::pk2rct(boost::get<txout_to_key>(target).key);

}

A quick code overview revealed some more locations with a missing check, but this one is the
only one that failed during the fuzzing of unserialized inputs.

5.10. Failures in input type validation during deserialisation 29

6. Weaknesses
We call weaknesses characteristics of the code that are not currently bugs but could easily
induce errors during code maintenance and evolution.

6.1 Checks and input validation

6.1.1 Function preconditions

As we described in Vulnerabilities (Overflow in the double scalar multiplication, Invalid Verify
input parameters and Key compromise in Schnorr signature) all parameters depending on the
prover can be considered hostile. Therefore, they require extensive checks along all the chain
of calls of functions and sub-functions. Any function applied on a proof is at risk of getting
malformed parameters.

One way to help crucial preconditions to be ensured is to apply a more systematic approach to
commenting the function requirements and intended output. This could have helped avoid the
vulnerability on the double scalar multiplication if the function computing the 𝑤-NAF had had
such a comment.

6.1.2 Shift bounds

We found a few shifts without bound checking. For instance, in bulletproof_VERIFY, the global
variable maxM should be garanteed to be kept small enough so that the shift never overflows.

Listing 6.1: src/ringct/bulletproofs.cc:944
size_t M, logM;
for (logM = 0; (M = 1<<logM) <= maxM && M < proof.V.size(); ++logM);

A minor issue has been also found in the function checking that the size of L in a proof is indeed
at least logN, fixed here to the literal value 6.

Listing 6.2: src/ringct/rctTypes.cpp:236
size_t n_bulletproof_amounts(const Bulletproof &proof)
{

CHECK_AND_ASSERT_MES(proof.L.size() >= 6, 0, "Invalid bulletproof L size");
return 1 << (proof.L.size() - 6);

}

This code is very simple, with first a boundary check to avoid negative values. Then the number
of elements in the proof.L array is used in a bit shift operation. The issue here is that the
upper bound is not checked, and 38 elements (or more) will result in an undefined result.

The result is undefined if the right operand is negative, or greater than or equal to
the number of bits in the left expression’s type.1

It’s a good practice to also add an upper bound validation, instead of relying on the CPU
instruction applying a mask or returning zero. We propose the simple patch below:

1 A7.8 Shift Operators, Appendix A. Reference Manual, The C Programming Language

Ref.: 18-06-439-REP Quarkslab SAS 30

Evaluation of Bulletproof Implementation

size_t n_bulletproof_amounts(const Bulletproof &proof)
{

size_t count = proof.L.size();
CHECK_AND_ASSERT_MES(count >= 6 && count < 38, 0, "Invalid bulletproof L size");
return 1 << (count - 6);

}

6.2 Edge cases and failure cases

6.2.1 Empty proof

While studying the aggregated bulletproof verification steps, we realized that the way
rct::bulletproof_VERIFY is implemented makes it return true if an empty proof vector is
provided.

Listing 6.3: src/ringct/bulletproofs.cc:934
rct::key z0 = rct::identity();
rct::key z1 = rct::zero();
rct::key z2 = rct::identity();
rct::key z3 = rct::zero();
rct::keyV z4(maxMN, rct::zero()), z5(maxMN, rct::zero());
// [...]
rct::key Y = z0;
sc_sub(tmp.bytes, rct::zero().bytes, z1.bytes);
rct::addKeys(Y, Y, rct::scalarmultBase(tmp));
rct::addKeys(Y, Y, z2);
rct::addKeys(Y, Y, rct::scalarmultH(z3));

std::vector<MultiexpData> multiexp_data;
multiexp_data.reserve(2 * maxMN);
for (size_t i = 0; i < maxMN; ++i)
{

sc_sub(tmp.bytes, rct::zero().bytes, z4[i].bytes);
multiexp_data.emplace_back(tmp, Gi_p3[i]);
sc_sub(tmp.bytes, rct::zero().bytes, z5[i].bytes);
multiexp_data.emplace_back(tmp, Hi_p3[i]);

}
rct::addKeys(Y, Y, multiexp(multiexp_data, true));

if (!(Y == rct::identity()))
{

return false;
}

Which gives us:

𝑌 = 𝐼 − 0 · 𝐺 + 𝐼 + 0 · 𝐻 +
maxNM∏︁
𝑖=0

𝐺0
𝑖 𝐻0

𝑖 ⇒ 𝐼
?= 𝐼 ⇒ true

We did not find this corner case in bulletproof tests, so we do not know if this is expected
or not. It is logically sound. However taking into account that the input to the function
rct::bulletproof_VERIFY is controled by the prover, it seems risky to be able to get true
just by providing an empty proof.

6.2. Edge cases and failure cases 31

Evaluation of Bulletproof Implementation

When this function is used in rct::rctSigs, the absence of proof has to be handled specifically
in the verification process.

if (!proofs.empty() && !verBulletproof(proofs))
LOG_PRINT_L1("Aggregate range proof verified failed");
return false;

}

In order to avoid future issues, we advise rejecting the empty proof case at the beginning of
rct::bulletproof_VERIFY.

6.2.2 Tests on malformed proofs

All the unit tests of the bulletproof_VERIFY() function test well-formed proofs produced
by bulletproof_PROVE(). No tests are made directly on malformed inputs provided to the
verification algorithm. In order to cover more realistic pathological cases, we advise including
different edge cases and failure cases in addition to testing the happy paths.

For the two last tests TEST(bulletproofs, invalid_gamma_0) and TEST(bulletproofs,
invalid_gamma_ff) it is unclear whether what is tested is invalid values of gamma, 0x00..
.00 and 0xff...ff or an invalid amount. The test defines invalid_amount[8] = 1, case
where the input is 264, out of the intended interval [0, 264 − 1].

The test could be on an invalid amount. Indeed 0x00...00 is not an invalid value for gamma as
long as such a value cannot be distinguished from all other hiding values. In this case, the test
would need renaming.

The test could also be on an invalid gamma as 0xff...ff as a scalar is greater than the order l of
the main subgroup of Ed25519. In this case, the function rct::addKeys2 outputs wrong values,
providing a false proof. The test fails for the wrong reason (computation error in rct::addKeys2
and not detection of an invalid value for gamma or for an invalid amount).

Listing 6.4: tests/unit_tests/bulletproofs.cpp:187
TEST(bulletproofs, invalid_gamma_ff)
{

rct::key invalid_amount = rct::zero();
invalid_amount[8] = 1;
rct::key gamma = rct::zero();
memset(&gamma, 0xff, sizeof(gamma));
rct::Bulletproof proof = bulletproof_PROVE(invalid_amount, gamma);
ASSERT_FALSE(rct::bulletproof_VERIFY(proof));

}

This last test could have detected the computation error in rct::addKeys2 if designed in a
better way.

6.2.3 Generators at infinity

In the implemented bulletproof protocol, the functions rct::hashToPointSimple() or
rct::hashToPoint() are eventually called to create generators.

None of the calls to these functions is followed by a check that the output is not the point at
infinity. The case is highly improbable, but such checks are not costly and ensure a more robust

6.2. Edge cases and failure cases 32

Evaluation of Bulletproof Implementation

code.

The computation being completely deterministic and identical for all version of the software,
adding checks in unit tests might be a good idea in order to secure any future modifications.

6.3 Fragilities

Fragile characteristics are the contrary of robust ones. Even though the code is valid and works
as expected, small changes or mistakes could lead to catastrophic security consequences.

6.3.1 Random generation initialization

The global state of the PRNG is initialized during software launch, with random data coming
from the system generator:

• on Windows, 32 bytes are returned from CryptGenRandom. The cryptographic context
is acquired using the CRYPT_VERIFYCONTEXT flag. It is a good practice that ensures no
persistent key is generated by the CryptoAPI.

• on other operating systems, 32 bytes are read from /dev/urandom.

The function responsible for this critical step is called using a dynamic initializer called through
the CRT library if the code is compiled with Visual C++, and with a constructor if gcc or
clang are used.

Listing 6.5: src/crypto/random.c:112
INITIALIZER(init_random) {
generate_system_random_bytes(32, &state);
REGISTER_FINALIZER(deinit_random);

if !defined(NDEBUG)
assert(curstate == 0);
curstate = 1;

endif

In case of a failure in generate_system_random_bytes, the software will abort. If this function
is never called (which should never happen in theory), then the execution continues and the
output of the PRNG is predictable. This corner case is covered by an assert which forces the
function generate_random_bytes_not_thread_safe to abort, but it is only enabled on debug
builds.

Listing 6.6: src/crypto/random.c:121
void generate_random_bytes_not_thread_safe(size_t n, void *result) {
if !defined(NDEBUG)
assert(curstate == 1);

We strongly advise to keep this check in release builds too. The call to the initialization
function of the PRNG is critical and there are scenarios where it could be skipped. For example,
initializers of Visual C++ CRT are only called if the module is compiled in C. Simply renaming
random.c to random.cpp will break the PRNG initialization on a Windows production build.

6.3. Fragilities 33

https://msdn.microsoft.com/en-us/library/windows/desktop/aa379886(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb918180.aspx

Evaluation of Bulletproof Implementation

6.3.2 Manual type isolation

All the main elements manipulated in the code of Bulletproof —scalars or points or hash out-
puts— have the same type in the main code: the type key. This lack of strong typing allows
reusing a variable for different purposes.

In the code below, aG begins as a scalar by receiving the value of the modular reduction of a.
Then it is used as a point when receiving the value of the multiplication.

Listing 6.7: src/ringct/rctOps.cpp:157
//does a * G where a is a scalar and G is the curve basepoint
void scalarmultBase(key &aG,const key &a) {

ge_p3 point;
sc_reduce32copy(aG.bytes, a.bytes); //do this beforehand!
ge_scalarmult_base(&point, aG.bytes);
ge_p3_tobytes(aG.bytes, &point);

}

For the same reasons, constants are used for different purposes. The function identity()
returns the point at infinity (the zero of the elliptic curve).

Listing 6.8: src/rctOps.h:70
//Creates a zero elliptic curve point
inline key identity() { return I; }

The same function identity() is also used as a vector having its least significant bit set to 1 (and
the others to zero) as in src/ringct/bulletproofs.cc:439 where aL[i] = rct::identity()

The lack of strong typing added to the lack of meaningful naming can quickly lead to security
issues. For instance, swapping a scalar and a point can go completely unnoticed.

We suggest creating different types for (reduced) scalars and for points and adapt a specific
hash function that returns a scalar. This would reduce the cognitive load of developers reading
the code and leverage the C++ type system to help error detection.

6.3.3 Code duplication

While reviewing Bulletproof and Schnorr signature, we found that the functions
hash_to_scalar() used in each context had different prototypes.

Listing 6.9: src/crypto/crypto.h:101
void hash_to_scalar(const void *data, size_t length, ec_scalar &res)

Listing 6.10: src/ringct/rctOps.h:148
void hash_to_scalar(key &hash, const void * data, const size_t l);

A closer look reveals that these two functions are indeed almost identical.

6.3. Fragilities 34

Evaluation of Bulletproof Implementation

Listing 6.11: src/crypto/crypto.cpp:110
void hash_to_scalar(const void *data, size_t length, ec_scalar &res) {
cn_fast_hash(data, length, reinterpret_cast<hash &>(res));
sc_reduce32(&res);
}

Listing 6.12: src/crypto/hash.c:42
void hash_process(union hash_state *state, const uint8_t *buf, size_t count) {

keccak1600(buf, count, (uint8_t*)state);
}

void cn_fast_hash(const void *data, size_t length, char *hash) {
union hash_state state;
hash_process(&state, data, length);
memcpy(hash, &state, HASH_SIZE);

}

The comment even indicates the existence of the same function in a different namespace.

Listing 6.13: src/ringct/rctOps.h:298
//Hashing - cn_fast_hash
//be careful these are also in crypto namespace
//cn_fast_hash for arbitrary multiples of 32 bytes
void cn_fast_hash(key &hash, const void * data, const std::size_t l) {

keccak((const uint8_t *)data, l, hash.bytes, 32);
}

void hash_to_scalar(key &hash, const void * data, const std::size_t l) {
cn_fast_hash(hash, data, l);
sc_reduce32(hash.bytes);

}

//cn_fast_hash for a 32 byte key
void cn_fast_hash(key & hash, const key & in) {

keccak((const uint8_t *)in.bytes, 32, hash.bytes, 32);
}

Avoiding code duplication is a good security practice ensuring that corrections are reported on
a single location.

6.3.4 Hard coded literals

In Bulletproof, many values are hardcoded in various places in the code. For instance, the
maximal value for the interval to be proved is 264, a variable of size key is a vector of 32 bytes.
The upper-bound for the interval is the reason why in many places the operation 1 << 6 is
present.

Such reliance on hardcoded literals could lead to future potential troubles when updating types
or upper-bounds. Making sure that all modifications are reported could be an error-prone
operation. Besides, there is a loss of meaning when using literals. We suggest to rely on global
constants gathered at meaningful places.

6.3. Fragilities 35

Evaluation of Bulletproof Implementation

An example of such weaknesses is given by the function estimate_rct_tx_size().

Listing 6.14: src/wallet/wallet2.cpp:531
size_t estimate_rct_tx_size(int n_inputs, int mixin, int n_outputs, size_t extra_size,
→˓ bool bulletproof)
{

size_t size = 0;

// tx prefix

// first few bytes
size += 1 + 6;

// vin
size += n_inputs * (1+6+(mixin+1)*2+32);

// vout
size += n_outputs * (6+32);

// extra
size += extra_size;

// rct signatures

// type
size += 1;

// rangeSigs
if (bulletproof)
size += ((2*6 + 4 + 5)*32 + 3) * n_outputs;

else
size += (2*64*32+32+64*32) * n_outputs;

// MGs
size += n_inputs * (64 * (mixin+1) + 32);

// mixRing - not serialized, can be reconstructed
/* size += 2 * 32 * (mixin+1) * n_inputs; */

// pseudoOuts
size += 32 * n_inputs;
// ecdhInfo
size += 2 * 32 * n_outputs;
// outPk - only commitment is saved
size += 32 * n_outputs;
// txnFee
size += 4;

LOG_PRINT_L2("estimated rct tx size for " << n_inputs << " with ring size " <<␣
→˓(mixin+1) << " and " << n_outputs << ": " << size << " (" << ((32 * n_inputs/*+1*/
→˓) + 2 * 32 * (mixin+1) * n_inputs + 32 * n_outputs) << " saved)");

return size;
}

6.3. Fragilities 36

7. Improvements

7.1 Code dependencies: OpenSSL

In RingCT, a dependency on OpenSSL is required for a unique function, rct::invert. The
function rct::invert computes the inverse of an integer modulo a fixed number, ℓ = 2252 +
27742317777372353535851937790883648493, the order of the main subgroup.

Adding a heavy dependency raises issues both in terms of security and compatibility. OpenSSL
is famous for its size and lengthy list of vulnerabilities. Considering the current use of the
library in Bulletproof, the burden far outweights the benefits in terms of compatibility testing
and vulnerabilities.

An inversion function modulo ℓ adapted to Bulletproof would allow to get rid of the dependency
on OpenSSL and, furthermore, benefit from specific optimizations.

In the Monero project, the only other dependency on OpenSSL is openssl/sha.h allowing access
to the sha256 hash function. It does not warrant the linking with such a heavy dependency.

7.2 Use of near-standards: Keccak vs SHA-3

Monero’s current implementation of its hash function uses the draft 3.0 of Keccak, the latest
before NIST standardized a subset of the family into SHA-3. Monero’s Keccak only differs from
SHA-3 in the message padding.

--- keccak.c 2018-05-24 17:29:19.668521100 +0200
+++ sha3.c 2018-06-20 15:55:13.940522200 +0200
@@ -116,7 +116,7 @@

}

memcpy(temp, in, inlen);
- temp[inlen++] = 1;
+ temp[inlen++] = 6;

memset(temp + inlen, 0, rsiz - inlen);
temp[rsiz - 1] |= 0x80;

For practical reasons, we advise replacing Keccak[1088, 512] with SHA-3 256. Indeed, a
standardized algorithm means an easier evaluation of the impact of potential attacks, the com-
patibility with existing tools and test suites, etc.

7.3 Missing abstraction layers

Proper abstraction layers and type isolation help improve the code clarity and reduce the risk
of missed vulnerabilities during a security review process.

7.3.1 Code factoring

The bulletproof_PROVE and the bulletproof_VERIFY functions are two monolithic functions
mixing different layers of abstractions, from Pedersen commitment computations to lower level

Ref.: 18-06-439-REP Quarkslab SAS 37

Evaluation of Bulletproof Implementation

arithmetic operations like multi-exponentiation, vector sums and multiplications to an unrolled
inner-product protocol.

There are two bulletproof_PROVE functions (164 lines and 229 lines), one for proving a single
value, the other one for proving M aggregated values. No subroutines are shared between these
two functions although it appears possible to consider the single value case as the case M=1 of
the multi-value case.

The function bulletproof_VERIFY (249 lines) does not have any separated subroutines although
the inner-product proof of knowledge argument augmented with the batch verification trick
seems a good candidate.

We have proposed in Section The two main algorithms two pseudo-codes to simplify the two
main algorithms through the use of subroutines. It exposed little flaws or issues in the current
code.

For instance, the operation sc_muladd(tmp.bytes, z.bytes, ip1y.bytes, k.bytes) is
grouped with multi-exponentiation related computations (and taken into account in timings)
and not grouped with the other instructions computing the value of 𝛿(𝑦, 𝑧).

Listing 7.1: src/ringct/bulletproofs.cc:975
// bos coster is slower for small numbers of calcs, straus seems not
if (1)
{
PERF_TIMER_START_BP(VERIFY_line_61rl_new);
sc_muladd(tmp.bytes, z.bytes, ip1y.bytes, k.bytes);
std::vector<MultiexpData> multiexp_data;

The computation of the challenges w[i] in bulletproof_PROVE and bulletproof_VERIFY raises
a different issue. In the current, code the functions directly include all the inner-product prove
and verify operations. Hence w[i] can be computed based on all former elements of the tran-
script. If the code were to be refactored and had to keep the current behavior, this dependency
should be provided as input to the sub-function. From a specification point of view, this choice
is not obvious. Besides, from a cryptographic point of view, it is unclear whether providing
this dependency has a security advantage. This aspect is not considered in the paper where it
seems enough for w[i] to depend on L[i] and R[i] alone. In the pseudo-code we proposed, we
translated directly the paper subroutine organization.

7.3.2 Variable and function names

Variables names are often not explicit in the code. This is aggravated by the lack of strong
typing.

For instance, all four variables in the code below have the same naming scheme and the same
type. However, two of them are scalars and two of them are points.

Listing 7.2: src/ringct/bulletproofs.cc:933
// setup weighted aggregates
rct::key z0 = rct::identity();
rct::key z1 = rct::zero();
rct::key z2 = rct::identity();
rct::key z3 = rct::zero();

7.3. Missing abstraction layers 38

Evaluation of Bulletproof Implementation

This increase the chances of unnoticed swapping of variables.

Variables called L61Left or L61Right are too closely related to an ephemeral early draft of
the paper. They do not convey a real meaning (besides the line number in the last version of
the paper is 72). We suggest isolating them in a specific function with an explicit naming like
check_commitment_inner_product_poly_coeff().

In the paper, a commitment to 𝑣 with a hiding random exponent 𝛾 is computed as ℎ𝛾 · 𝑔𝑣. The
notations are swapped in the code where H is used to commit on the secret values and G is used
to blind the commitment: 𝛾 · G + 𝑣 · H. But the use of g and h is not swapped and Hi and Gi
follow the use in the paper. This lead to a risk of wrongly implementing the protocol.

For clarity, we suggest naming more explicitly variables, like hiding_G for the generator used
for hiding and binding_G for the generator used for binding.

Many function names can be misleading. For instance, the function producing vector com-
mitments (output is a point) is called vector_exponent(), the function initializing vectors
of generators (points) are named init_exponents(), vector_scalar2() produces a vector of
points although vector_scalar() produces a vector of scalars.

Coupled with the already-mentioned problem of a single type key the risk of an unnoticed
mistake is increased.

7.4 Lack of specifications

Having an academic paper at the basis of an implementation adds a layer of difficulty for
the development of the code and for its evaluation. Indeed, it is very seldom enough for a
specification. A specification would allow no ambiguity, no implementation dependent choices
and no prior deep knowledge of the underlying theories to be able to understand what needs to
be implemented.

7.4.1 Input parameters

In the paper, input parameters of the prove and verify algorithms are not entirely specified for
the bulletproofs as the two functions are interleaved in an interactive protocol.

The paper can also be misleading: for instance, in the last algorithm presented in the optimiza-
tion section, for the combination of two multi-exponentiations, the commitment V to the value
is not part of the input parameters. For the algorithms of the inner-product protocol, there
is an unused parameter in the prover’s input parameters in the paper: the prover never needs
to use the point 𝑃 , which is only necessary to the verifier. Hence the input parameters in the
implementation are different from the paper.

7.4.2 Computation of challenges

The computation of the challenges in src/ringct/bulletproof.cc depends on the transcript
up to the point of their computation as suggested in the original paper. However, the rule
used to insert some dependency on preceding values is non-obvious. For instance, computing x
includes z twice.

7.4. Lack of specifications 39

Evaluation of Bulletproof Implementation

Listing 7.3: src/ringct/bulletproofs.cc:951
rct::key hash_cache = rct::hash_to_scalar(proof.V);
rct::key y = hash_cache_mash(hash_cache, proof.A, proof.S);
rct::key z = hash_cache = rct::hash_to_scalar(y);
rct::key x = hash_cache_mash(hash_cache, z, proof.T1, proof.T2);
rct::key x_ip = hash_cache_mash(hash_cache, x, proof.taux, proof.mu, proof.t);
w[i] = hash_cache_mash(hash_cache, proof.L[i], proof.R[i]);

It is important to have this rule specified: protocol security evaluation often implies developing
compatible entities (prover or verifier).

7.5 Simplifications and performance suggestions

7.5.1 Ugly sum computation

In the bulletproof_PROVE() function in the aggregated proof case, a piece of code implements
the following sum:

𝑚∑︁
𝑗=1

𝑧𝑗+1 ·
(︁
0(𝑗−1)·𝑛 ‖ 2𝑛 ‖ 0(𝑚−𝑗)·𝑛

)︁
Comments below are from the original source code:

Listing 7.4: src/ringct/bulleproof.cc:747
// This computes the ugly sum/concatenation from PAPER LINE 65
rct::keyV zero_twos(MN);
const rct::keyV zpow = vector_powers(z, M+2);
for (size_t i = 0; i < MN; ++i)
{
zero_twos[i] = rct::zero();
for (size_t j = 1; j <= M; ++j)
{

if (i >= (j-1)*N && i < j*N)
{
CHECK_AND_ASSERT_THROW_MES(1+j < zpow.size(), "invalid zpow index");
CHECK_AND_ASSERT_THROW_MES(i-(j-1)*N < twoN.size(), "invalid twoN index");
sc_muladd(zero_twos[i].bytes, zpow[1+j].bytes, twoN[i-(j-1)*N].bytes, zero_

→˓twos[i].bytes);
}

}
}

In fact the ugly sum can be simplified. With a little abuse of notations, we could write it as:

2𝑛 ·
(︁
𝑧2 · z𝑚

)︁
where each coefficient 𝑧𝑗+2 is multiplying a vector 2𝑛, resulting in a vector of size 𝑚 × 𝑛. It
provides a simpler and more efficient implementation of the sum.

7.5. Simplifications and performance suggestions 40

Evaluation of Bulletproof Implementation

Listing 7.5: simplification suggestion for src/ringct/
bulleproof.cc:747

// Last term (sum) in r(X), PAPER LINE 71
rct::keyV zero_twos(MN);
const rct::keyV zpow = vector_powers(z, M+2);
for (size_t j = 0; j < M; ++j){

for (size_t i = 0; i < N; ++i){
zero_twos[i] = rct::zero();
sc_mul(zero_twos[i+j*N].bytes, zpow[2+j].bytes, twoN[i].bytes);
}

}
}

7.5.2 Inner-product challenge for the prover

In the bulletproof_PROVE() functions, the final challenge list rct::keyV w(logN) (resp.
rct::keyV w(logMN)) can be replaced by a simple scalar, rct::key w, as the complete list
of all challenges is never used (contrary to the bulletproof_VERIFY() function).

7.5.3 Test of points at infinity

Both Bos-Coster and Pippenger multi-exponentiation algorithms can be optimized on specific
cases, when dealing with points at infinity.

To check if a given point result is the point at infinity, the code below is used:

Listing 7.6: src/ringct/multiexp.cc:607
if (memcmp(&result, &ge_p3_identity, sizeof(ge_p3)))

with ge_p3_identity defined as:

Listing 7.7: src/crypto/crypto-ops-data.c:873
const ge_p3 ge_p3_identity = { {0}, {1, 0}, {1, 0}, {0} };

This structure is made of 4 elements 𝑋, 𝑌 , 𝑍 and 𝑇 , such as the Cartesian coordinates (𝑥, 𝑦)
of a point 𝑃 would be:

𝑥 = 𝑋/𝑍

𝑦 = 𝑌/𝑍

𝑋𝑌 = 𝑍𝑇

In Cartesian coordinates, (0, 1) represents the point at infinity, which means that 𝑋 = 0 and
𝑌 = 𝑍 in ge_p3. The current test for points at infinity in multi-exponentiation algorithms is
only true if 𝑋 = 0, 𝑌 = 1, 𝑍 = 1 and 𝑇 = 0. We checked that it is very common to have 𝑌 = 𝑍
with 𝑌 ̸= 1: all these points at infinity are not captured by the current test.

The code can be improved in order to match more points at infinity. It can also be factorized
as it seems to be a common check.

7.5. Simplifications and performance suggestions 41

8. Conclusion
Bulletproof is a very recent protocol allowing to dramatically reduce the size of proofs of interval
used in Monero to ensure every value manipulated is positive without revealing it.

During our security assessment of the Bulletproof implementation, we found:

• a structural cryptographic weakness in the Java implementation of the subgroup genera-
tors,

• two bugs that correspond to extremely improbable events triggered by functions internal
computations (values hashing to zero or null random values) but whose consequences
could be catastrophic,

• an absence of proper security checks on the inputs of the main proof verification function
although these inputs are all controlled by a potential attacker,

• a direct consequence of this lack of input checking is the call of subfunctions with improper
inputs causing an overflow in an arithmetic function,

• two major vulnerabilities that correspond to algorithmic mistakes in two multi-
exponentiation algorithms whose inputs are also directly deduced from attacker inputs,

• three minor vulnerabilities in the serialization/deserialization procedures also fed with
attacker inputs.

In the timeframe of the assessment, none of the vulnerabilities found has led to a practical
exploit allowing to either produce a false proof accepted by a verifier or to reveal information
on a proof. However, it does not mean it is impossible, especially when considering all the
vulnerabilities in the verification directly linked to inputs controlled by an attacker.

Our code review also revealed several weaknesses: aspects that can be improved in order to
strengthen code security or characteristics that are not currently bugs but could induce bugs
during code maintenance and evolution.

We also proposed several simplification and performance improvements.

Monero is well-known for being at the forefront of cryptographic innovations in crypto-
currencies, incorporating the latest cutting-edge improvements. It made the review particularly
challenging and interesting and we hope we helped improve the project’s overall security.

Ref.: 18-06-439-REP Quarkslab SAS 42

8. Bibliography
[MP15] Gregory Maxwell and Andrew Poelstra. “Borromean ring signatures”. 2015.

Available at https://github.com/Blockstream/borromean_paper/blob/master/
borromean_draft_0.01_9ade1e49.pdf

[BBBPWM18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille
and Greg Maxwell. “Bulletproofs: Short Proofs for Confidential Transactions
and More,” 2018 IEEE Symposium on Security and Privacy (SP), San Francisco,
CA, US, pp. 319-338. doi:10.1109/SP.2018.00020

[NMM16] Shen Noether, Adam Mackenzie, and the Monero Research Lab. “Ring Confi-
dential Transactions.” Ledger, 1 (2016): 1-18. Available at: https://ledger.pitt.
edu/ojs/index.php/ledger/article/view/34

[CDF] Crypto Differential Fuzzing https://github.com/kudelskisecurity/cdf

[Keccak] Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche. The Kec-
cak sponge functions. https://keccak.team/keccak.html

[LiLe97] Chae Hoon Lim and Pil Joong Lee. “A key recovery attack on discrete log-based
schemes using a prime order subgroup”, Advances in Cryptology—CRYPTO ’97,
Lecture Notes in Computer Science, vol. 1294.

[ABMSV03] Adrian Antipa, Daniel Brown, Alfred Menezes, René Struik, and Scott Vanstone.
“Validation of Elliptic Curve Public Keys”. In Public Key Cryptography — PKC
2003. PKC 2003. Lecture Notes in Computer Science, vol 2567.

[TR-03111] Federal Office for Information Security. Technical Guideline BSI TR-03111, El-
liptic Curve Cryptography. Version 2.10, 2018-06-01.

Ref.: 18-06-439-REP Quarkslab SAS 43

https://github.com/Blockstream/borromean_paper/blob/master/borromean_draft_0.01_9ade1e49.pdf
https://github.com/Blockstream/borromean_paper/blob/master/borromean_draft_0.01_9ade1e49.pdf
https://ledger.pitt.edu/ojs/index.php/ledger/article/view/34
https://ledger.pitt.edu/ojs/index.php/ledger/article/view/34
https://github.com/kudelskisecurity/cdf
https://keccak.team/keccak.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03111/BSI-TR-03111_pdf.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TR03111/BSI-TR-03111_pdf.pdf?__blob=publicationFile&v=1

	Executive Summary
	Context
	Initial request
	Evolution of the request and complementary evaluations
	Quarkslab’s planned work
	Role of Bulletproof in Monero

	Code overview
	Structure
	The two main algorithms
	Prove
	Verify

	Evaluation overview
	Hypothesis
	Methodology
	Topics covered
	Hash function
	Random generation
	Protocol challenges
	Generators of the main subgroup of Ed25519
	Arithmetic operations
	Multi-exponentiation
	Prove and Verify algorithms
	Serialization

	Vulnerabilities
	Zero value challenges
	Dependent generators in the Java implementation
	Overflow in the double scalar multiplication
	Erroneous identity output in Bos-Coster multi-exponentiation
	Silently discarded element in Pippenger multi-exponentiation
	Invalid Verify input parameters
	Key compromise in Schnorr signature
	Failures in input size validation during deserialization
	Failures in input size validation during containers deserialization
	Failures in input type validation during deserialisation

	Weaknesses
	Checks and input validation
	Function preconditions
	Shift bounds

	Edge cases and failure cases
	Empty proof
	Tests on malformed proofs
	Generators at infinity

	Fragilities
	Random generation initialization
	Manual type isolation
	Code duplication
	Hard coded literals

	Improvements
	Code dependencies: OpenSSL
	Use of near-standards: Keccak vs SHA-3
	Missing abstraction layers
	Code factoring
	Variable and function names

	Lack of specifications
	Input parameters
	Computation of challenges

	Simplifications and performance suggestions
	Ugly sum computation
	Inner-product challenge for the prover
	Test of points at infinity

	Conclusion
	Bibliography

